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Abstract

We examine the interaction of multigrid methods and shape optimization in
appropriate shape spaces. Our aim is a scalable algorithm for application
on supercomputers, which can only be achieved by mesh-independent conver-
gence. The impact of discrete approximations of geometrical quantities, like
the mean curvature, on a multigrid shape optimization algorithm with quasi-
Newton updates is investigated. For the purpose of illustration, we consider
a complex model for the identification of cellular structures in biology with
minimal compliance in terms of elasticity and diffusion equations.

1 Introduction

PDE constrained shape optimization is becoming more and more suited for prac-
tical applications, e.g., acoustics [18], aerodynamics [15] and electrostatics [6]. A
finite dimensional optimization problem can be obtained for example by repre-
senting shapes as splines. However, the connection of shape calculus with infinite
dimensional spaces [5, 9, 22] leads to a more flexible approach. In recent work, it
has been shown that PDE constrained shape optimization problems can be embed-
ded in the framework of optimization on shape spaces. Finding a shape space and
an associated metric is a challenging task and different approaches lead to various
models. There exists no common shape space suitable for all applications. One
possible approach is to define shapes as elements of a Riemannian manifold as pro-
posed in [12, 13]. In [14], a survey of various suitable inner products is given, e.g.,
the curvature weighted Riemannian metric and the Sobolev metric. From a the-
oretical point of view this is attractive because algorithmic ideas from [1] can be
combined with approaches from differential geometry. For example in [20], shape
optimization is considered as optimization on a Riemannian shape manifold. This
particular manifold contains only shapes with infinitely differentiable boundaries,
which limits the practical applicability. From a computational point of view, usu-
ally finite element methods are used to discretize the PDE models where one has
to deal with polygonal shape representations.

A well-established approach is to deal with shape derivatives in a so-called
Hadamard form, i.e., in the form of integrals over the surface (cf. [15, 22]). An
equivalent and intermediate result in the process of deriving Hadamard expressions
is a volume expression of the shape derivative. One usually has to require additional
regularity assumptions in order to transform volume into surface forms. In addition
to saving analytical effort this makes volume expressions preferable over Hadamard
forms, which is also utilized in [6]. In the case of the more attractive volume formu-
lation, the shape manifold and the corresponding inner products mentioned above
are not appropriate. One possible approach to use these formulations is given in
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[19]. Here an inner product, which is called Steklov-Poincaré metric, and a shape
space are proposed. These are further considered in the following. The combina-
tion of this particular shape space and its associated inner product is an essential
step towards applying efficient finite element solvers. This is especially important
in order to avoid complicated load balancing for parallel computers with respect to
both, the volume and surface elements. If there are many computationally costly
operations on surfaces like the evaluation of the Sobolev metric, this is necessary.
By using volume forms and Steklov-Poincaré-type metrics one only has to consider
standard finite element assemblies and a classical load balancing with respect to
volume elements.

In general, practical applications necessitate very fine discretizations. Here one
can observe mesh-dependence at several points, e.g., the number of iterations of the
PDE solver and the overall optimization loop. The same holds for discrete approxi-
mations of geometrical quantities, like the mean curvature (cf. [11]), which strongly
depend on the chosen mesh. Especially a perimeter regularization is affected by the
increasing values of the discretized mean curvature within a multgrid framework.
In particular, scalable algorithms for application on supercomputers can only be
achieved by mesh-independent convergence of both, the PDE simulation and the
overall optimization loop. In order to come up with such an algorithm, one has
to apply on the one hand multigrid preconditioner to the PDE solver and on the
other hand quasi-Newton methods or something even more sophisticated for the
optimization. In this paper, we examine the interaction of multigrid and shape op-
timization based on Steklov-Poincaré metrics and the corresponding shape space.
We focus on this particular combination because it is well-suited for a large-scale
finite element algorithm with quasi-Newton techniques.

This paper has the following structure. In section 2, besides a short review on
the background of shape optimization, PDE models are formulated. Furthermore,
the corresponding shape derivatives are given. Section 3 summarizes the entire
process from shape derivatives to a complete optimization algorithm in suitable
shape spaces. A numerical test framework and results are presented in section 4.

2 Model formulations and their shape derivatives

After setting up notation and terminology we formulate the model problems. They
are motivated by finding the optimal design of cellular structures. In the third part
of this section we deduce the shape derivatives of the model problems.

2.1 Notations and definitions

One focus in shape optimization is to investigate shape functionals. First, we define
such a functional.

Definition 2.1 (Shape functional). Let D denote a non-empty subset of Rd, where
d ∈ N. Moreover, A ⊂ {Ω: Ω ⊂ D} denotes a set of subsets. A function

J : A → R, Ω 7→ J(Ω)

is called a shape functional.

In the following, let D be as in the definition above. Moreover, let {Ft}t∈[0,T ] be

a family of mappings Ft : D → Rd such that F0 = id, where T > 0. This family
transforms a domain Ω ⊂ D into perturbed domains

Ωt := Ft(Ω) = {Ft(x) : x ∈ Ω} with Ω0 = Ω
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and the boundary Γ = ∂Ω into perturbed boundaries

Γt := Ft(Γ) = {Ft(x) : x ∈ Γ} with Γ0 = Γ.

Considering the domain Ω as a collection of material particles, which are changing
their position in the time-interval [0, T ], the family {Ft}t∈[0,T ] describes the motion
of each particle. This means that at time t ∈ [0, T ] a particle x ∈ Ω has the new
position xt := Ft(x) ∈ Ωt with x0 = x. The motion of each such particle x can
be described by the velocity method or by the perturbation of identity. Let V be a
sufficiently smooth vector field. For V the velocity method defines the family of the
above-mentioned mappings as the flow Ft(x) := ξ(t, x), which is determined by the
following initial value problem:

dξ(t, x)

dt
= V (ξ(t, x))

ξ(0, x) = x

The perturbation of identity is defined by Ft(x) := x + tV (x) and used in the
following.

This paper deals with PDE constrained shape optimization problems, i.e., shape
optimization problems constrained by equations involving an unknown function of
two or more variables and at least one partial derivative of this function. Such a
problem is given by

min
Ω
J(Ω),

where J is a shape functional additionally depends on a solution of a PDE. To solve
these problems, we need their shape derivatives:

Definition 2.2 (Shape derivative). Let D ⊂ Rd be open, where d ≥ 2 is a natural
number. Moreover, let k ∈ N ∪ {∞} and let Ω ⊂ D be measurable. The Eulerian
derivative of a shape functional J at Ω in direction V ∈ Ck0 (D,Rd) is defined by

DJ(Ω)[V ] := lim
t→0+

J(Ωt)− J(Ω)

t
. (2.1)

If for all directions V ∈ Ck0 (D,Rd) the Eulerian derivative (2.1) exists and the
mapping

G(Ω): Ck0 (D,Rd)→ R, V 7→ DJ(Ω)[V ]

is linear and continuous, the expression DJ(Ω)[V ] is called the shape derivative of
J at Ω in direction V ∈ Ck0 (D,Rd). In this case, J is called shape differentiable of
class Ck at Ω.

For a detailed introduction into shape calculus, we refer to the monographs
[5, 22]. In particular, [22] states that shape derivatives can always be expressed as
boundary integrals due to the Hadamard structure theorem [22, theorem 2.27]. In
many cases, the shape derivative arises in two equivalent notational forms:

DJΩ[V ] :=

∫
Ω

F (x)V (x) dx (volume formulation) (2.2)

DJΓ[V ] :=

∫
Γ

f(s)V (s)Tn(s) ds (surface formulation) (2.3)

Here F is a (differential) operator acting linearly on the vector field V and f ∈ L1(Γ)
with DJΩ[V ] = DJ(Ω)[V ] = DJΓ[V ].

In general, we have to deal with so-called material derivatives in order to derive
shape derivatives. The definition of these shape derivatives is given in the following.
For a material derivative free approach we refer to [23].
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Definition 2.3 (Material derivative). Let Ω,Ωt, Ft and T be as above. Moreover,
let {pt : Ωt → R : t ≤ T} denote a family of mappings. The material derivative of
a generic function p(= p0) : Ω→ R at x ∈ Ω is denoted by Dmp or ṗ and given by
the derivative of the composed function pt ◦ Ft : Ω → Ωt → R defined in the fixed
domain Ω, i.e.,

ṗ(x) := lim
t→0+

(pt ◦ Ft) (x)− p(x)

t
=
d+

dt
(pt ◦ Ft) (x)

t=0
.

In the following, let p : Ω → R be a function. The classical chain rule for differen-
tiation applied to ṗ gives the relation between material and shape derivatives. The
shape derivative of p in the direction of a vector field V is denoted by p′ and given
by

p′ = ṗ− V T∇p in Ω. (2.4)

In subsection 2.3, the following rules for the material derivative are needed to derive
shape derivatives of objective functions depending on solutions of PDEs. For the
material derivative the product rule holds, i.e.,

Dm(p q) = Dmp q + pDmq. (2.5)

While the shape derivative commutes with the gradient, the material derivative
does not, but the following equality, which is proven in [2], holds:

Dm∇p = ∇Dmp−∇V T∇p. (2.6)

The concept of material and shape derivatives of a function p : Ω → R can be
extended to its boundary Γ = ∂Ω. We mention only a few aspects. For more details
we refer to the literature, e.g., [17]. Let z : Γ→ R be the trace on the boundary Γ
of p. In this setting, the boundary shape derivative z′ is defined by

z′ = ṗ− V T∇Γp, (2.7)

where ∇Γ denotes the tangential gradient given by

∇Γp = ∇p− ∂p

∂n
n.

Here ∂
∂n denotes the derivative normal to Γ. Combining (2.4) with (2.7) gives the

correlation of boundary and domain shape derivatives:

z′ = p′ + V T ∂p

∂n
n

In order to deduce shape derivative formulas we have to consider the derivative
of perturbed objective functions:

d+

dt

(∫
Ωt

pt dxt

)
t=0

and
d+

dt

(∫
Γt

zt dst

)
t=0

,

where Ω,Ωt, p, pt,Γt are as above and zt : Γt → R denotes a mapping. They are
given by

d+

dt

(∫
Ωt

pt dxt

)
t=0

=

∫
Ω

ṗ+ div(V )p dx, (2.8)

d+

dt

(∫
Γt

zt dst

)
t=0

=

∫
Γ

ż + divΓ(V )z ds, (2.9)

where

divΓ(V ) := div(V )− nT ∂V
∂n

denotes the tangential divergence of V . For their proofs we refer to the literature,
e.g., [8, 9, 28].
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2.2 Problem formulations

Let Ω ⊂ D be a bounded Lipschitz domain with boundary ∂Ω. This domain
is assumed to be a cuboid and partitioned in a subdomain Ωout ⊂ Ω and a fi-
nite number of disjoint subdomains Ωi ⊂ Ω with boundaries Γi := ∂Ωi such
that Ωout

⋃
· (∪· i∈NΩi)

⋃
· (∪· i∈NΓi) = Ω and Γbottom ∪· Γsides ∪· Γtop = ∂Ω (=: Γout),

where ∪· denotes the disjoint union. The union of all domains Ωi is denoted by
Ωint :=

⋃
· i∈N Ωi and the union of all boundaries Γi is called the interface and de-

noted by Γint :=
⋃
· i∈N Γi. The outer normal vector field to Ωint is given by n.

Figure 1 illustrates this situation. In our setting, Ω is meant to be composed of two
distinct materials, one in Ωint and one in Ωout.

Let νl ∈ R be arbitrary constants, where l ∈ {1, · · · , 4}. For the objective
function

J(y, u,Ω) = j1(u,Ω) + j2(y,Ω) + j3(Ω) + j4(Ω) (2.10)

with

j1(u,Ω) := ν1

∫
Ω

σ(u) : ε(u) dx,

j2(y,Ω) :=
ν2

2

∫ T

0

∫
Ω

(y − ȳ)2 dx dt,

j3(Ω) := ν3

∫
Ωout

1 dx,

j4(Ω) := ν4

∫
Γint

1 ds

we consider the following PDE constrained optimization problem in strong form:

min
Γint

J(y, u,Ω) (2.11)

subject to the following constraints:

−divσ(u) = 0 in Ω (2.12)

u = 0 on Γbottom (2.13)

σ(u) · n = f on Γtop ∪ Γsides (2.14)

∂y

∂t
− div(k∇y) = 0 in Ω× (0, T ] (2.15)

y = 1 on Γtop × (0, T ] (2.16)

∂y

∂n
= 0 on (Γbottom ∪ Γsides)× (0, T ] (2.17)

y = 0 in Ω× {0} (2.18)

Equations (2.12)-(2.14) describe the linear elasticity model, where σ := λTr(ε)I +
2µε denotes the stress tensor and ε = 1

2

(
∇u+∇uT

)
the strain tensor with respect

to the Lamé parameters λ and µ. We further assume

f =

{
0 on Γsides

ftop on Γtop

, (2.19)

where ftop is a force at the top boundary of the domain, which leads to the defor-
mation u. A diffusion model is given by (2.15)-(2.18) with a jumping permeability
coefficient k. The different properties of the two materials with respect to elasticity
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Ω1

Ω2

Ωout

Ω3

n

Γbottom

Γtop

Γint

Figure 1: Illustration of the domain Ω

and permeability are modelled by the following choice of coefficients:

k :=

{
kout in Ωout

kint in Ωint

, λ :=

{
λout in Ωout

λint in Ωint

, µ :=

{
µout in Ωout

µint in Ωint

.

Due to the jump in these coefficients, the formulations (2.12) and (2.15) are to be
understood only formally. The objective function J is composed of the four shape
functionals jl. Here j1 corresponds to the minimization of the compliance of the
composite material in the domain Ω. With j2 the diffusion model is fitted to data
measurements ȳ. We assume for the observation ȳ ∈ L2

(
0, T ;L2(Ω)

)
. Since we

are interested in a space-filling design of the inclusions Ωint, the purpose of the
functional j3 is to minimize the volume of Ωout. This is equivalent to maximizing
Ωint if the outer shape Γout is fixed. j4 is a perimeter regularization. Of course,
the integral in j4 has to be understood as the sum of the integrals over Γint. We
formulate explicitly the continuity of the state and of the flux at the interface as

JuK = 0, Jσ(u) · nK = 0 on Γint, (2.20)

JyK = 0,

s
k
∂y

∂n

{
= 0 on Γint × (0, T ], (2.21)

where the jump symbol J·K denotes the discontinuity across the interface Γint and
is defined by JvK := v

Ωint

− v
Ωout

for v ∈ Ω.

Remark 2.4. Equations (2.12)-(2.14) admit a solution u ∈ H1(Ω,Rd) and (2.15)-
(2.18) have a solution y ∈ L2

(
0, T ;H1(Ω)

)
. However, it turns out that the restric-

tions of these solutions to Ωint and Ωout have a higher regularity (cf. for example [9,
proposition 11.7]). To be more precise, u

Ωint

∈ H2(Ωint), u
Ωout

∈ H2(Ωout,Rd),

y
Ωint

∈ L2
(
0, T ;H2(Ωint)

)
and y

Ωout

∈ L2
(
0, T ;H2(Ωout)

)
. In this setting, the

integral over Ω has to be understood as the sum of the integrals over Ωint and Ωout.
In the following, the integral over Ω always denotes this sum. Thus, it is guaran-

teed that
∂u Ωint

∂n ∈ H1/2
(
Γint,Rd

)
and

∂y Ωint

∂n ∈ L2
(
0, T ;H1/2(Γint)

)
by the trace

theorem for Sobolev spaces.
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The boundary value problem (2.12)-(2.14) is given in its weak form by

a1(u,w) = b1(u,w1, w2) , ∀w ∈ H1
(
Ω,Rd

)
(2.22)

and for all w1 ∈ H−1/2
(
Γbottom,Rd

)
, w2 ∈ H1/2

(
Γsides ∪ Γtop,Rd

)
. Here the bilin-

ear form a1(u,w) is given by

a1(u,w) :=

∫
Ω

σ(u) : ε(w) dx−
∫

Γint

r
(σ(u) · n)

T
w

z
dx

−
∫

Γout

(σ(u) · n)
T
w ds

(2.23)

and b1(u,w1, w2) is defined by

b1(u,w1, w2) :=

∫
Γbottom

wT
1 u ds+

∫
Γout\Γbottom

wT
2 (σ(u) · n− f) ds. (2.24)

Moreover, problem (2.15)-(2.18) is written in weak form as

a2(y, z) = b2(y, z1, z2) , ∀z ∈W
(
0, T ;H1(Ω)

)
(2.25)

and for all z1 ∈ L2
(
0, T ;H−1/2(Γtop)

)
, z2 ∈ L2

(
0, T ;H1/2(Γbottom ∪ Γsides)

)
as in

[20]. Here the bilinear form a2(y, z) is given by

a2(y, z) :=

∫
Ω

y(T, x) z(T, x) dx−
∫ T

0

∫
Ω

∂z

∂t
y + k∇yT∇z dx dt

−
∫ T

0

∫
Γint

s
k
∂y

∂n
z

{
ds dt−

∫ T

0

∫
Γout

kout
∂y

∂n
z ds dt

(2.26)

and b2(y, z1, z2) by

b2(y, z1, z2) :=

∫ T

0

∫
Γtop

z1(y − 1) ds dt+

∫ T

0

∫
Γout\Γtop

z2
∂y

∂n
ds dt. (2.27)

For properties of the function spaces, we refer to the literature, e.g., [7, 26].
The Lagrangian of (2.10)-(2.18) is defined by

L (y, u, w, z,Ω) = L1(u,w,Ω) + L2(y, z,Ω) + L3(Ω) + L4(Ω) (2.28)

with

L1(u,w,Ω) := j1(u,Ω) + a1(u,w)− b1(u,w1, w2),

L2(y, z,Ω) := j2(y,Ω) + a2(y, z)− b2(y, z1, z2),

L3(Ω) := j3(Ω),

L4(Ω) := j4(Ω).

The adjoint problem to (2.12)-(2.14), which we obtain from differentiating the
Lagrangian L1 with respect to u, is given in strong form by

−divσ(w) = 0 in Ω (2.29)

w = 0 on Γbottom (2.30)

σ(w) · n = −ν1f on Γsides ∪ Γtop (2.31)

w1 = σ(w) · n on Γbottom (2.32)

w2 = −w on Γsides ∪ Γtop (2.33)
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and the state equation to (2.12)-(2.14), which we get by differentiating the La-
grangian L1 with respect to w, is given in strong form by

− divσ(u) = 0 in Ω. (2.34)

Moreover, the adjoint problem to (2.15)-(2.18), which we obtain from differentiating
the Lagrangian L2 with respect to y, is given in strong form by

−∂z
∂t
− div(k∇z) = −ν2(y − y) in Ω× [0, T ) (2.35)

∂z

∂n
= 0 on (Γbottom ∪ Γsides)× [0, T ) (2.36)

z = 0 on Γtop × [0, T ) (2.37)

z = 0 in Ω× {T} (2.38)

z1 = kout
∂z

∂n
on Γtop × [0, T ) (2.39)

z2 = −koutz on (Γbottom ∪ Γsides)× [0, T ) (2.40)

and the state equation to (2.15)-(2.18), which we get by differentiating the La-
grangian L2 with respect to z, is given in strong form by

∂y

∂t
− div(k∇y) = 0 in Ω× (0, T ]. (2.41)

We formulate explicitly the interface condition of (2.29)-(2.33) and (2.35)-(2.40) by

JwK = 0, Jσ(w) · nK = 0 on Γint, (2.42)

JzK = 0,

s
k
∂z

∂n

{
= 0 on Γint × [0, T ). (2.43)

There are a lot of options to prove shape differentiability of shape functionals,
which depend on a solution of a PDE, and to derive the shape derivative of a PDE
constrained shape optimization problem. The min-max approach [5], the chain rule
approach [22], the Lagrange method of Céa [3] and the rearrangement method [10]
have to be mentioned in this context. A nice overview about these approaches is
given in [24]. The next subsection deals with the shape derivatives of the models
above.

2.3 Shape derivatives

In the sequel, we deduce the shape derivative of each shape functional jl, where l ∈
{1, 2, 3, 4}. The sum of these four shape derivatives is the shape derivative of J . Note
that we need only the volume form of the shape derivative of jl with l ∈ {1, 2, 3} with
respect to the Steklov-Poincaré metric and the optimization techniques established
in [19, 28]. The existence of these shape derivatives is given by the theorem of
Correa and Seeger [4, theorem 2.1].

The following theorem gives a representation of the shape derivative of j1 ex-
pressed as volume integral.

Theorem 2.5. Let u ∈ H1(Ω,Rd) denote the weak solution of (2.12)-(2.14). More-
over, w ∈ H1(Ω,Rd) denote the weak solution of the adjoint equation (2.29)-(2.33).
Then the shape derivative of j1 in direction V is given by

Dj1(u,Ω)[V ] =

∫
Ω

− σ(u) :
(
∇V T∇w

)
− σ(w) :

(
∇V T∇u

)
+ div(V ) (ν1σ(u) : ε(u) + σ(w) : ∇u) dx.

(2.44)
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Proof. We consider the Lagrangian L1. In analogy to [5, chapter 10, subsection
5.2], we can verify that

j1(u,Ω) = min
u∈H1(Ω,Rd)

max
w∈H1(Ω,Rd)

L1(u,w,Ω) (2.45)

holds. We apply the theorem of Correa and Seeger on the right-hand side of (2.45).
The verification of the assumptions of this theorem can be checked in the same way
as in [5, chapter 10, subsection 6.4].

Applying the rules for differentiating volume and surface integrals given in (2.8)
and (2.9) yields

DL1(u,w,Ω)[V ]

=

∫
Ω

ν1Dm (σ(u) : ε(u)) +Dm (σ(u) : ε(w))

+ div(V ) (ν1σ(u) : ε(u) + σ(u) : ε(w)) dx

−
∫

Γint

Dm

(r
(σ(u) · n)

T
w

z)
+ divΓint(V )

r
(σ(u) · n)

T
w

z
ds

−
∫

Γout

Dm

(
(σ(u) · n)

T
w
)

+ divΓout(V )
(

(σ(u) · n)
T
w
)
ds

−
∫

Γbottom

Dm

(
wT

1 u
)

+ divΓbottom
(V )wT

1 u ds

−
∫

Γout\Γbottom

Dm

(
wT

2 (σ(u) · n− f)
)

+ divΓout\Γbottom
(V )wT

2 (σ(u) · n− f) ds.

(2.46)

Note that
σ(u) : ε(w) = σ(u) : ∇w (2.47)

holds because σ(u) is symmetric (cf. [21]). Moreover, we have

Dm(σ(u) : ∇w) = µDm

(
(∇u+∇uT ) : ∇w

)
+ λDm (div(u)div(w)) (2.48)

due to the definition of σ and ε. Combining (2.5) with (2.6) in Rd yields

Dm(div(u)) = Dm(I : ∇u) = div(u̇)− I : (∇V T∇u). (2.49)

By applying the product rule and appropriate transformations we get

Dm(σ(u) : ε(w))

= σ(u̇) : ∇w + σ(u) : ∇ẇ − σ(u) : (∇V T∇w)− σ(w) : (∇V T∇u)
(2.50)

due to (2.6) and (2.47)-(2.49). Since the outer boundary Γout is fixed, we can
choose the deformation vector field V equals zero in small neighbourhoods of Γout.
Moreover, each material derivative in small neighbourhoods of Γout is equal to zero.
Thus, the outer integrals in (2.51) are not further considered. From (2.46) we obtain
the following under consideration of the adjoint and design equation in weak form
and by appropriate transformations:

DL1(u,w,Ω)[V ] =

∫
Ω

−σ(u) :
(
∇V T∇w

)
− σ(w) :

(
∇V T∇u

)
+ div(V ) (ν1σ(u) : ε(u) + σ(w) : ∇u) dx

+

∫
Γint

r
(σ(w) · n)

T
u̇−Dm

(
(σ(u) · n)

T
)
w

z

+ divΓint
(V )

r
(σ(u) · n)

T
w

z
ds

(2.51)
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Due to the identity JΦΨK = JΦK Ψout +Φint JΨK = Φout JΨK+JΦK Ψint, which implies

JΦΨK = 0 if JΦK = 0 ∧ JΨK = 0,

and the interface conditions (2.20) and (2.42), the interface integral vanishes in
(2.51). By applying the theorem of Correa and Seeger, we obtain (2.44).

Now, we consider the shape functional j2 and the diffusion problem (2.15)-
(2.18). If we consider L2, its shape derivative can be deduced analogously to the
computations in [20]. Thus, we get

Dj2(y,Ω)[V ] =

∫ T

0

∫
Ω

− k∇yT
(
∇V +∇V T

)
∇z

+ div(V )

(
ν2

2
(y − ȳ)2 +

∂y

∂t
z + k∇yT∇z

)
dxdt.

(2.52)

The shape derivative of j3, which is responsible for a space-filling design of Ωint,
is given by

Dj3(Ω)[V ] = ν3

∫
Ωout

div(V ) dx. (2.53)

It results directly from an application of (2.8).
Moreover, the objective function J includes the perimeter regularization term

j4. We get the shape derivative of this regularization term by applying (2.9):

Dj4(Ω)[V ] = ν4

∫
Γint

divΓint
(V ) ds = ν4

∫
Γint

divΓint
(〈V, n〉n) ds

= ν4

∫
Γint

〈V, n〉divΓint(n) ds,

i.e.,

Dj4(Ω)[V ] = ν4

∫
Γint

κ 〈V, n〉 ds, (2.54)

where κ := divΓint
(n) denotes the mean curvature of Γint.

So far, we have deduced derivative. However, in order to optimize on shape
spaces, we need the gradient with respect to the inner product under consideration.
In the next section, we comment on shape spaces and metrics.

3 Optimization based on Steklov-Poincaré metrics

As pointed out for example in [19, 20, 28], PDE constrained shape optimization
problems can be embedded in the framework of optimization on shape spaces. This
section summarizes the way from shape derivatives to an entire optimization algo-
rithm in a suitable shape space.

In our setting, we think of shapes as boundary contours of deforming objects.
We consider so-called prior shapes Γ0. These are boundaries Γ0 = ∂X0 of connected
and compact subsets X0 ⊂ Ω ⊂ Rd with X0 6= ∅, where Ω denote bounded Lipschitz
domains. Let X0 be Lipschitz domains and called prior sets. Shapes – in our
setting – arise from H1-deformations of such prior sets X0. These H1-deformations,
evaluated at a prior shape Γ0 = ∂X0, give deformed shapes Γ if the deformations
are injective and continuous. These shapes are called of class H1/2 and proposed
firstly in [19]. They are defined by

B1/2(Γ0,Rd) := H1/2(Γ0,Rd)
/

Homeo1/2(Γ0), (3.1)

10



where H1/2(Γ0,Rd) is given by

H1/2(Γ0,Rd) := {w : Γ0 → Ω: ∃W ∈ H1(Ω,Ω) s.t.

W
Γ0

injective, continuous, W
Γ0

= w} (3.2)

and Homeo1/2(Γ0) is defined by

Homeo1/2(Γ0) := {w : w ∈ H1/2(Γ0,Rd), w : Γ0 → Γ0 homeomorphism}. (3.3)

In the following, we assume that B1/2
(
Γ0,Rd

)
has a manifold structure. If necessary,

we can refine the space B1/2(Γ0,Rd) as already described in [28]. However, this
conceivable limitation leaves the following theory untouched. If Γ ∈ B1/2(Γ0,Rd) is
smooth enough to admit a normal vector field n, the following isomorphisms arise
from definition (3.2):

TΓB1/2(Γ0,Rd) ∼= {h : h = φn a.e., φ ∈ H1/2(Γ) continuous}
∼= {φ : φ ∈ H1/2(Γ) continuous}

(3.4)

We consider the following scalar products, the so-called Steklov-Poincaré metrics
(cf. [19]):

gS : H1/2(Γint)×H1/2(Γint)→ R,

(α, β) 7→ 〈α, (Spr)−1β〉 =

∫
Γint

α(s) · [(Spr)−1β](s) ds
(3.5)

Here Spr denotes the projected Poincaré-Steklov operator which is given by

Spr : H−1/2(Γ)→ H1/2(Γ), α 7→ (γ0U)Tn, (3.6)

where γ0 : H1
0 (Ω,Rd) → H1/2(Γ,Rd), U 7→ U

Γ
and U ∈ H1

0 (Ω,Rd) solves the

Neumann problem

a(U, V ) =

∫
Γ

α · (γ0V )Tn ds ∀V ∈ H1
0 (Ω,Rd) (3.7)

with a being a symmetric and coercive bilinearform.
We are now able to formulate an optimization algorithm on the shape space

B1/2
(
Γ0,Rd

)
with respect to gS . Before we can do that, we have to state its

connection to shape calculus. Due to the Hadamard structure theorem (cf. [22,
theorem 2.27]), there exists a scalar distribution r on the boundary of the domain
under consideration. If we assume r ∈ L1(Γ) and V

Γ
= αn, the shape derivative

can be expressed as the boundary integral

DJΓ[V ] =

∫
Γ

αr ds. (3.8)

Due to the isomorphism (3.4) and the expression (3.8), we can state the connection
of B1/2(Γ0,Rd) with respect to the Steklov-Poincaré metric gS to shape calculus.
The distribution r is often called the shape gradient. This is confusing, because one
has to note that gradients always depend on chosen scalar products defined on the
space under consideration. It rather means that r is the usual L2-shape gradient.
However, we have to find a representation of the shape gradient with respect to
gS . Such a representation h ∈ TΓB1/2(Γ0,Rd) ∼= {h : h ∈ H1/2(Γ) continuous} is
determined by

gS(φ, h) = (r, φ)L2(Γ) , (3.9)

11



Evaluate measurements

Solve the state and adjoint equation with multigrid

Assemble the deformation equation:

• Assemble the volume form of the shape derivative only for V with
Γ ∩ supp(V ) 6= ∅ as a source term

• Assemble derivative contributions which are in surface formulations
into the right hand-side in form of Neumann boundary conditions

Solve the deformation equation with multigrid

Apply the resulting deformation to the finite element mesh

Figure 2: Optimization algorithm

which is equivalent to∫
Γ

φ(s) · [(Spr)−1h](s) ds =

∫
Γ

r(s)φ(s) ds (3.10)

for all continuous φ ∈ H1/2(Γ). Based on the connection (3.9) we can formulate an
algorithm to solve PDE constrained shape optimization problems on B1/2(Γ0,Rd)
with respect to gS . From (3.10) we get h = Sprr = (γ0U)Tn, where U ∈ H1

0 (Ω,Rd)
solves

a(U, V ) =

∫
Γ

r · (γ0V )Tn ds = DJΓ[V ] = DJΩ[V ] ∀V ∈ H1
0 (Ω,Rd). (3.11)

This means that we get the gradient representation h and the mesh deformation U
all at once and that we have to solve

a(U, V ) = b(V ) (3.12)

for all test functions V in the optimization algorithm, where b is a linear form and
given by

b(V ) := DJvol(Ω)[V ] +DJsurf(Ω)[V ].

Jsurf(Ω) denotes parts of the objective function leading to surface shape derivative
expressions, e.g., perimeter regularizations. The shape derivative DJsurf(Ω)[V ] of
these terms are incorporated as Neumann boundary conditions. Parts of the objec-
tive function leading to volume shape derivative expressions are denoted by Jvol(Ω).
However, note that from a theoretical point of view the volume and surface shape
derivative formulations have to be equal to each other for all test functions. Thus,
DJvol[V ] is assembled only for test functions V whose support includes Γ, i.e.,

DJvol(Ω)[V ] = 0 ∀V with supp(V ) ∩ Γ = ∅.

We call (3.12) the deformation equation. The entire optimization algorithm is given
in figure 2 and explained in detail in the next section.

In the setting of section 2, each Γi is a shape in the above sense, i.e., an element
of B1/2

(
Γ0,Rd

)
. The volume formulation is given by

DJvol(Ω)[V ] = Dj1(Ω)[V ] +Dj2(Ω)[V ] +Dj3(Ω)[V ]

12



(a) Initial configuration with symmetries (b) Optimal shape

Figure 3: Approximation of a Kelvin cell in a symmetric domain

and the surface formulation by

DJsurf(Ω)[V ] = Dj4(Ω)[V ].

The next section is devoted to the numerical realization of algorithm 2 in order
to solve the PDE constrained model problems given above.

4 Numerical results

We focus on three numerical experiments, which are selected in order to demon-
strate challenges arising for large-scale multigrid shape optimizations. All results
involved are computed at the High Performance Computing Center Stuttgart using
the machine HAZELHEN with up to 16 384 cores.

In the first experiment, we choose ν1 = ν2 = 0 such that we end up with a pure
geometric optimization problem without any PDE constraints. Hereby, we want to
demonstrate a proper choice of boundary conditions in the mesh deformation in or-
der to obtain results for periodic domains. This optimization problem is motivated
by the question for a space-filling cell design with least area of surfaces and only one
type of cells. It goes back to the 19th century and is also known as the Kelvin prob-
lem, for which he proposed a solution (cf. [25]) based on cells as depicted in figure
3b. His conjecture was disproved by a counter example in [27]. However, these au-
thors propose a solution with two types of cells. The resulting optimal shape might
be understood as the result of a biological growing process and used as a building
block for finite element models of the human skin (cf. [16]). Figure 3a depicts the
initial geometry for the optimization, where we want to exploit symmetries on all
outer surfaces. The shape derivative of the objective (2.10) for this particular case
is given as the sum of the derivatives (2.53) and (2.54) with ν3 = ν4 = 1.0. Note
that this results in a mixture of volume and surface formulations.

The linear and bilinear form defining the shape metric (3.12), which gives also
the information for the mesh deformation field U , is chosen to be the weak form of a
linear elasticity model. In order to model the periodicity of the domain, we choose
the following Dirichlet and Neumann conditions at the outer boundaries depending
on the components U = (Ux, Uy, Uz)T :

Ux = 0, σ
(
(0, Uy, Uz)T

)
· n = 0 on Γfront ∪ Γback (4.1)

Uy = 0, σ
(
(Ux, 0, Uz)T

)
· n = 0 on Γleft ∪ Γright (4.2)

Uz = 0, σ
(
(Ux, Uy, 0)T

)
· n = 0 on Γbottom ∪ Γtop (4.3)

13



(a) Inital shape (b) Optimal shape

Figure 4: Sharp-edged initial geometry with identical coarse and fine grid under 6
levels of hierarchical refinements and optimal solution on finest level

Figure 5: Cross-section of the tube at 25% of the length for the first iterations with
perimeter regularization

This particular choice ensures that nodes are allowed to slide within Γout, but not to
leave the planes. The Lamé parameter are fixed to λ = 0.01 and µ = 0.1. We apply
this shape metric to all numerical examples in this sections, due to the fact that the
sliding conditions minimize the influence of the outer boundary on the optimization
of Γint. Especially, when Γint intersects Γout like in the volume experiment shown
in figure 3, the sliding effect at boundaries is obligatory.

The result of the optimization is visualized in figure 3b. It can be identified as
an approximation to a truncated octahedron according to Kelvins conjecture. This
shape is also denoted as a tetrakaidecahedron with 6 square faces and 8 hexagonal
faces. We obtain this result after 12 gradient steps on a fine grid with approximately
3.9 · 106 and a coarse grid with 60 533 finite elements.

Throughout this section all linear systems are solved with the multigrid pre-
conditioned conjugated gradient solver of the software PETSC. Here a symmetric
Gauss-Seidel smoother is applied and the coarse grid solver is a direct factoriza-
tion computed with the SUPERLU-DIST library. This choice is possible, since all
PDEs to be solved, i.e., the parabolic diffusion equation and linear elasticity, are
discretized as symmetric, positive definite matrices. Moreover, we choose linear fi-
nite elements on tetrahedral grids for the discretization of all PDE models involved.
Load balancing is performed with the PARMETIS graph partitioning library. As
mentioned above, it is sufficient to partition and balance only with respect to tetra-
hedrons and not also surface triangles at Γint. This is due to the fact that we plug
in the volume form of shape derivatives whenever possible. Thus, there are only
very few surface-only operations, which do not dramatically affect the scalability.
By solving the deformation equation (3.12) we then obtain a deformation field U .
This vector field is added as a deformation to all nodes in the finite element meshes
on all multigrid levels. This means that the fine grid solution U is interpolated at
the nodes of the coarser grids. The multigrid hierarchy is designed such that for the
initial geometry the nodes of the coarse grid are a subset of the nodes of the fine
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(b) Gradient in gS norm

Figure 6: Objective value and gradient in gS norm for the pure parabolic test case
with regularization in the first 10 iterations

grid. Thus, this property is maintained throughout the whole optimization process.
In principle, this means that the shape optimization takes place at the fine grid and
the coarse grids are carried along during this process for the preconditioner of the
linear solver.

The second numerical test is chosen in order to touch upon the main topic of this
paper, namely the interaction of multigrid solvers and shape optimization. We are
in a simplified situation of the optimization problem (2.11), which is only subject
to the diffusion model (2.15)-(2.18). Thus, the objective function is of tracking type
with regularization corresponding to ν1 = ν3 = 0. The domain Ω = Ωout ∪· Ωint has
only one inclusion with a jumping diffusion coefficient kout = 1.0 and kint = 0.001.
Figure 4 shows this situation. The initial geometry is depicted on the left hand side
and the target is shown on the right hand side. Data measurements ȳ are generated
in terms of the same model equation and a similar shape to the one in figure 4b.
We assume two points in time for measurements – one at the final time T = 15 and
one after 7.5 seconds.

Measurements are assumed to be represented within 10 000 Gaussian type radial
basis functions. This involves expensive but necessary computations, since ȳ has to
be evaluated on varying meshes during the optimization. A general mesh to mesh
interpolation on a distributed memory computer can not be computed efficiently,
which makes a detour via radial basis functions to the expensive yet scalable method
of choice.

The optimization problem is discretized using 7 levels of hierarchical mesh re-
finements starting from a coarse grid with 3 390 tetrahedral elements to a fine grid
with approximately 8.89 · 108. For the diffusion we choose a backward Euler time
stepping with a step-size of ∆t = 1.5. In figure 4a, we observe sharp edges in the
geometry, which, in principle, should resolve a tube with radius 0.5 and length 5.
This is due to the hierarchical grid structure, which is typical for multigrid meth-
ods, since coarse and fine grid have to resolve the same geometry. In our particular
numerical test, this property of the mesh hierarchy together with the shape metric
lead to problems in the discretization.

Figure 5 shows a cross-section of Ωint at 25% of the tubes length during the
first iterates of the optimization. We observe that edges, which have a smaller
influence on the objective function than planes, tend to remain at their initial
position. This effect is intensified by the choice of the shape metric (3.12). Hereby,
the impact of the shape derivative (2.52) on the geometry can be understood as a
traction on the boundary, which is stronger on large planes compared to sharp edges.
The application of a limited memory BFGS update techniques also influences this
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Figure 7: log-log-plot of L∞-norm of mean curvature with respect to number of
tetrahedral finite elements

behaviour, since relatively large steps are chosen especially in the first iterations.
In figure 5, it can be observed that plain optimization problem tends to over-

lapping elements. This would lead to an immediate break down of the PDE solver.
In order to prevent this, the problem is regularized by the perimeter term j4 with
ν4 = 0.01 in (2.10). The effect of the perimeter regularization can be observed
throughout the figures. As soon as sharp edges are smoothed out by the influ-
ence of the perimeter regularization, we can switch off this regularization by setting
ν4 = 0. In our particular case, we do this after 10 quasi-Newton steps. The effect
of this strategy is visualized in figure 6. The objective value is depicted on the left
hand side, where there is a small step when the regularization is switched off. Note
that this step is a bit delayed, since we choose a limited memory BFGS strategy
with a storage of 5 gradients. The figure on the right hand side shows the gS-norm
of the gradient, where we observe a jump after 10 iterations. The two figures in 6
can be seen as an indicator for mesh-independent convergence as expected due to
the quasi-Newton method. We can thus conclude, that for this particular test, a
regularization is only required due to the multigrid approach. Otherwise, if there
are no fine-resolved kinks in the initial geometry, one could be successful without
regularization.

We should mention that there is a formulation according to [22, proposition 2.50],
which is equivalent to (2.54), for the derivative of the perimeter regularization given
by

Dj4(Ω)[V ] = ν4

∫
Ω

div(V )−
〈
∂V

∂n
, n

〉
ds. (4.4)

This is attractive from a computational point of view, since the evaluation of κ in
each iteration is a surface-only operation. Thus, its scalability is affected by the load
balancing, which one would have to perform with respect to both volume and surface
elements. However, in our experiments, it seems that for the discretized problem
the formulation (2.54) is more successive in eliminating kinks arising due to the
multigrid mesh hierarchy. Figure 7 shows the approximation to the mean curvature
on the 6 multigrid levels for the initial geometry. The curvature computation follows
the approach presented in [11]. An exponential growth of the curvature over the
grid levels can be observed, which makes it necessary to adapt ν4 depending on the
finest grid level throughout the refined computations presented in figure 6.

We now concentrate on the third numerical example, which is the optimization
with respect to the complete system (2.12)-(2.18) gathering diffusion and elasticity.
The objective, in our particular case, is then formed by the constants ν1 = 0.15,
ν2 = 0.1, ν3 = 16.0 and ν4 = 0.01. Furthermore, data measurements ȳ are chosen
to be the simulated values y with the initial geometry. These are again represented
in radial basis functions in order to interpolate them on arbitrary meshes. The
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(a) Initial grid (b) 10 gradient steps

(c) 20 steps (d) 30 steps

Figure 8: Optimization with respect to diffusion data measurements and elastic
compliance of a cellular structure

first challenge encountered here is that the coarse grid has to resolve the desired
geometry as depicted in figure 8. This limits the coarseness, since each inclusion,
that should be simulated, has to be present in the entire grid hierarchy. In addition
to the problem of large kinks in the fine grid, we now have to deal with coarse grids
having a large number of finite elements. Here we want to simulate 7 ·7 ·7 inclusions
resulting in a coarse grid consisting of 74 096 tetrahedral finite elements. A coarser
grid is not reasonable, since this would have a negative influence on the aspect ratios
of the elements, which affects the convergence of iterative solvers. Moreover, the
large number of elements in the coarse grid is a major challenge for solvers based
on multigrid. In order to be efficient, a direct factorization is usually applied on the
coarsest level, which is known to be only scalable to some extent.

Figure 8 shows some snapshots of the optimization on a fine grid with 4.74 · 106

tetrahedral elements. The aim of this particular model is to show how cellular struc-
tures can be fortified by tightly stacking cells together close to the surface, where
forces are acting. This, to some extent, reflects growing processes in biological skin
structures. In this particular case, we are not able to apply BFGS update techniques
like in the pure parabolic test case. The quasi-Newton method leads to step sizes
which are too large to be feasible as deformations on the finite element grid. We
thus apply only a gradient descent method. The geometry after 30 gradient steps,
which is depicted in figure 8d, is not yet optimal in the sense that it is a station-
ary point. Due to increasing aspect ratios of discretization elements, the multigrid
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solver does not converge anymore. This illustrates the challenge to choose proper
regularization in the case of shape optimization, such that an optimal solution can
still be represented in a finite element mesh.

5 Conclusions

One of the main focuses of this paper is to describe the interaction of algorith-
mic building blocks ranging from a multigrid finite element solver to quasi-Newton
methods for shape optimization problems. Here we concentrate on shape spaces
and metrics, which are especially suited for large-scale computations. This results
in scalable algorithms for supercomputers. Based on complex examples this paper
presents the possibilities and challenges of multigrid methods and shape optimiza-
tion. In particular, it is shown how to handle the increasing values of approximated
curvature in an hierarchical grid structure affecting the regularization. The purpose
of the underlying models within this article is to form building blocks for further
studies of biological cell structures.
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