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Abstract.
The main goal of this paper is to investigate the order reduction phenomenon that appears in the integral de-

ferred correction (InDC) methods based on implicit-explicit (IMEX) Runge-Kutta (R-K) schemes when applied
to a class of stiff problems characterized by a small positive parameter ε, called singular perturbation problems
(SPPs). In particular, an error analysis is presented for these implicit-explicit InDC (InDC-IMEX) methods
when applied to SPPs. In our error estimate, we expand the global error in powers of ε and show that its
coefficients are global errors of the corresponding method applied to a sequence of differential algebraic systems.
A study of these errors in the expansion yields error bounds and it reveals the phenomenon of order reduction.
In our analysis we assume uniform quadrature nodes excluding the left-most point in the InDC method and the
globally stiffly accurate property for the IMEX R-K scheme. Numerical results for the Van der Pol equation
and PDE applications are presented to illustrate our theoretical findings.
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1 Introduction

Several physical phenomena of great relevance for applications are described by autonomous stiff systems of
ordinary differential equations (ODEs) of the form

U ′ = F (U) +
1

ε
G(U), U(t0) = U0, (1.1)

where F,G : Rn → Rn are sufficiently smooth functions with different stiff properties and ε is the stiffness
parameters. Usually, system (1.1) with a large numbers of equations may arise from spatial discretization of
a system of partial differential equations, such as convection-diffusion problems, diffusion-reaction ones and
hyperbolic systems with relaxation, ([1], [7], [28], [9], [25], [32]), where the method of lines approach is usually
used.

In order to be able to treat problems of the form (1.1), it could be interesting to separate the non-stiff and
the stiff terms. In most cases F (U) is non-linear and non-stiff and G(U) contains the stiffness ε. Then it is
desirable to develop numerical methods which are explicit in F and implicit in G. For the numerical integration
of (1.1), additive Runge-Kutta (R-K) methods are proposed, see for instance [9, 28, 7, 32], and are chosen
with the aim of efficiently integrating the system (1.1). Additive R-K methods combining implicit and explicit
methods are also known in the literature as implicit-explicit (IMEX) R-K methods [1, 9, 28].

We observe that system (1.1) can be written as a system of 2n equations in the form

y′ = f(y, z), y(t0) = y0,
εz′ = g(y, z), z(t0) = z0,

(1.2)

once we set U = y+ z, F (U) = f(y, z) and G(U) = g(y, z). When splitting the system, one has to assign initial
conditions for both y and z, while only initial conditions on the sum are specified in the problem. Any choice
of the initial value for y and z, such y0 + z0 = U0 will give the same dynamics for the sum y+ z. Note however
that such a splitting is adopted here for the purpose of analyzing the scheme. In practice, once the scheme
is constructed, it is applied directly to systems in the form (1.1), and no arbitrariness in the initial condition
remains.

System (1.2) is known in the literature as singular perturbetion problems (SPPs). Classical books on SPPs
are [31, 27] and we also refer the reader to the book [19]. System (1.2) has several origins in applied mathematics
and allows us to understand many phenomena observed for very stiff problems, for example as mentioned in
[19]: from fluid dynamics and results in linear boundary value problems containing a small parameter ε (the
viscosity coefficient), in the study of stiff nonlinear oscillators (such as the Van der Pol system with large value
of the parameter) or in the study of chemical kinetics with slow and fast reactions. In fact, when the parameter
ε is small, the corresponding differential equation is stiff, and when ε tends to zero, the differential equation
becomes differential algebraic. A sequence of differential algebraic systems arises in the study of SPPs. In [19]
and in the original paper [17], the authors, by studying these differential algebraic systems, offered a general
framework in order to derive rigorous convergence estimates of most of the implicit R-K methods presented in
the literature when applied to SPPs (1.2) and showed that these methods suffer from the phenomenon of order
reduction in the stiff regime.

Due to the equivalence of the two systems (1.1) and (1.2), the error estimate for (1.2) offers a theoretical
foundation to understand the error behavior of (1.1). In this paper, we perform our error estimate base on the
system (1.2), while the application problems we considered are often in the form of (1.1).

The main goal in this paper is to investigate the order reduction phenomenon that appears in the InDC
framework when combined with IMEX R-K methods (InDC-IMEX) when applied to SPPs. The novelty here is
to provide rigorous and careful convergence analysis for the global error of InDC-IMEX method. As far as we
know, InDC methods constructed using IMEX R-K methods, have not been seriously studied in the literature
when applied to SPPs. Furthermore, the error estimates of InDC-IMEX methods given in this paper for SPPs,
explain theoretically, for the first time, the order reduction phenomenon that usually occurs for mildly stiff or
stiff problems.

We recall that the InDC method [14, 13], along the development of deferred correction (DC) [2, 30] and
spectral deferred correction (SDC) [16, 26, 24, 22, 23, 20] methods, is an automatic technique of building up
very high order numerical integrators based on lower order ones for ODEs. The procedure consists of one
prediction and iterations of correction steps. The high order accuracy is accomplished by using a lower order
numerical method to solve a series of error equations in each correction step. Compared with the classical DC
method, the recently developed SDC and InDC methods are based on Picard integral equation and a deferred
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correction procedure is applied to an integral formulation of the error equation in DC methods. It has been
shown that SDC and InDC outperforms DC in many problems with better stability and accuracy properties
[16, 14]. The main difference between SDC and InDC is the distribution of quadrature nodes: the SDC
method uses Gaussian/Lobatto/Radau points for better stability and accuracy properties, while InDC method
uses uniform quadrature points to guarantee high order accuracy increase when high order R-K methods are
applied in correction steps [14]. The InDC method can be considered as a R-K type method by assembling
the corresponding Butcher table, see [13] and Section 3.3 later on in this paper. In fact, R-K or additive R-K
methods of third order or less have been very well developed and optimized for their efficiency and effectiveness
[9]. The new aspect, that the InDC method offers, is a systematical way in constructing very high order method
(e.g. up to 12th order [12]) without the need to working out order conditions for both explicit and implicit
methods. Moreover, the InDC method can be used to improve the operator splitting error [11], which is not
possible by using a R-K method.

The development of this theoretical study of IMEX InDC method is aided by the knowledge of some results
obtained in the following papers: [3] and [6]. In [3], the author studied the global error behavior of IMEX R-K
methods existing in the literature, presenting convergence proofs for different types of IMEX R-K methods, and
gave error bounds for such methods when applied to the SPP system (1.2). In particular, this study revealed
that IMEX R-K methods suffer from the phenomenon of order reduction in the stiff regime, i,e. ε → 0. In
a similar fashion, in [6] the authors studied the global error behaviour of InDC method constructed by using
implicit R-K methods when applied to the SPP system (1.2). This study gave error bounds for such methods.
In particular, it revealed the phenomenon of order reduction in the stiff regime, when we increase the order of
accuracy by series of correction equations.

This paper is a natural continuation of the research started in [6]. Then by combining the results presented in
[3] and [6], we study the error bounds of InDC-IMEX methods for SPPs (1.2) in order to seek an understanding
on the order reduction phenomenon. Notice that the main idea is to expand the error in powers of ε whose
coefficients are called error terms, and show convergence results for these error terms, as done in [3]. In our
analysis we consider h � ε, with h being the time step size. We consider some suitable assumption for our
analysis: the globally stiff accuracy (GSA) for the IMEX R-K methods (we will define it in the next), and the
use of uniform quadrature nodes excluding the leftmost endpoint in the InDC framework. The first assumption
guarantees that if a high order globally stiffly accurate IMEX R-K method is used to construct the InDC IMEX
R-K method, the assembled matrix is invertible and by this result, the order of convergence for the leading
order term in the ε-expansion of global error increases with high order in the correction steps. Furthermore,
we will show by a counter example that, if the assumption of GSA for the IMEX R-K method is not satisfied,
the corresponding InDC IMEX R-K method does not have the order increase as expected for the leading order
term in the ε-expansion of the global error. Note that the assumption of GSA provides a sufficient conditions
to guarantee the invertibility of assembled matrix. In general we do not know whether GSA is also a necessary
condition. To find this out requires a more detailed investigation.

Finally, note that the uniform distribution of nodes is important to increase accuracy when a high order
R-K method is applied in the correction steps for classical problems and the use of quadrature nodes excluding
the left-most endpoint leads to an important stability condition for stiff problems, i.e. the method becomes
L-stable if A-stable; we refer readers to [23] and [14] for details.

The paper is organized in the following way. In Section 2, we briefly present existing local and global
error estimates of IMEX R-K methods for SPPs [3]. In Section 3, we introduce InDC-IMEX methods applied to
SPPs (1.2). A reformulation of InDC methods constructed with IMEX R-K methods is obtained, with assembled
matrices in double Bouchet tableau as in a classical IMEX method. In Section 4, main theoretical results are
stated in the form of a theorem, which is proved via the classical error estimate of IMEX methods presented
in [3]. Numerical evidences, supporting these theoretical results, are summarized and presented in Section 5.
Conclusions are given in Section 6.

2 SPPs and IMEX R-K methods

In this section, we review classical concepts and results of the R-K and IMEX R-K methods when applied to
SPPs (1.2).In system (1.2) we assume that 0 < ε � 1 and f and g are sufficiently differentiable vector-valued
functions. The functions f , g and the initial values y(0), z(0) may depend smoothly on ε. For simplicity of
notation, we suppress such dependence. We require that system (1.2) satisfies

µ(gz(y, z)) ≤ −1, (2.1)
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in an ε-independent neighbourhood of the solution, where µ denotes the logarithmic norm with respect to some
inner product, see for details [19].

When ε = 0, the corresponding reduced system is the differential algebraic equation (DAE)

y′ = f(y, z),
0 = g(y, z),

(2.2)

whose initial values are consistent if 0 = g(y(0), z(0)). We assume that the Jacobian gz(y, z) is invertible in
a neighborhood of the solution of (2.2). This assumption guarantees the solvability of the second equation in
(2.2) and that the equation g(y, z) = 0 possesses a locally unique solution z = G(y) (implicit function theorem).
Then insert it into the first equation of (2.2), this gives

y′ = f(y,G(y)). (2.3)

The same assumption guarantees that system (2.2) is a differential-algebraic one of index 1, (see [19] for more
details).

From a classical result in SPPs theory, condition (2.1) guarantees the existence of an ε-expansion, as the
sum of a smooth function of the independent variable t and an exponentially decaying function of the stretched
variable τ = t/ε (initial layer). The exponentially decaying function is not present if the initial values of system
(1.2) (which depend on ε) are on the smooth solution, see Chap. VI.3 in [19] for more details.

Thus in our analysis we seek mainly ε-asymptotic expansion of the exact smooth solutions of the problem
(1.2) of the form

y(t) = y0(t) + y1(t)ε+ y2(t)ε2 + · · · ,
z(t) = z0(t) + z1(t)ε+ z2(t)ε2 + · · · . (2.4)

Inserting (2.4) into (1.2) and collecting equal power of ε we have, [19]:

g(y0, z0) = 0, (2.5)

y′0 = f(y0, z0), (2.6)

ε1 :

{
y′1 = fy(y0, z0)y1 + fz(y0, z0)z1,

z′0 = gy(y0, z0)y1 + gz(y0, z0)z1,
(2.7)

· · ·

εν :

{
y′ν = fy(y0, z0)yν + fz(y0, z0)zν + φν(y0, z0, · · · , yν−1, zν−1),

z′ν−1 = gy(y0, z0)yν + gz(y0, z0)zν + ψν(y0, z0, · · · , yν−1, zν−1).
(2.8)

Eq. (2.5) tells us that z0 is algebraically related to y0. Differentiating (2.5) we have

gy(y0, z0)y′0 + gz(y0, z0)z′0 = 0.

Compatibility with (2.6) implies

gy(y0, z0)f(y0, z0) + gz(y0, z0)(gy(y0, z0)y1 + gz(y0, z0)z1) = 0.

Therefore also z1 is linked to y0, z0, and y1, by an algebraic relation. Then we have the following definition:

Definition 2.1. An initial condition (y(0), z(0)) for the system (1.2) is well-prepared to order ν in ε if the
expansion

y(0) = y0(0) + y1(0)ε+ y2(0)ε2 + · · · ,
z(0) = z0(0) + z1(0)ε+ z2(0)ε2 + · · · , (2.9)

satisfies the algebraic conditions (2.5), (2.6), (2.7) and (2.8) up to order ν in ε.

Note that arbitrary initial values introduce an initial layer in the solution. One possible way to overcome
this difficulty is simply to use a small time step ∆t = O(ε) during the initial transient. After a short time, the
initial layer is damped out, and the time step can be chosen larger than ε. All this is usually performed by
a suitable time step control [19]. Here we are interested in the behaviour of the scheme for time much larger
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that ε, after the effect of the initial layer has damped out, and this is why we assume that our initial condition
is well-prepared. In practice, any initial condition chosen as the solution of the system at a given time large
enough compared to ε will be well prepared.

A sequence of differential-algebraic systems arises in the study of SPPs, i.e. (2.5), (2.6), (2.7) and (2.8),
under the assumption of a smooth solutions (2.4) of system (1.2) (a general and detailed investigation about
the ε-expansion is given in [19]).

As we will show next, by inserting the ansatz (2.4) into system (1.2) and collecting equal power of ε, one
obtain a set of conditions where the coefficients in the expansion (2.4) are the solutions of differential algebraic
systems.

We remind that in order to prove the convergence of R-K methods for problem of the form (1.2), in [19] and
in the original paper [17], the authors showed that most of the implicit R-K methods presented in the literature
suffer from the phenomenon of the order reduction when applied to (1.2) in the stiff regime (ε → 0). In [3],
similar results of convergence are obtained for IMEX R-K methods.

Now we consider an s-stage IMEX R-K method with a double tableau in the usual Butcher notation,

c̃ Ã

b̃T

c A

bT
. (2.10)

where Ã = (ãij) is an s × s matrix for an explicit scheme, with ãij = 0 for j ≥ i and A = (aij) is an s × s
matrix for an implicit scheme. For the implicit part of the methods, we use a diagonally implicit scheme for
the function g, i.e. aij = 0, for j > i, in order to guarantee simplicity and efficiency in solving the algebraic

equations corresponding to the implicit part of the discretization. The vectors c̃ = (c̃1, ..., c̃s)
T , b̃ = (b̃1, ..., b̃s)

T ,
and c = (c1, ..., cs)

T , b = (b1, ..., bs)
T complete the characterization of the scheme. The coefficients c̃ and c are

given by the usual relation

c̃i =

i−1∑
j=1

ãij , ci =

i∑
j=1

aij . (2.11)

When such IMEX scheme is applied to the SPP (1.2), we have(
yn+1

εzn+1

)
=

(
yn
εzn

)
+ h

s∑
i=1

(
b̃iki
bi`i

)
(2.12)

where (
ki
`i

)
=

(
f(Yi, Zi)
g(Yi, Zi)

)
(2.13)

and the internal stages are given by(
Yi
εZi

)
=

(
yn
εzn

)
+ h

( ∑i−1
j=1 ãijkj∑i
j=1 aij`j

)
. (2.14)

The following definition will be also useful to characterize properties of an IMEX R-K method in the sequel.

Definition 2.2. We say that an IMEX R-K scheme is globally stiffly accurate (GSA) if bT = eTs A, and b̃T = eTs Ã,
with es = (0, ..., 0, 1)T , and cs = c̃s = 1, i.e. the numerical solution is identical to the last internal stage value
of the scheme.

This definition means that the IMEX R-K scheme is a stiffly accurate, (i.e. asi = bi, for i = 1, ..., s) in the
implicit part [19] and a FSAL (First Same As Last) R-K method [18] in the explicit part, (i.e. ãsi = b̃i, for i =
1, ..., s − 1). It is known in the literature that FSAL R-K methods are a special class of s-stage explicit R-K
schemes. Such schemes have the advantage that they require only s − 1 function evaluations per time step,
because the last stage of step n coincides with the first step of the step n + 1 (see [18] for details). Note that
IMEX R-K schemes with this property were already introduced in [8, 5]. Next we shall show the importance of
this property for the convergence of the IMEX R-K method.

In our analysis, we use R(∞) = limz→−∞R(z), with R(z) the stability function of the implicit scheme,
given by R(z) = 1 + zbT (I − zA)−11, with bT = (b1, ..., bs) and 1= (1, ..., 1)T . From the expression of R(z)
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we have R(∞) = 1 − bTA−11. An implicit R-K method is said to be L-stable if it is A-stable and R(∞) = 0.
The L-stability property is important when one treats with stiff problem.(Chap. IV.3 in [19]). Furthermore,
in the special case when the implicit method is stiffly accurate and the matrix A is invertible, one has always
R(∞) = 0, and this makes an A-stable method L-stable.

Now we assume that the implicit R-K matrix (aij) is invertible, so that we get

h`ni = ε

s∑
j=1

ωij(Znj − zn),

where ωij are the elements of the inverse of (aij). Note that this assumption is important to provide the error
estimates in [3]. Then inserting this into zn+1, and setting ε = 0 we obtain

Yi = yn + h

i−1∑
j=1

ãijf(Yj , Zj) (2.15)

0 = g(Yi, Zi) (2.16)

yn+1 = yn + h

s∑
i=1

b̃if(Yi, Zi) (2.17)

zn+1 = R(∞)zn +

s∑
i,j=1

biωijZj . (2.18)

In our analysis it is useful to characterize the different type of IMEX R-K methods existing in the literature
we will consider in the sequel accordingly to the structure of the implicit part of the method. Following [3] we
have

Definition 2.3. We call an IMEX R-K method of type A, if the matrix A ∈ Rs×s is invertible and c̃ 6= c.

Definition 2.4. We call an IMEX R-K method of type CK, if the matrix A ∈ Rs×s can be written as

A =

(
0 0

a Â

)
with the submatrix Â ∈ R(s−1)×(s−1) invertible and and c̃ = c. In particular when a = 0, the IMEX R-K
method is of type ARS.

In [3], the author presented the error analysis of different types of IMEX R-K schemes when applied to SPP
(1.2), some of which is summarized in Section 4 below. Now briefly we review a couple of main results from [3],
which we will use to prove the main theorem in this paper.

In order to obtain the error estimate for IMEX R-K methods, we start from the ε-expansion of the exact
and numerical solutions of the problem (1.2), (see [3] and [19] for details). Then, by assuming that the initial
values are well-prepared, Definition 2.1, an ε-asymptotic expansion of smooth solutions of the system (1.2) is
given by the ansatz (2.4):

y(t) =
∑
ν≥0

yν(t)εν , z(t) =
∑
ν≥0

zν(t)εν , (2.19)

and, similarly, for the numerical solutions by:

yn =
∑
ν≥0

yn,νε
ν , zn =

∑
ν≥0

zn,νε
ν , (2.20)

approximating exact solutions at tn. Then, the errors of the y and z-component are formally considered as

y(tn)− yn =
∑
ν≥0

εν(yν(tn)− yn,ν), z(tn)− zn =
∑
ν≥0

εν(zν(tn)− zn,ν). (2.21)

The values yν(t), zν(t) in (2.19) are the coefficients of the ε-expansion of the smooth solution for (1.2) and
values yn,0, zn,0, yn,1, zn,1, · · · , in (2.20) represent the numerical solutions of the IMEX R-K method applied to
differential algebraic equations (DAEs) of arbitrary order ν. Furthermore, the first differences y0(tn)− yn,0 and
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z0(tn)− zn,0 in the expansion (2.21) are the global errors of IMEX R-K method applied to the reduced system
(2.2), i.e. system of index ν = 1. The other differences for ν > 0 in (2.21) are related to the numerical solutions
of the IMEX R-K method when applied to the DAEs of higher index. In order to study the error (2.21), in [3]
the author investigated the differences: yν(tn)− ynν , zν(tn)− znν , for ν ≥ 0. For details, see [3].

Finally for the next analysis a couple of remarks are in order for GSA IMEX R-K of a given type.

Remark 2.5. a) By the Implicit Function Theorem applied to (2.16), we have Zi = G(Yi) for i = 1, ..., s and
the internal stages Zi depend on the internal stages of the explicit part of Yi. Furthermore, in general, the
numerical solutions yn+1, zn+1 do not lie on the manifold g(y, z) = 0. However, if the scheme is GSA, then
yn+1 = Yns, zn+1 = Zns and therefore equation

g(yn+1, zn+1) = 0, (2.22)

is satisfied anyway.
b) In this case the application of (2.15)-(2.16)-(2.17) and (2.22) to system (2.2) is equivalent to the s-stage

explicit R-K method (2.15)-(2.17) applied to (2.3) when ε = 0. Then by (2.22), we get zn+1 = G(yn+1) and we
obtain for the y and z component the following estimates:

yn − y(tn) = O(hp), zn − z(tn) = O(hp),

with p is the classical order of the explicit R-K method. Then the z-component possesses the same asymptotic
error estimate as the y-component in the case ε = 0. Note that if the scheme is not GSA, the equation (2.22)
is not satisfied and a loss of accuracy is observed for the variable z (for details, see [3]).

c) The globally stiffly accurate property for an IMEX R-K scheme implies also that b̃i 6= bi, for i = 1, · · · , s.
Note that in [3] the assumption of b̃i = bi for all i for the IMEX R-K methods represents the only remedy for
preserving the order for the differential component y when we consider high index DAEs, i.e. ν > 0, otherwise
the order drops to first one (for details, see Theorem 5.2, Theorem 6.1 and Theorem 6.2 in [3]).

3 InDC-IMEX R-K formulations applied to SPPs

In this section, we consider the InDC methods constructed using IMEX schemes applied to SPPs (1.2). First
of all, we introduce the specific strategy of InDC methods. Later, we show as a InDC IMEX R-K method can
be re-written as a standard IMEX R-K one. Clearly this formulation provides a systematic way to construct
arbitrary-order IMEX R-K schemes without solving complicated order conditions. The formulation of InDC
IMEX R-K methods as a standard IMEX R-K gives us the possibility to estimate the error of the schemes by
using some classical results of the error analysis developed in the paper [3] for standard IMEX R-K.

3.1 InDC framework

The time interval [0, T ] is uniformly discretized into intervals [tn, tn+1], n = 0, 1, ..., N − 1 such that

0 = t0 < t1 < t2 < ... < tn < ... < tN = T,

with the step size H. Each interval [tn, tn+1] is discretized again into M uniform subintervals with quadrature
nodes denoted by

tn
.
= τ0 < τ1 < · · · < τM

.
= tn+1, (3.1)

with h = H
M being the size of a substep. In this paper, the interval [tn, tn+1] will be referred to as a time

step while a subinterval [τm, τm+1] will be referred to as a substep. We assume the InDC quadrature nodes are
uniform, which is a crucial assumption for high order improvement in accuracy, when consider applying general
high order R-K methods in prediction and correction steps for classical ODE system, (see discussions in [14]).
Similar conclusions hold when the high order IMEX R-K methods are applied in prediction and correction steps.
Since H = Mh, we will use O(hp) and O(Hp) interchangeably throughout the paper. The use of quadrature
nodes excluding the left-most endpoint (i.e. τ0) leads to an important stability condition for stiff problems, i.e.
the method is L-stable (for details see in [23]). With the above considerations, in this paper, we consider the
InDC methods with uniform quadrature nodes excluding the left-most endpoint.

Let’s assume we have obtained numerical solutions ŷ
(0)
m and ẑ

(0)
m approximating the exact solution at τm by

using a low order numerical method for (1.2). Here superscript (0) is used to denote the prediction step in
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the InDC method. We build continuous polynomial interpolants ŷ(0)(t) and ẑ(0)(t) interpolating these discrete

values (ŷ
(0)
m and ẑ

(0)
m for m = 1, · · ·M). Now we define the error functions

e(0)(t) = y(t)− ŷ(0)(t), d(0)(t) = z(t)− ẑ(0)(t). (3.2)

Note that e(0)(t) and d(0)(t) are not polynomials in general. We specify the residual function with respect to y
and z via the following set of differential equations

δ(0)(t) = f(ŷ(0)(t), ẑ(0)(t))− (ŷ(0))′(t),

ρ(0)(t) = g(ŷ(0)(t), ẑ(0)(t))− (εẑ(0))′(t).
(3.3)

Thus, by subtracting (3.3) from (1.2), and recalling that we restrict our analysis to autonomous systems, the
error equations about the error functions (3.2) become

(e(0))′(t)− δ(0)(t) = ∆f (0),

ε(d(0))′(t)− ρ(0)(t) = ∆g(0),
(3.4)

where
∆f (0)

.
= f(e(0)(t) + ŷ0(t), d(0)(t) + ẑ(0)(t))− f(ŷ(0)(t), ẑ(0)(t)),

∆g(0)
.
= g(e(0)(t) + ŷ0(t), d(0)(t) + ẑ(0)(t))− g(ŷ(0)(t), ẑ(0)(t)).

(3.5)

The initial conditions for these error equations are zero, i.e. e(0)(0) = 0 and d(0)(0) = 0.

Suppose that we have obtained approximate solutions ê
(0)
m and d̂

(0)
m at τm by using a low order IMEX method

for error equations (3.4), the numerical solution can then be improved as

ŷ(1)m = ŷ(0)m + ê(0)m , ẑ(1)m = ẑ(0)m + d̂(0)m , ∀m = 0, · · ·M.

Such correction procedures can be repeated in each local time step [tn, tn+1]. How the scheme is actually
implemented will be illustrated in details in the next section. In summary, the strategy of InDC methods is to
use a simple numerical method to compute numerical solutions ŷ(0)(t) and ẑ(0)(t) as prediction, and then to
solve a series of correction equations in the integral form based on equations (3.4). Each correction improves
the accuracy of numerical solutions from the previous iteration.

In our description of InDC, we let ŷ
(k)
m , ẑ

(k)
m , ê

(k)
m , d̂

(k)
m denote the numerical approximations (with hat) to

the exact solutions and error functions. We use subscript m to denote the location τm of the quadrature points
and use superscript (k) to denote the prediction (k = 0) and correction loops (k = 1, · · · ). We let · denote the
vector on InDC quadrature nodes (τ1, · · · τM ), for example, y = (y1, · · · , yM ).

3.2 InDC-IMEX1 method

In this subsection, we consider InDC method constructed using implicit-explicit Euler method, applied to (1.2).
We use uniformly distributed quadrature nodes τ1, ..., τM from equation (3.1) excluding the left-most end-

point.

1. (Prediction step) Use the first implicit-explicit Euler method to compute

ŷ(0) = (ŷ
(0)
1 , ..., ŷ(0)m , ..., ŷ

(0)
M ), ẑ(0) = (ẑ

(0)
1 , ..., ẑ(0)m , ..., ẑ

(0)
M )

as the approximations of the exact solution y = (y1, · · · , ym, · · · , yM ) and z = (z1, · · · , zm, · · · , zM ) at
quadrature nodes τ1, ..., τM . This gives

ŷ
(0)
m+1 = ŷ

(0)
m + hf(ŷ

(0)
m , ẑ

(0)
m ),

εẑ
(0)
m+1 = εẑ

(0)
m + hg(ŷ

(0)
m+1, ẑ

(0)
m+1),

(3.6)

for m = 0, 1, ...M − 1.

2. (Correction loop). For k = 1, ...,K (K is the number of the correction step), let ŷ(k−1) and ẑ(k−1) denote
the numerical solutions at the (k − 1)th correction.
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(a) Denote the error function at the (k − 1)th correction e(k−1)(t) = y(t) − ŷ(k−1)(t), where y(t) is
the exact solution and ŷ(k−1)(t) is a (M − 1)th order polynomial interpolating ¯̂y(k−1) at quadrature
nodes τ1, ..., τM . Similarly denote d(k−1)(t) = z(t) − ẑ(k−1)(t). The initial conditions for these

error functions are zero, i.e. ê
(k−1)
0 = 0 and d̂

(k−1)
0 = 0,∀k. Let δ(k−1)(t) and ρ(k−1)(t), ∆f (k−1)

and ∆g(k−1) be defined by equations (3.3) and (3.5) respectively, but with the upper script (0)

replaced with (k−1). We compute the numerical error vector ¯̂e(k−1) = (ê
(k−1)
1 , ..., ê

(k−1)
M ) with ê

(k−1)
m

approximating e(k−1)(τm) by applying the first order IMEX R-K method with Butcher table specified
in (3.14) to the integral form of (3.4),

ê
(k−1)
m+1 = ê

(k−1)
m + h∆f

(k−1)
m +

∫ τm+1

τm
δ(k−1)(s)ds,

εd̂
(k−1)
m+1 = εd̂

(k−1)
m + h∆g

(k−1)
m+1 +

∫ τm+1

τm
ρ(k−1)(s)ds,

(3.7)

where ∫ τm+1

τm
δ(k−1)(s)ds =

∫ τm+1

τm
f(ŷ(k−1)(s), ẑ(k−1)(s))ds− ŷ(k−1)m+1 + ŷ

(k−1)
m ,∫ τm+1

τm
ρ(k−1)(s)ds =

∫ τm+1

τm
g(ŷ(k−1)(s), ẑ(k−1)(s))ds− εẑ(k−1)m+1 + εẑ

(k−1)
m .

(3.8)

Integral terms
∫ τm+1

τm
on the right hand side of equations (3.8) are approximated by a numerical

quadrature, in particular by an interpolary quadrature formula. Especially, let S be the integration
matrix, its (m, l) element is

Sm,l =
1

h

∫ τm+1

τm

αl(s)ds, for m = 0, · · · ,M − 1, l = 1, · · ·M,

where αl(s) is the Lagrangian basis function based on the node τl, l = 1, · · ·M . Analytical expression
of Sm,l can be given, which does not depends on h,

Sm,l =

∫ m+1

m

∏
j 6=l

θ − j
l − j

dθ, for m = 0, · · · ,M − 1, l = 1, · · ·M,

Let

Sm(f) =

M∑
j=1

Sm,jf(yj , zj), (3.9)

then

hSm(f)−
∫ τm+1

τm

f(y(s), z(s))ds = O(hM+1),

for any smooth function f . In other words, the quadrature formula given by hSm(f) approximates

the exact integration with (M + 1)th order of accuracy locally.

(b) Update the approximate solutions

ŷ(k) = ŷ(k−1) + ê(k−1), ẑ(k) = ẑ(k−1) + d̂
(k−1)

. (3.10)

Note that from equations (3.7), (3.8), (3.10) and using the notation introduced in equation (3.9), we get

ŷ
(k)
m+1 = ŷ

(k)
m + h∆f

(k−1)
m + hSm(f̂

(k−1)
),

εẑ
(k)
m+1 = εẑ

(k)
m + h∆g

(k−1)
m+1 + hSm(ĝ(k−1)).

(3.11)

This completes the description of the InDC-IMEX1 method.
Note that in practice k is chosen in such a way that there is no further improvement in order of convergence

when increasing it. The precise relation between k and M and the order of accuracy of the method will be
reported later.

Remark 3.1. The assumption of GSA guarantees, in the case ε = 0 (as in (3.11)), that the approximate

solutions in the prediction step k = 0 satisfy the equation g(ŷ
(0)
m , ẑ

(0)
m ) = 0, and this implies ẑ

(0)
m = G(ŷ

(0)
m ), ∀m

(see Remark 2.5).
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Consequently in the first correction step for k = 1, by (3.5), the second equation in system (3.11) is reduced
to

∆g
(0)
m = 0 ∀m = 0, · · · ,M. (3.12)

and this guarantees that ĝ(1) = 0, i.e. g(ŷ
(1)
m , ẑ

(1)
m ) = 0, ∀m. By Remark 2.5, we get ẑ

(1)
m = G(ŷ

(1)
m ),∀m =

0, · · · ,M . A similar argument can be given to show that ĝ(k) = 0, for k = 2, · · · ,K. Hence, again by Remark

2.5, we have g(ŷ
(k)
m,0, ẑ

(k)
m,0) = 0, i.e.,

ẑ
(k)
m,0 = G(ŷ

(k)
m,0), ∀k = 0, · · ·K, ∀m = 0, · · · ,M.

Therefore, the updating of ŷ
(k)
m+1 represents the correction step for a non-stiff ordinary differential equation of

the form (2.3), i.e.,

ŷ
(k)
m+1 = ŷ(k)m + h(f(ŷ(k)m )− f̂(y(k−1)m )) + hSm(

¯̂
f (k−1))

where f(·) = f(·,G(·)). Then by Remark 2.5 b) and by classical results in the InDC framework for non-stiff
ordinary differentia equations (Theorem 4.1 in [14] for details), we obtain the classical increasing order of
accuracy for the y and z-component, i.e.,

e
(K)
n

.
= ŷ

(K)
n − y(tn) = O(Hmin(k+2,M)), d

(k)
n

.
= ẑ

(K)
n − z(tn) = O(Hmin(k+2,M)). (3.13)

with k ≤M . In a straightforward manner, in the next section we will generalize this result.

In the next section we show that InDC IMEX R-K methods can be rewritten as standard IMEX R-K schemes.

3.3 Reformulation of InDC-IMEX methods

In [13], the InDC method constructed with explicit or implicit R-K methods in the prediction and correction
steps has been reformulated as a high-order explicit or implicit R-K method whose Butcher tableau is explicitly
constructed.

Similarly in this section we show as an InDC method constructed by a standard IMEX R-K method can be
re-written as an IMEX R-K one. We first present the reformulation of InDC-IMEX1 methods constructed from
first order classical IMEX R-K schemes as an IMEX method with the corresponding Butcher tableau for the
explicit and implicit parts.

We start to give a list of a classical first order IMEX R-K schemes given by a double Butcher tableau (2.10)
corresponding to the implicit and explicit part of the method for different types, (2.3) and (2.4). Furthermore
we emphisize which of these schemes are GSA.

• First order IMEX R-K method of type ARS (particular case of CK), it is GSA, [1]:

0 0 0
1 1 0

1 0

0 0 0
1 0 1

0 1
. (3.14)

• First order IMEX R-K method of type A, it is GSA:

0 0 0
1 1 0

1 0

1 1 0
1 0 1

0 1
. (3.15)

• First order IMEX R-K method of type A, it is not GSA, [28]:

0 0
1

1 1
1
. (3.16)

Note that scheme (3.14) is the implicit-explicit Euler method, i.e. Eq. (3.6), applied to problem (1.2). Scheme
(3.15) is not used in the literature, because it not efficient. It is reported here only as an example of first order
type A scheme which is GSA. As we shall see, InDC IMEX methods based on GSA schemes maintain the
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accuracy as ε→ 0, while the InDC IMEX R-K method based on a non GSA scheme (3.16) shows a degradation
of accuracy.

We first present the reformulation of InDC-IMEX1 method constructed by scheme (3.14), and prove that the
corresponding InDC is an IMEX R-K method of type ARS and it is GSA. We call it InDC-IMEX1-GSA-ARS.

First we present the Butcher tableau for the InDC-IMEX1-GSA-ARS method with one loop of correction
step as an example. This takes the form

0 0 0T 0T

c 1
M T̃ O

c 0 P̃ T̃

0 b̃T1 b̃T2

0 0 0T 0T

c 0 T O
c 0 P T

0 bT1 bT2

(3.17)

where c = 1
M [1, · · · ,M ]

T
, 0 and 1 are vectors with 0 and 1 entries respectively, having the same size as c. O

is a M ×M matrix of zeros, T , T̃ , P and P̃ are M ×M matrices, with

T̃ =
1

M


0 0 0 . . . 0
1 0 0 . . . 0
...

...
. . .

...
...

1 1 1 . . . 0

 , T =
1

M


1 0 0 . . . 0
1 1 0 . . . 0
...

...
. . .

...
...

1 1 1 . . . 1

 ,
and P̃ = S − T̃ , P = S − T , where the matrix S is constructed such that its entries Sij =

∫ ti
t0
αj(s)ds =∑i−1

k=0 S
k,j with αj(s) the Lagrangian basis functions for the node τj . The vectors b̃T1 , b̃T2 , bT1 and bT2 are taken

so that they are the last rows of the matrices P̃ , T̃ , P and T . Furthermore, the method (3.17) has the same
nodes c in implicit and explicit parts and the weights b̃Ti 6= bTi , for i = 1, 2. As an example, we show the
Butcher table for InDC-IMEX1-GSA-ARS method with M = 2 and with one correction loop below. Note that
S = [3/4,−1/4; 1, 0] for M = 2.

0 0 0 0 0 0
1/2 1/2 0 0 0 0
1 1/2 1/2 0 0 0

1/2 0 3/4 −1/4 0 0
1 0 1/2 0 1/2 0

0 1/2 0 1/2 0

0 0 0 0 0 0
1/2 0 1/2 0 0 0
1 0 1/2 1/2 0 0

1/2 0 1/4 −1/4 1/2 0
1 0 1/2 −1/2 1/2 1/2

0 1/2 −1/2 1/2 1/2

. (3.18)

The same conclusion holds for the InDC method constructed with the first order IMEX R-K schemes (3.15).
We obtain a InDC IMEX R-K scheme denoted as InDC-IMEX1-GSA-A. It can be shown, by similar argument
presented for the previous scheme, that the assembled matrix A of the implicit part in the table Butcher tableau,
for the InDC-IMEX1-GSA-A method, is invertible, and, at the end, we obtain a IMEX R-K method of type A
which is GSA.

As an example, we show below the double Butcher tableaus for the InDC-IMEX1-GSA-A method with
M = 2 and with one loop of correction only. The tableaus, obtained by an using an algebraic manipulator from
Eq. (3.11), show that the InDC IMEX R-K scheme is of type A and is GSA.

0 0 0 0 0 0 0 0 0
1/2 1/2 0 0 0 0 0 0 0
1/2 1/2 0 0 0 0 0 0 0
1 1/2 0 1/2 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1/2 0 3/4 0 −1/4 0 0 0 0
1/2 0 3/4 0 −1/4 0 0 0 0
1 0 1/2 0 0 0 1/2 0 0
1 0 1/2 0 0 0 1/2 0 0

1/2 1/2 0 0 0 0 0 0 0
1/2 0 1/2 0 0 0 0 0 0
1 0 1/2 1/2 0 0 0 0 0
1 0 1/2 0 1/2 0 0 0 0

1/2 0 1/4 0 −1/4 1/2 0 0 0
1/2 0 1/4 0 −1/4 0 1/2 0 0
1 0 1/2 0 −1/2 0 1/2 1/2 0
1 0 1/2 0 −1/2 0 1/2 0 1/2

0 1/2 0 −1/2 0 1/2 0 1/2

. (3.19)

Finally, we consider an InDC IMEX R-K method constructed by using the first order IMEX scheme (3.16)
which is not GSA. The InDC method is denoted by InDC-IMEX1-NGSA-A. For such an scheme, we show that
the assembled matrix A of the implicit part in the Butcher table is non-invertible.
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Similaly as an example, we consider InDC-IMEX1-NGSA-A constructed by using M = 2 and with one loop
of correction only.

Then, the corresponding Butcher tables can be assembled as

0 0 0 0 0 0 0 0 0
1/2 1/2 0 0 0 0 0 0 0
1/2 1/2 0 0 0 0 0 0 0
1 1/2 0 1/2 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1/2 −1/2 3/4 0 −1/4 1/2 0 0 0
1/2 −1/2 3/4 0 −1/4 1/2 0 0 0
1 −1/2 1 −1/2 0 1/2 0 1/2 0
−1/2 1 −1/2 0 1/2 0 1/2 0

1/2 1/2 0 0 0 0 0 0 0
1/2 1/2 0 0 0 0 0 0 0
1 1/2 0 1/2 0 0 0 0 0
1 1/2 0 1/2 0 0 0 0 0

1/2 −1/2 3/4 0 −1/4 1/2 0 0 0
1/2 −1/2 3/4 0 −1/4 1/2 0 0 0
1 −1/2 1 −1/2 0 1/2 0 1/2 0
1 −1/2 1 −1/2 0 1/2 0 1/2 0

−1/2 1 −1/2 0 1/2 0 1/2 0

.(3.20)

Notice that the size of the Butcher matrices (3.19) and (3.20) is 2∗M ∗(K+1), in comparison with M ∗(K+1)

for the Â matrix for InDC-IMEX1-GSA-ARS methods, where the factor 2 is due to the fact that we need an
extra row to compute solutions at InDC quadrature points. When the method is not GSA, the last stage of
IMEX is not the updated solution at quadrature nodes, hence we need one more row to represent solutions at
quadrature nodes, see Row 2, 4, 6 and 8 in the implicit matrix presented in (3.20). Besides these extra rows,
the construction of the assembled Butcher tableau is in a similar way as those in eq. (3.18) and (3.19). Notice
that in matrix (3.20) for row 2, 4, 6, 8, the diagonal entries are 0 for the implicit part of the Butcher Tableau,
i.e. the assembled matrix of the implicit part is not invertible.

Then for the InDC-IMEX1-GSA schemes constructed with first order IMEX schemes GSA (3.14)-(3.15), we
have the following proposition regarding the invertibility of the assembled matrix of the implicit part.

Proposition 3.2. (Invertibility of implicit assembled matrix) Consider the InDC method constructed with a
first order IMEX R-K methods of type A or CK.If the quadrature nodes used in the InDC method exclude the
left-most point and the first order IMEX R-K method is GSA, then the InDC-IMEX1-GSA method is an IMEX
R-K of type A or CK and it is GSA with the assembled matrix A or Â in the implicit part being invertible.

Proof. First the statement is true for the scheme with only one correction loop, as seen from the Butcher tables
presented in eq. (3.18). Such results can be generalized to the InDC method with general K correction loops,

with a lower triangular matrix Â of size M(K + 1) and

Â =


T
P T
O P T

· · ·
O · · ·O P T

 , (3.21)

whose diagonal entries are diagonal entries of T and are 1
M , i.e. nonzero. Hence we have the invertibility of Â.

Notice that the InDC method is also GSA, i.e. the last rows of the assembled matrices Ã and Â are the same
as the b̃T and bT vectors.

In a similar fashion, we prove for IMEX schemes of type A, where the assembled matrix A is similar to
(3.21), with size 2M(K + 1).

In the next section we extend this previous result for InDC IMEX R-K schemes constructed by considering
arbitrary order s-stage IMEX R-K.

3.4 InDC Methods constructed with IMEX R-K methods

We describe in general how we apply s-stage IMEX R-K methods in correction loops in an InDC framework.
We assume double Butcher tables for the IMEX R-K method as specified in Section 2. For the internal stages,
we introduce the integration and interpolation matrices, which are based on the use of the same set of nodes
for each interval, more precisely, in interval [τm, τm+1] we assume that the nodes are located at τm + cih, where
ci, i = 1, · · · s, do not depend on the interval m. Then we have:

hSci,k =

∫ τm+cih

τm

αk(s)ds, P ci,k = αk(τm + cih), (3.22)
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Similarly:

hS c̃i,k =

∫ τm+c̃ih

τm

αk(s)ds, P c̃i,k = αk(τm + c̃ih), (3.23)

∀m = 0, · · · ,M − 1, ∀k = 1, · · ·M, ∀i = 1, · · · s, where αj(s) is the Lagrangian basis function based on the
node τj . Let

Sci(f) =

M∑
j=1

Sci,jf(yj , zj), P ci(f) =

M∑
j=1

P ci,jf(yj , zj),

S c̃i(f) =

M∑
j=1

S c̃i,jf(yj , zj), P c̃i(f) =

M∑
j=1

P c̃i,jf(yj , zj).

Then

hSci(f)−
∫ τm+cih

τm

f(y(s), z(s))ds = O(hM+1), P ci(f)− f(y(τm + cih), z(tm + cih)) = O(hM ),

and similarly,

hS c̃mi(f)−
∫ τm+c̃ih

τm

f(y(s), z(s))ds = O(hM+1), P c̃mi(f)− f(y(τm + c̃ih), z(τm + c̃ih)) = O(hM ),

for any smooth function f . In other words, the quadrature formula given by hSci(f) approximates the exact

integration with (M +1)th order accuracy locally, while the interpolation formula given by P ci(f) approximates

the exact solution at R-K internal stages with M th order accuracy.
We compute the numerical errors approximating the error functions e(k−1)(τm), d(k−1)(τm) with an IMEX

R-K method to (3.4),

(
ê
(k−1)
m+1

εd̂
(k−1)
m+1

)
=

 ê(k−1)m + h

∫ 1

0

δ(τm + τh)dτ

εd̂(k−1)m + h

∫ 1

0

ρ(τm + τh)dτ

+ h


s∑
i=1

b̃i ∆K̂(k−1)
mi

s∑
i=1

bi ∆L̂(k−1)
mi

 , (3.24)

with (
∆K̂(k−1)

mi

∆L̂(k−1)
mi

)
.
=

(
f(Ŷ

(k)
mi , Ẑ

(k)
mi )− P c̃i(f̂

(k−1)
)

g(Ŷ
(k)
mi , Ẑ

(k)
mi )− P ci(ĝ

(k−1))

)
. (3.25)

Here we set
Ŷ

(k)
mi = P c̃i(ŷ(k−1)) + Ê

(k−1)
mi , Ẑ

(k)
mi = P ci(ẑ(k−1)) + D̂

(k−1)
mi , (3.26)

with

(
Ê

(k−1)
mi

εD̂
(k−1)
mi

)
=

 ê(k−1)m + h

∫ c̃i

0

δ(τm + τh)dτ

εd̂(k−1)m + h

∫ ci

0

ρ(τm + τh)dτ

+ h


i∑

j=1

ãij ∆K̂(k−1)
mj

i∑
j=1

aij ∆L̂(k−1)
mj

 . (3.27)

The integral terms in the system (3.24) can be approximated by quadrature rules, then we can rewrite (3.24)
and (3.27) as  ŷ

(k)
m+1 − hS

m,(k−1)
f̂

εẑ
(k)
m+1 − hS

m,(k−1)
ĝ

 =

(
ŷ(k)m

εẑ(k)m

)
+ h


s∑
i=1

b̃i ∆K̂(k−1)
mi

s∑
i=1

bi ∆L̂(k−1)
mi

 , (3.28)
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 Ŷ
(k)
mi − hS

c̃i,(k−1)
f̂

εẐ
(k)
mi − hS

ci,(k−1)
ĝ

 =

(
ŷ(k)m

εẑ(k)m

)
+ h


i∑

j=1

ãij∆K̂(k−1)
mj

i∑
j=1

aij∆L̂(k−1)
mj

 , (3.29)

with  S
m,(k−1)
f̂

= Sm(f̂
(k−1)

)

εS
m,(k−1)
ĝ = Sm(ĝ(k−1))

 ,

 S
c̃i,(k−1)
f̂

= S c̃i(f̂
(k−1)

)

εS
ci,(k−1)
ĝ = Sci(ĝ(k−1))

 . (3.30)

The double Butcher tableaus for the InDC methods constructed with high order IMEX R-K can be assembled
just as done for the InDC-IMEX1 method. They are of size related to the number of quadrature points M as
well as the number of stages s of the IMEX R-K method. Below we present Proposition 3.3 as a general result
regarding the invertibility of the implicit part of assembled Butcher tableau. We choose not to present the
assembled Butcher table for the InDC method constructed with high order IMEX R-K to save space. For
example, to construct a Butcher table of InDC IMEX2 method with four quadrature points and one correction
loop, the assembled matrix will be at least of size 17×17. For the construction of classical InDC methods using
high order R-K methods, the reader can consult the reference [13].

Proposition 3.3. (Invertibility of the implicit assembled matrices A Â) Consider the InDC method constructed
with IMEX R-K methods of type A or CK with invertible matrix A or Â in implicit part of Butcher tableau,
respectively. If the quadrature nodes used in the InDC method exclude the left-most point and the IMEX
R-K method is GSA, then the InDC method is a IMEX R-K method of type A or CK and it is GSA with the
assembled matrix A or Â in the implicit part being invertible.

Proof. The proof is similar to that for Proposition 3.2. We first consider the case of type ARS, which is a special
case of type CK. We let Â with size σ be the invertible sub-matrix in the implicit part of the InDC Butcher
table and Â with size s be the invertible matrix in the implicit part of IMEX method used to construct the
InDC-IMEX method. Then σ = s ∗M ∗ (K + 1), where M is the number of quadrature points and K is the
number of correction loops. For example, for the InDC method constructed with IMEX2 method (5.1) with

M = 2 and K = 1, s = 2, then σ = 8. Â can be constructed with a similar structure as shown in eq. (3.21),
where T is of size s ∗M and it’s block triangular. Its diagonal blocks (M of them) are matricies Â of the IMEX
R-K scheme (of size s) scaled by the size of subinterval 1/M . Recall from classical linear algebra that, the
determinant of a block triangular matrix is the product of the determinants of diagonal blocks. Therefore,

det(T ) = (
1

M
det(Â))M 6= 0,

due to the invertibility of the matrix A of the IMEX R-K method used to construct the InDC IMEX one. Hence,
det(Â) = det(T )K+1 6= 0, i.e. Â is invertible. Finally, b̃T and bT vectors come from the last row of Butcher

tableaus Ã and Â, therefore the InDC method is GSA too. Similar results can be obtained for the type A and
type CK.

Remark 3.4. Note that the assumptions in Proposition 3.2 and 3.3 provide a sufficient condition to guarantee
the invertibility of implicit assembled matrix A or Â. In particular, it has been pointed out in [3] that the
invertibility of matrix A or submatrix Â of the IMEX R-K method, is an essential hypothesis for the error
analysis for IMEX R-K methods of different types, otherwise error estimates no longer holds.

In the following proposition, by Proposition 3.3 and Remark 3.1, we can generalize the estimates (3.13) for
the corresponding InDC method constructed with GSA IMEX R-K type A or type CK method, in the case of
ε = 0, (reduced problem).

Proposition 3.5. Consider that the reduced system (2.2) with ε = 0 satisfies (2.1) and with consistent initial
values. Consider the InDC IMEX R-K method constructed by GSA IMEX R-K methods of type CK or A. Then
the global error after K correction loops satisfies the following estimates

e
(K)
n

.
= ŷ

(K)
n − y(tn) = O(Hmin(sK ,M)) d

(k)
n

.
= ẑ

(K)
n − z(tn) = O(Hmin(sK ,M)), (3.31)

with ŷ
(K)
n and ẑ

(K)
n being the numerical solution of the InDC methods at time tn after K corrections, sK =∑K

k=0 p
(k), and H = Mh is one InDC time step. The estimates hold uniformly for H ≤ H0 and nH ≤ Const.
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Proof. From Proposition 3.3 and Remark 2.5 b), we get the estimates (3.31).

Note that if the IMEX R-K method is not GSA, the assembled matrix for the InDC-IMEX R-K method is
not invertible and by Remark 2.5 and 3.1, the error estimates (3.31) in general are not satisfied and an order
reduction for the case reduced problem (2.2) (ε = 0) is observed.

4 Error estimates of InDC methods constructed with IMEX R-K

In this section, we present the main theoretical result in the form of a theorem. On the contrary to what has
been done in [6], our idea here is to extend the error analysis of IMEX R-K methods applied to SPPs obtained
in [3], to InDC methods constructed by IMEX R-K methods. In particular, we use the global error estimate
results of IMEX methods for SPPs from [3] to InDC-IMEX methods by the fact that an InDC-IMEX method
can be viewed as an IMEX R-K method with assembled Butcher tableaus, as discussed in the previous section,
to obtain global error estimates for InDC-IMEX methods.

Then, as in [3], in the main thorem, we estimate the global errors of the InDC-IMEX method

e(K)
n,ν

.
= ŷ(K)

ν (tn)− yν(tn), d(K)
n,ν

.
= ẑ(K)

ν (tn)− zν(tn), ν = 0, 1

where ŷ
(K)
ν (tn) and ẑ

(K)
ν (tn) are the ν-th term in the ε-expansion of the numerical solution of the InDC-IMEX

method with the K correction steps at some final time tn. Note that the estimates for the case ν = 0 has been
provided in the Proposition 3.5.

Theorem 4.1. Consider the stiff system (1.2), (2.1) with well-prepared initial values y(0), z(0) admitting
a smooth solution. Consider the InDC method constructed with M uniformly distributed quadrature nodes
excluding the left-most point and a globally stiffly accurate IMEX R-K method of order p(0) of type A or CK.
Apply IMEX R-K methods of different classical orders (p(1), p(2), . . . , p(K)) in the correction loops, k = 1, · · ·K.
Assume that each of these IMEX R-K methods in the correction loops are globally stiffly accurate. Then the
global error after K correction loops satisfies the following estimates

e
(K)
n

.
= ŷ(K)(tn)− y(tn) = O(Hmin(sK ,M)) +O(εH),

d
(K)
n

.
= ẑ(K)(tn)− z(tn) = O(Hmin(sK ,M)) +O(εH),

(4.1)

where ŷ(K)(tn) and ẑ(K)(tn) are the numerical solutions of the InDC methods at tn, for ε ≤ cH and for any

fixed constant c > 0, sK =
∑K
k=0 p

(k), and H = Mh is one InDC time step. The estimates hold uniformly for
H ≤ H0 and nH ≤ Const.

Now we give the following proposition as a consequence of the Lemma 5.1 and theorem 5.2, and 6.2 in [3].
The main Theorem 4.1 follows from this result.

Proposition 4.2. Consider a GSA IMEX R-K method of type A or CK, with b̃i 6= bi, for i = 1, . . . , s, and let
p be the order of the explicit part of the scheme. Apply this method to the general problem (1.2), under the
hypothesis (2.1) with initial values consistent and such that the problem (1.2) admits a smooth solution. Then,
for any fixed constant C, the global error satisfies for ε < Ch

ŷn − y(tn) = O(hp) +O(εh), ẑn − z(tn) = O(hp) +O(εh), (4.2)

These estimates hold uniformly for h ≤ h0 and nh < C for any fixed constant C > 0.

Proof. The proof of this Proposition is obtained by combining Remarks 2.5 a) b) and by the results in Theorem
5.2 and 6.2 in [3].

Proof of Theorem 4.1. By Proposition 3.3, the InDC IMEX R-K method constructed by a GSA IMEX
R-K method of type A or CK can be viewed as an IMEX R-K method of type A or CK and is GSA. Then
the hypothesis of Proposition 4.2 are satisfied for the InDC IMEX R-K scheme. The estimates (4.1) are a
consequence of Proposition 3.5 and 4.2.

We point out that the simplest InDC scheme is constructed by repeated use of the same IMEX scheme of
order p, and the optimal choice of M is given by M = sK = p(K+1). This is our choice in the PDE applications
presented in the paper.
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5 Numerical evidence and PDE applications

In this section, we consider the following InDC IMEX methods for stiff ODEs and PDEs. Below we present a
list of IMEX R-K methods that are used in the InDC framework. These include first order GSA IMEX method
of type A and ARS, and first order IMEX method of type A but not GSA. For high order IMEX methods,
we choose methods of type CK or ARS. We decide not to use high order GSA IMEX R-K methods of type A,
because they are more expensive compared with methods of type CK and ARS. In fact, the construction of
such methods involves many internal stages. For example for a second order GSA IMEX R-K method of type
A, we require more than three (s > 3) internal stages. In fact, in [5] the authors proved that it is not possible
to construct second order GSA IMEX R-K methods of type A with three internal stages.

InDC method embedded with a first order IMEX.

• We let InDC-IMEX1-GSA-ARS-M-k denote the InDC methods embedded with first order (p = 1) GSA
IMEX R-K scheme of type ARS (3.14) with M quadrature points and k correction steps.

• We let InDC-IMEX1-NGSA-M-k denote the InDC methods embedded with first order (p = 1) non globally
stiffly accurate IMEX R-K scheme (3.16) with M quadrature points and k correction steps. The first
order non globally stiffly accurate IMEX R-K method of type A (IMEX1-NGSA) has the following double
Butcher tableau

• We let InDC-IMEX1-GSA-A-M-k denote the InDC method constructed with first order (p = 1) GSA
IMEX R-K scheme of type A (3.15) with M quadrature points and k correction steps.

InDC method embedded with a second order IMEX.

• We let InDC-IMEX2-ARS-M-k denote the InDC method constructed with the second order globally stiffly
accurate IMEX R-K method of type ARS with the following double Butcher tableau

0 0 0 0
γ γ 0 0
1 δ 1− δ 0

δ 1− δ 0

0 0 0 0
γ 0 γ 0
1 0 1− γ γ

0 1− γ γ

, (5.1)

where γ = 1 −
√
2
2 and δ = 1 − 1/(2γ), with k correction steps and M quadrature points. This method

has order p = 2.

• We let InDC-IMEX2-CK-M-k denote the InDC method constructed with a second order globally stiffly
accurate method of type CK with the following double Butcher tableau and γ = 1−

√
2/2

0 0 0 0
2/3 2/3 0 0
1 1/4 3/4 0

1/4 3/4 0

0 0 0 0
2/3 2/3− γ γ 0
1 1/4 + γ/2 3/4− 3γ/2 γ

1/4 + γ/2 3/4− 3γ/2 γ

. (5.2)

with k correction steps and M quadrature points. This method has order p = 2.

InDC method embedded with a third order IMEX.

• We let InDC-IMEX3-ARS-M-k denote the InDC method constructed with a third order globally stiffly
accurate method of type ARS with the following double Butcher tableau

0 0 0 0 0 0
1/2 1/2 0 0 0 0
2/3 11/18 1/18 0 0 0
1/2 5/6 −5/6 1/2 0 0
1 1/4 7/4 3/4 −7/4 0

1/4 7/4 3/4 −7/4 0

.

0 0 0 0 0 0
1/2 0 1/2 0 0 0
2/3 0 1/6 1/2 0 0
1/2 0 −1/2 1/2 1/2 0
1 0 3/2 −3/2 1/2 1/2

0 3/2 −3/2 1/2 1/2

(5.3)

in the prediction and k correction steps and M quadrature points. This method is stiffly accurate with
order p = 3.

16



The indicated order of convergence by Theorem 4.1 for the y and z components in the SPPs are summa-
rized in Table 5.1. For the InDC-IMEX1-GSA-ARS-M-k and InDC-IMEX1-GSA-A-M-k methods, the order
of convergence will increase with k for the ε0 error term when ε � H and k ≤ M − 1, leading to a term of
Hmin(k+1,M) for the differential and algebraic component.Similar comments apply to the InDC-IMEX2-ARS-M-
k, InDC-IMEX2-CK-M-k, as well as the InDC-IMEX3-ARS-M-k with the order of accuracy for the first error
term increased by 2 or 3 per correction step respectively. The order of convergence for the ε1 error term is εH
for all schemes we consider here. Note that for those InDC-IMEX methods with the same order of accuracy
for the index 1 problem (i.e. when ε = 0), the complexity measured by the number of function evaluations is
comparable. For example, when M = 8, the number of function evaluations for the InDC-IMEX1-GSA-ARS-
8-7, InDC-IMEX2-ARS-8-3, InDC-IMEX2-CK-8-3 are the same. Note that all of these methods achieve eighth
order accuracy for the index 1 problem when ε = 0. On the other hand, the number of function evaluations
for InDC-IMEX1-GSA-A-8-7 is twice as much as InDC-IMEX1-GSA-ARS-8-7, e.g. see the number of stages in
Butcher tableaus in (3.18) and (3.20). From the computational cost point of view, the InDC-IMEX1-GSA-ARS
method is preferred. For the sake of completeness, we present results for the InDC-IMEX1-GSA-A method for
the ODE Van der Pol equation, but not for the PDE examples.

Table 5.1: Global error predicted by Theorem 4.1 with H � ε.

Method y−comp z−comp

InDC-IMEX1-GSA-ARS-M-k Hmin(k+1,M) + εH Hmin(k+1,M) + εH

InDC-IMEX1-GSA-A-M-k Hmin(k+1,M) + εH Hmin(k+1,M) + εH

InDC-IMEX2-ARS-M-k Hmin(2(k+1),M) + εH Hmin(2(k+1),M) + εH

InDC-IMEX2-CK-M-k Hmin(2(k+1),M) + εH Hmin(2(k+1),M) + εH

InDC-IMEX3-ARS-M-k Hmin(3(k+1),M) + εH Hmin(3(k+1),M) + εH

5.1 Van der Pol example

For numerical verification, we test a standard nonlinear oscillatory test problem, Van der Pols equation with
well-prepared initial data up to O(ε3), [19]:{

y′ = z
εz′ = (1− y2)z − y ,

{
y(0) = 2
z(0) = − 2

3 + 10
81ε−

292
2187ε

2 (5.4)

and ε = 10−6.
Numerical observations in Figures 5.1 and 5.2 are consistent with Theorem 4.1 and Table 5.1. They produce

estimates for the y and z component in the form of equation (4.1). Especially, numerical results of InDC method
constructed with first order IMEX methods presented in Figure 5.1 and of InDC method constructed with high
order (second or third order) InDC-IMEX2-ARS-M-K presented in Figure 5.2, confirm the theoretical prediction
(4.1), i.e., if the IMEX method is GSA, the order of convergence for ε0 term for the y and z component increases
with the correction loops (that is sK with K the number of correction loops). However, such improvement for ε0

term is not true if the IMEX method is not globally stiffly accurate (see two panels in the top row of Figure 5.1
for InDC-IMEX1-NGSA method). Furthermore, in the estimate (4.1), the InDC-IMEX methods exhibit order
reduction both in differential and algebraic components (see Table 5.1 for every type of InDC method). This
phenomenon appears, since the ε1 term of the error behaves like O(εH) in (4.1) for both y and z components
(see in Figures 5.1 and 5.2). When H is very small, the O(εH) term is dominant in the estimates of y and
z-components respectively. Finally, we want to comment that, despite the same order of convergence, the
magnitude of errors of InDC-IMEX1-GSA-A-7-3 are much smaller than those of InDC-IMEX1-GSA-ARS-7-3.
As we mentioned earlier, the InDC-IMEX1-GSA-ARS method costs less number of function evaluations and is
more efficient.

5.2 PDEs examples

In this section we consider systems of the form (1.1), which may arise from a method of lines discretization
of PDEs. Notice that in PDEs applications, such as advection-diffusion problem, convection-diffusion-reaction
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Figure 5.1: Van der Pol equation. Global error (T = 0.5) of the InDC-IMEX1-NGSA-5-3 method (top
row), InDC-IMEX1-GSA-ARS-7-3 method (middle row), and InDC-IMEX1-GSA-A-7-3 method (bottom row).
ε = 10−6.

18



,

,

,

,

Figure 5.2: Van der Pol equation. Global error (T = 0.5) of the InDC-IMEX2-ARS-5-1 method (upper row),
of the InDC-IMEX2-ARS-7-2 method (the second row), of the InDC-IMEX2-CK-5-1 method (the third row),
and of the InDC-IMEX3-ARS-7-1 method (bottom row). ε = 10−6.
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systems and hyperbolic systems with relaxations, the structure of the problems is usually of additive form as
(1.1).

Example 5.1. (Advection-diffusion equation) As an example of advection-diffusion equation, we consider
the 1D viscous Burgers’ equation,

ut +

(
u2

2

)
x

=
1

R
uxx, R > 0. (5.5)

It contains a non-linear advection term (u2/2)x and a dissipation term uxx/R, where R is called the Reynolds
number. We remark that, when the Reynolds number is large, the convection term dominates the diffusion
term. The solution develops a sharp shock wave front after a certain time of propagation and when R → ∞
discontinuities appear. In this test problem we choose R = 0.1 so that the dissipation term dominates the
advection one and a smooth solution is produced.

The system (5.5), after a method of lines approach with Ui(t) = u(xi, t) and U(t) = (U1(t), U2(t), · · · , UN (t))T ,
has the form of (1.1). The convection term −(u2/2)x is considered as non-stiff and is integrated using the explicit
part of the method; it is discretized by high order finite difference discretization with Weighted-Essentially Non
Oscillatory (WENO) reconstruction [29]. The diffusion term uxx is considered stiff and is treated implicitly; it
is discretized by the standard fourth order finite difference technique, excepted at the nearby boundary points
where a 3-rd order formula was implemented.

To check the temporal order of convergence, we consider the periodic boundary condition and a smooth
initial condition u(x, 0) = sin(πx) with x ∈ [0, 1]. The equation has been integrated to time T = 0.02. Notice
that the solution drops dramatically from sin(πx) to zero within the first 0.05 second. The exact solution
of this problem was obtained by Cole [15] so that numerical comparison can be done. In the Tables 5.2 and
5.3, we show the L2 error and the corresponding order of convergence in time “Order” for a sequence of mesh
sizes ∆t = ∆x = 1/N . We use the InDC-IMEX1 method with one or two corrections, corresponding to a
second or third order time integration scheme and InDC-IMEX2-ARS-GSA-4-2 method with one correction,
corresponding to a fourth order scheme. The expected temporal order of convergence is numerically observed.

Table 5.2: Example 5.1. Accuracy test with the Burgers’ equationfor InDC- IMEX1-M-k GSA, with k = 1, 2
corrections.

Method ∆t L2 error Order
InDC-IMEX1-2-1 1/96 2.4551e− 02 −−
InDC-IMEX1-2-1 1/192 9.0755e− 03 1.435
InDC-IMEX1-2-1 1/384 2.7988e− 03 1.697
InDC-IMEX1-2-1 1/768 7.9568e− 04 1.814
InDC-IMEX1-2-1 1/1536 2.1206e− 04 1.907
InDC-IMEX1-3-2 1/3072 5.4748e− 05 1.953

InDC-IMEX1-3-2 1/96 6.9529e− 04 −−
InDC-IMEX1-3-2 1/192 2.2174e− 04 1.648
InDC-IMEX1-3-2 1/384 4.1888e− 05 2.404
InDC-IMEX1-3-2 1/768 6.5849e− 06 2.669
InDC-IMEX1-3-2 1/1536 9.1527e− 07 2.846
InDC-IMEX1-3-2 1/3072 1.2111e− 07 2.920

Next we consider hyperbolic systems with stiff relaxation. These systems have the form

Ut + F(U)x = 1
εG(U), (5.6)

where U ∈ RN , F ,G : RN → RN and the Jacobian matrix F ′(U) has real eigenvalues and admits a basis
of eigenvectors for all U ∈ RN and ε > 0 is the stiffness parameter. The operator G : RN → RN is called a
relaxation operator. (5.6) defines a relaxation system. For mathematical results concerning this kind of problems
we refer to [25] and [10]. Same as for the previous example, we discretize the system (5.6) by a finite difference
scheme with Ui(t) approximates the solution at grid point xi, i = 1, · · ·N and U(t) = (U1(t), U2(t), · · · , UN (t))T

be solutions at all grid points. With the method of line approach, U(t) satisfies a system in the form of (1.1),
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Table 5.3: Example 5.1. Accuracy test with the Burgers’ equation examplefor second order IMEX2-ARS GSA
method and InDC-IMEX2-ARS-GSA-M-k, with k = 1 correction.

Method N L2 error Order
InDC-IMEX2-ARS-GSA-4-2 1/48 7.6079e− 04 −−
InDC-IMEX2-ARS-GSA-4-2 1/96 2.7095e− 05 4.811
InDC-IMEX2-ARS-GSA-4-2 1/192 1.1064e− 06 4.614
InDC-IMEX2-ARS-GSA-4-2 1/384 5.5847e− 08 4.302
InDC-IMEX2-ARS-GSA-4-2 1/758 3.4640e− 09 4.010
InDC-IMEX2-ARS-GSA-4-2 1/1536 2.3912e− 10 3.856

where the function F (U) in (1.1) as a discretization of the convective term −F(U))x is being treated explicitly,
and G(U) as a discretization of the source term G(U) is being treated implicitly.

A prototype example that we will use to illustrate our theoretical findings is the following 2 × 2 nonlinear
hyperbolic system with relaxation ([7], [28], [10])

ut + f1(u, v)x = 0,
vt + f2(u, v)x = 1

εg(u, v).
(5.7)

System (5.7) is a particular case of (5.6) with U = (u, v)T , u ∈ Rn, v ∈ RN−n, n < N , F = (f1, f2)T and
G = (0, g)T . Note that system (5.7) possesses a unique local equilibrium, namely, g(u, v) = 0 implies v = q(u)
and, at the local equilibrium, one has the macroscopic system

ut + f1(u, q(u))x = 0. (5.8)

Equation (5.8) can be derived by sending ε in (5.7) to zero, the so-called zero relaxation limit, ([7], [28], [10]).
If we use a method of lines to (5.7), we get a ODE system of the form (1.1).

Example 5.2. Consider a linear system with stiff relaxation source term

∂tu+ ∂xv = 0,
∂tv + ∂xu = − 1

ε (v − bu), x ∈ [0, 2], t ∈ [0, T ],
(5.9)

with ε > 0 and b constant. Here F(U) = (v, u)T and G(U) = (0, (v − bu))T .
To gain an understanding of the system (5.9), we consider a formal expansion of solutions in the form

u = u0 + u1ε+O(ε2),
v = v0 + v1ε+O(ε2),

(5.10)

and insert it in (5.9). Collect leading terms in approximating the second equation of (5.9) (order ε0), we get
v0 = bu0, plug which into the first equation, we obtain ∂tu0 + b∂xu0 = 0. This equation is formally obtained
as ε → 0, and we call it reduced equation. Next, we consider the first-order correction to the leading term
approximation. By looking for the order ε correction to the approximation (5.9) we get Then, by keeping
first-order terms in the expansion (5.10) and neglecting second and higher order terms, we obtain a dissipative
evolutionary equation

v = bu− (1− b2)∂xu
∂tu+ b∂xu = ε∂x((1− b2)∂xu).

(5.11)

The second equation is a convection-diffusion equation with viscosity coefficient ν = ε(1−b2) and it is dissipative
if |b| ≤ 1 (subcharacteristc condition of Liu [10] for (5.9)).

Then motivated by this analysis we perform an accurate test for this problem considering well-prepared initial
data. Note that the initial conditions for the coefficients of ui(0) in (5.10) can be chosen arbitrarily, but there
is no freedom in the choice of vi(0). We let u0(x, 0) = sin(2πx), and u1(x, 0) = 0 with v0(x, 0) = bu0(x, 0) and
v1(x, 0) = (b2 − 1)∂xu(x, 0). Such initial data is consistent, i.e., g(u0(x, 0), v0(x, 0)) = (bu0(x, 0)− v0(x, 0)) = 0
for ε = 0.

We consider a periodic smooth solution and we set b = 0.5 and T = 0.2. The spatial discretization of the
domain has a fixed space mesh ∆x = 0.02. Our test problems are computed with coarse temporal grids that

21



10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

1

2

3

4

5

6

7

8

ε

 

 

2nd  Order

3rd Order

4th Order

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

1

2

3

4

5

6

7

8

ε

 

 

4th Order

2nd Order

Figure 5.3: Example 5.2. Convergence rate for u-component versus ε. Left: for the method InDC-IMEX1-M-k,
with M = 2, 3, 4 corresponding to k = 1, 2, 3 corrections respectively. Right: second order IMEX2-ARS method
GSA and InDC-IMEX2-ARS-GSA-M-k, with M = 4 and k = 0, 1 correction.

do not resolve small scales. High accuracy in space is obtained by finite difference discretization with WENO
reconstruction [29]. To compute the error, the exact solution is obtained by the Fourier series

Uex(x, t) =

+∞∑
`=−∞

U`(t)e
i`x, Vex(x, t) =

+∞∑
`=−∞

V`(t)e
i`x

with U`(t) and V`(t) satisfying the ODE system

U̇` = −i`V`,
V̇` = −i`U` − 1

ε (V` − bU`)
(5.12)

For each `, system (5.12) can be written as a 2x2 constant coefficient homogeneous system which can be solved
exactly. For the initial condition u(x, 0) = sin(2πx) and the corresponding one for v, it is sufficient to consider
` = 1 only to obtain the exact solution.

In Figure 5.3, we plot the temporal convergence rate of the u-component as a function of ε. Here order of
accuracy curves are obtained in the following way: on each curve and for each value of ε, the order of accuracy
is computed from measuring L1 errors computed by the difference between the exact solution and the numerical
one for two different time step sizes (∆t,∆t/2). Expected high order convergence rate is observed in the limiting
cases of ε→ 0 and ε ≈ 1 for the InDC-IMEX1-M-k when M = 2, 3, 4 and k = 1, 2, 3 and for the InDC-IMEX2-
ARS-GSA-M-k when M = 4 and k = 0, 1 respectively. We observe that the convergence rate is increased by
InDC correction iterations for sufficiently stiff parameters; however, for intermediate values of the parameter ε,
e.g., 10−4 < ε < 10−2, we have a deterioration of the accuracy, as we expect. This is an indication that these
InDC IMEX methods suffer from the phenomenon of order reduction in the mildly stiff regime (∆t = O(ε)),
when the classical order is greater than two [3, 4, 9]. From the practical point of view, the understanding of
this phenomenon is essential in situations where one is interested in the construction of higher order methods.
In the next example we will give a brief explanation of this lack of accuracy for mildly stiff regime.

Example 5.3. Consider a nonlinear hyperbolic system with relaxation [21, 7]

ht + wx = 0,
wt + (h+ 0.5h2)x = − 1

ε (w − 0.5h2),
(5.13)

where U = (h,w), F(U) = (w, (h + 0.5h2))T and G(U) = (0,−(w − 0.5h2))T . We consider a well-prepared
initial data given by h(0, x) = 1 + 0.2 sin(8πx) and w = w0 + εw1 with w0 = f(h(0, x)) = 0.5h2(0, x) and
w1 = (f ′(h(0, x)) − p′(h(0, x))∂xh(0, x) where p(h) = (h + 0.5h2). The initial conditions are designed to be
well-prepared in the same way as the previous example. The boundary condition is periodic. We evolve the
solution to Tfinal = 0.1 before the shock forms. We perform our numerical test using a fixed space mesh with
∆x = 0.01 for x ∈ [0, 1].
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Figure 5.4: Example 5.3. Convergence rate for h-component versus ε. Left: for the method InDC-IMEX1-M-k,
with M = 2, 3, 4 corresponding to k = 1, 2, 3 corrections respectively. Right: second order IMEX2-ARS method
GSA and InDC-IMEX2-ARS-GSA-M-k, with M = 4 and k = 1 correction.

In Fig. 5.4, we plot the temporal convergence rate as a function of ε, which is computed in the same fashion
as those in Fig. 5.3. Each point of the graph marked by a triangle in Figure 5.4 is given by the expression

orderh(ε) = log2(Eh/2(ε)/Eh(ε))

where the errors Eh/2 and Eh are computed for the same value of ε. For example, the values along the dashed
line in Figure 5.5 are used to compute the point on Figure 5.4 corresponding to ε = 10−4. A similar behavior
is observed as that in Fig. 5.3: order of convergence strongly depends on ε. In particular, for small and large
values of ε, the order of convergence is increased by InDC correction iterations, while for intermediate values of
ε, we observe that the order of convergence goes down to small values, even below 1.

We show now that this observation is not in contradiction with the theoretical prediction. We start observing
that if ε � h then a classical analysis can be used to estimate the global error, i.e. the classical global error
due to the presence of the small parameter ε is of the order O(h/ε)p, with p the order of the scheme. On the
other hand, as a natural consequence of the Proposition 4.2, if ε � h, the global error satisfies (4.2). As both
estimates about the global error have to be satisfied (see Figure 5.6), we have:

max
ε
errε . max

ε

(
min

(
O
(
h

ε

)p
,O(hp) +O(εh)

))
. (5.14)

Since the estimate is based on classical order (when h� ε) and on the asymptotic expansion in ε (when h� ε),
we do not expect it to be sharp in intermediate regime, when ε ≈ h. Then a simple calculation shows that the

uniform order is O(h
2p

p+1 ), where the worst case takes place where O(εh) = O((h/ε)p), i.e., for ε = ε∗ with

ε∗ = O(h
p−1
p+1 ). (5.15)

Therefore we get maxε errε = O(h
2p

p+1 ). This argument can be extended to InDC IMEX R-K methods using
the estimates (4.1) given in the Theorem 4.1 In this case we get that the uniform order is

max
ε
errε = O(h

2r
r+1 ) (5.16)

where r = min(M, sk) is the classical order of the InDC IMEX R-K.
In order to show that our numerical observations in Fig. 5.4 are not in contradiction with the theoretical

prediction eq. (5.16) of the uniform order, we produce two error plots of the fourth order method (InDC-
IMEX2-ARS-GSA-M-k, with M = 4 and k = 1) in Fig. 5.5. On the left panel, for each curve and for each
value of ε, we plot the L1 error, which is computed by comparing solutions for different values of time step, i.e.
Ei = ‖Sh/2i − Sh/2i−1‖L1 , for i = 1, 2, 3, 4. The blue circles are the values corresponding to maxε errε. A lack
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Figure 5.5: Example 5.3. Logarithm scale for the error versus the parameter ε with 10−8 ≤ ε ≤ 1 (left panel)
and ε∗ = arg(maxε errε) versus h (identified by −∗) and err(ε∗) versus h (identified by ”o”) (right panel). The
reference lines are linear curves with reference slopes 0.6 and 1.6 respectively. We used InDC-IMEX2-ARS-
GSA-M-k, with M = 4 and k = 1 correction.

of accuracy is observed in the intermediate regime when h is approximately of the same order of ε On the right
panel of Fig. 5.5, we act differently: for each h we plot ε∗ = arg(maxε errε(h)) (identified by stars) and errε∗

(identify by circles) as a function of ∆t. We compare it with the theoretical estimate (5.16). Using least square
best fit on the four blue points, the computed uniform order appears to be 1.92 while theoretical estimate (5.16)
predicts a uniform order 1.6 (blue continuous line in Fig. 5.5) for r = 4. Likewise, a best fit for four red stars
ε∗ ∝ hα, gives α = 0.78, while the theoretical prediction given in Eq. (5.15) gives α = (r − 1)/(r + 1) = 0.6
(red continuous line in Fig. 5.5) with r = 4. A similar behavior is obtained when adopting a third order scheme
r = 3 using a InDC-IMEX1- M-k, with M = 3 and k = 2. The computed uniform order is approximately
1.9, while theoretical prediction gives 1.5. There is a small discrepancy between the computed values and the
theoretical prediction. Such small discrepancy suggests that the estimate for the uniform order is not sharp.
The reason is not fully understood and deserves deeper analysis.

6 Conclusions

This paper studies the order of convergence of InDC-IMEX methods when applied to SSPs, using uniform
distribution of quadrature points excluding the left-most point. Since InDC methods have a similar structure to
R-K methods [13], we construct the InDC-IMEX R-K methods as IMEX R-K methods with enlarged assembled
Butcher tables and apply the convergence results in [3] directly to the InDC-IMEX R-K methods. Theoretical
results on global error estimates in the form of ε-expansion are presented. The InDC-IMEX schemes are applied
to the classical Van der Pol equations and PDE systems in order to illustrate our theoretical findings. In
particular the order reduction phenomenon is observed as expected for intermedia ε, while high order convergent
rates are observed in the asymptotic limit when ε→ 0 and when ε = O(1) (similarly as in [7]).

We also pointed out that the globally stiffly accurate property of the IMEX R-K scheme is an important
assumption: the fact that an IMEX RK is GSA guarantees that the assembled matrix of the corresponding
InDC IMEX R-K scheme based on it is invertible, and this in turn implies that the high order accuracy in the
limit as ε→ 0 is maintained. Note that the assumption of GSA provides a sufficient condition to guarantee the
invertibility of the assembled matrix. Although we do not know whether GSA property is necessary, we showed
an example of InDC scheme based on a non GSA IMEX R-K, which lacks such asymptotic accuracy property.

Furthermore, we showed that even if InDC IMEX R-K can in principle be re-written as IMEX-RK with
many stages, the actual implementation of such schemes as InDC IMEX R-K illustrated in the paper provides a
systematic way to construct high order IMEX RK schemes, which would be far too complicated to write down
as standard IMEX-RK schemes.
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Figure 5.6: Numerical global error (∗) and theoretical global errors (◦) versus ε. In this Figure “Taylor
expansion error” represents the global error given by the classical error analysis when ε � h, and the “ε-
expansion error” the global one given by the asymptotic analysis when ε� h . The “numerical error” has been
computed by a fourth order scheme, i.e. InDC-IMEX2-ARS-GSA-M-k, with M = 4 and k = 1 correction. This
plot is consistent with the estimate (5.14) with p = r = min(M, sk) = 4.
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