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Abstract

Thermal tomography is an imaging technique for deducing information about the internal
structure of a physical body from temperature measurements on its boundary. This work
considers time-dependent thermal tomography modeled by a parabolic initial/boundary value
problem without accurate information on the exterior shape of the examined object. The
adaptive sparse pseudospectral approximation method is used to form a polynomial surrogate
for the dependence of the temperature measurements on the thermal conductivity, the heat
capacity, the boundary heat transfer coefficient and the body shape. These quantities can then
be efficiently reconstructed via nonlinear, regularized least squares minimization employing the
surrogate and its derivatives. The functionality of the resulting reconstruction algorithm is
demonstrated by numerical experiments based on simulated data in two spatial dimensions.

Keywords: thermal tomography, inverse boundary value problems, sparse pseudospectral ap-
proximation, inaccurate measurement model
AMS subject classifications: 35R30, 41A10, 65M32

1 Introduction
The aim of thermal tomography is to gather information about the interior properties of a physical
object based on temperature measurements on its boundary. The potential applications include
nondestructive testing of materials; see, e.g., [1, 19] for further introduction to the topic as well
as for a list of previous works. The model used in this article is time-dependent: the boundary
temperatures are measured several times while heating the object. Thermal conductivity and heat
capacity are both considered as unknown quantities as in [14]. In addition, the boundary heat
transfer coefficient between the heater elements is reconstructed. Such a setting was considered
with simulated data in [19] and subsequently with experimental data in [20]. As a novelty of this
work, the exterior shape of the imaged object is also reconstructed.

In this article, we approximate the dependence of the temperature measurements on the four
unknown quantities by multivariate polynomials. The unknown functions (i.e., the thermal con-
ductivity, heat capacity, boundary heat transfer coefficient and boundary shape) are first expressed
in terms of a finite number of parameters. The polynomial forward surrogate, which takes these
parameters as input, is then constructed by the (adaptive) sparse pseudospectral approximation
method (SPAM) [4, 3, 21, 22] that requires the solutions to a large number of parabolic ini-
tial/boundary value problems describing the heat flow in the examined object. When a measure-
ment vector is given, the inverse problem of determining the unknowns is treated as nonlinear,
regularized least squares minimization involving the forward surrogate. The advantage of this
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approach is that only polynomial evaluation and differentiation are needed when reconstructing
the quantities of interest from the measurement data, which leads to a fast reconstruction process.
More precisely, under the assumption that enough generic information about the measurement
setup is available, the polynomial forward surrogate can be formed ‘offline’, that is, before the
actual measurements are in hand. Thus, the efficiency of the ‘online’ phase, or the least squares re-
construction algorithm, does not depend on how the parabolic forward problems were solved in the
offline phase. For a related polynomial approximation approach to thermal tomography assuming
the shape of the imaged body is known and without modeling the effects of thermal capacitance
or the geometry of the heaters and sensors, see [16], where a (non-adaptive) Galerkin technique is
used for forming the needed surrogates. To the best of our knowledge, apart from [16], there are
no previous works considering polynomial surrogates as a computational tool in the framework of
inverse parabolic boundary value problems.

In practical applications, the exterior shape of the imaged body is usually not the object of
main interest, and the same definitely applies to the boundary heat transfer coefficient. Typically,
the interesting quantities are the thermal conductivity and the heat capacity, or perhaps only one
of those, e.g., if there exists a known functional dependence between the two of them. However,
we demonstrate that ignoring the uncertainties in the object shape and the boundary heat transfer
coefficient deteriorates the reconstructions of the thermal conductivity and the heat capacity and
therefore we suggest that all four unknowns should be reconstructed simultaneously if possible.
Although the main reason for only considering two-dimensional examples is their computational
simplicity, there exists also some practical relevance since a two-dimensional model can be utilized
if the object is cylindrically symmetric with suitable boundary conditions at the top and bottom
boundaries.

A related shape estimation problem has previously been studied in the context of electrical
impedance tomography (EIT) in [5, 6, 11, 17]. The fundamental difference between EIT and thermal
tomography is that the former is modeled by an elliptic partial differential equation with one
unknown physical field (conductivity), whereas thermal tomography corresponds to an (inverse)
parabolic boundary value problem with two coefficients defining the properties of the imaged
body (thermal conductivity and heat capacity). The algorithm of [17] is based on the so called
approximation error approach [13]: the error caused by mismodeling the measurement setup is
treated as an additional noise process whose statistics are approximated via simulations based on
prior probability models for the unknowns. The papers [5, 6] introduce Fréchet derivatives of the
forward map of EIT with respect to the measurement geometry, which allows one to estimate the
body shape as a part of a Bayesian output least squares algorithm, although the evaluation of the
needed shape derivatives suffers from slight instability that originates from certain distributional
boundary conditions in the elliptic boundary value problems defining the derivatives. Our approach
is closely related to [11] where a polynomial surrogate is (non-adaptively) built for the forward
operator of EIT. However, the efficiency gain induced by transferring computational burden to an
offline phase is higher in thermal tomography than in EIT due to the possibility to completely
avoid time integration in the online phase when the reconstruction is formed by minimizing a least
squares functional.

We denote integer vectors, or multi-indices, by bold symbols such as k := (k1, . . . , kN ). In
particular, the nth Euclidean basis vector is denoted by en, having 1 as the nth element and 0 in
the remaining N − 1 positions, where N is assumed to be clear from the context. The calligraphic
font, e.g. K, is used for sets of multi-indices. Linear operators are denoted by scripted letters such
as Q or P. Symbols R = (−∞,∞) and N = {1, 2, 3, . . .} as well as N0 = N ∪ {0} have their
usual meanings. Furthermore, Pk denotes the space of real-valued polynomials in one real variable,
having a degree k ∈ N0 or less.

This text is organized as follows. In Section 2, the governing equations for heat flow are
introduced and the dependence of the measurements on the finite-dimensional parameter vector
is formulated. The pseudospectral approximation method and its adaptive version are described
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in Section 3. Section 4 presents the numerical experiments that address both the accuracy of the
forward surrogate and the feasibility of thermal tomography with an unknown exterior boundary.
Finally, conclusions are drawn in Section 5.

2 Thermal tomography
We start this section by mathematically formulating our forward model for thermal tomography
following [19, 20]. Subsequently, a parametric extension is introduced for a certain two-dimensional
measurement configuration.

2.1 Measurement model
Let Ω ⊂ Rd, where d ∈ {2, 3}, denote a bounded domain with a C1-boundary ∂Ω and the exterior
unit normal n̂. Furthermore, let I = (0, T ) denote a time interval with T > 0. The initial/boundary
value problem considered as a model for the temperature u in thermal tomography is

b ∂tu−∇ · (a∇u) = 0 in Ω × I,
a∇u · n̂ = c (f − u) on ∂Ω × I,
u = 0 in Ω × {0},

(1)

where a, b ∈ L∞+ (Ω) are the thermal conductivity and the heat capacity, respectively, and c ∈
L∞+ (∂Ω) is the surface conductance or heat transfer coefficient. The time-dependent boundary
source f ∈ L2(I;L2(∂Ω)) represents the external or outside temperature. All aforementioned
function spaces are assumed to have R as the corresponding multiplier field and

L∞+ (D) := {v ∈ L∞(D) : ess inf v > 0}

for D = Ω or ∂Ω. The weak formulation of (1) is to find u : Ω × I → R such that

∂t(b u, v)Ω + (a∇u,∇v)Ω + (c u, v)∂Ω = (c f, v)∂Ω for all v ∈ H1(Ω), (2)

where (·, ·)D denotes the (real) L2 inner product on D and the time derivative as well as the initial
condition from (1) are to be understood in the appropriate distributional sense (cf., e.g., [7]).
Under the above assumptions, the variational problem (2) has a unique solution u ∈ V , where

V := L2(I;H1(Ω)) ∩ C(I;L2(Ω));

see, e.g., [7].
We assume that the boundary is equipped with J ∈ N non-overlapping heater elements {Hj}Jj=1

that are identified with the open, nonempty and connected parts of ∂Ω that they cover. In
particular, it is natural to model the boundary heat source as

f =
J∑
j=1

gjχj ,

where gj ∈ L2(I) and χj : ∂Ω → {0, 1} is the characteristic function of Hj . Moreover, since
our model for thermal tomography involves heating only one heater at a time and letting the
target object to cool down before activating the next heater, we actually consider solving (1) for a
relatively short period of time but for J different functions

f = fj := g χj , j = 1, . . . , J, (3)
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where g ∈ L2(I) is the chosen common time modulation for the heating patterns. Usually, the
heat transfer coefficient c is large on those parts of the boundary that are covered by heaters and
much smaller (but still positive) on the rest of the boundary (cf. [20]). Note that even though f
vanishes outside the heaters, the heat still leaks to the surrounding air due to the non-vanishing
Robin coefficient c.

It is assumed that the boundary temperature of Ω is measured at R point-like sensors {sr}Rr=1 ⊂
∂Ω that are well-separated from the heaters. We denote by U ∈ RM a measurement vec-
tor that consists of the temperature values at the sensor locations for each measurement time
ti ⊂ I, i = 1, . . . ,MT . (To make such measurements well defined without further regularity as-
sumptions for (1), a single measurement should be interpreted as the mean value of u|∂Ω×I ∈
L2(I;H1/2(∂Ω)) ⊂ L2(I;L2(∂Ω)) ' L2(∂Ω × I) over a small neighborhood of the corresponding
point (sr, ti) on ∂Ω×I.) Assuming that for each active heater, i.e., for every fj , all R sensor values
are recorded at all measurement times, the total number of measurements becomes M = JRMT .

After a finite element (FE) discretization, (2) results in a system of ordinary differential equa-
tions

∂tB û+ (A+ C) û = f̂ , (4)

where A, B and C are symmetric matrices corresponding to the three integrals on the left-hand
side of (2). Moreover, û and f̂ are vectors carrying the coefficients of u and cf in the chosen FE
basis. In practice, f̂ and û can also be matrices whose J columns correspond to heating different
heaters. The semi-discrete system (4) is solved in time by using the second-order Crank–Nicolson
time integration method [15]. The measurement vector U is computed by evaluating the numerical
solution at the specified measurement times and locations.

2.2 Parametric extension
In order to build a surrogate model that describes the dependence of the measurements on the fields
a and b as well as on the coefficient c and the boundary shape ∂Ω, we parametrize these quantities
with a finite number of parameters. More precisely, after denoting by N = Na+Nb+Nc+NΩ the
total number of parameters, we consider parameter vectors ϑ = (ϑ(a), ϑ(b), ϑ(c), ϑ(Ω)) ∈ ΞN , where
Ξ = [−1/2, 1/2] and ΞN is the parameter hypercube with unit volume. The idea is that each fixed
parameter vector defines one well posed initial/boundary value problem of the form (1). That is, for
each parameter vector there exists a unique solution u and a unique measurement vector U so that
these quantities can be interpreted as mappings u : ΞN → V and U : ΞN → RM , respectively. In
the following, we only consider a specific two-dimensional parametrization, but emphasize that the
extension to more complicated geometries or to three dimensions is conceptually straightforward.

Let us begin by considering a suitable representation for the shape of a domain Ω ⊂ R2 as a
perturbation of a disk. To this end, the boundary curve is parametrized in polar coordinates by
two variables, the polar angle φ and the shape parameter ϑ(Ω) ∈ ΞNΩ , that is,

∂Ω(ϑ(Ω)) =
{(
r(φ;ϑ(Ω)), φ

)
: φ ∈ [0, 2π)

}
. (5)

The radial coordinate is chosen to be of the form

r(φ;ϑ(Ω)) = ρ0 +
NΩ∑
i=1

(ρ+ − ρ−)ϑ(Ω)
i ψi(φ),

where ρ0 = (ρ+ − ρ−)/2 and ρ+ > ρ− are the maximal and minimal radii of the parametrized
domain, respectively. The local perturbations ψi ∈ C1([0, 2π)) are 2π-periodic, nonnegative and
uniform quadratic B-splines that form a partition of unity on the unit circle. We also define a
homeomorphism Φ( · ;ϑ(Ω)) : Ω(ϑ(Ω))→ Ω(0) from a given perturbed domain to the unperturbed
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reference disk of radius ρ0 via

Φ
(
(r′, φ);ϑ(Ω)) =

(
ρ0

r(φ, ϑ(Ω))
r′, φ

)
for (r′, φ) ∈ Ω(ϑ(Ω)). It is assumed that the widths and starting polar angles (in the counter
clockwise direction) of the heaters are fixed (i.e., known) and that the same applies to the polar
angles of the point-like heat sensors.1 In other words, given the starting points {yj(0)}Jj=1 and the
common width η of the heater patches {Hj(0)}Jj=1 as well as the sensor locations {sr(0)}Rr=1 on
the boundary of the reference disk Ω(0), the dependence of these geometric entities on the shape
parameter ϑ(Ω) can be written as

Hj

(
ϑ(Ω)) =

{
x ∈ ∂Ω(ϑ(Ω)) : 0 < dist

(
Φ−1(yj(0);ϑ(Ω)), x

)
< η

}
,

sr(ϑ(Ω)) = Φ−1(sr(0);ϑ(Ω)),
where dist(y, x) = dist(y, x;ϑ(Ω)) denotes the distance between the points y, x ∈ ∂Ω(ϑ(Ω)) along
the boundary in the counter clockwise direction. In particular, the boundary heat sources are still
modeled by (3) under the interpretation that χj = χj( · ;ϑ(Ω)) is the characteristic function of
Hj(ϑ(Ω)) for some ϑ(Ω) ∈ ΞNΩ that is clear from the context.

The parameter-dependent function-valued mappings a, b : ΞN → L∞+ (Ω(ϑ(Ω))) are defined
through

a(x;ϑ) = ā
(
Φ(x;ϑ(Ω))

)
+ 2 ã

Na∑
i=1

ϑ
(a)
i ϕ

(a)
i

(
Φ(x;ϑ(Ω))

)
,

b(x;ϑ) = b̄
(
Φ(x;ϑ(Ω))

)
+ 2 b̃

Nb∑
i=1

ϑ
(b)
i ϕ

(b)
i

(
Φ(x;ϑ(Ω))

)
,

(6)

where ā, b̄ ∈ L∞+ (Ω(0)) are the ‘default fields’ and the bases {ϕ(a)
i }

Na
i=1, {ϕ

(b)
i }

Nb
i=1 ∈ L∞+ (Ω(0)) are

assumed to form partitions of unity on Ω(0). The free parameters ã, b̃ ∈ R+ are to be tuned so
that a( · ;ϑ) and b( · ;ϑ) really are elements of L∞+ (Ω(ϑ(Ω))) for all ϑ ∈ ΞN , that is, by construction
they should satisfy

ã < ess inf ā and b̃ < ess inf b̄.

The bases {ϕ(a)
i }

Na
i=1 and {ϕ(b)

i }
Nb
i=1 could be formed using, e.g., B-splines or piecewise linear FE

basis, but in the numerical experiments of Section 4 we simply resort to characteristic functions
corresponding to pixelwise discretizations of the reference disk Ω(0).

The surface conductance could be parametrized in the same manner as a and b. However, as
the (constant) value of the conductance underneath the heaters may be assumed known (cf. [20])
and its value between the heaters is not expected to vary considerably, we employ a simpler
parametrization for c : ΞN → L∞+ (∂Ω(ϑ(Ω))), that is,

c(x;ϑ) =
{
c0 if x ∈

⋃J
j=1 Hj(ϑ(Ω)),

c̄+ 2 c̃
∑J
j=1 ϑ

(c)
j χ̃j otherwise.

(7)

Here c0 ∈ R+ is the known (high) value of the surface conductance at the heaters, c̄ is its default
(low) value between the heaters and {χ̃j}Jj=1 are the characteristic functions of the J curve segments

1It is natural to assume that the widths of the heaters are known, but the same does not necessarily apply to
the (starting) polar angles of the heaters and the sensors. However, the precise nature of the available information
on the positioning of the heaters and sensors is application-specific, and thus we have decided to work with this
relatively general and simple assumption.
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between the heaters. In particular, take note that Nc = J . To guarantee the positivity of c, it is
assumed that c̄ > c̃.

We collect the assumptions on our parametrization in the following lemma.

Lemma. If the object boundary and the coefficients in (1) are parametrized according to (5), (6)
and (7) under the associated assumptions, then (2) has a unique solution u( · ;ϑ) ∈ V for all
ϑ ∈ ΞN . In other words, the mapping ΞN 3 ϑ 7→ u( · ;ϑ) ∈ V is well defined.

Proof. It is easy to see that for any fixed ϑ ∈ ΞN , the equations (5), (6) and (7) define a C1-domain
Ω(ϑΩ) as well as coefficient functions a( · ;ϑ), b( · ;ϑ) ∈ L∞+ (Ω(ϑΩ)) and c( · ;ϑ) ∈ L∞+ (∂Ω(ϑΩ)).
The assertion thus follows from the standard theory on parabolic initial/boundary value problems;
see, e.g., [7].

The parametrizations in (6) and (7) could easily be made more general; see, e.g., [11], where a
logarithmic parametrization for coefficient functions is used. Moreover, dropping the requirement
on the bases for the partition of unity property, the most common parametrization for a (random)
coefficient in a partial differential equation is arguably the (exponential) Karhunen–Loève expan-
sion (cf., e.g., [18]). In any case, it is imperative to choose the discretizations so that for each
ϑ ∈ ΞN the functions a, b and c stay positive.

3 Pseudospectral approximation
Let us assume that an accurate numerical forward solver for the parametrized measurement
U : ΞN → RM is available. In other words, for any given vector ϑ ∈ ΞN = [−1/2, 1/2]N , we
are able to compute the boundary measurements {Um(ϑ)}Mm=1 according to the parametrized mea-
surement setup and equations presented in Section 2. The inaccuracies of the forward solver are
neglected for the moment, and therefore the same notation U is used for both the computed for-
ward solution and the exact temperatures. In this section, our aim is to construct a polynomial
surrogate U (K) : ΞN → RM that satisfies U (K) ≈ U in some appropriate sense. The approximation
parameter K ⊂ NN

0 is a multi-index set that is related to projection orders and polynomial degrees
as explained shortly. The underlying motivation for using a polynomial surrogate is the possibility
of faster evaluation of the forward solution and its derivatives when solving the inverse problem
of thermal tomography by an iterative scheme. Moreover, the employment of a parametric model
simplifies the handling of the unknown boundary shape (cf. [5, 6, 11]).

The construction of the surrogate is based on the SPAM introduced in [4] and, in particular,
its adaptive version analyzed in [3]. We briefly outline the algorithm in what follows and refer the
interested readers to, e.g., [9, 21, 22] for more details. For simplicity of exposition, in this section,
a common approximation parameter K and the same set of basis polynomials are assumed for
every measurement component. Alternatively, the surrogate could be constructed separately for
each component of U . The latter is equivalent to considering M real-valued mappings Um, each in
turn, instead of one vector-valued mapping U . Thus, the case of component-wise approximations
can be treated as a special case of the procedure presented here.

3.1 Sparse pseudospectral approximation method (SPAM)
The polynomial surrogate U (K) is written as linear combinations of orthonormal basis polynomials.
More precisely,

U (K)
m (ϑ) =

∑
i∈P(K)

αm,iLi(ϑ), 1 ≤ m ≤M, ϑ ∈ ΞN , (8)

where αm,i ∈ R are the expansion coefficients and Li are suitably transformed multivariate Leg-
endre polynomials with degrees defined by the multi-index set P(K) ⊂ NN

0 that depends on the
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approximation parameter via the chosen quadrature rule. The basis polynomials satisfy∫
ΞN

Li(ϑ)Lj(ϑ) dϑ =
{

1 if in = jn, 1 ≤ n ≤ N,
0 otherwise

for all i, j ∈ P(K) and they can be naturally constructed as products of univariate polynomials,
i.e.,

Li(ϑ) =
N∏
n=1

`in(ϑn),

where `i denotes the ith order orthonormal(ized) Legendre polynomial on Ξ = [−1/2, 1/2]. We
refer to [8] for more details about orthogonal polynomials. Hereafter, the subscript in ϑn denotes
the dimension (i.e., ϑn is the nth element of the vector ϑ), whereas superscripts are used to
distinguish between different multidimensional nodes, i.e., vectors in ΞN .

The sparse pseudospectral approximation is built on sequential full tensor projections. Let us
first discuss univariate quadratures and projections. A general quadrature rule of order k ≥ 0 is a
linear operator Qk : C(Ξ)→ R, defined as2

Qk(F ) :=
q(k)∑
i=0

F
(
ϑ(k,i))w(k,i) ≈

∫
Ξ

F (ϑ) dϑ, (9)

where q(k) + 1 is the number of quadrature nodes and {(ϑ(i,k), w(i,k))}q(k)
i=0 ⊂ Ξ ×R are the nodes

and weights. The rule is said to have an exactness of degree s(k) if the approximation in (9) is an
equality for all polynomials F ∈ Ps(k). The function s : N0 → N0 is assumed to be nondecreasing.
For k ≥ 0, the kth order pseudospectral projection onto the Legendre basis is Pk : C(Ξ)→ Pp(k),

Pk(F )(ϑ) :=
p(k)∑
i=0

F̂i`i(ϑ), F̂i = Qk(F`i),

where p(k) = bs(k)/2c. It is easy to verify that Pk really is a projection, that is, an identity map
(i.e., exact) on Pp(k). Finally, the difference projection operator for k ≥ 1 is Dk : C(Ξ)→ Pp(k),

Dk := Pk −Pk−1

and for k = 0 we set D0 = P0. Notice that Dk is not actually a projection itself, but only a
difference of two (unless k = 0).

The Gauss–Legendre quadrature admits the values q(k) = k and s(k) = 2k + 1, yielding
the convenient property p(k) = k. In contrast, the popular nested Clenshaw–Curtis rule grows
exponentially, so that increasing the projection order by one gives many new polynomials. See,
e.g., [3] for more details about different quadrature rules, including the Gauss–Patterson rule.

Before introducing the multidimensional counterparts of the linear operators presented above,
we need to fix some notation. Firstly, Pk := (Pk1 ⊗ · · · ⊗ PkN ) denotes the space of N -variate
polynomials with the given maximum univariate degrees k1, . . . , kN . Secondly, the vectorization
y : NN

0 → NN
0 of a function y : N0 → N0 is defined via y(k) := (y(k1), . . . , y(kN )). Lastly, for a

multi-index k ∈ NN
0 , the induced full tensor index set is

T (k) := {i ∈ NN
0 : 0 ≤ in ≤ kn, n = 1, . . . , N},

2A quadrature can naturally be applied to any function having well defined values at the corresponding nodes,
not only to continuous ones. The same is true for the associated projections.
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which has the cardinality

|T (k)| =
N∏
n=1

(kn + 1). (10)

A full tensor quadrature Qk : C(ΞN )→ R of order k ∈ NN
0 is

Qk(F ) := (Qk1 ⊗ · · · ⊗QkN )(F )

=
q(k1)∑
i1=0
· · ·

q(kN )∑
iN=0

F (ϑ(k1,i1), . . . , ϑ(kN ,iN ))w(k1,i1) · · ·w(kN ,iN )

=
∑

i∈T (q(k))

F (ϑ(k,i))w(k,i),

where ϑ(k,i) := (ϑ(k1,i1), . . . , ϑ(kN ,iN )) ∈ ΞN and w(k,i) :=
∏N
n=1 w

(kn,in) ∈ R denote the tensorized
quadrature nodes and weights, respectively. It is obvious from (10) that for a high dimension N ,
the full tensor quadratures are computationally feasible only if the order k is sparse, i.e., consists
mostly of zeros. The full tensor pseudospectral projection Pk : C(ΞN )→ Pp(k) of order k ∈ NP

0
is defined as

Pk(F )(ϑ) := (Pk1 ⊗ · · · ⊗PkN )(F )(ϑ)

=
∑

i∈T (p(k))

F̂iLi(ϑ),

where the pseudospectral coefficients are

F̂i := Qk(FLi).

The tensorized difference projection operator Dk : C(ΞN )→ Pp(k) is unsurprisingly

Dk := Dk1 ⊗ · · · ⊗DkP = Pk +
∑

i∈B(k)

(−1)‖k−i‖1Pi, (11)

where
B(k) := {i ∈ NN

0 : ‖k − i‖∞ = 1, in ≤ kn, 1 ≤ n ≤ N} (12)

is (a part of) the backward neighborhood of the multi-index k ∈ NN
0 (see also [12, Proposition 1.7]).

Note that 0 ≤ |B(k)| ≤ 2N − 1.
In the univariate case, it is easy to see that

Pk(F ) =
k∑
i=0

Di(F ) (13)

due to the telescopic property of the sum. On the other hand, it is well-known that the approx-
imation Pk(F ) ≈ F is good if F is smooth enough and k is sufficiently large; see, e.g., [2] for
proofs and details. The sparse pseudospectral approximation generalizes the idea of (13) to higher
dimensions via the Smolyak’s construction [12]

F ≈ F (K) :=
∑
i∈K

Di(F ), (14)

where K ⊂ NN
0 is (usually) a sparse set, meaning that each multi-index i ∈ K contains many

zeros so that the workloads of the quadratures entangled in (11) stay feasible. It follows from (11)
that F (K) is a nontrivial linear combination of the full tensor projections {Pi}i∈K. Naturally,
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the projections can further be written as linear combinations of Legendre polynomials. The set of
Legendre degrees in (14) is denoted by P(K) which (implicitly) depends on the chosen quadrature.
For the Gauss–Legendre quadrature we have P(K) = K.

The approximation (14) is valid only if the index set K is Smolyak admissible, which means
that every i ∈ K satisfies

if in > 0, then i− en ∈ K (15)

for each n = 1, . . . , N . This makes the sum in (14) telescope-like. Clearly, full tensor index sets
are Smolyak admissible, but a full tensor index set being sparse means that the approximation is
poor for most of the dimensions. A common alternative to the full tensor index set is the total
order index set, which for k ∈ N0 is

Ttot(k) :=
{

i ∈ NN
0 :

N∑
n=1

in ≤ k
}
. (16)

The cardinality of the total order index set is

|Ttot(k)| =
(
N + k

k

)
∼ Nk, (17)

which for a large dimension N is significantly less than the cardinality (k + 1)N of the full tensor
index set based on a constant vector (k, . . . , k) ∈ NN

0 .

3.2 Adaptive SPAM
The aim of the adaptive SPAM is to construct a sparse index setK in (14) so that the approximation
is good while the cardinality of the set is kept as small as possible. In many applications, especially
when the target function is expensive to evaluate, the main trouble with a too large index set is
the huge number of quadrature nodes, since the target function has to be evaluated at all of them.
In our application, however, there is also another incentive for having a small index set K and a
small polynomial set P(K), namely, the evaluation cost of the surrogate and its derivatives when
the inverse problem of thermal tomography is solved with an iterative method.

From now on, we consider the temperature measurement vector U : ΞN → RM instead of
a generic real-valued function F , and thus we construct a polynomial approximation U (K) for
U as in (8). The quadrature and projection operators directly generalize to the vector-valued
case. As mentioned in the beginning of this section, it is also possible to construct the sets of
basis polynomials individually for each component, but for the sake of generality we present the
adaptive algorithm for the vector-valued function U .

The algorithm for constructing K is essentially the same as the adaptive quadrature presented
in [9] and goes as follows. At the beginning, we choose K = {0} ⊂ NN

0 . Then, at each iteration,
we select one not-yet-selected critical multi-index k ∈ K according to the selection rule specified
shortly. All the admissible forward neighbors

K+(k) := {i ∈ NN
0 : i = k + ej , 1 ≤ j ≤ N, K ∪ {i} is Smolyak admissible}

of the selected critical index are then added to K and this selection-addition procedure is contin-
ued until some suitable stopping criterion is satisfied. The determination of the critical indices
encompasses pseudospectral projections so that when the algorithm terminates, we have not only
computed the index set K but also all the necessary information that is needed when evaluating
the polynomial U (K) for any given parameter vector ϑ ∈ ΞN . The expansion coefficients in (8)
correspond to a matrix α ∈ RM×|P(K)| and the polynomial degrees can be stored in a sparse matrix
P(K) ∈ N|P(K)|×N

0 .
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There are different selection criteria for the critical multi-index, but typically they are based
on the norms of the difference projection operators. In this paper, we simply consider the norms

ε(k) := ‖Dk(U)‖[L2(ΞN )]M =
(

M∑
m=1
‖Dk(Um)‖2

L2(ΞN )

)1/2

,

where
Dk(Um) =:

∑
i∈T (p(k))

β
(k)
m,iLi (18)

for some coefficients β(k)
m,i ∈ R that can be obtained by expanding the expression in (11). Among the

not-yet-selected multi-indices, the one corresponding to the largest ε-norm has (loosely speaking)
affected the approximation most and thus can be considered the critical index, whose admissible
forward neighbors are added to the index set. By using the orthonormality of the Legendre
polynomials, we can write

‖Dk(Um)‖L2(ΞN ) =

 ∑
i∈T (p(k))

(
β

(k)
m,i

)2
1/2

,

so that
ε(k) = ‖β(k)‖F ,

which is the Frobenius norm of the coefficient matrix in (18). According to the Smolyak’s con-
struction (14), accumulating the coefficients β(k) computed during the algorithm results in the
approximation U (K), and the polynomial degrees P(K) in (8) are just the union of the degrees
appearing in the difference projections of the form (18).

In addition to the ε-norm introduced above, one may want to weigh different multi-index can-
didates based on, e.g., how much it costs to compute the associated projections or how many new

Algorithm 1: Adaptive sparse pseudospectral approximation
1 function adaptiveSPAM (U);

Input : Function U ∈ [C(ΞN )]M
Output: Polynomial U (K) ≈ U of the form (8)

2 U (K) ← 0; /* zero polynomial to start with */
3 K ← ∅; /* indices already projected */
4 J ← {0}; /* indices to be projected next */
5 while |P(K)| < stopping criterion do
6 for j ∈ J do
7 Compute and store Pj(U) ∈ Pp(j); /* forward solver needed */
8 Dj(U)←Pj(U) +

∑
i∈B(j)(−1)‖j−i‖1Pi(U); /* nothing to solve */

9 Compute and store ε(j);
10 U (K) ← U (K) + Dj(U); /* accumulate output (P(K) and α) */
11 end
12 K ← K ∪ J ;
13 k← arg maxi∈K ε(i); /* new critical index */
14 ε(k)← −∞; /* do not select again */
15 J ← K+(k); /* admissible forward neighbors */
16 end
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polynomials one is going to obtain. See, e.g., [3] for work-considering algorithms. For Gauss–
Legendre quadrature, adding one multi-index k corresponds to adding precisely one new polyno-
mial, namely Lk. In consequence, as we exclusively resort to Gauss–Legendre rule in our numerical
experiments, we employ ε as the selection criterion.

The pseudocode of the method is presented in Algorithm 1. Note that 0 ≤ |K+(k)| ≤ N and
the Smolyak admissibility implies that B(i) ⊂ K for each i ∈ K+(k), see (12) and (15). Thus, all
the projections appearing on line 8 in Algorithm 1 have already been computed and the only line
where the numerical forward solver for U is needed is line 7. Recall that by a forward solver we
mean a computational function that returns the boundary measurement vector U(ϑ) ∈ RM for a
given parameter vector ϑ ∈ ΞN . In practice, such a solver only returns numerical approximations.

4 Numerical experiments
In this section, we present numerical examples demonstrating the feasibility of the proposed two-
phase approach to thermal tomography:

1. In the offline phase, a polynomial surrogate is formed based (only) on generic information
about the measurement setup, including approximate shape and size of the imaged body,
the expected mean levels of the to-be-reconstructed parameters, and the number and size of
the heaters and sensors. Because such computations can be performed prior to taking any
measurements, one can assume the availability of considerable amounts of computation time
and power for completing these tasks.

2. Once the measurements are in hand, the online phase consists merely of solving a least
squares minimization problem that does not involve the forward solver but only its polynomial
surrogate. Since the surrogate and its derivatives can be efficiently evaluated, this leads to
fast reconstructions.

We first study the accuracy of the polynomial surrogate in Section 4.1. More precisely, the values
returned by the surrogate are compared with the values returned by the numerical solver upon
which the surrogate is based. Naturally, the numerical solver itself returns only approximate
measurement vectors for given parameter vectors, but since the surrogate can be constructed in
the offline phase, one could in principle choose as accurate solver as desired without affecting the
efficiency of the actual reconstruction algorithm in the online phase. The errors in spatial and
temporal discretizations are, however, taken into account when choosing the regularization or the
Bayesian distributions for the inverse problem in Section 4.2. On the other hand, since the number
of employed basis polynomials affects the cost of evaluating the surrogate and its derivatives in
the online phase [16], one should exploit adaptivity to keep the number of polynomials as low as
possible without compromising the accuracy of the surrogate.

Section 4.2 addresses the inverse problem of thermal tomography by comparing some target
functions a, b, c and ∂Ω with the corresponding reconstructions; these considerations correspond
to the online phase. The reconstructions are based on simulated measurement data, which are
generated by a highly accurate numerical solver and further contaminated by a small amount of
artificial noise in order to avoid any kind of an inverse crime. We also examine how reconstructions
are affected if the uncertainties in the coefficient c and the boundary ∂Ω are not taken into account.

Table 1 lists the values defining the parametrized measurement setup used in all examples that
follow. In particular, the zero vector ϑ = 0 corresponds to the unit disk with constant fields
a ≡ b ≡ 0.55 and the transfer coefficient c = 0.11 between the heaters. Both the heater starting
edges and the sensors are positioned equiangledly, and when the domain is the unit disk, the sensors
are located exactly at the midpoints between the heaters. The geometry is illustrated in Figure 1;
see also Section 2 for more details on the parametrization. The total number of parameters is
either N = 104 or N = 984 depending on the discretization of the fields a and b. The number of
measurements is always M = JRMT = 384.
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Table 1: Parameter values for the numerical experiments.

Parameter Value Notes
Na = Nb 40 or 480 Discretization of the conductivity a and the capacity b

J = R = Nc 8 Number of heaters, sensors and discretization of the coefficient c
NΩ 16 Discretization of the boundary
ā = b̄ 0.55

}
0.1 ≤ a, b ≤ 1

ã = b̃ 0.45
c̄ 0.11

}
0.02 ≤ c ≤ 0.2 between the heaters

c̃ 0.09
c0 10 c = 10 on the heaters
ρ0 1 Radius of the reference domain Ω(0)
ρ− 0.8 Minimum radius
ρ+ 1.2 Maximum radius
T 2 Maximum time
MT 6 Number of measurements in time
ti iT/MT Uniform measurement times (i = 1, . . . ,MT )
g(t) 5t Time profile of the active heater
η π/8 Heater width

4.1 Accuracy of the surrogate
We first focus on the accuracy of the polynomial surrogate which is constructed in three different
ways. The parametrization of the measurement setup is such that Na = Nb = 40 and thus N = 104
(this coarse discretization is visible in Figures 3 and 4). The first surrogate U (K) : ΞN → RM is
computed by choosing P(K) = K = Ttot(2), see (16). That is, adaptivity is not used, but instead we
fix the polynomials to those resulting from all full tensor projections having total order at most 2.
(Recall that for Gauss–Legendre quadrature it holds that P(K) = K, i.e., the polynomial degrees
are precisely the projection orders.) The number of polynomials is |P(K)| = 5565, which follows
from (17). For the second surrogate, we apply the adaptive SPAM as described in Section 3.2. The
algorithm is run until |P(K)| ≥ 5565 and the same polynomial basis P(K) is constructed for all
measurement components. The third surrogate is also constructed adaptively, but now separately
for each measurement component, so that there are M different polynomial bases, each having
cardinality of about 5565. In order to avoid too costly computations, the maximum degree for
univariate Legendre polynomials is set to 4 in the third case.

The accuracy of these three surrogates is tested by drawing independent random parameter
vectors {ϑ(q)}Qq=1 ⊂ ΞN from two different distributions. In the first case, all components of
the random vector are independently and uniformly distributed on Ξ = [−1/2, 1/2]. The second
distribution corresponds to (truncated) log-normal random fields for the conductivity a and the
heat capacity b. More precisely, a and b are considered as discrete log-normal random fields with the
(common) underlying normal distribution having the mean log(0.55) and the covariance function

K(x, y) = ς2 exp
(
−‖x− y‖

2
2

2λ2

)
(19)

with ς = 0.5 and λ = 1/3. In other words, K(x, y) can be interpreted as the covariance matrix of
an Na = Nb dimensional normal distribution when x, y ∈ Ω run through the centers of the ‘pixels’
corresponding to the characteristic functions ϕ(a)

i = ϕ
(b)
i in the unit disk; cf. (6) and Figure 1.

The fields a and b are drawn mutually independently as are the remaining Nc + NΩ components
of ϑ(q), which again follow the uniform distribution. If a random draw for either of the two fields
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Figure 1: Parametrization of the measurement setup for the numerical experiments. The heaters
are indicated by the bold boundary segments and the circles denote the sensors. The discretization
of the conductivity and the capacity is shown for Na = Nb = 480. Left: Unit disk Ω(0). Right:
Domain that is obtained by perturbing two out of NΩ = 16 splines.

Table 2: Mean errors and variances for two random parameter distributions and three surrogates
U (K): Total order polynomials of degree 2 (T2), adaptively constructed polynomials with a common
basis (adapt.) and adaptively constructed polynomials with separate bases (m-adapt.).

Mean (µK · 102) Variance (σ2
K · 102)

T2 adapt. m-adapt. T2 adapt. m-adapt.
Uniform 58.3 20.2 9.08 11.3 1.13 0.135
Log-normal 50.2 17.2 7.58 6.08 0.775 0.127

results in a pixel-value that corresponds to a component ϑ(q)
i < −1/2 (resp., ϑ(q)

i > 1/2), the field
is truncated by redefining ϑ(q)

i = −1/2 (resp., ϑ(q)
i = 1/2).

For each surrogate U (K), we define the pointwise error, the mean error and the (sample) variance
as

e
(q)
K :=

∥∥U(ϑ(q))− U (K)(ϑ(q))
∥∥

2, µK := 1
Q

Q∑
q=1

e
(q)
K and σ2

K := 1
Q− 1

Q∑
q=1

(e(q)
K − µK)2,

respectively. Here, U denotes our numerical forward solver that is based on piecewise linear finite
elements with meshes having a couple of thousands of nodes and the Crank–Nicolson time step of
size 1/30. We emphasize that the same solver is used for both the surrogate construction and the
computation of the reference samples {U(ϑ(q))}Qq=1 since the aim at this point is to examine the
accuracy of the polynomial approximation, not the accuracy of the numerical forward solver itself.

Table 2 lists the mean errors and variances corresponding to the two distributions for the
parameter vector described above with sample size Q = 1000. It is evident that adaptivity im-
proves the accuracy of the surrogate: the mean errors for the (commonly) adaptively constructed
surrogate are about one third and the sample variances about one tenth of the corresponding val-
ues for the total order surrogate with P(K) = Ttot(2). Because the adaptively constructed basis
has approximately the same number of polynomials as the total order basis, the evaluation and
differentiation costs of these two surrogates are expected to be roughly the same. Although the
complexity analysis in [16] considers only total order bases, in practice there seems to be no sig-
nificant difference in computational work between these two types of surrogates. In particular, for
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Figure 2: Mean errors for three different surrogates as functions of the expansion size.

a given parameter vector, the evaluation of the surrogate still reduces to a simple matrix-vector
product even if adaptivity is used. We refer to [16] for more detailed discussion on computational
work involved when using the surrogate, and also remind the reader that in any case the cost of
evaluating and differentiating the surrogate does not depend on the discretization of the forward
solver that is used to form the surrogate. What is more, the adaptivity does not essentially slow
down the offline phase, i.e., the construction of the surrogate, albeit some more evaluations of the
forward solver may be needed.

Constructing the polynomial basis separately for each measurement component further en-
hances the surrogate, as seen in Table 2: the mean errors are only about 15% of the corresponding
numbers for P(K) = Ttot(2). However, in this case the surrogate construction algorithm has to
be run several times, and the resulting surrogate cannot be evaluated as a simple matrix-vector
product as in the case of a common basis (cf. [16]).

When the random realizations for a and b are smoother (i.e., the values of adjacent ‘pixels’
are expected to be strongly correlated) as they are in the log-normal case, the mean errors seem
to be slightly smaller compared to the case of random parameter vectors with independently
and uniformly distributed components. For the zero parameter vector ϑ = 0, the errors for the
total order, adaptively constructed and adaptively/separately constructed surrogates are e(q)

K (0) =
9.60 · 10−2, 4.26 · 10−2 and 1.41 · 10−2, respectively. It is worth noticing that the mean errors for
the surrogate that is constructed adaptively and separately for each measurement component are
smaller than the pointwise error of the total order surrogate at the origin ϑ = 0 (cf. Table 2).

Figure 2 shows the mean errors for the log-normal random realizations if only a subset of the
computed polynomials is used in each surrogate. More precisely, for each surrogate, the polynomials
are first sorted based on the norms of the coefficient vectors (αm,i)Mm=1 in the expansion (8). Then
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the polynomials having the largest magnitudes for their coefficients are retained while the others
are discarded. For the separately constructed surrogate this filtering is performed component-
wise, so that the norms above are just the absolute values. The values at the right end of the
convergence plots in Figure 2 are those on the bottom line in Table 2. It is clear that even
a prematurely stopped adaptive algorithm, say, at 500 polynomials, overwhelms the total order
surrogate, although the values in Figure 2 do not exactly correspond to the mean errors one
would obtain by stopping the algorithm after obtaining a certain number of polynomials. For
the adaptively and separately formed surrogate this effect is even more apparent: already 100
polynomials per measurement component is enough for achieving higher accuracy than the total
order surrogate with P(K) = Ttot(2).

The error between our standard numerical forward solver for the surrogate construction and a
highly accurate solver is 1.62 · 10−2 for the case ϑ = 0, measured in the same way as the error be-
tween the standard numerical solver and the corresponding surrogates. The highly accurate solver
has tens of thousands of FEM nodes and a Crank–Nicolson time step of 1/50. The discrepancy
between the two forward solvers stems mainly from the spatial discretization, and it is expected
to be higher for more complicated domains and nonconstant fields a and b. Roughly speaking,
we anticipate that the discretization error of our standard numerical forward solver is of the same
order as the surrogate error for the most accurate of the three surrogates.

4.2 Inverse problem
For the inverse examples that follow, we generate the (noiseless) boundary measurement data
Ū ∈ RM by solving the problem (2) with the highly accurate solver described at the end of the
previous section. In general, the coefficient functions and boundary shapes used for simulating
the data are not (exactly) representable by the parametrization upon which the surrogates are
built. However, the circumference for all target objects is chosen to be 2π = |∂Ω(0)|; it is not
too far-fetched to assume that the approximate size of the imaged object is known in practice. A
realization of a vector of zero mean Gaussian noise with independent components is added to the
measurement, with the standard deviation of the mth component being 5 ·10−3 · Ūm. The resulting
noisy measurement vector is denoted by Ũ ∈ RM .

The inverse problem is treated as a nonlinear least squares minimization

arg min
ϑ∈ΞN

{∥∥Ũ − U (K)(ϑ)
∥∥2

2 + δ2‖Gϑ‖2
2

}
, (20)

where G ∈ RN×N is a block-diagonal regularization matrix. Its first two blocks of lengths Na = Nb
are chol(K−1), where chol( · ) denotes the upper-triangular Cholesky factor of a matrix and K is
formed by evaluating the covariance function (19) with ς2 = 0.5 and λ = 1/3 at all centerpoint
pairs for the pixels in Ω(0). Therefore, the regularization operator prefers smooth fields a and b
as in, e.g., [6, 20]. If the sum of the noise in Ũ and the surrogate and numerical errors in U (K)

was assumed to be Gaussian with independent zero-mean components having standard deviation
δ > 0, then (20) would have a Bayesian interpretation of maximizing the posterior distribution
for the parameter ϑ under the prior assumption that the fields a and b are mutually independent
Gaussian random fields with pointwise variance ς2 and correlation length λ. To be quite precise,
the regularization matrix should be updated based on the current shape of the domain, but since
the boundary perturbations are relatively small, it is considered to be enough to compute the cor-
responding covariances only in the reference disk. We employ no regularization (i.e., no informative
prior) for the coefficient c or the shape of the object, meaning that the lower right-hand corner
of G is actually empty. Such regularization would become necessary if the respective numbers of
degrees of freedom, Nc and NΩ , were increased significantly.

We use the generic value δ = 10−2 for the regularization parameter in all the following examples.
Note that δ and ς couple in (20) in such a way that decreasing δ is equivalent to increasing ς. There
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Figure 3: Target configuration (top), reconstruction without reconstructing the coefficient c (mid-
dle) and full reconstruction (bottom). Na = Nb = 40.

is, however, a semi-heuristic Bayesian justification for our choices of δ and ς. Since the values of
the functions a and b vary between 0.1 and 1, the choice ς2 = 0.5 seems reasonable. On the other
hand, assuming (falsely) that the sums of the artificial noise and the surrogate and discretization
errors at the sensors are independent mean-free Gaussians with the same distribution, one can
choose δ ≈ e/

√
M , where e ≈ 20 · 10−2 is a crude approximation for the magnitude of the total

error in the Euclidean norm when the surrogate is based on the standard adaptive algorithm
(cf. the second column of Table 2). Increasing δ would generally force the minimization algorithm
to converge more robustly, but it would also result in reconstructions that are closer to the average
values and not so informative. Moreover, increasing the amount of measurement noise would make
the reconstructions less accurate. The choice of λ = 1/3 reflects our prior assumption on the
characteristic length of variations (in a and b) inside Ω. If λ is increased, the reconstructions
become more constant, whereas decreasing λ allows reproducing finer details but also leads to
unwanted fluctuations in reconstructions of areas described by constant parameters.

We solve the problem (20) by using the lsqnonlin function in Matlab without constraints start-
ing from the initial guess ϑ = 0. However, any nonlinear least squares approach should work, since
computing the values and Jacobians of the to-be-minimized function only requires polynomial eval-
uations and applying the regularization makes the problem somewhat well-behaving. Constraints
that force the parameter vector to stay within ΞN could be implemented if necessary, but in our
examples the algorithm seems to work without such. The reconstructed functions a, b, c and the
shape of ∂Ω can be deduced from the minimizing parameter vector ϑ by considering the mappings
introduced in Section 2.2. Observe that the parameter values in Table 1 are quite arbitrary and
no big effort has been made to select a measurement configuration that yields maximal amount of
information about the target (notice that there is a lot of freedom in the choice of, e.g., the heating
pattern g). This task of optimal experimental design is not addressed in this paper; see, e.g., [10]
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Figure 4: Target configuration (top), reconstruction without reconstructing the shape ofΩ (middle)
and full reconstruction (bottom). Na = Nb = 40.

for more on that topic.
Let us first consider the (computationally) easier case Na = Nb = 40 and investigate what

happens if the uncertainties in c and ∂Ω are not taken into account. To this end, two additional
‘bad’ surrogates are constructed. The first one assumes that c = c̄ = 0.11 between the heaters and
so the number of parameters is effectively reduced by Nc. This surrogate is formed adaptively and
a common polynomial basis of size |P(K)| ≈ 5565 is used for every measurement. Figure 3 shows
the target configuration which corresponds to the case ϑ = 0 except that the coefficient c takes two
distinct values, namely 0.02 on the first four boundary segments between the heaters and 0.2 on
the remaining ones. The second and third rows of the figure demonstrate that optimizing (20) only
for ϑ(a), ϑ(b) and ϑ(Ω) employing the new surrogate yields an inaccurate reconstruction, whereas
using the full adaptively computed common-basis surrogate from Section 4.1 with |P(K)| ≈ 5565
and optimizing the whole vector ϑ results in a far superior outcome.

The next target setup is illustrated in the top row of Figure 4; it corresponds to vanishing
subvectors ϑ(a), ϑ(b) and ϑ(c). The second bad surrogate is formed by assuming that the domain
is the unit disk, effectively removing ϑ(Ω) from our parameter vector. This surrogate is again
computed by adaptive, common-basis method and involves |P(K)| ≈ 5565 polynomials. It is then
employed in (20) to compute the corresponding reconstruction, which is shown on the second row
of Figure 4. It is obvious that ignoring the uncertainties in the shape of Ω heavily deteriorates
the reconstructions of the other parameters. The third row presents the result of using the full
adaptive common-basis surrogate in (20): the reconstruction is clearly better than when ignoring
ϑ(Ω), albeit not as accurate as that on the third row of Figure 3 where the same surrogate was
used for a different target.

Finally, let us consider a surrogate that corresponds to Na = Nb = 480 as in Figure 1, resulting
in N = 984 variables. One polynomial basis is adaptively constructed for two adjacent active
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Figure 5: Smooth target configuration (top) and its reconstruction using a surrogate with N = 984
variables (bottom).

heaters at a time, so that there are altogether four different bases. Due to certain symmetries
in the parametrization, choosing to use such a four-bases surrogate does not actually increase
the amount of offline computations. The maximal univariate Legendre degree is set to 4 and the
adaptive algorithm is terminated after obtaining 485 605 polynomials, which is the same number
as in the total order set Ttot(2) for 984 parameters. The maximal total polynomial degree found
by the algorithm is 11. About 81% of the polynomials are of the second order. The higher
order polynomials are mostly associated with the shape variables ϑ(Ω) and the parameters in ϑ(a)

defining the thermal conductivity a close to the exterior boundary. However, the parameter choices
in Table 1 obviously have a significant impact on the way the adaptive algorithm tends to distribute
the higher order polynomials.

Figure 5 presents the result of the surrogate inversion for a smooth target configuration. Both
the thermal conductivity and the heat capacity are relatively well reconstructed along with the
object shape. The same applies to a somewhat lesser extent to the heat transfer coefficient.
Figure 6 documents a more demanding reconstruction. In this case, the piecewise constant target
functions for a and b are not compatible with the chosen smoothness regularization. However, the
reconstructions of a and b arguably still carry useful qualitative information about the interior
structure of the imaged object — in particular, far more information than one would obtain if the
uncertainties in the exterior boundary and the heat transfer coefficient were simply ignored in the
inversion.

The online phase of computing the reconstructions in Figures 5 and 6, i.e., solving the min-
imization problem (20) with N = 984 by the lsqnonlin function of Matlab with a user-supplied
Jacobian, took only roughly ten seconds on a standard desktop computer. Obviously, the efficiency
depends on the implementation and on the precise settings of the minimization procedure. Note
also that the coefficient matrix α ∈ RM×|P(K)| contains almost 2·108 elements so storing it requires
quite a bit of memory.
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Figure 6: Piecewise constant target functions (top) and their reconstructions using a surrogate
with N = 984 variables (bottom).

5 Conclusions
We have extended the previous works on thermal tomography to include estimating the exterior
shape of the imaged object in addition to reconstructing the thermal conductivity, heat capacity
and surface conductance. The presented algorithm is based on the adaptive pseudospectral ap-
proximation approach and simple output least squares minimization, resulting in a fast inversion
method that requires only polynomial evaluation and differentiation while being independent of
the discretization of the parabolic forward problem. Our numerical examples demonstrated that
the shape estimation is indeed important if one wants to obtain reasonable reconstructions of the
thermal parameters inside a physical domain whose shape is not accurately known.
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