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PARAMETRIZING AN INTEGER LINEAR PROGRAM BY AN INTEGER

Bobby Shen1

Abstract. We consider a family of integer linear programs in which the coefficients of the con-
straints and objective function are polynomials of an integer parameter t. For ℓ in Z+, we define
fℓ(t) to be the ℓth largest value of the objective function with multiplicity for the integer linear
program at t. We prove that for all ℓ, fℓ is eventually quasi-polynomial; that is, there exists d and
polynomials P0, . . . , Pd−1 such that for sufficiently large t, fℓ(t) = Pt (mod d)(t). Closely related to

finding the ℓth largest value is describing the vertices of the convex hull of the feasible set. Calegari
and Walker showed that if R(t) is the convex hull of v1(t), . . . ,vk(t) where vi is a vector whose co-
ordinates are in Q(t) and of size O(t), then the vertices of the convex hull of the set of lattice points
in R(t) has eventually quasi-polynomial structure. We prove this without the O(t) assumption.

1. Introduction

An integer program is the optimization of a certain objective function over the integers subject
to certain constraints. Often in integer programming, the constraints and objective functions are
linear functions of the indeterminates. This is known as integer linear programming.

Suppose that the indeterminates are x = (x1, . . . , xn). A program in general form has the fol-
lowing structure:

1) The objective function is c⊺x for c ∈ Zn

2) The constraints are Ax ≤ b for A ∈ Zm×n and b ∈ Zm. (In this paper, relations between
vectors are coordinate-wise.)

Parametric Integer Linear Programming (PILP) refers to considering a family of linear integer
programs parametrized by a variable t i.e. the coefficients of the objective and/or constraints
are functions of t. The optimum value of the objective function is a function of t (which we call
the optimum value function), which leads us to questions about this function. Examples for the
domain of t are the interval [0, 1] or the positive integers. Our main question concerns parametric
integer linear programs in which all coefficients are integer polynomials in t and t ranges over the
positive integers. In this paper, t is a positive integer. We prove that the optimum value function
is eventually quasi-polynomial.

Definition 1.1. g is eventually quasi-polynomial (EQP) if its domain is a subset of Z that contains
all sufficiently large integers and there exists a positive integer d and polynomials P0, . . . , Pd−1 ∈ R[t]
such that for sufficiently large t, g(t) = Pt (mod d)(t).

There are many results on EQPs ranging from the simple to the sophisticated. For example, if
P1, . . . , Pn are in Z[t], then gcd(P1(t), . . . , Pn(t)) and lcm(P1(t), . . . , Pn(t)) are quasi-polynomials
of t (even when the domain is all integers). If P is in Q(t), one can show that ⌊P (t)⌋ is EQP; it is
in fact implied by Theorem 1.3 below. An early result on quasi-polynomials was by Ehrhart in [4].

Theorem 1.2. Let P be a convex polytope whose vertices are rational vectors. For all t, let f(t)
be the number of lattice points in tP. Then f is quasi-polynomial (not just EQP).
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In fact, Macdonald showed that f is meaningful for negative integers [5]. The set tP is the real
vector set (see subsection 1.1) of a PILP, so this theorem states that the size function of a certain
class of PILPs is EQP. Chen, Li, and Sam showed that this is true for all PILPs [3]. We discuss
their result later.

Woods proved that a certain class of parametric lattice point-counting problems defined by
linear inequalities, boolean operations, and quantifiers has EQP behavior, even with more than one
parameter [9]. The results in our paper are not true for more than one parameter. See the remark
at the end of section 4.

A common theme among these results is that certain operations on polynomials of one or more
integer parameters can form other integer-valued functions with domain Z+ such as a GCD function
or a size function which are EQP. In some cases, the function may even be quasi-polynomial with
meaningful values for negative arguments. If the function is not integer-valued, like a quotient,
then we do not expect anything. Our results follow this first pattern.

We study the ℓth largest value attained by the objective function with multiplicity. By this, we
mean the ℓth largest value in the multiset obtained by evaluating the objective function on the set.
We prove the following theorems, which also define the structure of a PILP in general or standard
form. In these theorems, we require a certain boundedness condition which many reasonable PILPs
satisfy.

Theorem 1.3 (General Form). Let n and m be positive integers. Let c be in Z[t]n, A be in Z[t]m×n,
and b be in Z[t]m.

For all t, let R(t) := {x ∈ Rn | A(t)x ≤ b(t)}, the set of real vectors that satisfy all constraints
except being integer vectors. Let L(t) := R(t) ∩ Zn, the set of lattice points in R(t). Assume that
R(t) is bounded for all t. For all positive integers ℓ, let fℓ(t) be the ℓth largest value of c⊺(t)x for x

in L(t) or −∞ if |L(t)| < ℓ.
Then for all ℓ, fℓ is eventually quasi-polynomial.

Theorem 1.4 (Standard Form). Let n and m be positive integers. Let c be in Z[t]n, A be in
Z[t]m×n, and b be in Z[t]m.

For all t, let R(t) := {x ∈ Rn | x ≥ 0 ∧ A(t)x = b(t)}, the set of real vectors that satisfy all
constraints except being integer vectors. Let L(t) := R(t) ∩ Zn, the set of lattice points in R(t).
Assume that R(t) is bounded for all t. For all positive integers ℓ, let fℓ(t) be the ℓth largest value of
c⊺(t)x for x in L(t) or −∞ if |L(t)| < ℓ.

Then for all ℓ, fℓ is eventually quasi-polynomial.

Remark. By definition, A PILP in canonical form is a PILP in general form which includes the
constraints x ≥ 0. The standard and canonical forms are special cases of the general form because
A(t)x = b(t) is equivalent to the conjunction of A(t)x ≤ b(t) and −A(t)x ≤ −b(t)

The constant function at −∞ is to be interpreted as a polynomial. The general form and
standard form are closely related, as we prove in the next section. Both forms of PILPs are
considered because in general, it is easier to formulate a problem as a PILP in general form, but
the reduction in Section 3 is more convenient in standard form.

A result by Woods, Theorem 3.5(a), Property 3a in [10], can be seen as a special case of the
above theorems. Woods proved that if we restrict the objective function c to be constant, then f1
is eventually quasi-polynomial.

Chen, Li, and Sam proved (as Theorems 1.1 and 2.1 in [3]), that for a PILP in general form,
the cardinality of L(t) as a function of t is eventually quasi-polynomial, which is a generalization
of Ehrhart’s theorem. They used base t representations to reduce the problem to the case when A

is in Zm×n and the coordinates of b have degree at most 1. We show that the same idea applies
when considering the ℓth largest value.
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It is likely that in many cases, the components of the EQP fℓ, or the polynomials P0, . . . , Pd−1

shown in the definition, have the same degree. However, we do not discuss this in this paper. We
also do not find explicit bounds on the period of fℓ, or d from the definition, or an explicit integer
N such that fℓ(t) = Pt (mod d)(t) for t > N.

The motivation for pursuing the results in this paper was a parametrized version of the Frobenius
problem in which the arguments are integer valued polynomials. See [7]. Theorem 1.3 and related
ideas may be useful in studying a variety of parametric combinatorics problems whose answers are
suspected to be eventually quasi-polynomial such as those in [10].

Closely related to the idea of finding an optimum value is finding the vertices of the convex hull
of L(t). This is because the optimum value of a linear objective function is attained at some vertex
of the convex hull of the feasible set. Calegari and Walker showed that if the vertices of R(t) are
of size O(t), then the vertices of the convex hull of L(t) have eventually quasi-polynomial structure
[2]. See theorem 5.1. We show that this is true without the O(t) assumption as a consequence of
the base t method.

1.1. Notation. In this paper, relations between vectors are coordinate-wise. The variables t and
ℓ are always positive integers. The phrase t ≫ 0 means “for sufficiently large t.” The constant
function at −∞ is to be interpreted as a polynomial. PILP means “parametric integer linear
program.” EQP means “eventually quasi-polynomial” or “eventual quasi-polynomial.” Magnitude
and distance for vectors refer to the Euclidean metric. By ℓth largest value, we mean the ℓth largest
value with multiplicity.

By x, we mean the vector (x1, . . . , xn). A parametric inequality has the form a⊺(t)z ≤ b(t), where
a is a Z[t]-vector of the correct dimension, b is in Z[t], and z refers to the vector of indeterminates
e.g. x, and a parametric equation is the same with equality.

We say that the PILP in general or standard form is defined by n,m,A,b, and c as in Theorems
1.3 and 1.4. We call R(t) the real vector set of the PILP and L(t) the lattice point set. We may
also call these sets regions. We use {fℓ}ℓ or {fℓ} to denote the family of optimum value functions.

2. Proof that Theorem 1.4 implies Theorem 1.3

The other direction is clear because one parametric equation can be written as two parametric
inequalities.

First, we prove an intermediate result, which is the EQP property for PILPs in canonical form.
In this form, we require all indeterminates to be nonnegative.

Theorem 2.1 (Canonical Form). Let n and m be positive integers. Let c be in Z[t]n, A be in
Z[t]m×n, and b be in Z[t]m.

For all t, let R(t) := {x ∈ Rn | x ≥ 0 ∧ A(t)x ≤ b(t)}, the set of real vectors that satisfy all
constraints except being integer vectors. Let L(t) := R(t) ∩ Zn, the set of lattice points in R(t).
Assume that R(t) is bounded for all t. For all positive integers ℓ, let fℓ(t) be the ℓth largest value of
c⊺(t)x for x in L(t) or −∞ if |L(t)| < ℓ.

Then for all ℓ, fℓ is eventually quasi-polynomial.

Assume Theorem 1.4. To prove Theorem 2.1, we use the standard method of introducing slack
variables. Let the PILP in canonical form be given by positive integers n and m, c in Z[t]n, A in
Z[t]m×n, and b in Z[t]m which defines optimum value functions {fℓ}, regions R(t) and L(t) which
are bounded for all t. Consider the PILP in standard form with indeterminates y = (y1, . . . , yn+m).
Let y1 = (y1, . . . , yn), y

2 = (yn+1, . . . , yn+m), and let the constraints be A(t)y1 + y2 = b(t) and
yi ∈ Z≥0 for all i. The former set of constraints can easily be written as a parametric equation of
y. Let the objective function be c⊺(t)y1, which can be written as a polynomial covector times y.
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Let R∗(t) and L∗(t) be the regions defined by the second PILP and {f∗
ℓ } be the optimum value

functions.
To use Theorem 1.4, we wish to show that R∗(t) is bounded for each t. By assumption, R(t) is

bounded. As a subset of Rn, R(t) is bounded by some box [−M,M ]n where M is constant (for fixed
t). Let y be in R∗(t). The first n coordinates of y lie in R(t), so these coordinates lie in [−M,M ].
When k is an integer in [n + 1, n +m], yk = (b(t) − A(t)(y1, . . . , yn))k−n. For fixed t, the entries
of b(t) and A(t) are bounded in magnitude by some constant N. It follows that |yk| ≤ N + nNM

and that R∗(t) is bounded for all t. By Theorem 1.4, for each ℓ, f∗
ℓ is EQP.

There is an obvious bijection between the lattice point sets: if (a1, . . . , an) lies in L(t), then
(a1, . . . , an+m), where ak (for n+ 1 ≤ k ≤ n+m) is defined as (b(t)−A(t)(a1, . . . , an))k−n, lies in
L∗(t). The inverse map is just ignoring the last m coordinates, and it maps L∗(t) to L(t). Therefore,
the two sets have the same cardinality for all t. Evaluating the objective function commutes with
the bijection by construction, so for all ℓ and t, fℓ(t) = f∗

ℓ (t).

Remark. If the PILP in canonical form were instead in general form, then the proposed bijection
from L(t) to L∗(t) would not be a bijection in general because L(t) may contain a point (a1, . . . , an)
with negative coordinates whereas all points in L∗(t) have positive coordinates.

Now, we prove Theorem 1.3. The idea is that for a PILP in general form (with the boundedness
assumption), there is a uniform polynomial bound on the coordinates of feasible points. This is
essentially a standard result about magnitudes of feasible points of bounded integer linear programs.

Proposition 2.2. For a PILP in general form, there exists a positive integer r such that for t ≫ 0,
all coordinates of any point x in L(t) have magnitude less than tr.

Proof. Fix t, and consider the single region R(t) (forget the parametric structure). By assumption,
R(t) is a bounded convex polytope, so the extreme values of the coordinates occur at vertices. The
region R(t) is defined by finitely many bounding hyperplanes, and a vertex v of R(t) is the unique
intersection of the bounding hyperplanes on which it lies. In general, among a set of hyperplanes in
Rn which intersect at a single point, some n of those hyperplanes intersect at a single point. Such
n can be found by choosing a basis for the space spanned by the dual vectors to the hyperplanes.
Therefore, the vertex v is the unique intersection of some n bounding hyperplanes to R(t).

We now proceed similarly to Lemma 2.1 on page 30 of Combinatorial Optimization[6]. The n

hyperplanes correspond to an n× n minor of A(t), call it D. Let α(t) be the largest magnitude of
a matrix element of A(t), and let β(t) be the largest magnitude of an element of b(t).

Each coordinate of v is the sum of n products of elements of D−1 by elements of b(t). By
the cofactor description of matrix inverses, each element of D−1 is equal to an (n − 1) × (n −
1) determinant divided by a nonzero n × n determinant. Since A(t) is an integer matrix, this
denominator has absolute value at least 1. By the Leibniz formula, the numerator is the sum of
(n−1)! products of (n−1) matrix elements of D, which are in turn matrix elements of A. Therefore,
we have

|vi| ≤ n(n− 1)!α(t)n−1β(t).

This formula is true for all t. It is easy to prove that α(t) and β(t) are dominated by suitably
chosen polynomials of t, and likewise, the right hand side is dominated by a suitably chosen power
of t, tr. �

Consider Q, a PILP in general form. Assume Theorem 1.4. Let r be an integer guaranteed by
Proposition 2.2. It is straightforward to construct a new PILP, Q′, in general such that for all
t, the new lattice point set is exactly the old lattice point set translated by (+tr,+tr, . . . ,+tr)⊺.
Therefore, by adding the constraints x ≥ 0 to the new PILP, we get a PILP, Q′′, in canonical form,
and the optimum value functions are unchanged for t ≫ 0. By Theorem 2.1, the optimum value
functions of Q′′ are EQP. The same is true for Q′. The optimum value functions of Q′ and Q differ

4



by c(t)(+tr,+tr, . . . ,+tr)⊺ or are −∞ in the same places, so the optimum value functions of Q are
EQP as well. Therefore, Theorem 1.4 implies Theorem 1.3.

3. Reduction using base t representations

In this section, we show that Theorem 1.4 can be reduced to the case of a PILP in canonical form
in which the matrix has constant entries and the vector on the right hand side has entries which
have degree at most 1. The main idea of this reduction is to express all indeterminates xi in base
t. This idea is taken from Chen et. al. [3], in which the authors used this method to show that the
cardinality of L(t) is eventually quasi-polynomial. It is partially reproduced here with adjustments
for considering optimum value functions.

Theorem 3.1 (Reduced canonical form). Let n and m be positive integers. Let c be in Z[t]n, A
be in Zm×n, and b be in (Zt+ Z)m .

For all t, let R(t) := {x ∈ Rn | x ≥ 0 ∧ A(t)x ≤ b(t)}, the set of real vectors that satisfy all
constraints except being integer vectors. Let L(t) := R(t) ∩ Zn, the set of lattice points in R(t).
Assume that R(t) is bounded for all t. For all ℓ, let fℓ(t) be the ℓth largest value of c⊺(t)x for x in
L(t) or −∞ if |L(t)| < ℓ.

Then for all ℓ, fℓ is eventually quasi-polynomial.

We prove Theorem 3.1 in the next section. The rest of this section is a proof that Theorem 3.1
implies Theorem 1.4, so we are assuming the former. The first main part of this section recalls
Lemma 3.2 of [3], which is the core of the base t method; it decomposes PILPs in standard form into
PILPs in canonical form. Chen et. al. only stated their lemma for PILPs in standard form with
m = 1, but it is easy to strengthen their lemma to m > 1, and we outline the steps needed here.
The second main part of this section shows how their lemma applies to optimum value functions.

Lemma 3.2 of [3] essentially states the following.

Lemma 3.2 (Lemma 3.2 of [3]). Let n and r be positive integers. Let m = 1. Let A be in Z[t]m×n,
and let b be in Z[t]m with positive leading coefficient. Let L(t) be the set

{x ∈ Zn | 0 ≤ xi < nr ∧A(t)x = b(t)}.
Let yi,j for 1 ≤ i ≤ n, 0 ≤ j < r be indeterminates, and let y refer to the yi,j collectively. Define
the map ϕt : {0, . . . , tr − 1}n → {0, . . . , t− 1}rn by ϕt(x) = y such that for 1 ≤ i ≤ n,

xi =
r−1
∑

j=0

yi,jt
j.

Then there exist finitely “PILPs”2 Qα in reduced canonical form with following properties. Each
Qα has indeterminates (yi,j), includes the constraints yi,j < t, and has lattice point set Lα(t). For
t ≫ 0, ϕt is (restricts to) a bijection from L(t) to the disjoint union of Lα(t).

Remark. In other words, L(t) is the lattice point set of a PILP in standard form with m = 1, and
r is an integer guaranteed to exist by Proposition 2.2.

Remark. It is clear that ϕt is a well-defined function and bijection from {0, . . . , tr−1}n to {0, . . . , t−
1}rn. The inverse map ϕ−1

t is a bijection and also an affine transformation.

We refer readers to their paper for the proof, along with Example 3.5 from their paper. Chen
et. al. do not explicitly state that the sets Lα(t) are disjoint, but this is easily proven.3

2We are ignoring the objective function and just focusing on the lattice point sets.
3Near the end of the proof of Lemma 3.2, Chen et. al. state that for their explicit example, one of the PILPs

Qα is given by the data (C0, C1) = (0, 2) and the three equations 2x10 + x20 = n− 5, etc, and the possible indexing
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Chen et. al. also address PILPs in standard form with m > 1 informally in the proof of Theorem
1.1 at the end of page 9. They argue that we can iteratively apply Lemma 3.2 to reduce the number
of constraints which have degree greater than 1. Eventually, all constraints will have degree at most
1. It may be conceptually easier to allow m > 1 in the first place when stating and proving Lemma
3.2.

Proposition 3.3. Lemma 3.2 is also true for m > 1.

Proof (sketch). We follow the argument and notation in Lemma 3.2 of [3], which is quite different
from this paper’s. In the m = 1 case, Equation (3.1) of [3] reads

k
∑

i=1

((

di
∑

ℓ=0

aiℓn
ℓ

)

(

xi,NnN + · · · + xi,0
)

)

= mN (n)nN + · · ·+m0(n).

In the m > 1 case, we have m equations of a similar form.
In the m = 1 case, the constant term of (3.1) states that

a10x1,0 + · · ·+ ak0xk,0 = m0(n) (mod n).

As integers, the difference between the two sides is a multiple of n. There are finitely many possible
values for this multiple of n (which don’t depend on n). To be precise, this multiple of n is
between −n

∑

i |ai,0| and n
∑

i |ai,0|. In the m > 1 case, we consider the constant terms of (3.1)
simultaneously. We have m equations mod n. Over integers, each equation has a difference in the
two sides which is a multiple of n, and each equation has finitely many possible differences (not
depending on n). Since m is finite, there are finitely many possible m-tuples of differences.

Next, we look at the degree 1 terms in (3.1). In the m = 1 case, there are finitely many possible
differences, and in the general case, there are still finitely many possiblem-tuples of differences. This
is true for all degrees up to d. Overall, there are finitely many possible (md)-tuples of differences.
For each tuple, the set of vectors (xi,j) with those differences is exactly described by the lattice
point set of a certain PILP in reduced canonical form. Disjointness can be proven as in the m = 1
case. �

So far, we have only shown that a PILP in standard form is in bijection with the disjoint union
of finitely many PILPs in reduced canonical form. This is enough for counting points, but we need
a few more observations for optimum value functions.

We now prove Theorem 1.4 assuming Theorem 3.1. Let Q be a PILP in standard form given
by n,m, c, A,b with lattice point set L(t). By Proposition 2.2, there exists r > 0 such that for
t ≫ 0, all coordinates of all points in L(t) are in the range [0, tr). We want to prove that {fℓ}, the
optimum value functions for Q, are EQP. Therefore, we can ignore the finitely many values of t for
which L(t) is not contained in [0, tr)n. Then, adding the constraints xi < tr does not change L(t).

To apply Proposition 3.3, we want that all coordinates of b have positive leading coefficient.
Since we can multiply constraints A(t)x = b(t) by ±1 and get the same lattice point set L(t), we
can deal with all nonzero elements of b(t). Since we can add constraints among these m constraints
together in an “invertible” way, we can deal with all cases except possibly b(t) = 0. However, in
this case, L(t) is closed under multiplication by positive integers and also bounded, meaning that
L(t) is either {0} or the empty set, and the conclusion of Theorem 1.4 is easily verified.

Let (Qα)α∈S be the finitely many PILPs in reduced canonical form as guaranteed by Proposition
3.3. Then ϕt is a bijection from L(t) to ⊔αLα(t). Actually, we haven’t yet defined objective functions

values α are essentially the possible values of (C0, C1). Suppose, for contradiction, that a point (xij) were in multiple
sets Lα(n). Then there are multiple values of (C0, C1) that make the three equations true. Assuming that n > 0, the
first equation implies that there is only one possible value of C0, and then the second equation implies that there is
only one possible value of C1, a contradiction. The general case is similar.
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for the Qα. Let each Qα have objective function c which maps y = (yi,j) to c⊺(t)ϕ−1
t (y). One can

check that

ϕ−1
t ((yi,j)1≤i≤n,0≤j<r) =





r
∑

j=0

y1,jt
j, . . . ,

r
∑

j=0

yn,jt
j



 .

Therefore objective function c can be written as a polynomial covector times y (thus in the form
required by Theorem 3.1), although we won’t do so explicitly. Note that all Qα have the same
objective function. By construction, the objective functions ofQα andQ commute with the bijection
ϕt. Let fℓ,α be the ℓth optimum value function for the PILP Qα and this objective function. By
Theorem 3.1, each function fℓ,α is EQP. The following lemma relates the functions {fℓ,α} to {fℓ}.

Lemma 3.4. Let t and ℓ be positive integers. Then fℓ(t) equals the ℓth largest value among the
multiset

{fm,α(t)|1 ≤ m ≤ ℓ, α ∈ S}.

Proof. Fix t and ℓ. By commutativity of the bijection and the objective function, fℓ(t) equals the
ℓth largest value of the objective function c in the set ⊔αLα(t). Thus fℓ(t) equals the ℓth largest
value of a certain (disjoint) union of multisets:

⊔α{c⊺(t)x | x ∈ Lα(t)}.

This uses the fact that the sets Lα(t) for α ∈ S are disjoint. It is a general statement that the
ℓth largest value in a union of multisets can be found by ignoring all but the ℓ largest values in
each multiset; it suffices to look at the multiset of the ℓ largest elements in each multiset. Our
convention is that the ℓth largest value in a multiset with less than ℓ elements is −∞.

By definition, the ℓ largest values in the multiset formed by evaluating c on Lα(t) equals the
multiset {f1,α(t), . . . , fℓ,α(t)}. The conclusion follows. �

Thus fℓ is pointwise related to a finite collection of EQP functions. The following more general
proposition shows that fℓ is itself EQP.

Proposition 3.5. Let m and ℓ be positive integers and f1, . . . , fm be eventual quasi-polynomials
with codomain {−∞} ∪Z. For all t, let f(t) be the ℓth largest value among the multiset {f1(t), . . . ,
fm(t)}. Then f is eventually quasi-polynomial.

Proof. Because m is finite, there exists a common period for f1, . . . , fm, or an integer d such that
there exist polynomials Pi,j for all integers i and j with 1 ≤ i ≤ m and 0 ≤ j ≤ d− 1 such that for
t ≫ 0 and all i, fi(t) = Pi,(t (mod d))(t). A polynomial with range {−∞} ∪ Z is either the constant
−∞ or integer valued. If f(t) restricted to each residue class (mod d) is EQP, then f is EQP.
Since we only care about large t, it suffices to prove this proposition in the case when f1, . . . , fm
are all polynomials (or the constant −∞), so assume that this is the case.

If less than ℓ of the polynomials f1, . . . , fm are integer valued, then for all t, the multiset
{f1(t), . . . , fm(t)} contains less than ℓ integers, so f(t) = −∞. If at least ℓ of the polynomials
f1, . . . , fm are integer valued, say f1 through fk, then for all t, f(t) is the ℓth largest value among the
integers f1(t), . . . , fk(t). It is known that there exists a permutation of the polynomials f1, . . . , fk,
call it fσ(1), . . . , fσ(k), such that for t ≫ 0, fσ(1)(t) ≥ · · · ≥ fσ(k)(t), so f(t) = fσ(ℓ)(t) for t ≫ 0, as
desired. �

Proposition 3.5 and Lemma 3.4 immediately imply that fℓ is EQP. This completes the proof that
Theorem 1.4 follows from Theorem 3.1
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4. Proof of Theorem 3.1

We now allow the case n = 0 in Theorem 3.1. We prove Theorem 3.1 first in the case n = 0. The
idea is to prove the remaining cases by strong induction on ℓ + n. We are introducing the n = 0
case because our general proof involves reducing the n = n0 + 1 case to the n = n0 case, even if
n0 = 1.

Suppose that n = 0. Mathematically, this means that we have no indeterminates. We only have
the zero point in our universe, and for each t, L(t) is either empty or is the singleton of that point.
Then fℓ(t) = 0 if both ℓ = 1 and L(t) is nonempty, and fℓ(t) = −∞ otherwise. For any matrix A,

A times our zero point is the zero vector, so L(t) is nonempty if and only if 0 ≤ b(t). Since the
elements of b are polynomials, this inequality is either eventually true or eventually false (as t goes
to ∞). This corresponds to f1(t) = 0 eventually or f1(t) = −∞ eventually, respectively, as desired.

We now prove some propositions needed for the induction. Let Q be a PILP in canonical form
given by positive integers n0 and m, c in Z[t]n0 , A in Zm×n0 , and b in (Zt + Z)m which defines
regions R(t) and L(t) and optimum value function fℓ0 .

Here is the general approach. We first prove that for all ℓ, to find fℓ(t), it suffices to look at only
points which are less than ℓ away from a bounding hyperplane of R(t) and ignore all other points.
This motivates us to construct a parametric set L∗(t) which contains exactly the points in L(t)
which are less than ℓ away from a bounding hyperplane of R(t). This is most naturally achieved
by constructing a finite number of PILPs in the same n0 indeterminates such that in each one, the
feasible points lie in a hyperplane parallel and close to a bounding hyperplane of R(t). Integrality
ensures that for each bounding hyperplane of R(t), the points less than ℓ away lie on finitely many
parallel hyperplanes. Note that a single bounding hyperplane of t does not change its normal vector
because A has constant entries. We carefully construct the new PILPs so that they are mutually
exclusive; this allows us to characterize the ℓth optimum for ℓ > 1. Finally, we transform a PILP
whose feasible set lies on an affine subspace into a PILP with one less indeterminate by using
standard manipulations of lattices.

Proposition 4.1. For all t and ℓ, fℓ(t) equals the ℓth largest value of c⊺(t)x over all x in L(t) that
are less than ℓ away from some bounding hyperplane of R(t) (in the Euclidean metric).

Proof. Fix t and ℓ.

Case 1: |L(t)| < ℓ. Then fℓ(t) = −∞, and the ℓth largest value of c⊺(t)x over all x in L(t)
that are less than ℓ away from some bounding hyperplane of R(t) is naturally equal to −∞. See
Proposition 4.2 for specifics.

Case 2: |L(t)| ≥ ℓ. Then fℓ(t) 6= −∞.

Case 2.1: c⊺(t) = 0. The objective function is constant. To prove the proposition in this case,
we need to show that at least ℓ distinct points in L(t) are less than ℓ away from some bounding
hyperplane of R(t). Successively choose ℓ points v1, . . . ,vℓ with minimal x1 coordinate from L(t)
without replacement, which is possible since |L(t)| ≥ ℓ. Let e1 be the unit vector in the first
coordinate. For each vi, vi − e1, . . . ,vi − ℓe1 cannot all be in L(t), or else vi could not be picked
in this process. Therefore, for i = 1, . . . , ℓ, vi is less than ℓ away from the boundary of R(t), as
desired.

Case 2.2: c⊺(t) 6= 0. To prove the proposition, it suffices to show that for k = 1, . . . , ℓ, the
kth largest value does not occur at any point of L(t) which is at least ℓ away from the boundary
of R(t). Suppose, for the sake of contradiction, that for k ≤ ℓ, the kth largest value occurs at a
point v in L(t) which is at least ℓ away from the boundary of R(t). Since the objective function is
linear but not constant, it is greater at some lattice point 1 away from v, say w, than it is at v.

By assumption, for s = 1, . . . , ℓ, v+ s(w − v) lies in R(t) hence in L(t), and

c⊺(t)(v + s(w − v)) > c⊺(t)(v),
8



which contradicts that the kth largest value occurs at v. Therefore, the assumption was wrong, as
desired. �

By standard vector calculations, a lattice point less than ℓ0 away from the hyperplane
∑n0

i=1 aixi =
a0 lies on a hyperplane

∑n0
i=1 aixi = a0 + j, where

|j| < ℓ0

√

√

√

√

n
∑

i=1

a2i .

If a0, . . . , an are all integers, then j is an integer (and there are finitely many hyperplanes to
consider).

We can write the inequalities x ≥ 0 as extra rows for A and b in an obvious way. The constraints
of Q are now Ax ≤ b(t). We ignore the rows of A which are all 0 because these rows define
inequalities that are either true for sufficiently large t or false for sufficiently large t. In the former
case, we can ignore the row for t ≫ 0, and in the latter, fℓ0(t) is eventually −∞. We redefine m so
that A has m rows.

For all i with 1 ≤ i ≤ m, let

ci :=









ℓ0

√

√

√

√

n
∑

j=1

A2
ij









.

We define ci PILPs which correspond to the parametric hyperplanes near to and parallel to the
parametric hyperplane (Ax)i ≤ b(t)i. For all such i and k = 0, 1, . . . , ci − 1 let Qi,k be the PILP in
canonical form which is our original PILP with the same objective function and constraints with
some extra constraints:





n0
∑

j=1

Aijxj ≥ bi(t)− k



 ∧



−
n0
∑

j=1

Aijxj ≥ −bi(t) + k



(1)

and for h = 1, . . . , i− 1,

n0
∑

j=1

Ahjxj ≤ bh(t)− ch.(2)

Note that bi and bh have degree at most 1. Let Qi,k define regions Ri,k(t) and Li,k(t) and optimum
value functions {fℓ,i,k}. (As before, it is possible for many of the sets Li,k(t) to be empty.) The
condition (1) restricts the PILP to a single parametric hyperplane. The conditions in (2) are
imposed in order to make the PILPs mutually exclusive. In other words, for fixed t, the sets Li,k(t)
are disjoint.

Proposition 4.2. For all t, fℓ0(t) equals the ℓth0 largest value in the multiset

{fℓ,i,k(t)|1 ≤ ℓ ≤ ℓ0, 1 ≤ i ≤ m, 0 ≤ k < ci}.
Proof. By construction, for fixed t, the regions Li,k(t) are disjoint. For fixed t, consider x in L(t)
that is less than ℓ0 away from the boundary of R(t). There are finitely many bounding hyperplanes,
so there exists a minimum i such that x is less than ℓ0 away from the hyperplane given by the
ith row. Then x lies in Li,k(t), where k is the distance from x to the ith hyperplane (at t) times

(
∑

j A
2
ij)

1/2 (this product is less than ci). This shows that the disjoint union of Li,k(t) for 1 ≤ i ≤ m

and 0 ≤ k < ci is the set of all points in L(t) that are less than ℓ0 away from a bounding hyperplane
of R(t). Combining this fact with Proposition 4.1 shows that fℓ0(t) is the ℓth0 largest value in the
union of the multisets of the ℓ0 largest values from all Li,k(t). �
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Proposition 4.3. Assume that ℓ0, n0 are positive integers such that Theorem 3.1 is true for all
positive integers ℓ, n such that ℓ+n < ℓ0+n0. Fix ℓ, i, and k such that ℓ ≤ ℓ0, 1 ≤ i ≤ m, 0 ≤ k < ci.

fℓ,i,k is EQP.

Proof. The idea is that since Ri,k(t) lies on a hyperplane, Qi,k is like some PILP with n0 − 1

indeterminates. Intuitively, fℓ,i,k should be closely related to the ℓth optimum value function for
this new PILP.

For all t, Ri,k(t) lies on the hyperplane
∑n0

j=1Ai,jxj = bi(t) − k; call this hyperplane P (t). Let

d = gcd(Ai,1, . . . , Ai,n0), which can be written as
∑n0

h=1 βhAi,h for integers βh. Then P (t) contains
lattice points (not necessarily in Li,k(t)) if and only if bi(t)−k is a multiple of d. Since bi has degree
at most 1, this occurs either never or periodically; in particular there exist positive integers p and
q such that P (t) contains lattice points if and only if t ≡ p (mod q). In the former case (“never”),
fℓ,i,k(t) = −∞, and we are done. Therefore, assume the “periodic” case. Then fℓ,i,k(t) = −∞ when
t 6≡ p (mod q).

Suppose that t ≡ p (mod q). Let g(t) be the polynomial 1
d (bi(t)−k), which has degree at most 1

and is an integer for these t. The lattice point (g(t)β1, . . . , g(t)βn0) lies in P (t). The lattice points
in P (t) translated by −(g(t)β1, . . . , g(t)βn0) form an integer lattice U which is independent of t
and which spans an n0 − 1 dimensional space. Therefore, there exist independent vectors in Zn0 ,

e1, . . . , en0−1, such that ϕt : Z
n0−1 → Zn0 given by

ϕt(y) = (g(t)β1, . . . , g(t)βn0) +

n−1
∑

h=1

yheh

is injective with image Zn0 ∩ P (t).
Define a new PILP Q′ not in canonical form with indeterminates y = (y1, . . . , yn0−1) (which

correspond to coefficients of the eh), regions R′(t) and L′(t), and optimum value functions {f ′
ℓ}.

Each constraint of Qi,k has the form w⊺x ≤ W (t), where w is an integer vector and W is in Zt+Z.
For each such constraint, Q′ has the constraint

w⊺

(

(g(t)β1, . . . , g(t)βn0) +

n0−1
∑

h=1

yheh

)

≤ W (t),

and Q′ has no other constraints. Since W and g are rational polynomials of degree at most 1, the
constraints of Q′ can be equivalently written as parametric inequalities of the integer indetermates
y where the coefficients on the right hand side are in Zt+ Z and the coefficients on the left hand
side are integers. The objective function, which we denote by c(y), is

c⊺(t)

(

(g(t)β1, . . . , g(t)βn0) +

n−1
∑

h=1

yheh

)

,

which can be written as a rational polynomial covector times y plus a rational polynomial.
By construction, for each t which is p (mod q), the map ϕt defined above maps R′(t) to Ri,k(t).

The map ϕt is a bijection between these two sets because ϕt is a bijection between Zn0−1 and
Zn0 ∩P (t). The bijection commutes with evaluating the respective objective function, so fℓ,i,k(t) =
f ′
ℓ(t). (When t 6≡ p (mod q), recall that fℓ,i,k(t) = −∞.) If the PILP Q′ satisfied the hypotheses of
Theorem 3.1, then we would be done. This is not the case, so we have a bit more work to do. In
particular, the lattice point set of Q′ might not lie in the first orthant, and its objective function
might not have the form of an integer polynomial covector times the vector of indeterminates.

For all t, R′(t) is bounded because it is contained in some degenerate affine transformation of
Ri,k(t). Using the same argument as in Proposition 2.2, vertices of R′(t) have coordinates bounded
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in magnitude by (n0 − 1)!α(t)n0−2β(t),4 which is in turn bounded by a linear function of t. We are
using that the constraints of Q′ are parametric inequalities in which the coefficients on the right
hand side have degree at most 1 and the coefficients on the left hand side are integers. Let K be an
integer so that Kt+K is greater than this bound. Let Q′′ be a new PILP in which the constraints
of Q′ are “translated” by (Kt +K, . . . ,Kt +K). To be precise, this means that the lattice point
set of Q′′ equals that of Q′ translated by (Kt + K, . . . ,Kt + K) so that the former lattice point
set lies in the first orthant. Let Q′′ have the exact same objective function as Q′, c(y). Note that
the constraints of Q′′ are also parametric inequalities whose right hand sides have degree at most
1 and whose left hand sides are integers.

The function c(y) does not have the form of an integer polynomial covector times the vector of
indeterminates, but there exist z in Z+ and Z in Z[t] such that zc(y)−Z(t) is an integer polynomial
covector times y. Let Q′′′ be yet another PILP with the same indeterminates and constraints with
objective function zc − Z(t), which is multiplication by an integer polynomial covector. Let {f ′′

ℓ }
be the family of optimum value functions for Q′′, etc.

R′′′(t) is bounded for all t, and by the definition of K, R′′′(t) lies in the first orthant, so we can
write Q′′′ in reduced canonical form by adding the constraints y ≥ 0 without changing its optimum
value functions. The PILP Q′′′ has n0− 1 indeterminates, the right hand sides have degree at most
1, and ℓ ≤ ℓ0. We are assuming that Theorem 3.1 applies when either (ℓ+ n < ℓ0 + n0 and n > 0)
or n = 0, and one of these cases holds for Q′′′, so f ′′′

ℓ is EQP.
For t such that f ′′′

ℓ (t) is finite, zf ′′
ℓ (t)−Z(t) = f ′′′

ℓ (t). For t such that f ′′′
ℓ (t) = −∞, f ′′

ℓ (t) = −∞.

This easily implies that f ′′
ℓ is EQP.

As in the end of Section 2, the translation from Q′ to Q′′ adds a polynomial to the optimum value
functions or takes −∞ to −∞. Therefore, f ′

ℓ is EQP. Restricting an EQP to the residue class p

(mod q) and replacing the other outputs by −∞ gives another EQP, so fℓ,i,k is EQP, as desired. �

Proof of Theorem 3.1. We have already established the n = 0 case. We use strong induction on
ℓ+ n. Let ℓ0, n0 be positive integers and assume that Theorem 3.1 is true for all positive integers
ℓ, n such that ℓ+ n < ℓ0 + n0. There is no base case of ℓ0 + n0 because the case n = 0 acts as the
base case.

By Proposition 4.2, fℓ0(t) equals the ℓth0 largest value among the multiset

{fℓ,i,k(t)|1 ≤ ℓ ≤ ℓ0, 1 ≤ i ≤ m, 0 ≤ k < ci}.
By Proposition 4.3, fℓ,i,k is EQP for ℓ ≤ ℓ0, 1 ≤ i ≤ m, and 0 ≤ k < ci. Proposition 3.5 shows that
fℓ0 is EQP, which shows that Theorem 3.1 is true for the case ℓ = ℓ0 and n = n0, which completes
the induction. �

Remark. Theorems 1.3 and 1.4 are not true for more than one parameter. For example, consider the
following PILP with positive integer parameters t1, t2 and indeterminates a, b, c. The constraints
are 0 < a, b, c < 2t1t2 and at1 + c = bt2. The objective function is to minimize c. The optimum is
easily seen to be min(c) = gcd(t1, t2). This two-parameter function is not considered EQP.

In Theorems 1.3 and 1.4, one cannot replace ℓ with a polynomial. For example, consider the
PILP with indeterminates x1 and x2 in which R(t) is the region x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ t and
c = (1, 0). Then ft(t)− t ∼

√
2t because, roughly speaking, there are about t points in the top

√
2t

rows of L(t). The function t 7→ ft(t)− t is not EQP, being asymptotic to
√
2t, so neither is f.

5. The convex hull of the lattice point set

In this section, we study the convex hull of the lattice point set of a PILP and resolve a conjecture
by Calegari and Walker. This convex hull is closely related to the first optimum value function

4If n0 = 1, then instead, observe that Q′ has zero indeterminates, so it is already in the first orthant, so let
Q′′ = Q′.
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of this PILP because the optimum value of a linear objective function occurs at a vertex of this
convex hull.

In 2011, Calegari and Walker proved the following as Theorem 3.5 in [2].

Theorem 5.1. For 1 ≤ i ≤ k, let vi be in Q(t)n of size O(t), and for all t, let R(t) be the convex
hull of v1(t), . . . ,vk(t). Then there exists a positive integer d such that for t ≫ 0 and t restricted
to a single residue class (mod d), there exist w1, . . . ,wz in Q[t]n such that the convex hull of the
set of lattice points in R(t) has vertices w1(t), . . . ,wz(t).

The number of vertices of the convex hull of the lattice point set, z, need not be the same for
each residue class or even positive. They proved this theorem by showing that the vertices are of
bounded distance from the bounding hyperplanes as n goes to ∞, which is similar to our argument
in Section 3. They conjectured that this theorem is still true for parametric vertices vi which are
not of size O(t) (see 3.9 in their paper), which we now prove.

Theorem 5.2. For 1 ≤ i ≤ k, let vi be in Q(t)n, and for all t, let R(t) be the convex hull of
v1(t), . . . ,vk(t). Then there exists a positive integer d such that for t ≫ 0 and t restricted to a
single residue class (mod d), there exist w1, . . . ,wz in Q[t]n such that the convex hull of the set
of lattice points in R(t) has vertices w1(t), . . . ,wz(t).

Here is the general approach. We first rephrase this problem in the language of a PILP, Q, in
standard form. Proposition 3.3 then applies and relates this PILP with the disjoint union of finitely
many PILPs, Qα, in reduced canonical form via a map ϕt, a map whose inverse is affine. Theorem
5.1 is shown to apply to PILPs in reduced canonical form, so the convex hull of the Lα(t) have
EQP structure. The next main step is to prove that the convex hull of L(t) is related in a certain
way to ϕ−1 applied to the convex hulls of Lα(t). This reduces the task of proving Theorem 5.2 to
a question purely about the convex hull of a finite set of polynomial vectors, Proposition 5.8.

Proposition 5.3. To prove Theorem 5.2, it suffices to show that the vertices of the convex hull of
the lattice point set of a PILP in standard form has eventually quasi-polynomial structure. (See the
second sentence of Theorem 5.2.)

Proof. Let v1, . . . ,vk be in Q(t)n. Because rational functions are bounded by polynomials for t ≫ 0,
we can translate these parametric vertices by some polynomial vector so that R∗(t) lies in the first
orthant for t ≫ 0. One can show that R(t) coincides with the real vector set of some PILP in
canonical form. See Section 2.1 of [3]. Since R∗(t) and R(t) are translations by a polynomial
vector, it suffices to show that the vertices of the convex hull of the lattice point set of a PILP in
canonical form has eventually quasi-polynomial structure.

The bijection between the lattice point sets of a PILP in canonical form and a PILP in standard
form from Section 2 extends to a bijective affine transformation (the codomain is the hyperplane
of the PILP in standard form). Bijective affine transformations preserve convex combinations and
send polynomial vectors to polynomial vectors. Therefore, the vertices of the lattice point sets of
two PILPs are in bijection by this same affine transformation, and it suffices to consider a PILP in
standard form. �

Consider a PILP in standard form, Q, with regions R(t) and L(t). There exists r such that
R(t) bounded in magnitude by tr for t ≫ 0. Define PILPs Qα, etc. as in Proposition 3.3. In this
proposition, we showed that for t ≫ 0, the map

ϕt : L(t) → ⊔α∈SLα(t)

given by ϕt(x) = y with xi =
∑r

j=1 yi,jt
j−1 is a bijection.

Let M(t) be the vertices of the convex hull of L(t), and define Mα(t) similarly.

Proposition 5.4. Fix t ≫ 0 so that ϕt is a bijection. The image of M(t) under ϕt lies in ⊔αMα(t).
12



Proof. Suppose that a point p in ⊔αLα(t) is a convex combination of other points in ⊔αLα(t), say
∑

i cipi where for all i, ci ≥ 0, p 6= pi ∈ ⊔αLα(t), and
∑

i ci = 1. It is easy to see that ϕ−1
t preserves

this convex combination:
ϕ−1
t (p) =

∑

i

ciϕ
−1
t (pi).

A point in L(t) is not a convex combination of other points in L(t) if and only if it is in M(t). By
the contrapositive of the above observation, the image under ϕt of an element of M(t) is a vertex
of the convex hull of ⊔αLα(t), so it is in one of the sets Mα(t). �

To understand Mα(t), we wish to apply Theorem 5.1 to Rα(t). Each bounding hyperplane of
Rα(t) has the form a⊺y = b(t), where a is in Zrn and b has degree at most 1. As in Proposition
2.2, for all t, each vertex of Rα(t) is the intersection of rn of the bounding parametric hyperplanes
(at t) which intersect at a single point. A size rn subset of the parametric hyperplanes has unique
intersection if and only if their left hand sides form an invertible matrix, and this is independent
of t. Their intersection is the inverse of this matrix times the vector of the right hand side. Since
the matrix has integer entries, the intersection has the form v1,At + v2,A where v1,A,v2,A are in
Qrn i.e. is of size O(t).

Proposition 5.5. Fix t. A candidate intersection v1,At+ v2,A is a vertex of Rα(t) if and only if
it satisfies all of the parametric inequalities at t.

Proof. If a candidate intersection v1,At + v2,A is a vertex of Rα(t), it lies in Rα(t), so it satisfies
all of the parametric inequalities.

Conversely, suppose that a candidate intersection is not a vertex of Rα(t). One case is that it
lies in Rα(t). We use a standard characterization of vertices of a polytope: there exists a vector r

such that v1,At+ v2,A + sr lies in Rα(t) for all reals s in some neighborhood of 0.
By construction, v1,At + v2,A lies on rn hyperplanes which meet at exactly one point (and

possibly other hyperplanes). Therefore, at least one of these hyperplanes is not fixed by addition
by r. By definition, Rα(t) excludes all of the points on one half space determined by this hyperplane,
which contradicts the previous paragraph. Therefore, the candidate does not lie in Rα(t), and the
candidate does not satisfy all of the parametric inequalities, as desired. �

Proposition 5.6. Theorem 5.1 applies to Rα(t).

Proof. Proposition 5.5 gives us a description of the vertices of Rα(t). A parametric inequality is the
comparison of two (linear) polynomials, and the comparison of two polynomials stabilizes for t ≫ 0.
Since there are finitely many parametric inequalities and candidate intersections, for t ≫ 0, all of
the comparisons stabilise, and each candidate is either eventually a vertex of Rα(t) or eventually
not a vertex.

For all t, Rα(t) is convex, so for t ≫ 0, Rα(t) is the convex hull of the candidates which are
eventually vertices. Each candidate is of size O(t), so Theorem 5.1 applies. �

Proposition 5.7. Fix t ≫ 0 so that ϕt is a bijection. Let

T (t) :=
⋃

α∈S

ϕ−1
t (Mα(t)),

the union of the preimages of Mα(t). For t ≫ 0, the vertices of the convex hull of T (t) is exactly
M(t).

Proof. By Proposition 5.4, the image of M(t) under ϕt lies in ⊔αMα(t), so each element of M(t)
is in T (t). Each element of T (t) is an element of L(t) because its image under ϕt lies in one of the
sets Lα(t). Each element of M(t) is a vertex of the convex hull of L(t) and lies in T (t), so it is a
vertex of the convex hull of T (t).
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Assume, for the sake of contradiction, that some vector v is a vertex of the convex hull of T (t)
but not in M(t). Then v is in L(t) but not in M(t), so it is a convex combination of the elements of
M(t). Because M(t) is a subset of T (t), v in T (t) is a convex combination of other elements of T (t),
a contradiction. Therefore, for t ≫ 0, the vertices of the convex hull of T (t) is exactly M(t). �

By Proposition 5.6, for each α, there is a positive integer d such that when t is restricted to a
residue class mod d, the number of vertices of the convex hull of Lα(t) is eventually constant, and
they are eventually given by polynomial vectors. Since there are finitely many α, we can find d

that satisfies this property for all α.
Restrict t to a single residue class mod d. By Theorem 5.1, for t ≫ 0, we can write Mα(t) as

{yα,β(t) | β ∈ Sα} where Sα is finite and yα,β are distinct vectors in R[t]n. Then for t ≫ 0 (and t

restricted to the residue class), T (t) is a finite set of polynomial vectors.
By Proposition 5.7, for t ≫ 0, the convex hull of T (t) is exactly M(t). It turns out that we no

longer need the details of Q. Theorem 5.2 can be proven with the following proposition.

Proposition 5.8. Let w1, . . . ,wp be distinct elements of R[t]n. There exists a subset U of {1, . . . , p}
such that for t ≫ 0, {wh(t) | h ∈ U} is the set of vertices of the convex hull of w1(t), . . . ,wp(t)
with no repeats.

Corollary 5.8.1. Theorem 5.2

Proof. We have reduced the proof of Theorem 5.2 to showing that the vertices of the convex hull
of the lattice point set of a PILP in standard form has EQP structure. For t ≫ 0, M(t) equals
the convex hull of T (t). For t restricted to a residue class mod d and t ≫ 0, there is a finite
set of polynomial vectors that gives T (t). We can eliminate the identical polynomial vectors. By
Proposition 5.8, for t ≫ 0 (and t restricted to this residue class), the set of vertices of the convex
hull of T (t) is a fixed subset of polynomial vectors. This is true for all single residue classes mod d,

so M(t) has the desired EQP structure mod d. �

We need a few facts to prove Proposition 5.8.

Theorem 5.9 (Carathéodory’s Theorem [1]). A point that lies in the convex hull of a subset P of
Rd lies in a simplex with vertices in P.

Proposition 5.10. Let V be any subset of {1, . . . , p}. Suppose that for some positive integer t0,

the set {wh(t0) | h ∈ V } is affinely independent. Then {wh(t) | h ∈ V } is affinely independent for
t ≫ 0.

Proof. Let X be the matrix of polynomials with columns which are wh − wmin(V) for all h in
V \ {min(V )}. For all t, {wh(t) | h ∈ V } is affinely dependent if and only if the determinants of
all |V | − 1 × |V | − 1 minors of X evaluated at t equal 0. There exists such a minor of X whose
determinant is nonzero at t0. The determinant is a polynomial of t, so it is nonzero at t for t ≫ 0,
which gives the desired result. �

Proposition 5.11. Let V be a subset of {1, . . . , p}. Suppose that the set {wh(t) | h ∈ V } is
affinely independent for t ≫ 0. Let w be in R[t]n. Then either w(t) is a convex combination of
{wh(t) | h ∈ V } for t ≫ 0 or w(t) is not a convex combination of {wh(t) | h ∈ V } for t ≫ 0.

This is still true if the vectors are not affinely independent for t ≫ 0, but it is harder to prove.

Proof. By Proposition 5.10, either {wh(t) | h ∈ V }∪{w(t)} is affinely independent for t ≫ 0 or it is
affinely dependent for t ≫ 0. In the former case, w is not a convex combination of {wh(t) | h ∈ V }
for t ≫ 0, as desired.
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Now consider the latter case. The set {wh(t) | h ∈ V } is affinely independent, and
{wh(t) | h ∈ V } ∪ {w(t)} is affinely dependent for t ≫ 0. From standard linear algebra, there exist
functions ch(t) for h in V such that for t ≫ 0,

∑

h∈V ch(t) = 1 and

w(t) =
∑

h∈V

ch(t)wh(t).(3)

This expresses w(t) as an affine combination of {wh(t) | h ∈ V }. For t ≫ 0, ch(t) is uniquely
determined. We claim that the functions ch eventually agree with rational functions. Define X as
in Proposition 5.10. There is a |V | − 1 × |V | − 1 minor of X, call it X∗, whose determinant is a
nonzero polynomial. Let P be the projection onto the corresponding |V |−1 rows (the corresponding
|V | − 1 dimensional subspace of Rd). Then {P (wh(t)) | h ∈ V } is affinely independent for t ≫ 0,
and P (w(t)) is an affine combination of {P (wh(t)) | h ∈ V }. As before, there exist functions c∗h(t)
for h in V such that

∑

h∈V c∗h(t) = 1 and

P (w(t)) =
∑

h∈V

c∗h(t)P (wh)(t),

which are uniquely defined for t ≫ 0. An equivalent equation is

P (w(t)−wmin(V)(t)) =
∑

h∈V \min(V )

c∗h(t)P (wh −wmin(V)(t)).

The functions c∗h(t) for h ∈ V \min(V ) is given by multiplying the inverse of the matrix associated
with the right hand side by the vector of the left hand side. Specifically the vector with coordinates
c∗h(t) for h ∈ V \min(V ) is given by multiplying the inverse of X∗ by the left hand side. Therefore,
c∗h for h ∈ V \min(V ) is a rational function (more precisely, agrees with a rational function) for
t ≫ 0. Since

∑

h∈V c∗h(t) = 1, c∗min(V ) is also a rational function. On the other hand, applying the

projection to (3) gives

P (w(t)) =
∑

h∈V

ch(t)P (wh)(t),

so for h in V and t ≫ 0, ch(t) = c∗h(t). Therefore, the functions ch eventually agree with rational
functions.

For t ≫ 0, w(t) is a convex combination of {wh(t) | h ∈ V } if and only if for all h in V,

0 ≤ ch(t) ≤ 1. A rational function either eventually lies in [0, 1] or eventually does not lie in [0, 1].
Thus, either w(t) is a convex combination of {wh(t) | h ∈ V } for t ≫ 0 or w(t) is not a convex
combination of {wh(t) | h ∈ V } for t ≫ 0, as desired. �

Proof of Proposition 5.8. Let i be in {1, . . . , p}. For all t, wi(t) is a vertex of the convex hull of
w1(t), . . . ,wp(t) if and only if it is not a convex combination of {wh(t)}h 6=i. By Carathéodory’s
Theorem, wi(t) is a convex combination of {wh(t)}h 6=i if and only if it lies in a simplex with vertices
in this set. By Proposition 5.10, each subset of {wh}h 6=i is either a simplex for t ≫ 0 or not a
simplex for t ≫ 0. There are finitely many subsets, so for t ≫ 0, these properties stabilize. By
Proposition 5.11, for each subset of {wh}h 6=i which is a simplex for t ≫ 0, wi(t) is either a convex
combination for t ≫ 0 or not a convex combination for t ≫ 0. Combining these facts tells us that
either wi(t) is a vertex of the convex hull of w1(t), . . . ,wp(t) for t ≫ 0 or not a vertex of the convex
hull for t ≫ 0.

Let U be the set of all i such that wi(t) is a vertex of the convex hull of w1(t), . . . ,wp(t) for
t ≫ 0. Since w1, . . . ,wp are distinct polynomial vectors, for t ≫ 0, {wh(t) | h ∈ U} is the set of
vertices of the convex hull of w1(t), . . . ,wp(t) with no repeats, as desired. �

Remark. Theorem 5.1 may be used to prove Theorem 3.1 using induction on ℓ. Consider a PILP
in reduced canonical form. The vertices of R(t) are of size O(t), so Theorem 5.1 applies. Let d
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be prescribed by the theorem. For ℓ = 1 and t restricted to a residue class (mod d), fℓ(t) is
the maximum over the vertices of the convex hull of the lattice point set, which is a finite set of
polynomial vectors, of c⊺(t), which is then a maximum of polynomials. One of these polynomials is
maximal for t ≫ 0; it corresponds a single polynomial vector v at which the maximum is obtained
for t ≫ 0. (There may exist others.) Since fℓ is EQP when restricted to each residue class (mod d),
fℓ is EQP.

Suppose that Theorem 3.1 is true for ℓ = ℓ0 and consider ℓ = ℓ0+1. Let Q be a PILP in reduced
canonical form, d as in Theorem 5.1, and t restricted to a residue class (mod d) (throughout this
paragraph). The maximum value of c⊺(t) is obtained at some polynomial vector v in L(t). Suppose
that there is another PILP Q′ for which L′(t) = L(t) \ {v(t)} (for t restricted to the residue class
(mod d)). Then fℓ(t) = f ′

ℓ−1(t). Intuitively, it is possible to construct Q′ by adding one more
constraint to Q to exclude v(t) because it is a vertex of the convex hull of L(t) (for t restricted to
the residue class (mod d)). We do not do so explicitly here. By assumption, f ′

ℓ−1 is EQP, so fℓ is
EQP when restricted to each residue class (mod d), so we are done.

Remark. The above idea easily proves that the ℓth largest value without multiplicity is eventually
quasi-polynomial. Again, we use induction on ℓ. The case ℓ = 1 is as before. The inductive step
now only involves adding the constraint c⊺(t)x ≤ c⊺(t)v(t) − 1.
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