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Abstract

A new approach to computation of optimal policies for MDP (Markov decision process) models
is introduced. The main idea is to solve not one, but an entire family of MDPs, parameterized
by a scalar ζ that appears in the one-step reward function. For an MDP with d states, the family
of value functions {h∗ζ : ζ ∈ R} is the solution to an ODE,

d
dζh

∗
ζ = V(h∗ζ)

where the vector field V : Rd → Rd has a simple form, based on a matrix inverse.
This general methodology is applied to a family of average-cost optimal control models in

which the one-step reward function is defined by Kullback-Leibler divergence. The motivation
for this reward function in prior work is computation: The solution to the MDP can be expressed
in terms of the Perron-Frobenius eigenvector for an associated positive matrix. The drawback
with this approach is that no hard constraints on the control are permitted. It is shown here that
it is possible to extend this framework to model randomness from nature that cannot be modi-
fied by the controller. Perron-Frobenius theory is no longer applicable – the resulting dynamic
programming equations appear as complex as a completely unstructured MDP model. Despite
this apparent complexity, it is shown that this class of MDPs admits a solution via this ODE
technique. This approach is new and practical even for the simpler problem in which randomness
from nature is absent.

Keywords: Markov decision processes, Computational methods, Distributed control.
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1 Introduction

This paper concerns average-cost optimal control for Markovian models. It is assumed that there is
a one-step reward w that is a function of state-input pairs. For a given policy that defines the input
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as a function of present and past state values, the resulting average reward is the limit infimum,

η = lim inf
T→∞

1

T

T∑
t=1

w(X(t), U(t)) (1)

where X = {X(t) : t ≥ 0}, U = {U(t) : t ≥ 0} are the state and input sequences. Under general
conditions, the maximum over all policies is deterministic and independent of the initial condition,
and the optimal policy is state-feedback — obtained as the solution to the average-reward optimality
equations (AROE) [2, 18].

1.1 Background

In this paper the state space X on which X evolves is taken to be finite, but possibly large. It is
well known that computation of a solution to the AROE may be difficult in such cases. This is one
motivation for the introduction of approximation techniques such as reinforcement learning [3, 23].

An interesting alternative is to change the problem so that it is easily solved. In all of the
prior work surveyed here, the setting is average-cost optimal control, so that the reward function is
replaced by a cost function.

Brockett in [6] introduces a class of controlled Markov models in continuous time. The model
and cost function are formulated so that the optimal control problem is easily solved numerically.
The ODE technique is applied to this special class of MDPs in Section 2.4.

The theory developed in Section 3 was inspired by the work of Todorov [24], the similar earlier
work of Kárný [11], and the more recent work [10, 16]. The state space X is finite, the action
space U consists of probability mass functions on X, and the controlled transition matrix is entirely
determined by the input as follows:

P{X(t+ 1) = x′ | X(t) = x, U(t) = µ} = µ(x′) , x, x ∈ X, µ ∈ U . (2)

The MDP has a simple solution only under special conditions on the cost function. It is assumed
in [24, 10, 16] that it is the sum two terms: The first is a cost function on X, which is completely
unstructured. The second term is a “control cost”, defined using Kullback–Leibler (K-L) divergence
(also known as relative entropy).

The control cost is based on deviation from control-free behavior (modeled by a nominal tran-
sition matrix P0). In most applications, P0 captures randomness from nature. For example, in a
queueing model there is uncertainty in inter-arrival times or service times. An optimal solution in
this framework would allow modification of arrival statistics and service statistics, which may be
entirely infeasible. In this paper the K-L cost framework is broadened to include constraints on the
pmf µ appearing in (2).

1.2 Contributions

The new approach to computation proposed in this paper is based on the solution of an entire
family of MDP problems. Section 2 begins with a general MDP model in which the one-step reward
function is a smooth function of a real parameter ζ ∈ R.

For each ζ, the solution to the average-reward optimization problem is based on a relative value
function h∗ζ : X→ R. Under general conditions it is shown that these functions are obtained as the
solution to an ordinary differential equation

d
dζh
∗
ζ = V(h∗ζ)
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Consequently, the solution to an entire family of MDPs can be obtained through the solution of a
single ordinary differential equation (ODE).

Following the presentation of these general results, the paper focuses on the class of MDPs with
transition dynamics given in (2): the input space is a subset of the simplex in Rd, and the cost
function c is defined with respect to K-L divergence (see (23) and surrounding discussion). The
optimal control formulation is far more general than in the aforementioned work [24, 10, 16], as it
allows for inclusion of exogenous randomness in the MDP model.

The dynamic programming equations become significantly more complex in this generality, so
that in particular, the Perron-Frobenious computational approach used in prior work is no longer
applicable. Nevertheless, the ODE approach can be applied to solve the family of MDP optimal con-
trol problems. The vector field V : Rd → Rd has special structure that further simplifies computation
of the relative value functions.

Simultaneous computation of the optimal policies is essential in applications to “demand dis-
patch” for providing virtual energy storage from a large collection of flexible loads [1, 16, 7]. In these
papers, randomized policies are designed for each of many thousands of electric loads in a distributed
control architecture. In this context it is necessary to compute the optimal transition matrix P̌ζ for
each ζ. Prior to the present work it was not possible to include any exogenous uncertainty in the
load model.

In the companion paper [8], the results of the present paper are applied to distributed control
of flexible loads, including thermostatically controlled devices such as refrigerators and heating
systems. This paper also contains extensions of the ODE method to generate transition matrices
with desirable properties, without consideration of optimality.

The remainder of the paper is organized as follows. Section 2 sets the notation for the MDP
models in a general setting, and presents an ODE approach to solving the AROE under minimal
conditions on the model. Section 3 describes the Kullback–Leibler cost criterion. Special structure of
optimal policies obtained in Theorem 3.4 leads to a simple representation of the ODE in Theorem 3.5.
Conclusions and topics for future research are contained in Section 4.

2 ODE for MDPs

2.1 MDP model

Consider an MDP with finite state space X = {x1, . . . , xd}; the action space U is an open sub-
set of Rm. The state process is denoted X = (X(0), X(1), . . . ), and the input process U =
(U(0), U(1), . . . ). The dynamics of the model are defined by a controlled transition matrix : for
x, x′ ∈ X, and u ∈ U, this is defined by

Pu(x, x′) = P{X(t+ 1) = x′ | X(t) = x, U(t) = u}

where the right hand side is assumed independent of t = 0, 1, 2, . . . .
The one-step reward function is parameterized by a scalar ζ ∈ R. It is assumed to be continuously

differentiable in this parameter, with derivative denoted

Wζ(x, u) = d
dζwζ(x, u) . (3)

Unless there is risk of confusion, dependency on ζ will be suppressed; in particular, we write w
rather than wζ .

There may be hard constraints: For each x ∈ X, there is an open set U(x) ⊂ U consisting of
feasible inputs U(t) when X(t) = x.



ODEs for MDPs with application to K-L Cost — January 15, 2018 4

The optimal reward η∗ is defined to be the maximum of η in (1) over all policies. Under general
conditions on the model, η∗ is deterministic, and is independent of x. Under further conditions, this
value and the optimal policy are characterized by the AROE:

max
u∈U(x)

{
w(x, u) +

∑
x′

Pu(x, x′)h∗(x′)
}

= h∗(x) + η∗ (4)

in which the function h∗ : X → R is called the relative value function. The stationary policy φ∗ is
obtained from the AROE: φ∗(x) ∈ U is a maximizing value of u in (4) for each x [2, 18].

Structure for the optimal average reward is obtained under minimal assumptions:

Proposition 2.1. Suppose that the following hold:

(i) The welfare function is affine in its parameter: wζ(x, u) = w0(x, u) + ζW (x, u) for some
function W and all x, u.

(ii) For each ζ, the optimal reward η∗ζ exists, is deterministic, and is independent of the initial
condition.

(iii) For each ζ, the optimal reward η∗ζ is achieved with a stationary policy φ∗ζ , and under this
policy, the following ergodic limits exist for each initial condition:

η∗ζ = lim
T→∞

1

T

T∑
t=1

wζ(X(t), U(t)) , wζ = lim
T→∞

1

T

T∑
t=1

W (X(t), U(t))

Then, η∗ζ is convex as a function of ζ, with sub-derivative wζ :

η∗ζ ≥ η∗ζ0 + (ζ − ζ0)wζ0 , for all ζ, ζ0 ∈ R .

Proof. Convexity of η∗ζ will follow from the lower bound. Alternatively, convexity is implied by
the linear programming representation of average-cost optimal control, where η∗ζ is defined as the
maximum of linear functions of ζ [15, 4].

To obtain the lower bound, choose any ζ, ζ0 ∈ R, and consider the average reward based on wζ ,
obtained using U(t) = φ∗ζ0(X(t)) for all t ≥ 0. We then have,

η∗ζ ≥ lim inf
T→∞

1

T

T∑
t=1

wζ(X(t), U(t))

= lim
T→∞

1

T

T∑
t=1

wζ0(X(t), U(t)) + lim
T→∞

1

T

T∑
t=1

(
wζ(X(t), U(t))− wζ0(X(t), U(t))

)
The first summation on the right hand side is equal to η∗ζ0 . The second reduces to (ζ − ζ0)wζ0 on
substituting wζ − wζ0 = (ζ − ζ0)W . ut

We next introduce an ODE that solves the AROE for each ζ.
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2.2 ODE solution

To construct an ordinary differential equation for h∗ζ requires several assumptions. The first is a
normalization: The relative value function is not unique, since we can add a constant to obtain a
new solution. We resolve this by fixing a state x◦ ∈ X, and assume that h∗ζ(x

◦) = 0 for each ζ.
For any function h : X→ R, we define a new function on X× U via,

Puh (x) =
∑
x′

Pu(x, x′)h(x′)

Similar notation is used for an uncontrolled transition matrix.

Assumptions

(i) For each ζ, a solution to the AROE (h∗ζ , η
∗
ζ ) exists, with hζ(x

◦) = 0, and the pair is continuously
differentiable in ζ. Moreover, the function of (x, u, ζ) defined by,

q∗ζ (x, u) = wζ(x, u) + Puh
∗
ζ (x)

is jointly continuously differentiable in (ζ, u), with the representation

d
dζ q
∗
ζ (x, u) = Wζ(x, u) + PuH

∗
ζ (x) in which H∗ζ (x) = d

dζh
∗
ζ (x) . (5)

(ii) The stationary policy exists as the minimum

φ∗ζ(x) = arg min
u∈U(x)

q∗ζ (x, u) , x ∈ X,

and is continuously differentiable in ζ for each x.

(iii) The optimal transition matrix P̌ζ is irreducible, with unique invariant pmf denoted πζ , where

P̌ζ(x, x
′) = Pu∗(x, x

′), u∗ = φ∗ζ(x), x, x′ ∈ X .

All of these assumptions hold for the class of MDP models considered in Section 3.
These assumptions imply that for each ζ there is a solution Hζ to Poisson’s equation,

W̌ζ + P̌ζHζ = Hζ + wζ (6)

in which W̌ζ(x) = Wζ(x, φ
∗
ζ(x)), and wζ =

∑
x πζ(x)W̌ζ(x). It is assumed throughout that the

solution is normalized, with Hζ(x
◦) = 0; there is a unique solution to (6) with this normalization

[17, Thm. 17.7.2].
The function q∗ζ is the “Q-function” that appears in Q-learning [3]. Under (i) and (ii), it follows

from the AROE that for each x and ζ,

q∗ζ (x, φ
∗
ζ(x)) = min

u∈U(x)

{
wζ(x, u) + Puh

∗
ζ (x)

}
= h∗ζ(x) + η∗ζ (7)

MDP vector field

In Theorem 2.2 it is shown that the family of relative value functions solves an ODE. A function
h : X→ R is regarded as a vector in Rd. The vector field V is not homogeneous, so it is regarded as
a mapping V : Rd+1 → Rd. For a given function h : X→ R and ζ ∈ R, the function V(h, ζ) is defined
through the following steps:
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1. Obtain a policy: φ(x) = arg maxu{wζ(x, u) + Puh (x)}.
2. Obtain a transition matrix P̌ (x, x′) = Pφ(x)(x, x

′), x, x′ ∈ X.

3. Obtain the solution to Poisson’s equation, W̌ + P̌H = H + w, in which W̌ (x) = Wζ(x, φ(x)),
x ∈ X, and w is the steady-state mean of W̌ under this policy. The solution is normalized so that
H(x◦) = 0.

4. Set V(h, ζ) = H.

Theorem 2.2. Under the assumptions of this section:

(i) The family of relative value functions {h∗ζ} is a solution to the ordinary differential equation,

d
dζh
∗
ζ = V(h∗ζ , ζ) (8)

(ii) d
dζ η
∗
ζ = wζ , with

wζ =
∑
x

πζ(x)Wζ(x, φ
∗
ζ(x)) , where πζ is the invariant pmf for P̌ζ .

(iii) If the derivative Wζ(x, u) is independent of ζ and u for each x, then the ODE is homoge-
neous. That is, for each h, the function V(h, ζ) does not depend on ζ.

Proof. The domain of V is defined to be any h for which the solution to (1)–(3) is possible. The
domain may not include all functions h, but it is defined for any of the relative value functions {h∗ζ};
this is true by the assumptions imposed in the theorem.

If Wζ is independent of ζ and u, then wζ(x, u) = w0(x, u) + ζW (x) for each x, u, ζ. It follows
that φ is independent of ζ in step 1, and W̌ is independent of ζ in step 3. Hence the vector field is
independent of ζ.

To complete the proof it remains to establish (i), which will lead to the representation for d
dζ η
∗
ζ

in part (ii) of the theorem.
The assumption that U is open and that q∗ζ is continuously differentiable is used to apply the

first-order condition for optimality of φ∗ζ(x):

0 =
∂

∂u
q∗ζ (x, u)

∣∣∣
u=φ∗ζ(x)

On differentiating each side of the AROE in the form (7), we obtain from the chain-rule

d
dζ

{
h∗ζ(x) + η∗ζ

}
= d

dζ

{
q∗ζ (x, φ

∗
ζ(x))

}
=

∂

∂ζ
q∗ζ (x, u)

∣∣∣
u=φ∗ζ(x)

+
( ∂
∂u
q∗ζ (x, u)

∣∣∣
u=φ∗ζ(x)

) ∂
∂ζ
φ∗ζ(x)

=
∂

∂ζ
q∗ζ (x, u)

∣∣∣
u=φ∗ζ(x)

= W̌ζ(x) + PuH
∗
ζ (x)

∣∣∣
u=φ∗ζ(x)

where in the last equation we have applied (5). Rearranging terms leads to the fixed point equation

W̌ζ + P̌ζH
∗
ζ = H∗ζ + d

dζ η
∗
ζ

Taking the mean of each side with respect to πζ implies that d
dζ η
∗
ζ = wζ . This establishes (ii), and

completes the proof that (8) holds. ut



ODEs for MDPs with application to K-L Cost — January 15, 2018 7

Extensions

An ODE can be constructed for the discounted cost problem with discounted factor β ∈ (0, 1). The
DROE (discounted-reward optimality equation) is another fixed point equation, similar to (4):

max
u∈U(x)

{
w(x, u) + β

∑
x′

Pu(x, x′)h∗(x′)
}

= h∗(x)

Step 3 in the construction of the vector field for the ODE is modified as follows: Obtain the solution
to W̌ + βP̌H = H. The solution is unique, so no normalization is possible (or needed).

For both average- and discounted-reward settings, an ODE can be constructed when U is a finite
set rather than an open subset of Rm. In this case, under general conditions, the vector field V is
continuous and piecewise smooth, and the optimal policy is piecewise constant as a function of ζ.

We next consider two simple examples to illustrate the conclusions in the average cost setting.
The ODE is homogeneous in all of the examples that follow.

2.3 Example 1: Linear-quadratic model

Consider first the simple scalar linear system,

X(t+ 1) = αX(t) + U(t) +N(t+ 1)

in which 0 < α < 1. The disturbance N is i.i.d. with zero mean, and finite variance σ2N . The state
space and action space are the real line, X = U = R. The reward function is taken to be quadratic
in the state variable, w(x, u) = −ζx2 − c(u), so that W (x, u) = −x2 is independent of both ζ and
u. The cost function c : R→ R is continuously differentiable and convex, its derivative c′ is globally
Lipschitz continuous, and c(0) = c′(0) = 0.

It is assumed in this example that ζ ≥ 0. It can be shown that the relative value function h∗ζ is
a concave function of x under these assumptions; it is normalized so that h∗ζ(0) = 0 for each ζ ≥ 0
(that is, x◦ = 0).

The ODE can be developed even in this infinite state-space setting.
Notation is simplified if this is converted to an average-cost optimization problem, with one-step

cost function cζ(x, u) = ζx2 + c(u). We let g∗ζ = −h∗ζ , which is a convex function on R. The AROE
becomes the average-cost optimality equation,

min
u

{
cζ(x, u) + Pug

∗
ζ (x)

}
= g∗ζ (x) + γ∗ζ (9)

with γ∗ζ = −η∗ζ . The optimal policy is the minimizer,

φ∗ζ(x) = arg min
u

{
c(u) + Pug

∗
ζ (x)

}
= arg min

u

{
c(u) + E[g∗ζ (αx+ u+N1)]

}
The ODE is modified as follows. Let K denote the set of non-negative convex functions g : R→ R,

and construct the vector field so that V : K → K. For given g ∈ K, we must define V(g). Since we
are minimizing cost, step 1 in the construction of the vector field becomes,

Obtain a policy: φ(x) = arg min
u

{
c(u) + E[g(αx+ u+N1)]

}
.

This is a convex optimization problem whose solution can be obtained numerically.
Step 2 is obtained as follows:

P̌ (x,A) = P{αx+ φ(x) +N1 ∈ A}, x ∈ X, A ∈ B(X).
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The solution to Poisson’s equation in step 3 of the ODE construction is more challenging. This
might be approximated using a basis, as in TD-learning [3, 23].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

b∗ζ

ζ
0

0.2

0.4

0.6

0.8

1

1.2

1.4
d
dζ b

∗
ζ =

1

1− (α− kζ)2

Figure 1: Solution to the ODE (10) for the linear-quadratic example.

If the control cost is quadratic, c(u) = u2, then the relative value function is also quadratic, so
that g∗ζ (x) = −h∗ζ(x) = bx2, with b ≥ 0, and b = 0 only if ζ = 0. The optimal policy is linear,
u = −kx for some gain k. The vector field in the ODE can be restricted to functions of this form:
For any b ≥ 0,

(i) Obtain a policy

φ(x) = arg min
u

{
u2 + bE[(αx+ u+N1)

2]
}

= arg min
u

{
u2 + b[(αx+ u)2 + σ2N ]

}
This gives u = −kx, with k = bα/(1 + b).

(ii) With a linear policy we obtain, P̌ (x,A) = P{(α− k)x+N1 ∈ A}.
(iii) Obtain the solution to Poisson’s equation, W + P̌H = H + w, in which w is the steady-state
mean of W under this policy. Since W (x, u) = −x2 is quadratic, it follows that H is also quadratic,
H(x) = −Bx2, with

−B =
1

1− (α− k)2
, and k given in (i)

(iv) Set V(g) = −H.
That is, d

dζ g
∗
ζ (x) = Bx2, x ∈ R, ζ ≥ 0.

The ODE reduces to a differential equation for the coefficient b = b∗ζ :

d
dζ b
∗
ζ =

1

1− (α− kζ)2
, kζ = b∗ζα/(1 + b∗ζ)

On substitution this simplifies to,

d
dζ b
∗
ζ =

1

1− (α/(1 + b∗ζ))
2

(10)

with boundary condition b∗ζ |ζ=0 = 0. Fig. 1 shows the solution to this ODE for ζ ∈ [0, 1] with
α = 0.95.
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2.4 Example 2: Brockett’s MDP

The theory in this paper is restricted to models in discrete time, but the main results carry over to
the continuous time setting. An illustration is provided using a class of MDP models introduced in
[6].

As assumed in the present paper, the state space X = {x1, . . . , xd} is finite, and the input evolves
on an open subset of of Rm. The dynamics are defined by a controlled rate matrix (or generator),

Au(x, x′) = A(x, x′) +
m∑
k=1

ukB
k(x, x′) (11)

where A and {B1, . . . , Bm} are d × d matrices. It is assumed that the input is defined by state
feedback U(t) = φ(X(t)). The associated controlled rate matrix

A(x, x′) = Aφ(x)(x, x
′) , x, x′ ∈ X,

defines the transition rates for X under this policy:

A(x, x′) = lim
t↓0

1

t

[
P{X(t) = x′ | X(0) = x} − I{x = x′}

]
Adapting the notation to the present paper, the cost function is taken of the form

cζ(x, u) = ζκ(x) + 1
2‖u‖2.

in which κ : X→ R. For the continuous time model, the average-cost optimality equation becomes

min
u

{
cζ(x, u) +Aug

∗
ζ (x)

}
= γ∗ζ (12)

in which γ∗ζ is the optimal average cost, g∗ζ is the relative value function, and

Aug
∗
ζ (x) =

∑
x′

Au(x, x′)g∗ζ (x
′), x ∈ X.

It is assumed that g∗ζ (x
◦) = 0 for some state x◦ and all ζ.

The minimizer in (12) defines the optimal policy φ∗(x). For this model and cost function, the
minimizer can be obtained by taking the gradient with respect to u and setting this equal to zero
to obtain:

φ∗k(x) = −
∑
x′

Bk(x, x′)g∗ζ (x
′) , x ∈ X . (13)

The ODE to solve (12) takes the following steps. First, if ζ = 0 then obviously φ∗ ≡ 0 and
g∗0 ≡ 0. This sets the initial condition for the ODE. For other ζ we have as before that G∗ζ = d

dζ g
∗
ζ

solves Poisson’s equation for the generator Ǎζ obtained with policy φ∗ζ :

κ(x) +
∑
j

Ǎζ(x, x
′)G∗ζ(x

′) = κζ , x ∈ X , (14)

where κζ is the steady-state mean of κ under this policy, and

Ǎζ(x, x
′) = Aφ∗ζ(x)(x, x

′)
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The following numerical example from [6] will clarify the construction of the ODE. In this
example m = 1 so that u is scalar-valued, and X = {1, 2, 3}. Denote B = B1, where in this example

A =

−1 1 0
1 −2 1
0 1 −1

 , B =

−1 1 0
0 0 0
0 1 −1


The input is restricted to {u ∈ R : u > −1}. For ζ > 0, the cost function is designed to penalize
the first and third states: c(1) = c(3) = 3, and c(x2) = 0. In [6] the case ζ = 1/2 is considered, for
which it is shown that φ∗(1) = φ∗(3) =

√
12− 3, and φ∗(x2) = 0.

Written in vector form, Poisson’s equation (14) becomes

3b+Aζvζ = κζe (15)

in which bT = (1, 0, 1), eT = (1, 1, 1), vζ(i) = G∗ζ(x
i), and

Aζ(i, j) = A(i, j) + φ∗ζ(x
i)B(i, j) , 1 ≤ i, j ≤ 3.

This example is designed to have simple structure. From the form of the optimal policy (13),
it follows that φ∗ζ(2) = 0 for any ζ. Moreover, from symmetry of the model it can be shown
that φ∗ζ(1) = φ∗ζ(3), and g∗ζ (1) = g∗ζ (3). We take x◦ = 2 so that g∗ζ (2) = 0. Consequently, the
3-dimensional ODE for g∗ζ will reduce to a one-dimensional ODE for ξζ := g∗ζ (1).

The expression for the optimal policy (13) also gives

φ∗ζ(1) = −ξζ
∑
j

B(1, j)b(j) = ξζ

And, since the second row of B is zero, it follows that Aζ = A+ ξζB.
We have d

dζ ξζ = G∗ζ(1) = vζ(1), and Poisson’s equation (15) becomes

3b+ vζ(1)Aζb = κζe

The first two rows of this vector equation give

3 + [−1 + ξζ(−1)]vζ(1) = κζ

0 + 2vζ(1) = κζ

Substituting the second equation into the first gives

d
dζ ξζ = vζ(1) =

3

3 + ξζ

On making the change of variables fζ = 3 + ξζ we obtain

1
2
d
dζ f

2
ζ = fζ

d
dζ fζ = 3,

whose solution is given by f2ζ = f20 + 6ζ, with f20 = 9.
In summary, φ∗ζ(1) = ξζ = −3 + fζ , giving

φ∗ζ(1) = φ∗ζ(3) = −3 +
√

9 + 6ζ , φ∗ζ(2) = 0.

It is necessary to restrict ζ to the interval (−5/6,∞) to respect the constraint that φ∗ζ(x) > −1 for
all x.

Based on the formula d
dζ γ
∗
ζ = κζ and the preceding formula κζ = 2vζ(1) = 2 d

dζ ξζ , it follows that

γ∗ζ = 2ξζ = −6 + 2
√

9 + 6ζ , ζ > −5/6 ;

a concave function of ζ, as predicted by Prop. 2.1.
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3 MDPs with Kullback–Leibler Cost

The general results of the previous section are now applied to a particular class of MDP models.

3.1 Assumptions and Notation

The dynamics of the MDP are assumed of the form (2), where the action space consists of a convex
subset of probability mass functions on X. The welfare function is assumed to be affine in ζ, as
assumed in Prop. 2.1. To maintain notational consistency with prior work [7, 16, 8] we denote

wζ = w0 + ζU , ζ ∈ R , (16)

and assume that U : X → R is a function of the state only. In the notation of Prop. 2.1, we have
W (x, u) = U(x) for all x, u. Under these conditions, it was shown in Theorem 2.2 that the ODE (8)
is homogeneous.

The first term w0 in (16) is the negative of a control cost. Its definition begins with the specifi-
cation of a transition matrix P0 that describes nominal (control-free) behavior. It is assumed to be
irreducible and aperiodic. Equivalently, there is n0 ≥ 1 such that for each x, x′ ∈ X,

Pn0 (x, x′) > 0, x ∈ X, n ≥ n0. (17)

It follows that P0 admits a unique invariant pmf, denoted π0.
In the MDP model we deviate from this nominal behavior, but restrict to transition matrices

satisfying P (x, · ) ≺ P0(x, · ) for each x. In fact, the optimal solutions will be equivalent:

P (x, x′) > 0⇐⇒ P0(x, x
′) > 0, for all x, x′ ∈ X (18)

Under this condition it follows that P is also irreducible and aperiodic.
The following representation will be used in different contexts throughout the paper. Any func-

tion h : X× X→ R is regarded as an unnormalized log-likelihood ratio: Denote for x, x′ ∈ X,

Ph(x, x′) := P0(x, x
′) exp

(
h(x′ | x)− Λh(x)

)
, (19)

in which h(x′ | x) is the value of h at (x, x′) ∈ X× X, and Λh(x) is the normalization constant,

Λh(x) := log
(∑
x′

P0(x, x
′) exp

(
h(x′ | x)

))
(20)

For any transition matrix P , an invariant pmf is interpreted as a row vector, so that invariance
can be expressed πP = π. Any function f : X→ R is interpreted as a d-dimensional column vector,
and we use the standard notation Pf (x) =

∑
x′ P (x, x′)f(x′), x ∈ X.

The fundamental matrix is the inverse,

Z = [I − P + 1⊗ π]−1 (21)

where 1 ⊗ π is a matrix in which each row is identical, and equal to π. If P is irreducible and
aperiodic, then it can be expressed as a power series:

Z =

∞∑
n=0

[P − 1⊗ π]n (22)

with [P − 1⊗ π]0 := I (the d× d identity matrix), and [P − 1⊗ π]n = Pn − 1⊗ π for n ≥ 1.
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The Donsker-Varadhan rate function is denoted,

K(P‖P0) =
∑
x,x′

π(x)P (x, x′) log
( P (x, x′)
P0(x, x′)

)
(23)

Letting Π(x, x′) = π(x)P (x, x′) and Π0(x, x
′) = π(x)P0(x, x

′), we have

K(P‖P0) = D(Π‖Π0) (24)

where D denotes K-L divergence. It is called a “rate function” because it defines the relative entropy
rate between two stationary Markov chains, and appears in the theory of large deviations for Markov
chains [12].

For the transition matrix Ph defined in (19), the rate function can be expressed in terms of
its invariant pmf πh, the bivariate pmf Πh(x, x′) = πh(x)Ph(x, x′), and the log moment generating
function (20):

K(Ph‖P0) =
∑
x,x′

Πh(x, x′)
[
h(x′ | x)− Λh(x)

]
=
∑
x,x′

Πh(x, x′)h(x′ | x)−
∑
x

πh(x)Λh(x)
(25)

As in [24, 10, 16], the rate function is used here to model the cost of deviation from the nominal
transition matrix P0: the control objective in this prior work can be cast as the solution to the
convex optimization problem,

η∗ζ = max
π,P

{
ζπ(U)−K(P‖P0) : πP = π

}
(26)

where U : X→ R, and the maximum is over all transition matrices.

Nature & nurture In many applications it is necessary to include a model of randomness from
nature along with the randomness introduced by the local control algorithm (nurture). This imposes
additional constraints in the optimization problem (26).

Consider a Markov model in which the full state space is the cartesian product of two finite
state spaces: X = Xu × Xn, where Xu are components of the state that can be directly manipulated
through control. The “nature” components Xn are not subject to direct control. For example, these
variables may be used to model service and arrival statistics in a queueing model, or uncertainty in
terrain in an application to robotics.

Elements of X are denoted x = (xu, xn). Any state transition matrix under consideration is
assumed to have the following conditional-independence structure,

P (x, x′) = R(x, x′u)Q0(x, x
′
n), x ∈ X, x′u ∈ Xu, x

′
n ∈ Xn (27)

where
∑

x′u
R(x, x′u) =

∑
x′n
Q0(x, x

′
n) = 1 for each x. The matrix Q0 is out of our control – this

models dynamics such as the weather.
To underscore the generality of this model, consider a standard MDP model with finite state

space S, finite action space A, and controlled transition law %. Letting Φ denote the state process
and U the input process, we have for any two states s, s′, and any action a,

P{Φ(t+ 1) = s′ | Φ(t) = s, U(t) = a} = %(s′ | s, a)

A randomized policy is defined by a function φ : A × S → [0, 1] for which φ( · | s) is a probability
law on A for each s ∈ S.
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Proposition 3.1. Consider the MDP model with transition law % and randomized policy φ. For
each t ≥ 0 denote Xn(t) = Φ(t) and Xu(t) = U(t − 1), where X(0) = (U(−1),Φ(0)) is the initial
condition. Then X = (Xu,Xn) is a Markov chain on X = A×S, with transition matrix of the form
(27), where for x, x′ ∈ X,

Q0(x, x
′
n) = %(x′n | xn, xu), R(x, x′u) = φ(x′u | xn),

Proof. From the definitions and Bayes’ rule,

P{Xu(t+ 1) = x′u, Xn(t+ 1) = x′n | X(t) = x}
= P{Xn(t+ 1) = x′n | Xu(t+ 1) = x′u, X(t) = x}P{Xu(t+ 1) = x′u | X(t) = x}
= P{Φ(t+ 1) = x′n | U(t) = x′u, X(t) = x}P{U(t) = x′u | X(t) = x}

Recall that X(t) = (Φ(t), U(t − 1)). The pair (U(t − 1),Φ(t + 1)) are conditionally independent
given (Φ(t), U(t)), so that the right hand side becomes,

P{Φ(t+ 1) = x′n | U(t) = x′u, Φ(t) = xn}P{U(t) = x′u | Φ(t) = xn}

This establishes the desired result:

P{Xu(t+ 1) = x′u, Xn(t+ 1) = x′n | X(t) = x}
= %(x′n | xn, xu)φ(x′u | xn)

ut

3.2 Optimal control with Kullback–Leibler cost

We consider now the optimization problem (26), subject to the structural constraint (27), with Q0

fixed. The maximizer defines a transition matrix that is denoted,

P̌ζ = arg max
P

{
ζπ(U)−K(P‖P0) : πP = π

}
(28)

It is shown in Prop. 3.3 that this can be cast as a convex program, even when subject to the
structural constraint (27). The optimization variable in the convex program will be taken to be
pmfs Π on the product space X× Xu.

Define for each π and R the pmf on X× Xu,

Ππ,R(x, x′u) = π(x)R(x, x′u), x ∈ X, x′u ∈ Xu . (29)

The pmf π can be recovered from Ππ,R via π(x) =
∑

x′u
Ππ,R(x, x′u), x ∈ X, and the matrix R can

also be recovered via R(x, x′u) = Ππ,R(x, x′u)/π(x), provided π(x) > 0.
The following result shows that we can restrict to R for which Ππ,R ≺ Ππ0,R0 .

Lemma 3.2. For any transition matrix P ,

K(P‖P0) <∞ ⇐⇒ Ππ,R ≺ Ππ0,R0

Proof. If K(P‖P0) < ∞ then P (x, · ) ≺ P0(x, · ). This implies that R(x, · ) ≺ R0(x, · ) for each
x ∈ X satisfying π(x) > 0, and also that π ≺ π0.
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Hence, if K(P‖P0) <∞, then for each x and x′u,

π0(x)R0(x, x
′
u) = 0 ⇒ π(x)R0(x, x

′
u) = 0

⇒ π(x)R(x, x′u) = 0 ,

which establishes one implication: Ππ,R ≺ Ππ0,R0 whenever K(P‖P0) <∞.
Conversely, if Ππ,R ≺ Ππ0,R0 then K(P‖P0) < ∞ by the definition of K, and the convention

s log(s) = 0 when s = 0. ut

Lemma 3.2 is one step towards the proof of the following convex program representation of (26):

Proposition 3.3. The objective function in (26) is concave in the variable Π = Ππ,R, subject to
the convex constraints,

Π is a pmf on X× Xu (30a)

Π ≺ Π0, with Π0(x, x
′
u) = π0(x)R0(x, x

′
u) (30b)∑

x

Q0(x, x
′
n)Π(x, x′u) =

∑
xu

Π(x′, xu) for x′ = (x′u, x
′
n) ∈ X (30c)

It admits an optimizer Π∗(x, x′u) = π̌ζ(x)Řζ(x, x
′
u), in which π̌ζ(x) > 0 for each x. Consequently,

there exists an optimizer P̌ζ for (28), with invariant pmf π̌ζ .

Proof. We first consider the constraints: (a) is by definition, and (c) is the invariance constraint for
(π, P ). Constraint (b) is without loss of generality, given Lemma 3.2.

Next we turn to the objective function: The function to be maximized in (26) can be expressed

ζπ(U)−K(P‖P0) =
∑
x

π(x)w(x,R)

in which

w(x,R) = ζU(x)−
∑
x′

P (x, x′) log
( P (x, x′)
P0(x, x′)

)
= ζU(x)−

∑
x′u

R(x, x′u) log
( R(x, x′u)

R0(x, x′u)

) (31)

The second equation follows from the assumption that P depends on R through (27). Multiplying
each side by π(x) and summing over x we obtain a representation in terms of the variable Ππ,R,
with ζπ(U)−K(P‖P0) =

ζ
∑
x,x′u

Ππ,R(x, x′u)U(x)−D(Ππ,R‖Ππ,R0)

The K-L divergence D is known to be jointly convex in its two arguments [9]. Since Ππ,R0 is a linear
function of Ππ,R, this establishes concavity.

The existence of an optimizer follows from the fact that the function to be optimized is continuous
as a function of Ππ,R, and the domain of optimization (30a–30c) is compact. ut
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It is shown in Theorem 3.4 that the optimal value η∗ζ together with a relative value function h∗ζ
solve the average reward optimization equation (AROE):

max
R

{
w(x,R) +

∑
x′

P (x, x′)h∗ζ(x
′)
}

= h∗ζ(x) + η∗ζ (32)

Recall that the relative value function is not unique, since a new solution is obtained by adding a
non-zero constant; the normalization h∗ζ(x

◦) = 0 is imposed, where x◦ ∈ X is a fixed state.
The proof of Theorem 3.4 is given in the Appendix.

Theorem 3.4. There exist optimizers {π̌ζ , P̌ζ : ζ ∈ R}, and solutions to the AROE {h∗ζ , η∗ζ : ζ ∈ R}
with the following properties:

(i) The optimizer P̌ζ can be obtained from the relative value function h∗ζ as follows:

P̌ζ(x, x
′) := P0(x, x

′) exp
(
hζ(x

′
u | x)− Λhζ (x)

)
(33)

where for x ∈ X, x′u ∈ Xu,

hζ(x
′
u | x) =

∑
x′n

Q0(x, x
′
n)h∗ζ(x

′
u, x
′
n), (34)

and Λhζ (x) is the normalizing constant (20) with h = hζ .

(ii) {π̌ζ , P̌ζ , h∗ζ , η∗ζ : ζ ∈ R} are continuously differentiable in the parameter ζ.
ut

The fact that the domain of optimization (30a–30c) is compact was helpful in establishing the
existence of an optimizer. However, the results in Section 2 require that the action space be an open
set. To apply the results of Section 2 we can apply Theorem 3.4 (i), which justifies the restriction
(18). The restricted action space is an open subset of Rm for some m < d.

Representations for the derivatives in Theorem 3.4 (ii), in particular the derivative of Λh∗ζ with
respect to ζ, lead to a representation for the ODE used to compute the optimal transition matrices
{P̌ζ}.

3.3 ODE Solution

It is shown here that the assumptions of Theorem 2.2 hold, and hence the relative value functions
{h∗ζ : ζ ∈ R} can be obtained as the solution to an ODE.

At the start of Section 2 is is assumed that the action space is an open subset of Euclidean space,
and this assumption is required in Theorem 2.2. This can be imposed without loss of generality
since any optimizer satisfies (18).

It is convenient to generalize the problem slightly here. Let {h◦ζ : ζ ∈ R} denote a family
of functions on X, continuously differentiable in the parameter ζ. They are not necessarily relative
value functions, but we maintain the structure established in Theorem 3.4 for the family of transition
matrices. Denote,

hζ(x
′
u | x) =

∑
x′n

Q0(x, x
′
n)h◦ζ(x

′
u, x
′
n), x ∈ X, x′u ∈ Xu (35)

and then define as in (19),

Pζ(x, x
′) := P0(x, x

′) exp
(
hζ(x

′
u | x)− Λhζ (x)

)
(36)
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The function Λhζ : X→ R is a normalizing constant, exactly as in (20):

Λh◦ζ (x) := log
(∑
x′

P0(x, x
′) exp

(
hζ(x

′
u | x)

))
We begin with a general method to construct a family of functions {h◦ζ : ζ ∈ R} based on an

ODE. Using notation similar to Theorem 2.2, the ODE is expressed,

d
dζh
◦
ζ = V(h◦ζ) , ζ ∈ R, (37)

with boundary condition h◦0 ≡ 0. A particular instance of the method will result in h◦ζ = h∗ζ for each
ζ.

Assumed given is a mapping H◦ from transition matrices to functions on X. Following this, the
vector field V is obtained through the following two steps: For a function h : X→ R,

(i) Define a new transition matrix via (19),

Ph(x, x′) := P0(x, x
′) exp

(
h(x′u | x)− Λh(x)

)
, x, x′ ∈ X, (38)

in which h(x′u | x) =
∑

x′n
Q0(x, x

′
n)h(x′u, x

′
n), and Λh(x) is a normalizing constant.

(ii) Compute H◦ = H◦(Ph), and define V(h) = H◦. It is assumed that the functional H◦ is
constructed so that H◦(x◦) = 0 for any P .

In [8] the functional H◦ is designed to ensure desirable properties in the “demand dispatch”
application that is the focus of that paper. It is shown here that a particular choice of the function
H◦ will provide the solution to the collection of MDPs (26). Its domain will include only transi-
tion matrices that are irreducible and aperiodic. For any transition matrix P in this domain, the
fundamental matrix Z is obtained using (21), and then H◦ = H◦(P ) is defined as

H◦(x) =
∑
x′

[Z(x, x′)− Z(x◦, x′)]U(x′), x ∈ X (39)

The function H◦ is a solution to Poisson’s equation,

PH◦ = H◦ − U + U (40)

where U (also written π(U)) is the steady-state mean of U :

U :=
∑
x

π(x)U(x) (41)

The proof of Theorem 3.5 is given in the Appendix.

Theorem 3.5. Consider the ODE (37) with boundary condition h◦0 ≡ 0, and with H◦ = H◦(P )
defined using (39) for each transition matrix P that is irreducible and aperiodic.

The solution to this ODE exists, and the resulting functions {h◦ζ : ζ ∈ R} coincide with the

relative value functions {h∗ζ : ζ ∈ R}. Consequently, P̌ζ = Phζ for each ζ. ut
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We sketch here the main ideas of the proof of Theorem 3.5.
The Implicit Function Theorem is used to establish differentiability of the relative value func-

tions and average reward as a function of ζ. The ODE representation can then be obtained from
Theorem 2.2.

The next step is to establish the particular form for the ODE. The statement of the theorem is
equivalent to the representation H∗ζ = H◦(P̌ζ) for each ζ, where h∗ζ is the relative value function, P̌ζ
is defined in (28), and

H∗ζ = d
dζh
∗
ζ (42)

The first step in the proof of (42) is a fixed point equation that follows from the AROE. The following
identity is given in Prop. A.2:

ζU + Λh∗ζ = h∗ζ + η∗ζ . (43)

A representation for the derivative of the log moment generating function is obtained in Lemma B.4,

d
dζΛh∗ζ (x) =

∑
x′

P̌ζ(x, x
′)H∗ζ (x′) .

Differentiating each side of (43) then gives,

U + P̌ζH
∗
ζ = H∗ζ + d

dζ η
∗
ζ . (44)

This is Poisson’s equation, and it follows that π̌ζ(U) = d
dζ η
∗
ζ . Moreover, since h∗ζ(x

◦) = 0 for every ζ,
we must have H∗ζ (x◦) = 0 as well. Since the solution to Poisson’s equation with this normalization

is unique, we conclude that (42) holds, and hence H∗ζ = H◦(P̌ζ) as claimed.

4 Conclusions

It is surprising that an MDP can be solved using an ODE under general conditions, and fortunate
that this ODE admits simple structure in the K-L cost framework that is a focus of the paper.

It is likely that the ODE has special structure for other classes of MDPs, such as the “rational
inattention” framework of [21, 22, 19, 20]. The computational efficiency of this approach will depend
in part on numerical properties of the ODE, such as its sensitivity for high dimensional models.

Finally, it is hoped that this approach will lead to new approaches to approximate dynamic
programming or reinforcement learning.

Appendices

A AROE and Duality

Based on the linear programming (LP) approach to dynamic programming [15, 4], it can be shown
that the AROE is the dual of the primal problem (26). The relative value function h∗ is the dual
variable associated with the invariance constraint π = πP [4]. To prove Theorem 3.4 we require
properties of the primal and dual.

The primal (26) is equivalently expressed,

η∗ζ = max
π,R

{∑
x

π(x)w(x,R) : (27) holds, and π = πP
}

(45)
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The AROE becomes,

max
R

{
w(x,R) +

∑
x′

P (x, x′)h∗ζ(x
′)
}

= h∗ζ(x) + η∗ζ (46)

It will be shown that (46) can be interpreted as a dual of the convex program (45). We first
characterize its optimizer, denoted Řζ . This representation is based on the convex duality between
K-L divergence and the log-moment generating function recalled in Lemma A.1.

Fix a pmf µ0 on X. For any function F : X→ R, the log-moment generating function is denoted

Λ(F ) = log
{∑

x

µ0(x) exp(F (x))
}

The mean of a function F under an arbitrary pmf µ is denoted µ(F ) =
∑

x µ(x)F (x). The following
lemma can be regarded as a consequence of Kullback’s inequality (see eqn (4.5) of [13]); see also
Theorem 3.1.2 of [9].

Lemma A.1. The log-moment generating function is the convex dual of relative entropy,

Λ(F ) = max
µ
{µ(F )−D(µ‖µ0)}

where the maximum is over all pmfs, and is achieved uniquely with,

µ∗(x) = µ0(x) exp{F (x)− Λ(F )}, x ∈ X.

ut

The following representation for Řζ easily follows. The fixed point equation appearing in
Prop. A.2 was previously stated in (43).

Proposition A.2. The control matrix maximizing the left hand side of (46) is given by,

Řζ(x, x
′
u) = R0(x, x

′
u) exp

(
h∗ζ(x

′
u | x)− Λh∗ζ (x)

)
. (47)

Consequently, the AROE is equivalent to the fixed point equation ζU + Λh∗ζ = h∗ζ + η∗ζ .

Proof. Using (31), the AROE becomes h∗ζ(x) + η∗ =

max
R

{
w(x,R) +

∑
x′u, x

′
n

R(x, x′u)Q0(x, x
′
n)h∗ζ(x

′
u, x
′
n)
}
.

Recalling the notation h∗ζ(x
′
u | x) in (34), we obtain h∗ζ(x) + η∗ =

ζU(x) + max
R

{∑
x′u

R(x, x′u)h∗ζ(x
′
u | x)−

∑
x′u

R(x, x′u) log
( R(x, x′u)

R0(x, x′u)

)}
(48)

For fixed x denote F (x′u) = h∗ζ(x
′
u | x), µ0(x

′
u) = R0(x, x

′
u) and µ(x′u) = R(x, x′u), x′u ∈ Xu. The

maximization variable in (48) is µ, and the maximization problem we must solve is,

max
µ
{µ(F )−D(µ‖µ0)}

The formula for the optimizer µ∗ in Lemma A.1 gives the expression for Řζ in (47).
The fact that the optimal value is Λ(F ) implies the fixed point equation (43). ut
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It is established next that the AROE does indeed hold, by constructing a dual of (45) obtained
though a relaxation of the invariance constraint. A dual functional ϕ∗ζ is defined for any function
h : X→ R via

ϕ∗ζ(h) = max
π,R

{∑
x

π(x)
[
w(x,R) + (P − I)h (x)

]}
where (π,R) are now independent variables, and P is obtained from R via (27). We have ϕ∗ζ(h) ≥ η∗ζ
for any h, and there is no duality gap:

Proposition A.3. There exists h∗ζ such that ϕ∗ζ(h
∗
ζ) = η∗ζ . The pair (h∗ζ , η

∗
ζ ) is a solution to the

AROE (32).

Proof. To show that there is no duality gap we apply Prop. 3.3, which establishes that the primal
is a convex program, and hence a sufficient condition is Slater’s condition [5, Section 5.3.2]. This
condition holds because Ππ0,R0 is in the relative interior of the constraint-set for the primal.

Since there is no duality gap, it then follows that there exists a maximizer for ϕ∗ζ , denoted h∗ζ ,
which satisfies η∗ζ = ϕ∗ζ(h

∗
ζ). To obtain the AROE, consider this representation: η∗ζ =

max
π

{∑
x

π(x) max
R

[
w(x,R) + Ph∗ζ (x)− h∗ζ(x)

]}
The maximum over pmfs π is the same as the maximum over x:

η∗ζ = max
x

max
R

{
w(x,R) + Ph∗ζ (x)− h∗ζ(x)

}
To complete the proof we must remove the maximum over x. For this, recall that π0 and hence π̌ζ
have full support (they are strictly positive on all of X).

Prop. A.2 implies that the maximum over R is uniquely given by Řζ in (47), so that

η∗ζ = max
x

{
w(x, Řζ) + P̌ζh

∗
ζ (x)− h∗ζ(x)

}
Averaging over the optimizing pmf π̌ζ gives, by invariance,

η∗ζ =
∑
x

π̌ζ(x)w(x, Řζ)

=
∑
x

π̌ζ(x)
{
w(x, Řζ) + P̌ζh

∗
ζ (x)− h∗ζ(x)

}
.

Because π̌ζ(x) > 0 for every x, it follows that the AROE (46) holds:

η∗ζ = w(x, Řζ) + P̌ζh
∗
ζ (x)− h∗ζ(x)

= max
R

{
w(x,R) + Ph∗ζ (x)− h∗ζ(x)

}
ut

B Derivatives

The proof of Part (ii) of Theorem 3.4 is obtained through a sequence of lemmas. We first obtain
an alternative representation for the fixed point equation (43). Evaluating this equation at x◦, and
recalling that h∗ζ(x

◦) = 0 gives,
η∗ζ = ζU(x◦) + Λh∗ζ (x

◦) (49)
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Let I denote the function on X that is identically equal to 1, and for any function h and ζ ∈ R define
a new function on X via

F(ζ, h) := h− ζU − Λh + [ζU(x◦) + Λh(x◦)]I (50)

The fixed point equation becomes (43) becomes,

F(ζ, h∗ζ) = 0. (51)

The proof of Theorem 3.4 will require the Implicit Function Theorem. The following version of
this result is taken from [14, Theorem 11.5].

Proposition B.1 (Implicit Function Theorem). Suppose that A ⊂ Rn and B ⊂ Rm are open, and
that F : A × B → Rm is continuously differentiable. Suppose moreover that there exists (x0, y0) ∈
A×B for which the following hold: F (x0, y0) = 0, and the matrix ∂/∂yF (x0, y0) has rank m.

Then, there is a ball O ⊂ A about x0 and a continuously differentiable function g : O → B such
the equation F (x, y) = 0 is uniquely determined by y = g(x), for each x ∈ O. ut

To apply Prop. B.1, we take F = F and (x, y) = (ζ, h), so that n = 1 and m = d. We apply the
result to any (ζ0, h

∗
ζ0

) to establish that the mapping ζ → h∗ζ is C1.
For this we require a representation for the derivative of F with respect to the variable h. The

derivative is represented as a d× d matrix, defined so that for any function g : X→ X,

F(ζ, h+ εg)
∣∣
x

= F(ζ, h)
∣∣
x

+ ε
∑
x′∈X

∂

∂h
F (ζ, h)

∣∣∣
x,x′

g(x′) + o(ε)

The following follows from (50) and elementary calculus:

Lemma B.2. The function F is continuously differentiable in (ζ, h). The partial derivative with
respect to the second variable is,

∂

∂h
F (ζ, h) = I − Ph + I⊗ ν,

in which Ph is the transition matrix defined in (38), and I⊗ ν represents a d× d matrix with each
row equal to ν, and with ν(x) = Ph(x◦, x), x ∈ X. ut

Invertibility of the derivative with respect to h is obtained in the following:

Lemma B.3. The following inverse exists as a power series,

Zh = [I − Ph + I⊗ ν]−1 =

∞∑
n=0

(Ph − I⊗ ν)n

in which ν is defined in Lemma B.2. Moreover, νZh is the unique invariant pmf for Ph.

Proof. It is easily established by induction that for each n ≥ 1,

(Ph − I⊗ ν)n = Pnh − I⊗ νn,

where νn = νPn−1h . Recall that Ph is irreducible and aperiodic since this is true for P0. Consequently,
as n → ∞ we have νn → πh and Pnh → I ⊗ πh, where πh is invariant for Ph. The convergence is
geometrically fast, which establishes the desired inverse formula.
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From the foregoing we have (Ph − I⊗ ν)nI = Pnh I− I = 0 for n ≥ 1, which implies that ZhI = I.
From this we obtain,

ZhPh − I⊗ ν = Zh(Ph − I⊗ ν) = Zh − I
Multiplying each side by ν gives νZhPh = νZh, so that µh := νZh is invariant. We also have
µh(X) = νZhI = ν(X) = 1, where we have used again the identity ZhI = I. Hence µh = πh as
claimed. ut

Since h∗ζ is continuously differentiable in ζ, it follows from (43) that the same is true for η∗ζ . The

following result provides a representation. The formula for d
dζ η
∗
ζ could be anticipated from Prop. 2.1.

Lemma B.4. For each ζ we have,
d
dζΛh∗ζ = P̌ζH

∗
ζ (x)

where H∗ζ = d
dζh
∗
ζ , and

d
dζ η
∗
ζ = π̌ζ(U)

Proof. The first result holds by the definition of Λh and H∗ζ . To obtain the second identity, we
differentiate each side of (43) to obtain Poisson’s equation (44). On taking the mean of each side of
(43) with respect to π̌ζ , and using invariance π̌ζP̌ζ = π̌ζ , we obtain,

π̌ζ(U) + π̌ζ(H
∗
ζ ) = π̌ζ(H

∗
ζ ) + π̌ζ(

d
dζ η
∗
ζ ).

ut

Proof of Theorem 3.4. Part (i) is contained in Prop. A.2.
Part (ii): Combining Lemma B.2 and Lemma B.3 we see that the conclusions of Prop. B.1

hold for each pair (ζ0, h
∗
ζ0

). This shows that h∗ζ is a continuously differentiable function of ζ, and

hence P̌ζ is also continuously differentiable. To see that π̌ζ is continuously differentiable, apply the
representation in Lemma B.3. ut

C Optimal ODE solution

We now prove Theorem 3.5.
The boundary condition is immediate from the assumptions: h∗0 is a constant, since P̌ζ = P0.

Under the assumption that h∗ζ(x
◦) = 0 for each ζ, it follows that h∗0(x) = 0 for each x. It remains

to show that the relative value function solves the ODE,

d
dζh
∗
ζ = H◦(Pζ),

with H◦ defined in (39).
On differentiating each side of (43) we obtain,

U(x) + d
dζΛh∗ζ (x) = d

dζh
∗
ζ(x) + d

dζ η
∗
ζ

Based on the definition (34),

Λh∗ζ (x) = log
(∑
x′u

R0(x, x
′
u) exp(h∗ζ(x

′
u | x))

)
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it follows that d
dζΛh∗ζ (x) =(∑
x′u

R0(x, x
′
u) exp(h∗ζ(x

′
u | x))

)−1∑
x′u

R0(x, x
′
u) exp(h∗ζ(x

′
u | x)) ddζh

∗
ζ(x
′
u | x)

The equation simplifies as follows:

d
dζΛh∗ζ (x) =

∑
x′u

Řζ(x, x
′
u) ddζh

∗
ζ(x
′
u | x)

=
∑
x′u

Řζ(x, x
′
u) ddζ

(∑
x′n

Q0(x, x
′
n)h∗ζ(x

′
u, x
′
n)
)

=
∑
x

P̌ζ(x, x
′) ddζh

∗
ζ(x
′)

Let H = d
dζh
∗
ζ(x) and γ = d

dζ η
∗
ζ . From the foregoing we obtain,

U(x) +
∑
x′

P̌ζ(x, x
′)H(x′) = H(x) + γ

This is Poisson’s equation, with γ = π̌ζ(U). This shows that h∗ζ is the solution to the ODE defined
in Theorem 3.5, establishing (i) and (ii) of the theorem.
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