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FINITE PROPAGATION SPEED OF WAVES IN ANISOTROPIC
VISCOELASTIC MEDIA

JOYCE R. MCLAUGHLIN∗ AND JEONG-ROCK YOON†

Abstract. Finite propagation speed properties in mathematical elastic and viscoelastic models
are fundamental in many applications where the data exhibits propagating fronts. We note particu-
larly that this property is observed in biomechanical imaging of tissue, in particular in the supersonic
imaging experiment, and also in geophysics and ocean acoustics. With these applications in mind,
noting that there are many other applications as well, we present finite propagation speed results
for very general integro-differential, anisotropic, viscoelastic linear models, which are not necessarily
of convolution type. We start with work density, define work density decomposition and we achieve
our results utilizing energy arguments. One of the advantages of our presented method, instead of
using plane wave arguments, is that there is no need to make the homogeneous medium assumption
to obtain the finite propagation speed results.

Key words. finite propagation speed, anisotropic viscoelastic media, biomedical imaging,
integro-differential equation.
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1. Introduction. Finite propagation speed is a fundamental property in many
applications pertaining to elastic media as that is a phenomena observed in the data.
In addition, viscoelasticity and anisotropy are observed and so the mathematical mod-
els need to include those properties as well. We note particularly in biomechanical
imaging of tissue, e.g., in the experiment, supersonic imaging [1], a sequence of pushes
created by focused ultrasound creates a wave with a wave front, indicating finite prop-
agation speed, with time traces exhibiting viscoelastic behavior and where the exper-
iment can be performed in isotropic tissue (breast or prostate) or anisotropic tissue
(muscle). Furthermore, the pushes themselves can be created precisely because of the
viscoelastic behavior in tissue [10]. Anisotropy, viscoelasticity and finite propagation
speed are also observed in geophysics and in shallow water seabeds. In this paper we
consider linear but, at the same time, very general viscoelastic, anisotropic, inhomo-
geneous systems, and present a time domain energy method that can be utilized to
establish the finite propagation speed property. Our model is an integro-differential
equation system as it is this class of models (usually referred to as viscoelastic models)
that we have found, in our work, are dissipative, exhibit the finite propagation speed
property and provide properties that are consistent with applications of interest to us.
The fundamental expression that we use as our starting point for establishing finite
propagation speed is related to a work density decomposition.

In the homogeneous case, a frequently used method is to establish finite propaga-
tion speed by taking the time Fourier/Laplace transform, utilizing plane waves, and
establishing that at each frequency, the frequency dependent wave speeds observed in
the plane wave exponent, are uniformly bounded. See, e.g., [11].

Here we move away from the frequency domain approach and develop a space-time
domain energy based method that naturally allows the assumption of an inhomoge-
neous medium. We establish that: (1) if the solution to our model equations, together
with the solution’s time derivative, are zero at the base of a certain space-time cone,
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then the solution is identically zero within that cone thereby establishing finite prop-
agation speed; (2) a finite sum superposition principle where the finite propagation
speed property holds for individually defined stress/strain relations implies the finite
propagation speed property holds for the sum of those individual stress/strain rela-
tions; and (3) a continuous superposition principle, utilizing an infinite integral, that
enables us to apply our energy method to the case where the stress/strain relation
is derived from the fractional derivative Zener, see [6], model; this last result applies
also to the fractional derivative Maxwell model but not to the fractional derivative
Voigt and Newton models where the finite propagation speed property does not hold.

Prior to this work, we developed an energy based argument that establishes the
finite propagation speed property for: (1) the inhomogeneous, isotropic linear acoustic
equation, [8]; (2) the inhomogeneous linear elastic, isotropic system [8]; and (3) the
inhomogeneous, isotropic, viscoelastic generalized Linear Solid Model [7] where we
also established smoothness results for the solutions of this model.

In this paper we advance this argument to our much more general viscoelas-
tic anisotropic model starting with a work density formulation and establishing an
inequality related to the dissipative property of the system that, when satisfied, es-
tablishes finite propagation speed for our general model. We present examples that
include, e.g.: (1) an inhomogeneous, isotropic aging model; (2) the generalized Linear
Solid Model where we show finite propagation speed using our superposition result;
and (3) the fractional derivative Zener or Maxwell models where we utilize our con-
tinuous superposition principle to establish finite propagation speed.

The paper is organized as follows. In Section 2 we present the background. In
Section 3 we give our basic energy lemmas. In Section 4 we present our main finite
propagation result. In Section 5 we advance our finite propagation speed result to
a finite sum of anisotropic, viscoelastic models which individually satisfy our criteria
and also advance our method to apply to a continuum of anisotropic, viscoelastic
models. In Section 6 we present examples where our theory is applied.

2. Background. The goal of this paper is to present a method to establish finite
propagation speed for a general linear viscoelastic anisotropic mathematical model.
The method is based on defining a work density decomposition which contains the sum
of the kinetic energy and a candidate for strain energy and an associated dissipative
energy term. We establish that if the initial velocity and initial displacement are zero
in a ball in R

d, d ≥ 2, then the sum of the kinetic energy and the strain energy is
zero in a space-time cone implying that the displacement is identically equal to zero
in the same cone. Note that in the purely elastic case the strain energy is inarguably
well defined but in the viscoelastic case it is not.

In this section we present a finite propagation speed result, similar to that estab-
lished in [7] for an isotropic generalized Linear Solid Model, where here the isotropic
generalized Linear Solid Model with exponential convolution type kernels is slightly
further generalized. Also here we say explicitly the choice for strain energy density
that enables the finite propagation speed result. Furthermore, in keeping with the
rest of the paper we assume that we have enough smoothness for all derivatives and
integrals to exist. For a discussion of possible choices for the solution and parameter
spaces, see [7].
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Our generalized Linear Solid Model is

(2.1)

ρ(x)~utt =∇
[

λ0(x)∇ · ~u+

M
∑

i=1

∫ t

0

λi(x)e
−

t−s

γi(x)∇ · ~us(x, s) ds

]

+ 2∇ ·
[

µ0(x)ǫ(x, t) +

N
∑

i=1

∫ t

0

µi(x)e
−

t−s

τi(x) ǫs(x, s) ds

]

,

where the mass density ρ(x), the Lamé parameter λi(x), the shear modulus µi(x),
the relaxation times γi(x) and τ i(x) are all assumed to be positive. Here ~u is the
displacement, ǫ = 1

2 (∇~u+(∇~u)T ) is the strain, and subscripts denote time derivatives.
The space-time cone is defined as follows: For any open ball BR(x0) ⊂ R

d and any
given c > 0,

∀s ∈ (0, R/c), Λ(s) :=
⋃

0<τ<s

Cτ where Cτ := BR−cτ (x0)× {t = τ},

where BR−cτ (x0) is the ball centered at x0 ∈ R
d of radius R − cτ > 0. Also

∂Λ(s) = Cs ∪C0 ∪L with L =
⋃

0<τ<s ∂Cτ . The kinetic energy density is eK(x, t) :=
ρ(x)
2 |~ut(x, t)|2, and the strain energy density is defined as

eS(x, t) =
λ0(x)

2
|∇ · ~u(x, t)|2 + λi(x)

2

M
∑

i=1

∣

∣

∣

∣

∫ t

0

e
−

t−s

γi(x)∇ · ~us(x, s) ds

∣

∣

∣

∣

2

+ µ0(x)|ǫ(x, t)|2 +
N
∑

i=1

µi(x)

∣

∣

∣

∣

∫ t

0

e
−

t−s

τi(x) ǫ(x, s) ds

∣

∣

∣

∣

2

yielding the total stored energy, e(s) =
∫

Cs
{eK(x, s) + eS(x, s)} dx. Our choice of

strain energy density is natural given the definition of that in the purely elastic
isotropic case and this choice enables us to establish the following:

Theorem 2.1. Let ~u satisfy equation (2.1) with ~u(x, 0) = ~ut(x, 0) = 0, ∀x ∈
BR(x0). Then ~u ≡ 0 in the space-time cone, Λ(R/c), with

c = sup
x∈B̄R(x0)

√

∑M
i=0 λ

i(x) + 2
∑N

i=0 µ
i(x)

ρ(x)
.

Proof. Multiplying equation (2.1) by ~ut integrating over Λ(s), 0 < s < R/c, and
using the space-time divergence theorem we obtain, using also e(0) = 0, that

e(s) ≤ −c√
1 + c2

∫

L

(

eK(x, t) + eS(x, t)− F1(x, t) ·
x− x0

c|x− x0|

)

dSx,t

−
M
∑

i=1

∫

Λ(s)

λi(x)

γi(x)

∣

∣

∣

∣

∫ t

0

e
−

t−τ

γi(x)∇ · ~utdτ

∣

∣

∣

∣

2

dxdt

−
N
∑

i=1

∫

Λ(s)

2µi(x)

τ i(x)

∣

∣

∣

∣

∫ t

0

e
−

t−τ

τi(x) ǫs(x, t) dτ

∣

∣

∣

∣

2

dxdt,
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where

F1(x, t) :=

[

λ0(x)∇ · ~u+

M
∑

i=1

∫ t

0

λi(x)e
−

t−s

γi(x)∇ · ~us(x, s) ds

]

~ut

+ 2

[

µ0(x)ǫ(x, t) +
N
∑

i=1

∫ t

0

µi(x)e
−

t−s

τi(x) ǫs(x, s) ds

]

~ut.

Since it can be shown that eK(x, t) + eS(x, t) − F1(x, t) ·
x− x0

c|x− x0|
≥ 0, we get 0 ≤

e(s) ≤ 0, implying ~u ≡ 0 in Λ(R/c). See [7] for additional details in the above
computations.

Having given this background, we now present our main results in sections 3–5.

3. Energy Lemmas. We begin with a formal lemma that presents a work den-
sity decomposition in order to establish the fundamental basis for our energy based
approach. Throughout this paper we do not address smoothness considerations for
our functions σ, eK , eS , eD, and ~u. We assume all quantities exist and all differenti-
ation and integrations are achievable. Throughout sections 3-6 we develop results for
R

3; all the results can be extended to R
d, d ≥ 2, using similar analysis. Often, we use

the dots above letters to denote time derivatives.
Lemma 3.1. Suppose ~u possesses the following work density decomposition:

(3.1) ∇ · (σ(x, t)~ut(x, t)) = ėK(x, t) + ėS(x, t) + ėD(x, t)

for any chosen eK , eS, and eD. For any open ball BR(x0) ⊂ R
3 and any given c > 0,

consider a space-time cone

∀s ∈ (0, R/c), Λ(s) :=
⋃

0<τ<s

Cτ where Cτ := BR−cτ (x0)× {t = τ},

with ∂Λ(s) = Cs ∪ C0 ∪ L with L =
⋃

0<τ<s ∂Cτ . Define the stored energy by

(3.2) e(s) :=

∫

Cs

{eK(x, s) + eS(x, s)} dx, ∀s ∈ [0, R/c).

Then we have

(3.3)

e(s)− e(0) =− c√
1 + c2

∫

L

{

eK(x, t) + eS(x, t)−
1

c
(σ~ut) ·

x− x0

|x− x0|

}

dSx,t

−
∫

Λ(s)

ėD(x, t) dxdt.

Proof. Integrating ∇ · (σ~ut) = ėK(x, t) + ėS(x, t) + ėD(x, t) over Λ(s), we get

∫

Λ(s)

(ėK(x, t) + ėS(x, t) −∇ · (σ~ut)) dxdt = −
∫

Λ(s)

ėD(x, t) dxdt.

Applying space-time divergence theorem to the left hand side, we have

LHS =

∫

∂Λ(s)

{(eK(x, t) + eS(x, t)) νt − (σ~ut) · νx} dSx,t,
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where dSx,t is the space-time boundary element, and (νx, νt) is the space-time outward
normal to ∂Λ(s) that is given by

(νx, νt) =















(0, 1) on Cs,

(0,−1) on C0,
1√

1 + c2

(

x− x0

|x− x0|
, c

)

on L.

Thus we have

LHS = e(s)− e(0) +
c√

1 + c2

∫

L

{

eK(x, t) + eS(x, t)−
1

c
(σ~ut) ·

x− x0

|x− x0|

}

dSx,t.

Remark 3.2. eK , eS, and eD will be called the kinetic, strain, dissipated energy
densities, and σ will be the stress, which must be a symmetric matrix. Then the phys-
ical meaning of (3.1) is the first law of thermodynamics (work-energy conservation);
the work done to a volume through its surface equals the sum of the change in kinetic
and strain energy plus total dissipated energy. However, Lemma 3.1 does not assume
more properties of energy densities such as nonnegativity; the lemma simply claims
that whenever the work density decomposition obeying the first law of thermodynamics
holds, we have a useful identity (3.3) for the stored energy difference.

Now we consider a very general form of anisotropic viscoelastic linear constitutive
equation for the stress-strain relation:

σ(x, t) =

∫ t

0

C(x, t, s)ǫs(x, s) ds, where the strain is given by ǫ =
1

2

(

∇~u+∇~uT
)

and we assume three properties of the stiffness 4-tensor C = (Cijkl)
3
i,j,k,l=1: For any

x ∈ Ω̄ where Ω is an open domain in R
3 and 0 ≤ s ≤ t ≤ T ,

• C(x, t, s) is symmetric: Cijkl = Cklij = Cjikl , which already accounts for the
symmetry of σ and ǫ.

• C(x, t, s) is positive semi-definite, denoted by C(x, t, s) � 0 which means
M : C(x, t, s)M ≥ 0 for all 3 × 3 symmetric matrices M . Here the colon
means componentwise inner product between two matrices. In our case, this
semi-definite assumption is sufficient, because we assume the existence of the
solution ~u. However, standard methods for establishing existence and unique-
ness of solutions would usually require that C(x, t, s) is positive definite.

• C(x, t, t) is positive definite, denoted by C(x, t, t) ≻ 0 which means M :
C(x, t, t)M > 0 for all 3 × 3 nonzero symmetric matrices M , or equivalently
all the eigenvalues λC(x, t) of C(x, t, t) are strictly positive. Here by the eigen-
value we mean

C(x, t, t)M = λC(x, t)M for some 3× 3 nonzero symmetric eigenmatrix M.

For actual computation of eigenvalues, we may convert C into a 6 × 6 symmetric
matrix and M into 6× 1 vector using Kelvin notation, which is designed to preserve
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the norms, multiplying
√
2 appropriately at off-diagonal places:

C = (Cijkl)
3
i,j,k,l=1 ↔

















C1111 C1122 C1133

√
2C1123

√
2C1131

√
2C1112

C2222 C2233

√
2C2223

√
2C2231

√
2C2212

C3333

√
2C3323

√
2C3331

√
2C3312

2C2323 2C2331 2C2312

sym. 2C3131 2C3112

2C1212

















,

M = (Mij)
3
i,j=1 ↔ (M11,M22,M33,

√
2M23,

√
2M31,

√
2M12)

T for symmetric matrix M.

Since the norms are preserved, the eigenvalues of this converted matrix are those
of C. Note that more traditional Voigt notation conversion does not preserve the
eigenvalues. See [5] for more details.

Remark 3.3. The positive (semi) definite assumption is sufficient for the Drucker
stability criterion to be satisfied. The Drucker stability criterion, see [2], pp. 67–68, is
that (virtual) work done by the incremental changes of the stress and displacements to
a volume through its surface is always nonnegative. The nonnegativity of this (virtual)
work is not a part of thermodynamic laws, but the Drucker criterion is utilized in many
practical applications, especially to establish the existence and uniqueness of stable
solutions. However, for large deformation cases especially in a nonlinear regime, the
strain may be opposite to the stress in the sense that some eigenvalues of C may be
negative. Then the Drucker criterion is violated. In our case, our main interest is
wave propagation with small amplitude, so it is reasonable to make the positive (semi)
definite assumption. Thus, throughout the paper, we assume

(3.4) C(x, t, s) � 0 is symmetric and C(x, t, t) ≻ 0, for all x ∈ Ω̄ and 0 ≤ s ≤ t ≤ T .

Then the inverse of C(x, t, t) exists and S(x, t) := C−1(x, t, t) becomes symmetric
and positive definite using the same criteria as for C. As in the case of matrices (2-
tensors), the eigenvalues of S(x, t) are 1/λC(x, t) and the minimum eigenvalue of S
is 1/λC

max(x, t), where λC
max(x, t) is the maximum eigenvalue of C(x, t, t). Also, the

Rayleigh quotient provides

σ : S(x, t)σ ≥ |σ|2
λC
max(x, t)

for all 3× 3 symmetric matrices σ, where |σ|2 = σ : σ.

Remark 3.4. In applications, many materials are modeled by a convolution-type
integral where C(x, t, s) = C(x, t−s), which is called a hereditary kernel. Our model is
more general and it can also cover aging materials, see section 6.4. Now we consider
the equation of motion, where we assume that the time independent mass density
ρ(x) ≥ ρ0 for some ρ0 > 0.

Lemma 3.5. Let ~u be a solution of

ρ(x)~utt(x, t) = ∇ · σ(x, t) where σ(x, t) =

∫ t

0

C(x, t, s)ǫs(x, s) ds.

Define the kinetic energy density, the strain energy density and the dissipated energy
density by

(3.5)

eK(x, t) =
ρ(x)

2
|~ut(x, t)|2, eS(x, t) =

1

2
σ(x, t) : S(x, t)σ(x, t),

ėD(x, t) = −
[

σ(x, t) : S(x, t)σ̃(x, t) + 1

2
σ(x, t) : St(x, t)σ(x, t)

]

,
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where σ̃(x, t) :=

∫ t

0

Ct(x, t, s)ǫs(x, s) ds. Then we have the work density decomposition

given in (3.1):

(3.6) ∇ · (σ~ut) = ėK + σ : ǫ̇ = ėK + ėS + ėD.

Proof. Since σ is symmetric, we have

∇ · (σ~ut) = (∇ · σ) · ~ut + σ : ∇~ut = ρ~utt · ~ut + σ : ǫ̇ =
[ρ

2
|~ut|2

]

t
+ σ : ǫ̇ = ėK + σ : ǫ̇.

Since S is symmetric and σ̇ = S−1ǫ̇+ σ̃, we get σ : ǫ̇ = ėS + ėD as follows:

ėS =
σ : Ṡσ

2
+ σ : Sσ̇ =

σ : Ṡσ
2

+ σ : ǫ̇+ σ : Sσ̃ = σ : ǫ̇− ėD.

Note that (3.5) is not the only possible choice for eK , eS and ėD to achieve the
equation (3.6). The possibilities for alternate choices will be discussed in more detail
in later sections.

4. Main Finite Propagation Speed Result. We are now in a position to
establish our main finite propagation speed results.

Theorem 4.1. Let ~u be a solution of

ρ(x)~utt(x, t) = ∇ · σ(x, t) in Ω× (0, T ), where σ(x, t) =

∫ t

0

C(x, t, s)ǫs(x, s) ds,

and suppose

(4.1) F (x, t) := σ(x, t) : S(x, t)σ̃(x, t) + 1

2
σ(x, t) : St(x, t)σ(x, t) ≤ 0.

For any open ball BR(x0) ⊂ Ω, if c = sup(x,t)∈B̄R(x0)×[0,T ]

√

λC
max(x, t)/ρ(x) < ∞,

then ~u has finite propagation speed in BR(x0) × (0, T ) with maximum propagation
speed not exceeding c. More precisely,

~u(x, 0) = ~ut(x, 0) = 0 on BR(x0) ⊂ Ω

⇒ ~u ≡ 0 in the space-time cone Λ(R/c) =
⋃

0<s<R/c Cs.

Proof. Start with defining eK , eS , ėD, and e as in (3.5) and (3.2). Then eK , eS ,
e, and ėD = −F are all nonnegative. Also, by Lemma 3.1 and 3.5, (3.3) is valid:

e(s)− e(0) =− c√
1 + c2

∫

L

{

eK(x, t) + eS(x, t)−
1

c
(σ~ut) ·

x− x0

|x− x0|

}

dSx,t

−
∫

Λ(s)

ėD(x, t) dxdt, ∀s ∈ [0, R/c).
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By the Cauchy-Schwarz inequality and the definition of c, the integrand of the first
integral is nonnegative:

eK + eS − 1

c
(σ~ut) ·

x− x0

|x− x0|

≥ρ

2
|~ut|2 +

1

2
σ : Sσ − |σ||~ut|

c
≥ 1

2

(

ρ|~ut|2 +
|σ|2

λmax(x, t)
− 2|σ||~ut|

c

)

≥1

2

(

ρ|~ut|2 +
|σ|2
ρc2

− 2|σ||~ut|
c

)

=
1

2

(√
ρ|~ut| −

|σ|√
ρc

)2

≥ 0.

Since we assume ėD = −F ≥ 0, we have 0 ≤ e(s) ≤ e(0) = 0, ∀s ∈ [0, R/c) implying
that ~u(x, t) = 0 a.e. in the cone Λ(R/c).

Given F as in (4.1), then the dissipated energy density introduced in (3.5) becomes
−F . Then the inequality (4.1) is nothing but the second law of thermodynamics.
Energy is always dissipating, which is a fundamental postulate in science. However,
our choices of eS and ėD in (3.5) are mathematical quantities that we make. In any
given applications, our choice in (3.5) is not necessarily the actual physical strain
energy density and dissipated energy density. The point we make here is that the
constitutive equation itself does not uniquely determine physical strain energy and
dissipation; one needs more information or an additional assumption to do so. We
note, though, that there is no ambiguity in defining the kinetic energy; it is always
eK = ρ

2 |~ut|2.
Remark 4.2. Accounting for this ambiguity, Theorem 4.1 may be further gener-

alized; whenever we are able to find a symmetric positive definite B(x, t) that satisfies

(4.2) FB(x, t) = σ :
[

BS−1 − I
]

ǫ̇ + σ : Bσ̃ +
1

2
σ : Btσ ≤ 0,

then ~u possesses finite propagation speed with the propagation speed not exceeding

sup
(x,t)∈B̄R(x0)×[0,T ]

1
√

ρ(x)λB
min(x, t)

.

In this case, when we define eS = 1
2σ : Bσ and ėD = −FB, then σ : ǫ̇ = ėS + ėD

implies the work density decomposition (3.6), and thus the finite propagation speed
property. In Theorem 4.1, we pick B = S to make the first term of FB(x, t) vanish.

Remark 4.3. Here we give a sufficient condition for (4.1):
If C(x, t, s) = e−tA(x)C0(x, s) for some C0 and A satisfying
• C0 is symmetric positive definite, Ċ0 is symmetric positive semi-definite and
AĊ0 = Ċ0A,

• A is symmetric positive semi-definite and C0A = AC0,
then (4.1) is satisfied, because F = σ : SAσ − 1

2σ : SĊSσ and Ċ = −AC + e−tAĊ0
imply F = −1

2
σ : [AS + SetAĊ0S]σ.

5. Superposition Principle. Many viscoelastic models including spring-dashpot
models consist of a chain of small elementary viscoelastic units. In this case, the stiff-
ness tensor is in a linear superposition form:

(5.1) C(x, t, s) =
n
∑

i=1

Ci(x, t, s),
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(5.2) σ(x, t) =

∫ t

0

n
∑

i=1

Ci(x, t, s)ǫs(x, s) ds,

where each Ci satisfies (3.4). In this situation, rather than considering C as a whole,
it may be more convenient to regard (5.1) and (5.2) as a summation of simple units:
Define Si(x, t) = [Ci(x, t, t)]−1,

σi(x, t) =

∫ t

0

Ci(x, t, s)ǫs(x, s) ds, σ̃i(x, t) =

∫ t

0

Ci
t(x, t, s)ǫs(x, s) ds,

eiS(x, t) =
1

2
σi(x, t) : Si(x, t)σi(x, t),

ėiD(x, t) = −
[

σi(x, t) : Si(x, t)σ̃i(x, t) +
1

2
σi(x, t) : Si

t(x, t)σ
i(x, t)

]

.

Then we have a superposed version of Lemma 3.5.
Lemma 5.1. Let ~u be a solution of

ρ(x)~utt(x, t) = ∇ · σ(x, t) where σ(x, t) =

n
∑

i=1

∫ t

0

Ci(x, t, s)ǫs(x, s) ds.

Define the kinetic energy density, the strain energy density and the dissipated energy
density by

(5.3) eK(x, t) =
ρ(x)

2
|~ut(x, t)|2, eS(x, t) =

n
∑

i=1

eiS(x, t), ėD(x, t) =

n
∑

i=1

ėiD(x, t).

Then we have the work density decomposition, ∇· (σ~ut) = ėK +σ : ǫ̇ = ėK + ėS+ ėD.
Proof. Since σ =

∑n
i=1 σ

i and ǫ is independent of i, just as in the proof of Lemma

3.5, we get ∇ · (σ~ut) = ėK + σ : ǫ̇ = ėK +

n
∑

i=1

σi : ǫ̇ = ėK +

n
∑

i=1

(

ėiS + ėiD
)

.

Theorem 5.2. Let ~u be a solution of

ρ(x)~utt(x, t) = ∇·σ(x, t) in Ω×(0, T ), where σ(x, t) =

n
∑

i=1

∫ t

0

Ci(x, t, s)ǫs(x, s) ds

and suppose

(5.4)

Fsum(x, t) :=− ėD(x, t)

=

n
∑

i=1

(

σi(x, t) : Si(x, t)σ̃i(x, t) +
1

2
σi(x, t) : Si

t(x, t)σ
i(x, t)

)

≤ 0.

For any open ball BR(x0) ⊂ Ω, if c = sup
(x,t)∈B̄R(x0)×[0,T ]

√

√

√

√

n
∑

i=1

λCi

max(x, t)/ρ(x) < ∞,

then ~u has finite propagation speed in BR(x0) × (0, T ) with maximum propagation
speed not exceeding c.
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Proof. Let λ(x, t) =
∑n

i=1 λ
C
i

max(x, t). Then

eK(x, t) + eS(x, t) −
1

c
(σ~ut) ·

x− x0

|x− x0|
=

ρ

2
|~ut|2 +

n
∑

i=1

(

eiS(x, t) −
1

c
(σi~ut) ·

x− x0

|x− x0|

)

=

n
∑

i=1

(

ρλC
i

max

2λ
|~ut|2 +

1

2
σi : Siσi − 1

c
(σi~ut) ·

x− x0

|x− x0|

)

.

Recalling the proof of Theorem 4.1, it suffices to show the above is nonnegative. Here
we show each component is nonnegative: the above parenthesis is larger than or equal
to

ρλC
i

max

2λ
|~ut|2 +

1

2
σi : Siσi − |σi||~ut|

c
≥ 1

2

(

ρλC
i

max

λ
|~ut|2 +

|σi|2
λCi

max

− 2|σi||~ut|
c

)

=
λC

i

max

2

(

ρ

λ
|~ut|2 +

|σi|2
(λCi

max)
2
− 2|σi||~ut|

cλCi

max

)

≥ λC
i

max

2

( |~ut|2
c2

+
|σi|2

(λCi

max)
2
− 2|σi||~ut|

cλCi

max

)

=
λC

i

max

2

( |~ut|
c

− |σi|
λCi

max

)2

≥ 0.

Now we consider a continuous superposition,

(5.5) C(x, t, s) =
∫ ∞

0

Cτ (x, t, s)dβ(τ),

where β is a finite Borel measure and Cτ satisfies (3.4) for each τ . Then our smoothness
assumptions imply
(5.6)

σ(x, t) =

∫ t

0

∫ ∞

0

Cτ (x, t, s)dβ(τ)ǫs(x, s) ds =

∫ ∞

0

∫ t

0

Cτ (x, t, s)ǫs(x, s) dsdβ(τ),

and, as before, we define Sτ (x, t) = [Cτ (x, t, t)]−1,

στ (x, t) =

∫ t

0

Cτ (x, t, s)ǫs(x, s) ds, σ̃τ (x, t) =

∫ t

0

Cτ
t (x, t, s)ǫs(x, s) ds,

eτS(x, t) =
1

2
στ (x, t) : Sτ (x, t)στ (x, t),

ėτD(x, t) = −
[

στ (x, t) : Sτ (x, t)σ̃τ (x, t) +
1

2
στ (x, t) : Sτ

t (x, t)σ
τ (x, t)

]

.

Then we have an integral version of Lemma 3.5.
Lemma 5.3. Let ~u be a solution of

ρ(x)~utt(x, t) = ∇ · σ(x, t) where σ(x, t) =

∫ ∞

0

∫ t

0

Cτ (x, t, s)ǫs(x, s) dsdβ(τ).

Define the kinetic energy density, the strain energy density and the dissipated energy
density by
(5.7)

eK(x, t) =
ρ(x)

2
|~ut(x, t)|2, eS(x, t) =

∫ ∞

0

eτS(x, t)dβ(τ), ėD(x, t) =

∫ ∞

0

ėτD(x, t)dβ(τ).
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Then we have the work density decomposition, ∇· (σ~ut) = ėK +σ : ǫ̇ = ėK + ėS+ ėD.
Proof. As in the proof of Lemma 3.5, we have ∇ · (σ~ut) = ėK + σ : ǫ̇, and also for

each fixed τ ,

στ (x, t) : ǫ̇(x, t) = ėτS(x, t) + ėτD(x, t).

Since ǫ is independent of τ , integrating over τ , we get σ : ǫ̇ = ėS + ėD.
Theorem 5.4. Let ~u be a solution of

ρ(x)~utt(x, t) = ∇ · σ(x, t) in Ω× (0, T ),

where σ(x, t) =
∫ t

0

∫∞

0
Cτ (x, t, s)dβ(τ)ǫs(x, s) ds and suppose

(5.8)
Fint(x, t) :=− ėD(x, t)

=

∫ ∞

0

(

στ (x, t) : Sτ (x, t)σ̃τ (x, t) +
1

2
στ (x, t) : Sτ

t (x, t)σ
τ (x, t)

)

dβ(τ) ≤ 0.

Let λ(x, t) =
∫∞

0
λC

τ

max(x, t)dβ(τ) and suppose c = sup(x,t)∈B̄R(x0)×[0,T ]

√

λ(x, t)/ρ(x) <
∞. Then for any open ball BR(x0) ⊂ Ω, ~u has finite propagation speed in BR× (0, T )
with maximum propagation speed not exceeding c.

Proof. As before,

eK(x, t) + eS(x, t)−
1

c
(σ~ut) ·

x− x0

|x− x0|

=
ρ

2
|~ut|2 +

∫ ∞

0

(

eτS(x, t) −
1

c
(στ (x, t)~ut) ·

x− x0

|x− x0|

)

dβ(τ)

=

∫ ∞

0

(

ρλC
τ

max(x, t)

2λ(x, t)
|~ut|2 + eτS(x, t) −

1

c
(στ (x, t)~ut) ·

x− x0

|x− x0|

)

dβ(τ).

Recalling the proof of Theorem 4.1, it suffices to show the above is nonnegative. Here
we show for each τ the integrand is nonnegative: the above parenthesis is larger than
or equal to

ρλC
τ

max(x, t)

2λ(x, t)
|~ut|2 +

1

2
στ (x, t) : Sτ (x, t)στ (x, t) − |στ (x, t)||~ut|

c

≥1

2

(

ρλC
τ

max(x, t)

λ(x, t)
|~ut|2 +

|στ (x, t)|2
λCτ

max(x, t)
− 2|στ (x, t)||~ut|

c

)

=
λC

τ

max(x, t)

2

(

ρ

λ
|~ut|2 +

|στ (x, t)|2
(λCτ

max)
2

− 2|στ (x, t)||~ut|
cλCτ

max

)

≥λC
τ

max

2

( |~ut|2
c2

+
|σ(x, t; τ)|2
(λCτ

max)
2

− 2|στ (x, t)||~ut|
cλCτ

max

)

=
λC

τ

max

2

( |~ut|
c

− |στ (x, t)|
λCτ

max

)2

≥ 0.

Remark 5.5. If each Ci satisfies (4.1), then C =
∑n

i=1 Ci automatically satisfies
(5.4). Therefore, this superposition principle is extremely useful when solutions, ~ui,
of ρ~ui

tt = ∇ · σi, are known to possess the finite propagation speed property for i =
1, . . . , n (For the continuous superposition case, the same argument holds if (4.1) is
satisfied for each τ). However, the estimated maximum propagation speed through the
superposition principle may be overestimated. To obtain a shaper estimate, we have
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to consider the kernel C as a whole. In this case, we have a different strain energy
density, eS = 1

2σ : Sσ, where the needed properties of S = (C1 + · · ·+ Cn)−1 in most
cases cannot be straightforwardly computed in terms of those same properties of Ci.
The difficulty lies mainly in the fact that (C1 + · · ·+ Cn)−1 6= (C1)−1 + · · ·+ (Cn)−1.

Combining the superposition principles with Remark 4.3, we immediately see the
chain of exponential (in t) type stiffness tensors (including the generalized Linear
Solid Models) exhibits finite propagation speed.

Corollary 5.6. Suppose the stiffness kernel is given by the following exponential
form in time t,

(5.9) C(x, t, s) =
n
∑

i=1

Ci(x, t, s) +

∫ ∞

0

e−tAτ (x)Cτ
0 (x, s)dβ(τ),

where each Ci satisfies (4.1) and, for each τ , Aτ (x) and Cτ
0 (x, s) satisfy the conditions

given in Remark 4.3. Then ~u has finite propagation speed with maximum propagation
speed not exceeding

c = sup
(x,t)∈B̄R(x0)×[0,T ]

[

∑n
i=1 λ

C
i

max(x, t) +
∫∞

0
λτ
max(x, t)dβ(τ)

ρ(x)

]
1
2

.

Here λτ
max(x, t) is the maximum eigenvalue of e−tAτ (x)Cτ

0 (x, t). Here the measure β
can be a finite sum of Dirac deltas.

6. Examples. We start with isotropic models that have the following form of
stiffness tensor,

C = λI ⊗ I + 2µI,

where I and I denote the identity matrix and the identity 4-tensor, respectively.

6.1. Purely elastic isotropic case (Time independent stiffness tensor).
Consider

C(x, t, s) = C(x) = λ(x)I ⊗ I + 2µ(x)I,

where λ(x), µ(x) > 0. This case was already established in [8]. We recast this example
using the tool we developed in this paper. Since Ct, St, σ̃ vanish, obviously we get

F = 0. So we have finite propagation speed with c = sup
x∈B̄R(x0)

√

λ(x) + 2µ(x)

ρ(x)
.

6.2. Stiffness tensor of exponential convolution type. Consider

C(x, t, s) = C(x, t− s) = λ(x)e−
t−s
γ(x) I ⊗ I + 2µ(x)e−

t−s
τ(x) I,

where λ(x), µ(x), γ(x), τ(x) > 0. Then we have

Ct(x, t, s) = −λ(x)

γ(x)
e−

t−s

γ(x) I ⊗ I − 2µ(x)

τ(x)
e−

t−s

τ(x) I,

C(x, t, t) = λ(x)I ⊗ I + 2µ(x)I,

S(x, t) = C−1(x, t, t) = − λ(x)

2µ(x)(3λ(x) + 2µ(x))
I ⊗ I +

1

2µ(x)
I,

St(x, t) = 0.
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If we define the strain energy density as suggested in (3.5), then we find

eS(x, t) =
1

2
σ : Sσ

=
1

µ

(

|σµ,τ |2 −
λ

3λ+ 2µ
|tr(σµ,τ )|2

)

+
3
2

3λ+ 2µ
|tr(σλ,γ)|2 +

2

3λ+ 2µ
tr(σλ,γ)tr(σµ,τ ),

where σλ,γ(x, t) :=

∫ t

0

λ(x)e−
t−s

γ(x) ǫs(x, s) ds, σµ,τ (x, t) :=

∫ t

0

µ(x)e−
t−s

τ(x) ǫs(x, s) ds

and so σ = tr(σλ,γ)I + 2σµ,τ . Unfortunately, this choice of the strain energy den-
sity does not satisfy the energy dissipation criterion (4.1) with

−F (x, t) = −σ : Sσ̃ =
2

τµ
|σµ,τ |2 +

3

γ(3λ+ 2µ)
|tr(σλ,γ)|2

+
2(γ + τ)

γτ(3λ+ 2µ)
tr(σλ,γ)tr(σµ,τ )−

2λ

γτ(3λ+ 2µ)
|tr(σµ,τ )|2 ,

which can be negative for γ ≫ 1. So we define our strain energy density differently,
but consistent with our new method:

eS(x, t) =
1

µ
|σµ,τ |2 +

1

2λ
|tr(σλ,γ)|2 ,

which is identical to that in Section 2. Then we get

σ : ǫ̇− ėS = (tr(σλ,γ)I + 2σµ,τ ) : ǫ̇−
2

µ
σµ,τ : σ̇µ,τ − 1

λ
tr(σλ,γ)tr(σ̇λ,γ).

Observing that σ̇λ,γ = λǫ̇− 1
γσλ,γ and σ̇µ,τ = µǫ̇− 1

τ σµ,τ , we have

σ : ǫ̇− ėS =
2

µτ
|σµ,τ |2 +

1

λγ
|tr(σλ,γ)|2.

Therefore, if we define ėD := 2
µτ |σµ,τ |2 + 1

λγ |tr(σλ,γ)|2, it possesses the work density

decomposition (3.6) given in Lemma 3.5. Furthermore,

F = −ėD

=
−1

γ(x)λ(x)

∣

∣

∣

∣

∫ t

0

λ(x)e−
t−s
γ(x) tr(ǫs(x, s)) ds

∣

∣

∣

∣

2

+
−2

τ(x)µ(x)

∣

∣

∣

∣

∫ t

0

µ(x)e−
t−s
τ(x) ǫs(x, s) ds

∣

∣

∣

∣

2

≤ 0.

Then we can follow the proof of Theorem 4.1 to achieve finite propagation speed with

c = sup
x∈B̄R(x0)

√

λ(x) + 2µ(x)

ρ(x)
, where we additionally need in the proof the following

inequality:

eK(x, t) + eS(x, t)−
1

c
(σ~ut) ·

x− x0

|x− x0|

≥ρ

2
|~ut|2 +

λ |∇ · ~u|2
2

+ µ|ǫ|2 − 1

c
(λ|∇ · ~u||~ut|+ 2µ|ǫ||~ut|)

≥λ

2

(

ρ|~ut|2
λ+ 2µ

+ |∇ · ~u|2 − 2|∇ · ~u||~ut|
c

)

+ µ

(

ρ|~ut|2
λ+ 2µ

+ |ǫ|2 − 2|ǫ||~ut|
c

)

≥λ

2

( |~ut|2
c2

+ |∇ · ~u|2 − 2|∇ · ~u||~ut|
c

)

+ µ

( |~ut|2
c2

+ |ǫ|2 − 2|ǫ||~ut|
c

)

=
λ(x, t)

2

( |~ut|
c

− |∇ · ~u|
)2

+ µ(x, t)

( |~ut|
c

− |ǫ|
)2

≥ 0.
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This example illustrates that the choice of strain energy density to achieve a finite
propagation speed result may be model dependent.

6.3. Generalized Linear Solid model (Wiechert Model). Consider

C(x, t, s) = C(x, t− s)

=

(

λ0(x) +
n
∑

i=1

λi(x)e
−

t−s

γi(x)

)

I ⊗ I + 2

(

µ0(x) +
n
∑

i=1

µi(x)e
−

t−s

τi(x)

)

I,

where γi(x), τ i(x), λi(x), µi(x) > 0 for all i = 0, 1, . . . , n. Then C can be naturally
decomposed into a sum of tensors where each individual tensor yields finite propaga-
tion speed. By the superposition principle, then C also yields finite propagation speed

with c = sup
x∈B̄R(x0)

√

∑n
i=0(λ

i(x) + 2µi(x))

ρ(x)
. Comparing to the example in Section 2,

here we have chosen n = M = N , but it is not necessary to do so. A straightforward
restructuring of the elasticity tensor leads to a similar result.

6.4. Aging isotropic material. If a medium is being aged during wave propa-
gation, the constitutive law is not of convolution type. Since the time scale for aging
is slow relative to the wave dynamics, we may model it as

C(x, t, s) = λ(x, t)I ⊗ I + 2µ(x, t)I,
where λ(x, t), µ(x, t) > 0 and λt(x, t), µt(x, t) ≤ 0. Define the strain energy density as

eS(x, t) =
λ(x, t)

2
|tr(ǫ)|2 + µ(x, t)|ǫ|2,

motivated again by the purely elastic case. Then we get

σ : ǫ̇− ėS = −1

2

(

λt|tr(ǫ)|2 + 2µt|ǫ|2
)

.

Therefore, if we define ėD := − 1
2

(

λt|tr(ǫ)|2 + 2µt|ǫ|2
)

≥ 0, it possesses the work
density decomposition (3.6) given in Lemma 3.5, and F = −ėD ≤ 0. Then we can
follow the proof of Theorem 4.1 to achieve finite propagation speed with

c = sup
(x,t)∈B̄R(x0)×[0,T ]

√

λ(x, t) + 2µ(x, t)

ρ(x)
.

6.5. Sum of aging and exponential convolution type models. Consider

C(x, t, s) =
(

λ0(x, t) +

n
∑

i=1

λi(x)e
−

t−s

γi(x)

)

I ⊗ I + 2

(

µ0(x, t) +

n
∑

i=1

µi(x)e
−

t−s

τi(x)

)

I,

where λ0(x, t), µ0(x, t) > 0, λ0
t (x, t), µ

0
t (x, t) ≤ 0, and γi(x), τ i(x), λi(x), µi(x) > 0 for

all i = 0, 1, . . . , n. Then C can be naturally decomposed into a sum of tensors where
each individual tensor yields finite propagation speed. By the superposition principle,
then C also yields finite propagation speed with

c = sup
(x,t)∈B̄R(x0)×[0,T ]

√

λ0(x, t) + 2µ0(x, t) +
∑n

i=1(λ
i(x) + 2µi(x))

ρ(x)
.

Comparing to the example in Section 2, here λ0 and µ0 are allowed to be time-
dependent.
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6.6. Fractional Zener model. Consider

(6.1) C(x, t, s) = C1(x) + Eα

[

−
(

t− s

a

)α]

M(x), 0 < α < 1, a > 0,

where C1 and M are symmetric and positive definite, and Eα(z) =
∑∞

n=0
zn

Γ(αn+1) is

the Mittag-Leffler function. It is known that Eα[−zα/aα] is completely monotone on
(0,∞), thus it possesses the following Laplace transform representation by Berstein’s
theorem:

Eα

[

−
(

t− s

a

)α]

=

∫ ∞

0

e−(t−s)τdβ(τ)

=
sinαπ

π

∫ ∞

0

e−(t−s)τ (aτ)α

τ [(aτ)2α + 2(aτ)α cosαπ + 1]
dτ,

where the measure β can be explicitly computed in this case. Therefore

C(x, t, s) = C1(x) +

∫ ∞

0

e−tτesτM(x)dβ(τ) = C1(x) +

∫ ∞

0

e−t(τI)[esτM(x)]dβ(τ)

has the form of (5.9) with Aτ (x) = τI and Cτ
0 (x, s) = esτM(x). For each τ ∈ (0,∞),

Aτ and Cτ
0 certainly satisfy the conditions given in Remark 4.3. By Corollary 5.6, this

model yields finite propagation speed with maximum propagation speed not exceeding

c = sup
x∈B̄R(x0)

[

λC
1

max(x) + λM
max(x)

ρ(x)

]
1
2

.

This estimate of c follows from the facts that e−tAτ (x)Cτ
0 (x, t) = M(x) is independent

of τ and
∫∞

0
dβ(τ) = Eα[0

−] = 1. The model (6.1) is called the fractional Zener
model, because it establishes a fractional differential relation between the stress and
strain:

[

1 + a
dα

dtα

]

σ(x, t) =

[

C1(x) + a
(

M(x) + C1(x)
) dα

dtα

]

ǫ(x, t).

Here dα/dtα denotes the Caputo fractional derivative defined by

dαf

dtα
(t) :=

1

Γ(1− α)

∫ t

0

ḟ(s)

(t− s)α
ds.

In [6], one may find more information on fractional calculus including the fractional
Zener model.

7. Conclusion and Discussion. In this paper we started with work density
and introduced a new type of decomposition called work density decomposition. We
apply this decomposition to a very general linear, anisotropic, viscoelastic, integro-
differential model with variable coefficients. Then using energy arguments includ-
ing the space-time divergence theorem, we establish finite propagation speed results.
These results include a superposition principle that enables a possibly easier way to
establish that the hypotheses of our theorem are satisfied. The advantage here over
plane wave arguments (see e.g.[6]) is that the anisotropic viscoelastic parameters can
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be variable. In the variable coefficient case we obtain an upper bound for the wave
propagation speed.

While we primarily select a specific work density decomposition we have noted
that this decomposition is not unique. The reason for this is that the decomposition
includes strain energy density and this quantity is not uniquely defined in the vis-
coelastic case. This means that in the application of the decomposition to establish
finite propagation speed results, the strain energy density must be chosen appropri-
ately for any specific model. To illustrate this point, we provide some examples of
practical models for which a different choice for strain energy density is needed to
establish finite propagation speed.
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