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NONUNIFORM DEPENDENCE ON INITIAL DATA FOR COMPRESSIBLE

GAS DYNAMICS: THE CAUCHY PROBLEM ON R
2

JOHN HOLMES, BARBARA KEYFITZ AND FERIDE TIĞLAY

Abstract. The Cauchy problem for the two dimensional compressible Euler equations with

data in the Sobolev space H
s(R2) is known to have a unique solution of the same Sobolev class

for a short time, and the data-to-solution map is continuous. We prove that the data-to-solution

map on the plane is not uniformly continuous on any bounded subset of Sobolev class functions.

1. Introduction

In this paper, we consider the Cauchy problem for the two-dimensional compressible Euler

equations with data in the Sobolev space Hs(R2). The problem can be written in the form




ρt + ρ0ux + (ρu)x + ρ0vy + (ρv)y = 0

ut + uux + vuy + hx + h0+h
ρ0+ρ ρx = 0

vt + uvx + vvy + hy + h0+h
ρ0+ρρy = 0

ht + uhx + vhy + (γ − 1)(h0 + h)(ux + vy) = 0

(1.1)

ρ|t=0 = φ1, u|t=0 = φ2, v|t=0 = φ3, h|t=0 = φ4, (1.2)

where γ > 1, ρ0 > 0 and h0 > 0 are constant. In order to arrive at this from the standard form

of the equations for ideal compressible gas dynamics (see for example Majda, [34, pp 3-4]), we

have written the density as ρ0 + ρ and have replaced the pressure p by a multiple of the internal

energy, h0 + h = p/(ρ0 + ρ). The velocity components are u and v. We have also written the

system in nonconservative form, as we are considering only classical solutions in this paper. The

purpose of the constants ρ0 and h0 is to allow us to work with a state variable U = (ρ, u, v, h)

whose components lie in the Sobolev space, Hs(R2) = Hs, defined as

Hs =
{
f ∈ S ′(R2) : ‖F−1

(
(1 + |ξ|2)s/2f̂

)
‖L2(R2) <∞

}
.

Pointwise restrictions on the initial data (see discussion following the statement of Theorem 4)

allow us to stay a positive distance from a vacuum state.

Local in time well-posedness in the sense of Hadamard for the system (1.1) (in d space

dimensions) is well known when s > 1 + d/2. The idea of the proof goes back to G̊arding [17],

Leray, [31], Lax [30] and Kato [25]; a modern version can be found in Taylor’s monograph, [40].

For a more detailed exposition of the background and for alternative proofs, see Majda [34] or
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Serre [38]. In particular, if the initial data is in the Sobolev space Hs, for any s > 1 + d/2,

then there exists a unique solution for some time interval which depends upon the Hs norm of

the initial data, and the solution depends continuously on the initial condition. In addition, the

solution size (in Hs) is bounded by twice the size of the initial condition for some period of time.

Classical solutions to the compressible Euler equations do not exist globally in time. Indeed, it

has been shown that even for almost constant initial data, there is generally a critical time, TC ,

at which the classical (Hs) solution breaks down [34]. This breakdown is characterized by the

formation of shock waves; that is, as tր TC ,

lim sup
t→TC

‖ut‖L∞ + ‖∇u‖L∞ = ∞.

Weak solutions for quasilinear systems in conservation form (the standard form for (1.1))

have been extensively studied in a single space dimension, where there is a complete well-

posedness theory for data of small total variation (and in some cases small oscillation). Excellent

monographs by the originators of this theory can be found in Bressan [4] and Dafermos [13].

An outstanding open problem in multidimensional hyperbolic conservation laws is to develop

a theory of weak solutions for times after the formation of a shock wave. This is an active area

of current research. Čanić, Keyfitz, Jegdić and co-authors (for example, [5, 6, 23] and the recent

[24]) have looked at self-similar solutions of two-dimensional problems, as have Chen, Feldman

and co-authors, [7, 8] for example). There is also interesting work by Shu-Xing Chen, [9] and

other papers, and by Elling, see [15] and references there. An intriguing line of research concerns

ill-posedness of multi-dimensional problems of the type of (1.1) in spaces other than Hs; Rauch

[37], following Brenner [3], identified key points of this issue, first identified by Littman [32]; and

Dafermos [12] and Lopes [33] have followed it up. Yet another question, that concerns the proper

definition of weak solutions, is raised by the “wild” weak solutions of De Lellis and Székelyhidi

[14]. While this does not seem to bear on the question we tackle here, which concerns classical

solutions, it is worth mentioning, both as a note about well-posedness, and as evidence of the

relationship between the compressible and incompressible gas dynamics equations, which we

exploit in this paper.

The compressible Euler equations can be reduced, in the zero Mach number limit, to the

incompressible Euler equations (see [34] or [35] for details on the asymptotic analysis),

ut + uux + vuy + px = 0

vt + uvx + vvy + py = 0

ux + vy = 0,

(1.3)

where p is pressure. Global in time well-posedness is also an important question for the in-

compressible Euler equations. For a summary of the open questions, we refer the reader to

Constantin [10] and Fefferman [16]. For local well-posedness and related results see Majda–

Bertozzi [35]. Because the incompressible system is not hyperbolic, analysis of the two problems

– (1.1) and (1.3) – has proceeded along rather different lines. This paper finds a rather striking

connection.
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A point of departure for our analysis is the proof of the non-uniform continuity of the data-

to-solution map for the incompressible Euler equations recently established by Himonas and

Misio lek [21]. In particular, in dimensions two and three they found solutions for periodic data

and for Sobolev space data, for which the data-to-solution map was not uniformly continuous. In

the non-periodic (full plane) case, their method used a technique of high-low frequency approx-

imate solutions developed by Koch and Tzvetkov [29] for the one-dimensional Benjamin-Ono

equation. Our main result is to show that, in a similar way, dependence on the initial data is

not better than continuous for classical solutions of the compressible Euler equations. We state

our result as follows. (Here we assume the standard restriction on s, s > d/2 + 1.)

Theorem 1. For s > 2, the data-to-solution map for the system (1.1) is not uniformly contin-

uous from any bounded subset of (Hs(R2))4 to the solution space C([−T, T ]; (Hs(R2))4).

Our proof of non-uniform dependence of the data-to-solution map uses a method similar to

that of [21] and [29]: construction of high-low frequency approximate solutions. We formulate a

different way of defining the low frequency terms. In particular, Koch-Tzvetkov and Himonas-

Misio lek use an L2 energy estimate, while we use an energy estimate in Hσ, σ < s − 1. We

are able to do this by sidestepping the construction of some low frequency exact solutions to

the compressible Euler equations. The strategy in this paper is to find estimates in the Hσ

norm for σ near s. We find that the low frequency residual terms actually help to give the

desired estimates by allowing for a crucial cancellation. These convenient cancellations, obtained

in our construction, simplify technical difficulties created by the more complicated system of

equations. The construction of approximate solutions and demonstration of non-uniformity

were first carried out in the ideal compressible gas dynamics system (1.1) for periodic data.

This result is in the companion paper of Keyfitz and Tığlay [28] along with the description of

the flow for the approximate solutions that we use.

Continuity properties of the data-to-solution map for a variety of equations have been studied

by many other authors. In particular, the first result of this type was shown by Kato [25] for

Burgers’ equation, ut + (u2)x = 0. Kato showed that the data-to-solution map is not Hölder

continuous from any bounded subset of Hs to Hs, when s > 3/2.

The idea of using high-frequency approximate solutions has also been employed extensively

in the context of dispersive equations. For example, both Christ, Colliander and Tao [11] and

Kenig, Ponce and Vega [27] used a similar method of high-frequency approximate solutions to

show ill-posedness of some defocusing dispersive equations. This methodology was also adapted

by Himonas and Kenig [19] for the Camassa-Holm (CH) equation on the circle, and by Himonas,

Kenig and Misio lek [20] for the CH equation in the non-periodic case. For additional related

results concerning the continuity of data-to-solution maps, we refer the reader to Bona and

Tzvetkov [2], Holmes [22], Molinet, Saut and Tzvetkov [36] and the references contained therein.

In the next section, we give some preliminary results and notation which we shall use through-

out our proof. Section 3 gives the proof of non-uniform dependence.
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2. Preliminary Results and Notation

This section summarizes background needed in the rest of the paper. The operator Λsf is

defined by the formula

Λ̂sf(ξ, η) = (1 + ξ2 + η2)s/2f̂(ξ, η) ,

where f is a test function. Here s may be any positive real number; in order to use the standard

existence theorems for classical solutions of (1.1), we take s > d/2 + 1 = 2. The notation ̂
stands for the usual Fourier transform. The Sobolev space Hs is a Hilbert space equipped with

inner product and norm given by

‖f‖2s = 〈Λsf,Λsf〉L2 .

We will frequently employ the following Sobolev embedding theorem (see, for instance, Taylor

[40, p 272]).

Theorem 2 (Sobolev embedding). If s > k + 1, then Hs is continuously embedded into Ck:

Hs →֒ Ck. Specifically,

Hs ⊂ {f ∈ Ck : Dαf(x1, x2) → 0 as |(x1, x2)| → ∞, |α| ≤ k}, (2.1)

and the inclusion is continuous; for some constant C(s, k) we have

‖f‖Ck=̇
∑

|α|≤k

‖Dαf‖L∞ ≤ C(s, k)‖f‖s. (2.2)

We will also liberally employ the following classical product estimate (see for instance Taylor

[40, p 66]).

Lemma 1. If s > 0 and f, g ∈ L∞ ∩Hs, we have the estimate

‖fg‖s ≤ C(s) [‖f‖L∞‖g‖s + ‖f‖s‖g‖L∞ ] .

This, combined with the Sobolev embedding theorem, implies that Hs is a Banach algebra

whenever s > 1; in other words, for f , g ∈ Hs, the product fg ∈ Hs. Moreover, we have the

algebra estimate

‖fg‖s ≤ C(s)‖f‖s‖g‖s. (2.3)

For any test function f , the commutator operator [Λs, f ] applied to a test function g is

[Λs, f ]g = Λs(fg) − fΛsg . (2.4)

The following commutator estimate can be found in Kato and Ponce [26].

Theorem 3 (Kato-Ponce commutator estimate). If s ≥ 0, and f ∈ Lip∩Hs and g ∈ L∞∩Hs−1,

then

‖[Λs, f ]g‖L2 ≤ C(s)
(
‖∂f‖L∞‖Λs−1g‖L2 + ‖Λsf‖L2‖g‖L∞

)
. (2.5)

In the proof of Lemma 7 we need a simple interpolation estimate:
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Proposition 1. If u ∈ Hτ and σ < s < τ then

∥∥u
∥∥
s
≤

∥∥u
∥∥α
σ

∥∥u
∥∥β
τ
, where α =

τ − s

τ − σ
, β =

s− σ

τ − σ
.

Proof. We write

∥∥u
∥∥2
s

=

∫ (
1 + |ξ|2

)s
|û(ξ)|2 dξ =

∫ [(
1 + |ξ|2

)σ
|û(ξ)|2

]α [(
1 + |ξ|2

)τ
|û(ξ)|2

]β
dξ

and apply Hölder’s inequality with p = 1/α and q = 1/β. �

Finally, owing to the nature of the nonlinearities in (1.1), we need the following reciprocal

estimate. It was proved by Kato, [25, Lemma 2.13], for functions in “uniformly local” Sobolev

spaces (which generalize our construction of coefficients of the form ρ0 + ρ), and for integer

values of s > 2. We provide a sketch of the proof in the delicate case when 1 < s < 2; the larger

value of s are straightforward.

Lemma 2. If s > 1, h ∈ Hs(R2), g ∈ Hs(R2) ∩ C1(R2) and b > 0 is a constant such that

g + b > 1
2b, then ∥∥∥∥

h

g + b

∥∥∥∥
s

≤ C(s, b)
(
1 + ‖g‖sC1 + ‖g‖ss

)
‖h‖s.

Proof. In the case s = 1 + γ with γ ∈ (0, 1), the integer parts of the norm satisfy this bound as

in Kato, [25, Lemma 2.13]. The fractional portion of the norm (see [39, page 155] for instance,

for this form of the Sobolev norm) is

sup
|α|=1

‖Dα
(
h(g + b)−1

)
‖2
Ḣγ ≡ sup

|α|=1

∫

R4

|Dα
(
h(g + b)−1

)
(x) −Dα

(
h(g + b)−1

)
(y)|2

|x− y|2γ+2
dx dy ,

where x and y are points in R
2 and Ḣγ is the homogeneous Sobolev space. Consider Dα = ∂1

(the partial derivative with respect to the first component) so that

∂1
(
h(g + b)−1

)
= (g + b)−1∂1h− h(g + b)−2∂1g. (2.6)

Estimating the first term on the right hand side of (2.6) is a straightforward calculation after

breaking the integral into the following two pieces

‖(g + b)−1∂1h‖
2
Ḣγ ≤ 2

∫
1

|g(x) + b|2
|∂1h(x) − ∂1h(y)|2

|x− y|2γ+2
dxdy

+ 2

∫
|g(x) − g(y)|2

|x− y|2γ+2

1

|g(x) + b|2
dx

|∂1h(y)|2

|g(y) + b|2
dy . (2.7)

The first integral is bounded by an application of Hölder’s inequality, while the second term

additionally requires the Sobolev embedding theorem and the following calculus estimate:

sup
y∈R2

∫
|g(x) − g(y)|2

|x− y|2γ+2
dx ≤ C(γ)‖g‖2C1 .
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This estimate is obtained by splitting the domain of integration into two pieces, |x− y| < 1 and

|x− y| ≥ 1, and then applying the mean value theorem. Returning to equation (2.6), the second

term on the right hand side is bounded by Lemma 1 and the Sobolev embedding theorem:

‖h(g + b)−2∂1g‖γ ≤ ‖(g + b)−2∂1g‖γ‖h‖L∞ + ‖(g + b)−2∂1g‖L∞‖h‖γ

≤

(
4

b2
‖g‖s + ‖(g + b)−2∂1g‖Ḣγ

)
‖h‖s +

4

b2
‖g‖C1‖h‖s.

We bound ‖(g+ b)−2∂1g‖Ḣγ in the same way as ‖(g+ b)−1∂1h‖Ḣγ . The same estimates hold for

∂2. �

3. Proof of Nonuniform Dependence

We write the compressible Euler system (1.1) in the form

Ut +A(U)Ux +B(U)Uy = 0, (3.1)

with U = (ρ, u, v, h)T and

A(U) =




u ρ0 + ρ 0 0
h0+h
ρ0+ρ u 0 1

0 0 u 0

0 (γ − 1)(h0 + h) 0 u


 , B(U) =




v 0 ρ0 + ρ 0

0 v 0 0
h0+h
ρ0+ρ 0 v 1

0 0 (γ − 1)(h0 + h) v


 .

3.1. Symmetrized system. The system (3.1) is symmetrizable; that is, it can be written as

A0Ut +A1(U)Ux +B1(U)Uy = 0 ,

where the matrices A0, A1, B1 are symmetric and A0 is positive definite. We can choose

A0(U) =




h0+h
ρ0+ρ 0 0 0

0 ρ0 + ρ 0 0

0 0 ρ0 + ρ 0

0 0 0 ρ0+ρ
(γ−1)(h0+h)


 ;

A1(U) =




h0+h
ρ0+ρu h0 + h 0 0

h0 + h (ρ0 + ρ)u 0 ρ0 + ρ

0 0 (ρ0 + ρ)u 0

0 ρ0 + ρ 0 (ρ0+ρ)u
(γ−1)(h0+h)


 ;

B1(U) =




h0+h
ρ0+ρ v 0 h0 + h 0

0 (ρ0 + ρ)v 0 0

h0 + h 0 (ρ0 + ρ)v ρ0 + ρ

0 0 ρ0 + ρ (ρ0+ρ)v
(γ−1)(h0+h)


 .
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3.2. Approximate solutions. Our strategy, following the template laid out by Himonas and

Misio lek [21], is to use two sequences (ω = ±1) of approximate solutions:

Uω,n =




ρω,n

uω,n

vω,n

hω,n


 =




0

u1 + u2
v1 + v2

0


 . (3.2)

The approximate solutions contain low frequency functions u1, v1 and high frequency functions

u2 and v2. (Our notation suppresses, for clarity, the dependence of the ui and vi on n and ω.)

The high frequency functions are defined for a constant δ > 0 as

u2 = n−δ−s−1∂yS, and v2 = −n−δ−s−1∂xS, (3.3)

where S is a stream function, given by

S(x, y, t) = ψ(n−δx)ψ(n−δy) sin(ny + ωt),

for a compactly supported nonnegative cutoff function ψ which equals one on [−2, 2]. Expanding

u2 and v2 gives

u2 = n−2δ−s−1ψ(n−δx)ψ′(n−δy) sin(ny + ωt) + n−δ−sψ(n−δx)ψ(n−δy) cos(ny + ωt)

v2 = −n−2δ−s−1ψ′(n−δx)ψ(n−δy) sin(ny + ωt).
(3.4)

The low frequency functions, u1 and v1, are

u1 = ωn−1ϕ1

(
n−δx

)
ϕ′
2

(
n−δy

)
, and v1 = −ωn−1ϕ′

1

(
n−δx

)
ϕ2

(
n−δy

)
, (3.5)

where ϕ′
1 and ϕ2 are also smooth compactly supported functions; ϕ′

1 is identically 1 on the

support of ψ′ and ϕ2 ≡ 1 on suppψ. The following cancellation holds.

Lemma 3. For u and v defined in (3.2), (3.4), and (3.5), we have ∂xu
ω,n + ∂yv

ω,n = 0.

Proof. We have

u1,x =
ω

n1+δ
φ′1

( x
nδ

)
φ′2

( y

nδ

)
= −v1,y .

Considering the high frequency terms, we see from (3.3)

∂xu2 + ∂yv2 = n−δ−s−1∂x∂yS − n−δ−s−1∂y∂xS = 0. �

As a result of the definition, the approximate solutions satisfy

Uω,n
t +A(Uω,n)Uω,n

x +B(Uω,n)Uω,n
y = R,

where

R =




0

R2

R3

0


 =




0

∂tu
ω,n + uω,n∂xu

ω,n + vω,n∂yu
ω,n

∂tv
ω,n + uω,n∂xv

ω,n + vω,n∂yv
ω,n

0


 . (3.6)
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Denote the inner product of two vectors, V and W , by 〈V,W 〉 =
∑

〈Vi,Wi〉L2 , and for any

vector U denote

‖U‖2σ = 〈ΛσU,ΛσU〉 = ‖ρ‖2σ + ‖u‖2σ + ‖v‖2σ + ‖h‖2σ . (3.7)

Let Uω,n = (ρω,n, uω,n, vω,n, hω,n)T be the actual solution to the Cauchy problem corresponding

to equation (3.1), with the same data:

Uω,n(x, y, 0) = Uω,n(x, y, 0) =
(
0, u1(x, y, 0) + u2(x, y, 0), v1(x, y, 0) + v2(x, y, 0), 0

)
,

again with ω = 1 or −1.

The actual solution is unique, and exists on a time interval which depends only upon the size

(in the Hs norm) of the initial data and on its distance from the boundary of the region of state

space (called G in the statement below) where the system is hyperbolic. We quote the following

theorem found in [34].

Theorem 4 (Majda, Theorem 2.1). Assume U(·, 0) = U0 ∈ Hs, s > d/2 + 1 and U0(x) ∈ G1,

Ḡ1 ⊂⊂ G. Then there is a time interval [0, T ] with T > 0, so that the equations (1.1) have a

unique classical solution U ∈ C([0, T ]; (Hs)4)∩C1([0, T ]; (Hs−1)4), and U(x, t) ∈ G2, G2 ⊂⊂ G,

for (x, t) ∈ R
2 × [0, T ]; here T = T (‖U0‖s, G1).

In our coordinate system, G = {ρ > −ρ0}. Having specified values for ρ0 > 0 and h0, we

might choose, for example, data to lie in a bounded set

G1 =

{
−

1

4
ρ0 < ρ(·, 0) < Mρ, |u(·, 0)| < Mu, |v(·, 0)| < Mu,−

1

4
h0 < h(·, 0) < Mh

}
,

and then take G2 to be

G2 =

{
−

1

2
ρ0 < ρ(·, 0) < 2Mρ, |u(·, 0)| < 2Mu, |v(·, 0)| < Mu,−

1

2
h0 < h(·, 0) < 2Mh

}
,

where Mρ, Mu and Mh are positive numbers. The significant bound, which we need throughout,

is the lower bound on ρ in G2. Additionally, continuous dependence on the data yields the

following Hs solution size estimate.

Theorem 5 ([34], Theorem 2.2). Assume U |t=0 ∈ Hs, s > 2 and U |t=0 ∈ G1. There exists a

T ∗, 0 < T ∗ ≤ T such that

sup
t∈[0,T ∗]

‖U‖s ≤ 2‖U |t=0‖s.

In what follows, we take T ∗ to be the value given by this theorem.

We obtain the proof of Theorem 1 by showing the following properties of the corresponding

solutions:

(1) Boundedness of initial data (proved in Section 3.3):

‖Uω,n(·, 0)‖s = ‖Uω,n(·, 0)‖s = ‖(ρω,n(0), uω,n(0), vω,n(0), hω,n(0))‖s ≤ C, (3.8)

uniformly in n.
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(2) Convergence of initial data (Section 3.3): for δ < 1/2,

lim
n→∞

‖U1,n(·, 0) − U−1,n(·, 0)‖s = 0. (3.9)

(3) Uniformity of approximation of Uω,n to actual solution Uω,n (Section 3.4):

‖Uω,n(·, t) − Uω,n(·, t)‖s ≤ Cn−ε, 0 < t < T ∗ , (3.10)

for some ε > 0.

(4) Non-uniformity of divergence of U1,n and U−1,n from each other in time (Section 3.7):

‖U1,n(·, t) − U−1,n(·, t)‖s > | sin(t)|, 0 < t. (3.11)

The following estimates can be found in the appendix of [21].

Lemma 4. Let σ ≥ 0, δ > 0 and n≫ 1. For any Schwarz function ψ ∈ S(R) we have

‖ψ(n−δ·)‖Hσ(R) ≤ nδ/2‖ψ‖Hσ(R). (3.12)

For any constant a ∈ R we have

‖ψ(n−δ·) sin(n · +a)‖Hσ(R) + ‖ψ(n−δ·) cos(n · +a)‖Hσ(R) ≈ nσ+δ/2‖ψ‖L2(R). (3.13)

The notation ≈ means that the expression on the left is bounded above and below by constants

independent of σ, δ and n. Note that the L2 bound implies an Hσ bound. From this lemma we

obtain bounds on the approximate solutions:

Lemma 5. For s− 2 < σ < s− 1 and 0 < δ < 1, we have

‖Uω,n‖σ+1 ≤ Cnσ−s+1 ,

where C depends on the norms of the functions ψ, φ1 and φ2.

Proof. The nonzero terms in Uω,n are u1, u2, v1 and v2. Since u1 and v1 are products (in x and

y) of terms of the form ψ(n−δ·), we have, from Lemma 4, and with C a generic constant,

‖u1‖σ+1 = n−1‖φ1(n−δx)‖σ+1‖φ
′
2(n−δy)‖σ+1 ≤ n−1nδ/2‖φ1‖σ+1n

δ/2‖φ′2‖σ+1 = Cn−1+δ .

A similar bound holds for v1, which has the same structure. Note that these bounds are valid

for any σ. On the other hand,

‖u2‖σ+1 ≤n−2δ−s−1‖ψ(n−δx)‖σ+1‖ψ
′(n−δy) sin(ny + ωt)‖σ+1

+ n−δ−s‖ψ(n−δx)‖σ+1‖ψ(n−δy) cos(ny + ωt)‖σ+1

≤n−2δ−s−1nδ/2‖ψ‖σ+1n
σ+1+δ/2‖ψ′‖σ+1 + n−δ−snδ/2‖ψ‖σ+1n

σ+1+δ/2‖ψ‖σ+1

≤Cn−δ+σ−s + Cnσ−s+1 ,

while v2, which has the structure of the first term in u2, satisfies

‖v2‖σ+1 ≤ Cn−δ+σ−s .

Now, δ is a positive number and σ < s − 1, so all the exponents of n are negative if δ < 1. To

bound the low frequency terms by the high frequency terms we need −1 + δ < σ − s + 1, or
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δ < σ − s + 2, and provided σ > s − 2, as we have assumed, it is possible to achieve this with

δ > 0. �

Lemma 5 implies a bound on the actual solution, using Theorem 5.

Corollary 1. If t ≤ T ∗, then

‖Uω,n‖σ+1 ≤ Cnσ+1−s

where T ∗, as in Theorem 5, is the time to doubling of the initial norm, and σ < s− 1.

3.3. (1) Boundedness and (2) Convergence of the Initial Data. From Lemma 4, we have

‖Uω,n(·, 0)‖s ≤ Cn−1+δ + C. For any δ with 0 < δ < 1 we have ‖Uω,n(0)‖ bounded, uniformly

in n.

To see that the difference in the initial data for ω = ±1 converges to zero in Hs, we calculate

U1,n − U−1,n at t = 0, noting that the oscillatory terms cancel at t = 0, leaving only




ρ1,n(0) − ρ−1,n(0)

u1,n(0) − u−1,n(0)

v1,n(0) − v−1,n(0)

h1,n(0) − h−1,n(0)


 =




0

2n−1ϕ1

(
n−δx

)
ϕ′
2

(
n−δy

)

2n−1ϕ′
1

(
n−δx

)
ϕ2

(
n−δy

)

0


 .

This tends to zero in Hs by the first estimate in Lemma 4, for any δ ∈ (0, 1), as in the first

estimate in the proof of Lemma 5.

3.4. (3) Uniformity of the Approximation. In this subsection, we denote the actual solu-

tions by U . Let E = U − Uω,n = (E,F,G,H)T be the error, the difference between the actual

and approximate solutions. The main result of this section is

Theorem 6. For max{1, s − 2} < σ < s− 1, E satisfies

d

dt
‖E‖σ . nσ+1−s‖E‖σ + nδ−2.

Furthermore, we have on the time interval of existence

‖E‖σ . nδ−3+s−σ.

Proof. An equation for the error (the symmetric form of the system is useful here) is

A0(U
ω,n)Et +A1(Uω,n)Ex +B1(U

ω,n)Ey + C(U)E +A0(Uω,n)R = 0 (3.14)
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where

C(U) = A0(Uω,n)




ux + vy ρx ρy 0

− h0ρx
ρρ0+ρ2

0

ux uy
ρx

ρ+ρ0

−
h0ρy

ρρ0+ρ2
0

vx vy
ρy

ρ+ρ0

0 hx hy (γ − 1)(ux + vy)




=




(ux+vy)h0

ρ0
h0

ρ0
ρx

h0

ρ0
ρy 0

− h0ρx
ρ+ρ0

ρ0ux ρ0uy
ρ0ρx
ρ+ρ0

−
h0ρy
ρ+ρ0

ρ0vx ρ0vy
ρ0ρy
ρ+ρ0

0 ρ0
(γ−1)h0

hx
ρ0

(γ−1)h0
hy

ρ0(ux+vy)
h0



.

We write C(U)E as

C(U)E =




(ux+vy)h0

ρ0
E + h0

ρ0
ρxF + h0

ρ0
ρyG

− h0ρx
ρ+ρ0

E + ρ0uxF + ρ0uyG+ ρ0ρx
ρ+ρ0

H

−
h0ρy
ρ+ρ0

E + ρ0vxF + ρ0vyG+
ρ0ρy
ρ+ρ0

H
ρ0

(γ−1)h0
hxF + ρ0

(γ−1)h0
hyG+

ρ0(ux+vy)
h0

H




=




C1

C2

C3

C4


 .

We apply the operator Λσ, where σ > 1 and s − 2 < σ < s − 1, to the left hand side of (3.14)

and then take the inner product with ΛσE to obtain

〈Λσ (A0(U
ω,n)Et) ,Λ

σE〉 = − 〈Λσ (C(U)E) ,ΛσE〉 (3.15)

− 〈Λσ (diag(A1(Uω,n))Ex + diag(B1(Uω,n))Ey) ,ΛσE〉 (3.16)

− 〈Λσ (AR(Uω,n)Ex +BR(Uω,n)Ey) ,ΛσE〉 (3.17)

− 〈ΛσA0(Uω,n)R,ΛσE〉, (3.18)

where diag(A) denotes the diagonal part of a matrix A and AR = A− diag(A). We now bound

the terms on the right hand side.

Estimate for (3.15). We have

〈ΛσC(U)E ,ΛσE〉 = 〈ΛσC1,Λ
σE〉 + 〈ΛσC2,Λ

σF 〉 + 〈ΛσC3,Λ
σG〉 + 〈ΛσC4,Λ

σH〉 . (3.19)

These terms are all estimated in a similar way. The Cauchy-Schwarz inequality yields

|〈ΛσC1,Λ
σE〉| ≤ ‖ΛσC1‖L2

‖ΛσE‖L2
= ‖C1‖σ‖E‖σ ≤ ‖C1‖σ‖E‖σ

and so on for the other three terms. To estimate ‖Ci‖σ, we note that all of the Ci are of the

form

Ci = a1E + a2F + a3G+ a4H , (3.20)

where, up to constant multiples, each aj consists of a derivative, or sum of derivatives, of

components of U , in some cases divided by ρ+ ρ0. So, taking C2 as an example, and looking at

the first summand, we have

‖a1E‖σ = h0

∥∥∥∥
ρx

ρ+ ρ0
E

∥∥∥∥
σ

≤ h0

∥∥∥∥
ρx

ρ+ ρ0

∥∥∥∥
σ

‖E‖σ ≤ h0

∥∥∥∥
ρx

ρ+ ρ0

∥∥∥∥
σ

‖E‖σ , (3.21)
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where we have used the algebra property, Lemma 2.3. Now we use Lemma 2 to obtain
∥∥∥∥

ρx
ρ+ ρ0

∥∥∥∥
σ

≤ C(σ, ρ0)
(
1 + ‖ρ‖σσ

)
‖ρx‖σ ≤ C‖ρ‖σ+1 ,

since ‖ρx‖σ ≤ ‖ρ‖σ+1, and from Corollary 1 we can absorb all the other factors into a constant

that depends on σ, ρ0 and on the Hσ bound on ρ. Finally, estimating ‖ρ‖σ+1 ≤ Cnσ−s+1 as in

Corollary 1, and treating the other terms in (3.20) in the same way as (3.21), we have

〈ΛσC(U)E ,ΛσE〉 ≤ Cnσ−s+1‖E‖2σ ,

with a constant C that depends upon ρ0, h0, γ and σ. (Since ‖U‖σ+1 decreases with n, we can

eliminate the dependence of the constant on U .)

Estimate of (3.16). We have (up to a sign)

(3.16) = 〈Λσ (diag(A1(Uω,n))Ex + diag(B1(Uω,n))Ey) ,ΛσE〉

=

〈
Λσ

(
h0
ρ0
uω,nEx +

h0
ρ0
vω,nEy

)
,ΛσE

〉

L2

+ 〈Λσ (ρ0u
ω,nFx + ρ0v

ω,nFy) ,ΛσF 〉L2

+ 〈Λσ (ρ0u
ω,nGx + ρ0v

ω,nGy) ,ΛσG〉L2 +

〈
Λσ

(
ρ0u

ω,n

(γ − 1)h0
Hx +

ρ0v
ω,n

(γ − 1)h0
Hy

)
,ΛσH

〉

L2

.

The eight terms in this expression are similar to each other; we show how the first is estimated.

Ignoring the constant h0/ρ0, consider

I1 ≡ 〈Λσ (uω,nEx) ,ΛσE〉L2 =

∫

R2

Λσ (uω,nEx) ΛσE dxdy.

This can be written as (recall equation (2.4) for the definition of the commutator)

I1 =

∫

R2

([Λσ, (uω,n)]Ex + (uω,n) Λσ∂xE) ΛσE dxdy.

We split this integral into two pieces, and apply the Cauchy-Schwarz estimate to the first term,

to obtain

I1 ≤ ‖[Λσ, (uω,n)]Ex‖L2 ‖E‖σ +

∣∣∣∣
∫

R2

uω,nΛσ∂xEΛσE dxdy

∣∣∣∣ .

Now, the Kato-Ponce commutator estimate, (2.5), applied to the first factor gives

‖[Λσ, (uω,n)]Ex‖L2 ≤C(σ)
(
‖uω,nx ‖L∞‖Λσ−1Ex‖L2

+ ‖Λσuω,n‖L2
‖Ex‖L∞

)

≤C(σ) (‖uω,n‖σ+1‖ΛσE‖L2
+ ‖uω,n‖σ‖Ex‖L∞) ,

using the Sobolev embedding theorem, Theorem 2, which applies here since σ+ 1 > 2. Since we

can replace ‖uω,n‖σ by ‖uω,n‖σ+1, and, using the same Sobolev embedding, replace ‖Ex‖L∞ by

‖E‖σ , we obtain

‖[Λσ, (uω,n)]Ex‖L2 ≤ C(s)‖uω,n‖σ+1‖E‖2σ .



NONUNIFORM DEPENDENCE IN COMPRESSIBLE GAS DYNAMICS 13

For the second term, integration by parts followed by Hölder’s inequality yields
∣∣∣∣
∫

R2

uω,nΛσ∂xEΛσE dxdy

∣∣∣∣ =

∣∣∣∣
1

2

∫

R2

uω,nx

(
ΛσE

)2
dxdy

∣∣∣∣ ≤
‖uω,nx ‖L∞

2

∫

R2

(
ΛσE

)2
dxdy

=
1

2
‖uω,nx ‖L∞‖E‖2σ ,

and we get a bound similar to the first term, so that

I1 ≤ C ‖uω,n‖σ+1 ‖E‖2σ ≤ Cnσ+1−s‖E‖2σ ,

from Corollary 1, with C = C(σ). Proceeding the same way with the other seven terms, we

obtain

|〈Λσ (diag(A1(Uω,n))Ex + diag(B1(U
ω,n))Ey) ,ΛσE〉| ≤ Cnσ+1−s‖E‖2σ ,

with the constant depending on on ρ0, h0, γ and σ.

Estimate of (3.17). Inserting the off-diagonal elements of A1 and B1 from Section 3.1 (note

that they are all constant since hω,n = 0 = ρω,n), we have

−(3.17) = 〈Λσ (h0Fx + h0Gy) ,ΛσE〉L2 + 〈Λσ (h0Ex + ρ0Hx) ,ΛσF 〉L2

+ 〈Λσ (h0Ey + ρ0Hy) ,ΛσG〉L2 + 〈Λσ (ρ0Fx + ρ0Gy) ,ΛσH〉L2 .

Writing the above as an integral and rearranging terms gives

−(3.17) =

∫

R2

h0

(
∂x

(
ΛσE

)
ΛσF + ΛσE ∂x

(
ΛσF

)
+ ∂y

(
ΛσE

)
ΛσG+ ΛσE ∂y

(
ΛσG

))
dx dy

+

∫

R2

ρ0

(
∂x

(
ΛσF

)
ΛσH + ΛσF ∂x

(
ΛσH

)
+ ∂y

(
ΛσG

)
ΛσH + ΛσG∂y

(
ΛσH

))
dx dy

=h0

∫

R2

∂x
(
ΛσE ΛσF

)
+ ∂y

(
ΛσE ΛσG

)
dx dy

+ ρ0

∫

R2

∂x
(
ΛσF ΛσH

)
+ ∂y

(
ΛσGΛσH

)
dx dy

and therefore they all integrate to zero.

Estimate of (3.18). Since A0 is diagonal and A0(Uω,n) is constant, we have

−(3.18) = 〈ΛσA0(Uω,n)R,ΛσE〉 = 〈ρ0ΛσR2,Λ
σF 〉 + 〈ρ0ΛσR3,Λ

σG〉

The Cauchy-Schwarz inequality yields

|(3.18)| ≤ ρ0‖R‖σ‖E‖σ .

Combining the estimates for (3.15), (3.16), (3.17) and (3.18) we have

〈Λσ (A0(Uω,n)Et) ,Λ
σE〉 ≤ Cnσ+1−s‖E‖2Hσ + C‖R‖σ‖E‖σ , (3.22)

where the constants depend upon ρ0, h0, γ and σ.

We show that the residue R satisfies the following estimate.

Proposition 2. If max{1, s − 2} < σ < s− 1, then ‖R‖σ . nδ−2.
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Proof. (3.6) the nonzero components of R are

(
R2

R3

)
=

(
∂tu

ω,n + uω,n∂xu
ω,n + vω,n∂yu

ω,n

∂tv
ω,n + u∂xv

ω,n + vω,n∂yv
ω,n

)
.

3.5. Estimating R2. We have (omitting the superscripts for brevity)

R2 =ut + uux + vuy = (u1 + u2)t + (u1 + u2)(u1 + u2)x + (v1 + v2)(u1 + u2)y

=

0
︷︸︸︷
u2,t +

1
︷ ︸︸ ︷
u1u1,x +

2
︷ ︸︸ ︷
u1u2,x +

3
︷ ︸︸ ︷
u2u1,x +

4
︷ ︸︸ ︷
u2u2,x +

5
︷ ︸︸ ︷
v1u1,y +

6
︷ ︸︸ ︷
v1u2,y +

7
︷ ︸︸ ︷
v2u1,y +

8
︷ ︸︸ ︷
v2u2,y .

Now, three of these terms are zero by design, since suppu2 = supp v2 = suppS and φ′2 = 0 = φ′′2
for y ∈ suppS:

2 ≡
ω

n
φ1

( x
nδ

)
φ′2

( y

nδ

) 1

nδ+s+1
∂xyS = 0

3 ≡ u2u1,x =
1

nδ+s+1
∂yS

ω

n1+δ
φ′1

( x
nδ

)
φ′2

( y

nδ

)
= 0

7 ≡ v2u1,y = −
1

nδ+s+1
∂xS

(
−

ω

n1+δ

)
φ1

( x
nδ

)
φ′′2

( y

nδ

)
= 0 ;

and another term takes a simpler form, since φ′1 ≡ 1 ≡ φ2 on the support of S:

6 ≡ v1u2,y = −
ω

n
φ′1

( x
nδ

)
φ2

( y

nδ

) 1

nδ+s+1
∂yS = −

ω

nδ+s+2
∂2yS .

From the form of the low-frequency and high-frequency terms, it is clear that differentiation of u1
or v1 with respect to either x or y improves the result by a factor of n−δ, as does differentiation

of S with respect to x; however, differentiation of S with respect to y introduces a term with an

additional multiplicative factor of n. The amplitudes of the low- and high-frequency terms have

been balanced so that the largest contributions due to this, in 0 and 6 , cancel each other.

This is exhibited in the proof of

Lemma 6 (Crucial cancellation). If ϕ′
1 ≡ 1 on suppψ′ and ϕ2 ≡ 1 on suppψ, then

u2,t + v1u2,y ≡
1

nδ+s+1
∂y

(
∂t −

ω

n
∂y

)
S

= −
ω

n2+2δ+s
ψ
( x
nδ

)[
1

nδ
ψ′′

( y

nδ

)
sin(ny + ωt) + nψ′

( y

nδ

)
cos(ny + ωt)

]
, (3.23)

and hence
∥∥∥ 0 + 6

∥∥∥
σ
≤ Cnσ−δ−s−1 .
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Proof. Using S(x, y, t) = ψ(n−δx)ψ(n−δy) sin(ny + ωt), we calculate
(
∂t −

ω

n
∂y

)
S =ψ

( x
nδ

)(
∂t −

ω

n
∂y

)(
ψ
( y

nδ

)
sin(ny + ωt)

)

=ψ
( x
nδ

) [
sin(ny + ωt)

(
∂t −

ω

n
∂y

)
ψ
( y

nδ

)
+ ψ

( y

nδ

)(
∂t −

ω

n
∂y

)
sin(ny + ωt)

]

=ψ
( x
nδ

) [
sin(ny + ωt)

(
∂t −

ω

n
∂y

)
ψ
( y

nδ

)]

= −
ω

n1+δ
ψ
( x
nδ

)
ψ′

( y

nδ

)
sin(ny + ωt) .

From this we obtain (3.23). Now it is a direct application of estimate (3.13) to complete the

proof. �

To complete the estimate for the Hσ norm of R2, we estimate the norms of S and its deriva-

tives. From

S = ψ
( x
nδ

)
ψ
( y

nδ

)
sin(ny + ωt)

and Lemma 4 we have ‖S‖σ . nσ+δ. Since differentiation with respect to x scales the expression

by n−δ and differentiation with respect to y scales it by n (where we ignore the lower order

contribution), we have

‖∂xS‖σ . nσ , ‖∂yS‖σ . nσ+δ+1, ‖∂x∂yS‖σ . nσ+1, ‖∂2yS‖σ . nσ+δ+2 . (3.24)

We also note the Hσ bounds on u1 and v1 and their derivatives:

‖u1‖σ =
∥∥∥ω
n
φ1

( x
nδ

)
φ′2

( x
nδ

)∥∥∥
σ
. nδ−1 , ‖u1,x‖σ .

1

n
,

and the same bounds hold for v1 and for the y derivatives. With this we can find the remaining

bounds for R2:
∥∥∥ 1

∥∥∥
σ

= ‖u1u1,x‖σ . nδ−2 ,

∥∥∥ 4
∥∥∥
σ

= ‖u2u2,x‖σ =
1

(nδ+s+1)2
‖SySxy‖σ . n−2s+2σ−δ ,

∥∥∥ 5
∥∥∥
σ

= ‖v1u1,y‖σ . nδ−2 ,

∥∥∥ 8
∥∥∥
σ

= ‖v2u2,y‖σ =
1

(nδ+s+1)2
‖SxSyy‖σ . n−2s+2σ−δ .

Combining this with Lemma 6, we find the Hσ norm of R2 to be bounded by nα where

α = max{δ − 2,−2(s − σ) − δ, σ − δ − s− 1} .

Since σ < s− 1, if we now choose δ ≪ 1, the largest exponent is δ − 2, so we have

‖R2‖σ . nδ−2 . (3.25)
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3.6. Estimating R3. This goes the same way. (Again we omit the superscripts.)

R3 =vt + uvx + vvy = (v1 + v2)t + (u1 + u2)(v1 + v2)x + (v1 + v2)(v1 + v2)y

=

0
︷︸︸︷
v2,t +

1
︷ ︸︸ ︷
u1v1,x +

2
︷ ︸︸ ︷
u1v2,x +

3
︷ ︸︸ ︷
u2v1,x +

4
︷ ︸︸ ︷
u2v2,x +

5
︷ ︸︸ ︷
v1v1,y +

6
︷ ︸︸ ︷
v1v2,y +

7
︷ ︸︸ ︷
v2v1,y +

8
︷ ︸︸ ︷
v2v2,y .

Because u1, v1,x and v1,y are zero on the support of S, we find that the terms 2 , 3 and 7

are again zero and (since v1 is constant on suppS), 6 reduces to −ωv2,y/n. This again gives

us a cancellation between the highest order terms in 0 and 6 (we do not actually need it in

the case of R3 since the largest terms are already smaller by a factor of n). Specifically, using

the identity in the proof of Lemma 6,

0 + 6 = v2,t + v1v2,y = v2,t −
ω

n
v2,y = −

1

nδ+s+1
∂x

(
∂t −

ω

n
∂y

)
S

= −
1

nδ+s+1
∂x

(
−

ω

n1+δ
ψ
( x
nδ

)
ψ′

( y

nδ

)
sin(ny + ωt)

)

=
1

n3δ+s+2
ψ′

( x
nδ

)
ψ′

( y

nδ

)
sin(ny + ωt) ,

and so ∥∥∥ 0 + 6
∥∥∥
σ
. n−2δ−s+σ−2 .

The estimates for the remaining terms are straightforward, as in the estimates for R2. We use

(3.24) and we need also ‖Sxx‖σ . nσ−δ :
∥∥∥ 1

∥∥∥
σ

= ‖u1v1,x‖σ . nδ−2 ,

∥∥∥ 4
∥∥∥
σ

= ‖u2v2,x‖σ =
1

(nδ+s+1)2
‖SySxx‖σ . n−2s+2σ−2δ−1 ,

∥∥∥ 5
∥∥∥
σ

= ‖v1v1,y‖σ . nδ−2 ,

∥∥∥ 8
∥∥∥
σ

= ‖v2v2,y‖σ =
1

(nδ+s+1)2
‖SxSxy‖σ . n−2s+2σ−2δ−1 .

Once again, the largest exponent is δ − 2, and so

‖R3‖σ . nδ−2 . (3.26)

Combining estimates (3.25) and (3.26) completes the proof of Proposition 2. �

To complete the proof of Theorem 6, first notice that from the definition A0(U
ω,n) ≥ cI for

some positive constant c, and A0(U
ω,n) is a constant matrix. Therefore, the L2 inner product

〈A0(Uω,n)V, V 〉 defines an equivalent norm. Thus,

d

dt
‖E‖2σ =

d

dt
〈ΛσE ,ΛσE〉 ≈

d

dt
〈A0(Uω,n)ΛσE ,ΛσE〉 (3.27)
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Applying the derivative, we have

d

dt
〈A0(Uω,n)ΛσE ,ΛσE〉 = 2〈A0(Uω,n)ΛσEt,Λ

σE〉 + 〈A0(Uω,n)tΛ
σE ,ΛσE〉 (3.28)

= 2
〈

Λσ
(
A0(Uω,n)Et

)
,ΛσE

〉

(since A0(U
ω,n) is constant). This quantity was estimated in Section 3.4; substituting inequality

(3.22) and applying Proposition 2 we have

2‖E‖σ
d

dt
‖E‖σ ≈

d

dt
〈A0(Uω,n)ΛσE ,ΛσE〉 . nσ+1−s‖E‖2Hσ + nδ−2‖E‖σ . (3.29)

Dividing by ‖E‖σ in (3.29) gives the first inequality stated in the theorem. We apply Grönwall’s

inequality, [18, p 24]. The Grönwall estimate for

z′(t) ≤ az(t) + b , z(0) = 0 ,

is

z(t) ≤
b

a

(
eat − 1

)
.

Since here a ≃ nσ−s+1 < C, the upper bound for eat is a constant that depends only on T ∗,

the time interval on which we are tracking the solution, and with b ≃ nδ−2, then b/a gives the

estimate in the theorem. �

This completes the proof of the uniformity (in n) of the approximation of Uω,n to the actual

solution, Uω,n, for ω = 1 and ω = −1. For ε in equation (3.10) we have 3 − (s − σ) − δ > 2.

3.7. Nonuniform convergence. We are now prepared to complete the proof of nonuniform

convergence, the final item, (4), in the program. We use a fact we proved in [28]: For a range

of τ > s, (specifically s < τ ≤ ⌊s⌋ + 1, where ⌊·⌋ is the greatest integer function), the error in

the Hτ norm is bounded by

‖E‖τ . nτ−s . (3.30)

This uses the form of E and the bound in Lemma 4. Interpolation yields an estimate for the

error in the s norm.

Lemma 7. For any s > 2 and n≫ 1, there exists an ε > 0 such that

‖E‖s . n−ε. (3.31)

Proof. From Proposition 1 we have
∥∥E

∥∥
s
≤

∥∥E
∥∥α
σ

∥∥E
∥∥β
τ
, where α =

τ − s

τ − σ
, β =

s− σ

τ − σ
. (3.32)

Using Theorem 6 and (3.30) we find

‖E‖s .
(
nδ−3+s−σ

)α(
nτ−s

)β
= n(τ−s)(δ−3+2s−2σ)/(τ−σ) . (3.33)

By choosing max{1, s − 3/2 + δ} < σ < s− 1, we obtain δ − 3 + 2s − 2σ < 0, which completes

the proof. �
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We are now ready to give the proof of Theorem 1.

Proof. We estimate the difference between two actual solutions by the triangle inequality

‖U1,n − U−1,n‖s ≥ ‖U1,n − U−1,n‖s − ‖U1,n − U1,n‖s − ‖U−1,n − U−1,n‖s. (3.34)

From Lemma 7, the last two terms tend to zero as n → ∞, and therefore, tracking the terms

that do not tend to zero as n→ ∞,

‖U1,n − U−1,n‖s ≥ lim inf
n→∞

‖U1,n − U−1,n‖s

≥ lim
n→∞

‖n−δ−sψ(n−δx)ψ(n−δy) (cos(ny + t) − cos(ny − t)) ‖s

= lim
n→∞

‖n−δ−sψ(n−δx)ψ(n−δy) cos(ny)‖s| sin(t)| ≈ | sin(t)|. �
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[24] Jegdić, K., Keyfitz, B. L., Čanić, S., A Free Boundary Problem for the Isentropic Gas Dynamics Equa-

tions — Transonic Regular Reflection, submitted (2015).

[25] Kato, T. The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Rat. Mech. Anal.

58, 181–205 (1975).

[26] Kato, T., Ponce, G. Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure

Appl. Math. 41, 891–907 (1988).

[27] Kenig, C., Ponce, G., Vega, L. On the ill-posedness of some canonical dispersive equations. Duke Math

J. 106, 617–633 (2001).

[28] Keyfitz, B. L., Tığlay, F., Nonuniform dependence on initial data for compressible gas dynamics: The

periodic Cauchy problem. Submitted (2016).

[29] Koch, T., Tzvetkov, N. Nonlinear wave interactions for the Benjamin-Ono equation. Int. Math. Res.

Not. 30, 1833–1847 (2005).

[30] Lax, P. D. Hyperbolic systems of conservation laws and the mathematical theory of shock waves, SIAM

Reg. Conf. Lecture 11, Philadelphia, (1973).
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