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Abstract

We study an optimal execution problem in illiquid markets with both instantaneous and

persistent price impact and stochastic resilience when only absolutely continuous trading

strategies are admissible. In our model the value function can be described by a three-

dimensional system of backward stochastic differential equations (BSDE) with a singular

terminal condition in one component. We prove existence and uniqueness of a solution to

the BSDE system and characterize both the value function and the optimal strategy in terms

of the unique solution to the BSDE system. Our existence proof is based on an asymptotic

expansion of the BSDE system at the terminal time that allows us to express the system in

terms of a equivalent system with finite terminal value but singular driver.

Keywords: stochastic control, multi-dimensional backward stochastic differential equation,

portfolio liquidation, singular terminal value
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1 Introduction and overview

Let T ∈ (0,∞). Let (Ω,F , (Ft)t∈[0,T ],P) be filtered probability space that carries a m-dimen-

sional standard Brownian motion W = (Wt)t∈[0,T ]. We assume throughout that (Ft)t∈[0,T ] is

the filtration generated by W completed by all the null sets and that F = FT . We denote

by L∞F (0, T ;Rd) and L∞F (Ω;C([0, T ];Rd)), respectively, the set of progressively measurable Rd-
valued, respectively, continuous processes that are essentially bounded. L2

F (0, T ;Rd) denotes

the set of progressively measurable Rd-valued processes (Yt)t∈[0,T ] such that E[
∫ T

0 |Yt|
2 dt] <∞,

and L2
F (Ω;C([0, T ];Rd)) denotes the subset of all such processes with continuous sample paths

such that E[supt∈[0,T ] |Yt|2] < ∞. All equations and inequalities are to be understood in the

P-a.s. sense.

∗Financial support through the CRC 649 Economic Risk and d-fine GmbH is gratefully acknowledged. We
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In this paper we address the linear-quadratic non-Markovian stochastic control problem

ess inf
ξ∈L2

F (0,T ;R)
E
[∫ T

0
{1

2ηξ
2
s + ξsYs + 1

2λsX
2
s } ds

]
(1.1)

subject to 
Xt = x−

∫ t

0
ξs ds, t ∈ [0, T ],

XT = 0,

Yt = y +

∫ t

0
{−ρsYs + γξs} ds, t ∈ [0, T ].

Here, η and γ are positive constants and ρ and λ are progressively measurable, non-negative

and essentially bounded stochastic processes:

η > 0, γ ∈ R+; ρ, λ ∈ L∞F (0, T ;R+).

The process (Xt, Yt)t∈[0,T ] is called the state process. It is governed by the control ξ = (ξt)t∈[0,T ].

The processes λ = (λt)t∈[0,T ] and ρ = (ρt)t∈[0,T ] are uncontrolled. Control problems of the

above form arise in models of optimal portfolio liquidation under market impact with stochastic

resilience. In such models Xt ≥ 0 denotes the number of shares an investor needs to sell at

time t ∈ [0, T ], ξt denotes the rate at which the stock is traded at time t ∈ [0, T ], and the

terminal state constraint XT = 0 is the liquidation constraint. The process Y describes the

persistent price impact caused by past trades in a block-shaped limit order book market with

constant order book depth 1/γ > 0 as in Obizhaeva and Wang [19]. One interpretation is that

the trading rate ξ adds a drift to an underlying fundamental martingale price process. This

results in an execution price process of the form

S̃t = St − ηξt − Yt

where St denotes the underlying fundamental martingale price process. The process ρ ∈
L∞F (0, T ;R+) describes the rates at which the order book recovers from past trades. The con-

stant η > 0 describes an additional instantaneous impact factor as in Almgren and Chriss [1].

The first two terms of running cost term in (1.1) capture the expected liquidity cost resulting

from the instantaneous and the persistent impact, respectively. The third term can be inter-

preted as a measure of the market risk associated with an open position. It penalizes slow

liquidation. We allow the risk factor λ to be stochastic.

The majority of the optimal trade execution literature allows for only one of the two possible

price impacts. The first approach, initiated by Bertsimas and Lo [6] and Almgren and Chriss [1],

describes the price impact as a purely temporary effect that depends only on the present trading

rate and does not influence future prices. The impact is typically assumed to be linear in the

trading rate, leading to a quadratic cost term of the form 1
2ηξ

2
t .

In our framework, the special case ρ ≡ 0, γ = 0, y = 0, and λ ≡ const corresponds to

model of Almgren and Chriss [1]. Their model has been extended by many authors. Closest

to our work are the papers by Ankirchner et al. [2], Graewe et al. [10], Horst et al. [13],

and Kruse and Popier [17]. They all consider non-Markovian liquidation problems with purely

temporary price impact where the cost functional is driven by general adapted factor processes
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and where the HJB equation can be solved in terms of one-dimensional BSDEs or BSPDEs with

singular terminal values, depending on the dynamics of the factor processes. A general class of

Markovian liquidation problems has been solved in Schied [22] by means of Dawson–Watanabe

superprocess. This approach avoids the use of HJB equations and uses instead a probabilistic

verification argument based on log-Laplace functionals of superprocesses.

A second approach, initiated by Obizhaeva and Wang [19] assumes that price impact is persistent

with the impact of past trades on current prices decaying over time. When impact is persistent

one often allows for both absolutely continuous and singular trading strategies. In [19] the

authors assumed constant resilience and market depth. Fruth et al. [7] generalized the model

to deterministic time-varying market depths and resiliences and obtained a closed form solution

by calculus of variation techniques. In the follow up work [8] the authors allowed for stochastic

liquidity parameters. They showed the state space divides into a trade and a no-trade region but

did not obtain an explicit description of the boundary. Characterization of optimal strategies

results in terms of coupled BSDE systems were obtained by Horst and Naujokat [12] for a model

of optimal curve following in a two-sided limit order book. An explicit solution of the related

free-boundary problem in a model with infinite time horizon and multiplicative price impact

has recently been given by Becherer et al. [5].

In this paper we analyze a stochastic control problem arising in models of optimal trade exe-

cution with both instantaneous and persistent price impact where only absolutely continuous

trading strategies are admissible. Economically, the restriction to absolutely continuous strate-

gies means that the instantaneous impact is the dominating factor. Mathematically, it allows us

to formulate the resulting control problem within in a classical, rather than singular stochastic

control framework, and to obtain a closed form solution for both, the value function and the

optimal trading strategy. Characterizing the value function is typically hard if singular controls

are allowed. In fact, when both absolutely continuous and singular controls are admissible as in

e.g. [12], one typically only obtains characterization results for optimal controls using maximum

principles.

Within our modeling framework, the value function can be represented in terms of the solu-

tion to a fully coupled three-dimensional stochastic Riccati equation (BSDE system). For the

benchmark case of constant model parameters the stochastic system reduces to a deterministic

ODE system. For this case we illustrate how our model can be used to approximate liquidation

models with block trades and can, hence, be viewed as a first step towards a unified approach

to singular and regular stochastic control problems with singular terminal values.

While uncoupled ODE, respectively, BSDE systems arise in the trade execution models of

Gatheral and Schied [9] or Kratz [16], respectively, Ankirchner and Kruse [3], our model seems

to be the first that requires the analysis of multi-dimensional BSDE systems. In proving the ex-

istence of a unique solution to the BSDE system that describes the value function two challenges

need to be overcome. First, the liquidation constraint imposes a singular terminal condition

on the first component of the BSDE system. Second, our BSDE system does not satisfy the

quasi-monotonicity condition that is necessary for the multi-dimensional comparison principle

in [14] to hold. In a one-dimensional setting BS(P)DEs with singular terminal values are well

understood and an array of existence of solution results and comparison principles has been

obtained in the literature. The majority of the existing results including [2, 10, 13, 17] rely

3



on a finite approximation of the singular terminal value. The (minimal) solution with singular

terminal value is then obtained by a monotone limit argument.

We extend the asymptotic expansion approach introduced in Graewe et al. [11] to BSDE systems.

The idea is to determine the precise asymptotic behavior of a potential solution to the BSDE

system at the terminal time by finding appropriate a priori estimates. The asymptotics of the

solution at the terminal time allows us to characterize the solution to the BSDE system with

singular terminal value in terms of a BSDE with finite terminal value yet singular driver, for

which the existence of a solution in a suitable space can be proved using standard fixed point

arguments. Finally, we establish the verification result from which we deduce uniqueness of

solutions to the BSDE system as well as a closed-form representation of the optimal trading

strategy.

Establishing the a priori estimates for our BSDE system is key for both the proof of existence of a

solution and the verification theorem. As pointed out above the BSDE system that characterizes

the value does not satisfy the quasi-monotonicity condition of Hu and Peng [14]. In order to

overcome this problem we consider the joint dynamics of the BSDE that describes the value

function and two additional BSDEs that describe the candidate optimal trading strategy. Using

the comparison principle for BSDE systems in [14] we first determine the range of all these

processes from which we then deduce the desired deterministic upper bounds for the coefficients

of the value function.

The remainder of this paper is structured as follows. The stochastic control problem is formu-

lated in Section 2. The a priori estimates and asymptotic behavior of the solution is established

in Section 3. Existence to the HJB equation is proven in Section 4. The verification argument

is carried out in Section 5. In Appendix A we recall the multi-dimensional comparison principle

for BSDEs and formulate a local L∞-existence result for BSDEs with locally Lipschitz drivers.

Notational convention. Whenever the notation T− appears we mean that the statement holds

for all the T ′ < T when T− is replaced by T ′, e.g., L2
F (0, T−;Rd×m) =

⋂
T ′<T L

2
F (0, T ′;Rd×m).

Furthermore, for Y ∈ L∞F (Ω, C([0, T−];R)) we mean by L∞-limt→T Yt =∞ that for every C > 0

there exists T ′ < T such that Yt ≥ C for all t ∈ [T ′, T ), P-a.s.

2 Main result

For any initial state (t, x, y) ∈ [0, T )× R× R we define by

Vt(x, y) := ess inf
ξ∈A(t,x)

E
[∫ T

t
{1

2ηξ
2
s + ξsYs + 1

2λsX
2
s } ds

∣∣∣∣Ft] (2.1)

the value function of the stochastic control problem (1.1) with respect to the state dynamics{
dXs = −ξs ds, s ∈ [t, T ], Xt = x,

dYs = {−ρsYs + γξs} ds, s ∈ [t, T ], Yt = y,

where only those controls or (trading) strategies ξ ∈ L2
F (t, T ;R) belong to the class A(t, x) of

admissible controls that satisfy the terminal state constraint

XT = 0 a.s.
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Assumption 2.1. We assume throughout that the coefficients to the control problem satisfy

η > 0, γ ∈ R+; ρ, λ ∈ L∞F (0, T ;R+).

Remark 2.2. Notice thatX,Y ∈ L2
F (Ω;C([t, T ];R)) for any (admissible) control as ξ ∈ L2

F (t, T ;R)

and ρ ∈ L∞F (0, T ;R+).

We solve the control problem by solving the corresponding stochastic Hamilton-Jacobi-Bellman

(HJB) equation. Stochastic HJB equations for non-Markovian control problems were first in-

troduced by Peng [21]. In our model the stochastic HJB equation is given by the first-order

stochastic partial differential equation,

−dVt(x, y) = inf
ξ∈R
{−ξ∂xVt(x, y)−(ρty−γξ)∂yVt(x, y)+ 1

2ηξ
2+ξy+ 1

2λtx
2} dt−Zt(x, y) dWt. (2.2)

Definition 2.3. A pair of random fields (V,Z) : Ω × [0, T ) × R × R → R × Rm is called a

classical solution to the above equation if it satisfies the following conditions:

• for each t ∈ [0, T ), Vt(x, y) is continuously differentiable in x and y,

• for each (x, y) ∈ R2, (Vt(x, y), ∂xVt(x, y), ∂yVt(x, y))t∈[0,T ) ∈ L∞F (Ω;C([0, T−];R3)),

• for each (x, y) ∈ R2, (Zt(x, y))t∈[0,T ) ∈ L2
F (0, T−;Rm),

• for all 0 ≤ t ≤ s < T and x, y ∈ R it holds that

Vt(x, y) = Vs(x, y) +

∫ s

t
inf
ξ∈R
{−ξ∂xVr(x, y)− (ρry − γξ)∂yVr(x, y) + 1

2ηξ
2 + ξy + 1

2λrx
2} dr

−
∫ s

t
Zr(x, y) dWr.

We prove the existence of a unique classical solution to the equation (2.2) and show that the

value function is given by the random field V . The linear-quadratic structure of the control

problem suggest the ansatz

Vt(x, y) = 1
2Atx

2 +Btxy + 1
2Cty

2

Zt(x, y) = 1
2Z

A
t x

2 + ZBt xy + 1
2Z

C
t y

2
(2.3)

for the solution (V,Z) to the HJB equation. The following lemma shows that this ansatz reduces

our HJB equation to the following three-dimensional stochastic Riccati equation:
−dAt =

{
λt − η−1(At − γBt)2

}
dt− ZAt dWt

−dBt =
{
−ρtBt + η−1(γCt −Bt + 1)(At − γBt)

}
dt− ZBt dWt

−dCt =
{
−2ρtCt − η−1(γCt −Bt + 1)2

}
dt− ZCt dWt.

(2.4)

Lemma 2.4. If the vector(
(A,B,C), (ZA, ZB, ZC)

)
∈ L∞F (Ω;C([0, T−];R3))× L2

F (0, T−;R3×m)

solves the BSDE system (2.4), then the random field (V,Z) given by the linear-quadratic ansatz (2.3)

is a classical solution to the HJB equation (2.2) such that the infimum in (2.2) is attained by

ξ∗t (x, y) = η−1(At − γBt)x− η−1(γCt −Bt + 1)y. (2.5)
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Proof. Let us fix (t, x, y) ∈ [0, T )× R× R. The Hamiltonian

h(ξ) = −ξ∂xVt(x, y)− (ρty − γξ)∂yVt(t, x) + 1
2ηξ

2 + ξy + 1
2λtx

2

= 1
2η
−1 (ηξ − ∂xVt(x, y) + γ∂yVt(t, x) + y)2 − 1

2η
−1 (∂xVt(x, y)− γ∂yVt(x, y)− y)2

− ρty∂yVt(x, y) + 1
2λtx

2

is minimized at

ξ∗ = η−1(∂xVt(x, y)− γ∂yVt(t, x)− y).

In terms of the linear-quadratic ansatz (2.3), we obtain (2.5) and

h(ξ∗) = −1
2η
−1((At − γBt)x− (γCt −Bt + 1)y)2 − ρty(Btx+ Cty) + 1

2λtx
2

= 1
2(λt − η−1(At − γBt)2)x2 + (−ρtBt + η−1(At − γBt)(γCt −Bt + 1))xy

+ 1
2(−2ρtCt − η−1(γCt −Bt + 1)2)y2.

In order to guarantee the uniqueness of a solution to the HJB equation we need to impose a

suitable terminal condition. Due to the terminal state constraint XT = 0 we expect the trading

rate ξ to tend to infinity for any non-trivial initial position as t → T . We further expect the

resulting trading cost to dominate any resilience effect. As a result, we expect that

Vt(x, y) ∼ V ρ=0
t (x, y) as t→ T

where V ρ=0
t (x, y) denotes the value function corresponding to the control problem with ρ ≡ 0.

If ρ ≡ 0, then Y ρ=0 = y + γ(x−X) and∫ T

t
ξsY

ρ=0
s ds = xy + 1

2γx
2,

independently of the strategy ξ ∈ A(t, x). Hence,

V ρ=0
t (x, y) = ess inf

ξ∈A(t,x)
E
[∫ T

t
{1

2ηξ
2
s + 1

2λsX
2
s } ds

∣∣∣∣Ft]+ xy + 1
2γx

2

= 1
2(Ãt + γ)x2 + xy,

where Ã is characterized in [2, 11] as the unique solution to the BSDE with singular terminal

value  −dÃt = {λt − η−1Ã2
t } dt− ZÃt dWt,

lim
t→T

Ãt =∞ in L∞.

We therefore expect the coefficients of the linear-quadratic ansatz (2.3) to satisfy

(At, Bt, Ct) −→ (∞, 1, 0) in L∞ as t→ T . (2.6)

The next theorem establishes an existence of solutions result for the BSDE system (2.4) when

imposed with the singular terminal condition (2.6). The proof is given in Section 4. It is based on

a multi-dimensional generalization of the asymptotic expansion approached introduced in [11].
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Theorem 2.5. The BSDE system (2.4) imposed with the singular terminal condition (2.6)

admits at least one solution

((A,B,C), (ZA, ZB, ZC)) ∈ L∞F (Ω;C([0, T−];R3))× L2
F (0, T−;R3×m).

The next theorem verifies the preceding heuristics; its proof is given in Section 5. In particular,

it states that the value function is indeed of the form (2.3). As a result, there exists at most

one solution to the BSDE system (2.4) that satisfies (2.6).

Theorem 2.6. Let ((A,B,C), (ZA, ZB, ZC)) ∈ L∞F (Ω;C([0, T−];R3))× L2
F (0, T−;R3×m) be a

solution to the BSDE system (2.4) that satisfies the singular terminal condition (2.6). Then,

the value function is of the linear-quadratic form (2.3) and the optimal control is given by the

feedback form (2.5). In particular, the system admits at most one solution that satisfies (2.6).

Example 2.7. In a deterministic benchmark model with a risk neutral investor (λ ≡ 0) and

constant deterministic resilience (ρt ≡ ρ > 0) the above BSDE system reduces to the following

ODE system:
−Ȧt = −η−1(At − γBt)2, 0 ≤ t < T ; lim

t→T
At = +∞;

−Ḃt = −ρBt + η−1(γCt −Bt + 1)(At − γBt), 0 ≤ t < T ; lim
t→T

Bt = 1;

−Ċt = −2ρCt − η−1(γCt −Bt)2, 0 ≤ t < T ; lim
t→T

Ct = 0.

Using the asymptotic expansion introduced in (4.1) the above ODE system can be solved by

solving the corresponding ODE system (4.2). That ODE system has finite terminal values yet

singular nonlinearity. It can be solved numerically using the MATLAB package bvpsuite [15].

This package is designed for solving ODE systems with regular singular points. The optimal

trading strategies for different choices of the instantaneous impact factor η and the optimal

trading strategies of the benchmark models by Almgren and Chriss [1] and Obizhaeva and

Wang [19] are depicted in Figure 1. As we see, the optimal trading strategy resembles that of

the Almgre and Chriss model for large instantaneous impact factors while it resembles that of

the Obizhaeva and Wang model with singular controls for small instantaneous impact factors.

This suggests that our model can be viewed as a blend of the two extreme cases with only

instantaneous, respectively, only persistent market impact.

3 A Priori Estimates

In this section we establish a priori estimates for the BSDE system (2.4). The estimates will be

key for both, the proof of the existence of solutions and the verification theorem. Throughout,

let

((A,B,C), (ZA, ZB, ZC)) ∈ L∞F (Ω;C([0, T−];R3))× L2
F (0, T−;R3×m)

denote any solution to (2.4) that satisfies (2.6). It will be convenient to also consider the

processes

D := η−1(A− γB) and E := η−1(γC −B + 1)

7
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Almgren & Chriss
Obizhaeva & Wang

Figure 1: The optimal trading strategy in a deterministic benchmark model for different instan-

taneous impact factors η compared to the models by Almgren and Chriss [1] and by Obizhaeva

and Wang [19] for x = 1, y = 0, λ ≡ 0, γ = 100, T = 1, and ρ ≡ 1.

that appear in the feedback form (2.5) of the candidate optimal control. The equations for D

and E read:

−dDt = {η−1λt −D2
t + η−1γρtBt − γEtDt} dt− ZDt dWt

and

−dEt = {2η−1ρt − 2ρtEt − γE2
t + η−1ρtBt − EtDt} dt− ZEt dWt

= {η−1ρt(1− γCt)− ρtEt − γE2
t − EtDt} dt− ZEt dWt.

In order to establish the a priori estimates we first determine the range of the processes A, . . . , E.

The proof of the following lemma uses the multi-dimensional comparison principle for BSDEs,

due to Hu and Peng [14] presented in the Appendix.

Lemma 3.1. It holds that A,D ≥ 0 and B,−γC, ηE ∈ [0, 1], dP× dt-a.e.

Proof. We first note that B,C ∈ L∞F (Ω;C([0, T−];R)) together with the L∞-convergence of Bt
and Ct as t→ T implies B,C ∈ L∞F (Ω;C([0, T ];R)) and hence E ∈ L∞F (Ω;C([0, T ];R)).

The nonpositivity of C follows from the solution formula for linear BSDEs with essentially

bounded coefficients [20, Proposition 5.31]. Indeed, from{
−dCt = {−2ρtCt − ηE2

t } dt− ZCt dWt, 0 ≤ t < T,

CT = 0,

we obtain that

Ct = −E
[∫ T

t
ηE2

se
−

∫ s
t 2ρr dr ds

∣∣∣∣Ft] ≤ 0. (3.1)
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The non-negativity of E follows from similar arguments. In fact,

−dEt = {−(ρt + γEt +Dt)Et + η−1ρt(1− γCt)}dt− ZEt dWt, 0 ≤ t < T.

Even though Dt is singular at t = T , we may apply the solution formula on [0, τ ] for all τ < T .

This yields,

Et = E
[
Eτe

−
∫ τ
t (ρr+γEr+Dr) dr +

∫ τ

t
η−1ρs(1− ηCs)e−

∫ s
t (ρr+γEr+Dr) dr ds

∣∣∣∣Ft] . (3.2)

The L∞-convergence of Dt to∞ as t→ T together with the fact that D ∈ L∞F (Ω;C([0, T−];R))

implies that D is essentially bounded below on [0, T ]. Since ρ, C and E are essentially bounded

we can apply the dominated convergence theorem to interchange the limit and the expectation

in (3.2) when letting τ → T in (3.2). As a result, E ≥ 0 because C ≤ 0 and because

Eτ → ET = η−1(γCT −BT + 1) = 0 as τ → T.

In order to prove that B,D ≥ 0 we need we need to consider their joint dynamics. First, due to

the (improper) L∞-convergence of Bt and Dt as t→ T there exists a deterministic time τ < T

such that B,D ≥ 0 on [τ, T ]. Let us consider the BSDE system for B and D on [0, τ ]:{
−dBt = {−ρtBt + ηEtDt} dt− ZBt dWt

−dDt =
{
η−1λt −D2

t + η−1γρtBt − γEtDt

}
dt− ZDt dWt.

Since ρ, E, and D are essentially bounded on [0, τ ] we may assume without loss of generality

by a standard truncation argument in the D-variable that this system is dP× dt-a.e. uniformly

Lipschitz continuous in B and D. Furthermore, the system is quasi-monotone because E, ρ ≥ 0.

Hence, we may apply the comparison theorem for multi-dimensional BSDEs given in Proposi-

tion A.1 in the Appendix with

f1(t, B,D) = (−ρtB + ηEtD,−D2 + η−1γρtB − γEtD)

f2(t, B,D) = (−ρtB + ηEtD, η
−1λt −D2 + η−1γρtB − γEtD)

(up to truncation in D) and terminal conditions Y 1
τ = (0, 0) and Y 2

τ = (Bτ , Dτ ) ≥ Y 1
τ , re-

spectively. As the unique solution to the first BSDE system satisfies Y 1
t ≡ (0, 0), we see that

(Bt, Dt) = Y 2
t ≥ (0, 0) for all t ∈ [0, τ ]. Hence the process (B,D) is non-negative.

Finally, we conclude from B,−γC, ηE ≥ 0 and ηE = γC −B + 1 that B,−γC, ηE ≤ 1.

We are now ready to establish the a priori estimates.

Proposition 3.2. In terms of κ :=
√

2η−1 max{‖λ‖L∞ , γ‖ρ‖L∞} the following a priori esti-

mates hold dP× dt-a.e.:

Dt :=
η−1γ

eη−1γ(T−t) − 1
≤ Dt ≤ κ coth (κ(T − t)) =: Dt,

Bt := e−‖ρ‖L∞ (T−t) ≤ Bt ≤ 1,

0 ≤ Et ≤ γ−1κ tanh(κ(T − t)) =: Et

9



Proof. Since D ≥ 0 we may write the BSDE for D in monotone form. That is,

−dDt =
{
η−1λt − |Dt|Dt + η−1γρtBt − γEt|Dt|

}
dt− ZDt dWt.

The lower and upper estimate for D solve

−dDt = {−|Dt|Dt − η−1γ|Dt|} dt,

and

−dDt = {κ2 − |Dt|Dt} dt,

respectively. The preceding equations are time-homogeneous. Thus, for any δ > 0 the processes

Dδ
t := Dt−δ and D

δ
t := Dt+δ still satisfy the respective equations but with singularities at

t = T + δ and t = T − δ, respectively. Since D is essentially bounded on [0, T − δ] and

limt→T−δD
δ
t = ∞ in L∞ there exits s ∈ [0, T − δ] such that D ≤ D

δ
on [s, T − δ). Because

B ≤ 1 and −ED ≤ 0, we have for all (t, y) ∈ [0, s]× R,

η−1λt − |y|y + η−1γρtBt − γEtDt ≤ κ2 − |y|y.

Hence, the classical one-dimensional comparison theorem for BSDEs with monotone drivers [20,

Proposition 5.33] yields D ≤ D
δ

on [0, s]. Finally, letting δ → 0 yields D ≤ D on [0, T ) by the

continuity of D.

In order to establish D ≤ D on [0, T ) one argues similarly. In this case the comparison argument

is justified by the inequality

−|y|y − η−1γ|y| ≤ λt − |y|y + η−1γρtBt − γEt|y|.

Next, we establish the upper estimate for E. Since E,D ≥ 0 we may again assume that the

BSDE for E is monotone, that is

−dEt = {2η−1ρt − 2ρtEt − γ|Et|Et − η−1ρtBt − EtDt} dr − ZEt dWt.

Since E,B,D ≥ 0 we have for all (t, y) ∈ [0, T )× R that

2η−1ρt − 2ρtEt − γ|y|y − η−1γρtBt − EtDt ≤ γ−1κ2 − γ|y|y. (3.3)

Let us consider for δ > 0 the deterministic process

E
δ
t = γ−1κ tanh

(
κ(T − δ − t) + arc tanh(γκ−1‖ET−δ‖L∞)

)
, 0 ≤ t ≤ T − δ.

Then, −dE
δ
t = γ−1κ2 − γ|Eδt |E

δ
t , 0 ≤ t ≤ T − δ

E
δ
T−δ = ‖ET−δ‖L∞ .

Hence, recalling (3.3), the one-dimensional comparison theorem implies

Et ≤ E
δ
t , t ∈ [0, T − δ].

Since ‖ET ‖L∞ = 0, letting δ → 0 completes the proof.
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Finally, to establish the lower estimate for B one notices that B solves

−dBt = −‖ρ‖L∞Bt dt, 0 ≤ t ≤ T ; BT = 1,

and is hence a subsolution to the BSDE for B. At this point, we already know that the potential

singular term EtDt in the BSDE for B behaves well (being bounded by EtDt = γ−1κ2) on the

entire interval [0, T ]. Hence, no shifting argument at the terminal time is needed in this step

and we conclude directly by comparison that B ≤ B.

From the a priori estimates we obtain the asymptotic behavior of our BSDE system at the

terminal time as stated in the following corollary. The asymptotic at the terminal time is key

to our existence result.

Corollary 3.3. The following asymptotic behaviors hold in L∞ as t→ T :

(T − t)At = η +O(T − t),
Bt = 1 +O(T − t),
Ct = O((T − t)3).

Proof. The asymptotic behavior of A = η(D + γB) and B follows directly from the a priori

estimates given above. The asymptotic order of C follows from (3.1) and Et = O(Et) = O(T−t)
in L∞ as t→ T .

4 Existence

In this section we prove Theorem 2.5, i.e. the existence of a solution to the BSDE syetem (2.4)

that satisfies the singular terminal condition (2.6). Similarly as in [11], our proof of existence

is based on the asymptotic behavior established in Corollary 3.3. It suggests the following

asymptotic ansatz:

At =
η

T − t
+

Ht

(T − t)2
, Ht = O((T − t)2) in L∞ as t→ T ,

Bt = 1 +
Gt
T − t

, Gt = O((T − t)2) in L∞ as t→ T ,

Ct = Pt, Pt = O((T − t)2) in L∞ as t→ T ,

(4.1)

where the asymptotic order of H and G is raised artificially for similar reasons as in [11,

Remark 4.2] to obtain the locally Lipschitz type statement given in Lemma 4.1(ii) below, while

the reduced order of P unifies the notation and allows us to solve for all three processes in the

same weighted L∞-space.
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The asymptotic ansatz (4.1) reduces the original system (2.4) to

−dHt =

{
(T − t)2λt −

1

η

(
Ht

T − t
− γ(T − t+Gt)

)2

+ 2γ(T − t+Gt)

}
dt+ ZHt dWt

−dGt =

{
−ρt(T−t+Gt)+

1

η

(
γPt −

Gt
T−t

)(
Ht

T−t
−γ(T−t+Gt)

)
+γPt

}
dt+ ZGt dWt

−dPt =

{
−2ρtPt −

1

η

(
γPt −

Gt
T − t

)2
}
dt+ ZPt dWt.

(4.2)

We define f : Ω× [0, T )× R3 → R3 such that we have

−dYt = f(t, Yt) dt− Zt dWt

as a compact notation for (4.2) by identifying Y = (H,G,P ) and Z = (ZH , ZG, ZP ). For δ > 0

specified below, we will establish the existence of a short-time solution to (4.2) in the space

H = {Y ∈ L∞F (Ω;C([T − δ, T ];R3)) : ‖Y ‖H < +∞}

endowed with the norm

‖Y ‖H =
∥∥(T − ·)−2Y·

∥∥
L∞F (Ω;C([T−δ,T ];R3))

.

Since YT = 0 this means that we are looking for a fixed point in H of the operator

Γ(Y ) :=

(
E
[∫ T

t
f(s, Ys) ds

∣∣∣∣Ft])
T−δ≤t≤T

.

Lemma 4.1. The following holds:

(i) H is complete.

(ii) For every R > 0 there exists a constant L > 0 (independent of δ) such that

‖f(·, Y·)− f(·, X·)‖H ≤ L‖Y· −X·‖H for all Y,X ∈ BH(R).

Proof. The spaces L∞F (Ω;C([T − δ, T ];R)) and H are isometrically isomorphic by identifying

Y ∈ L∞F (Ω;C([T − δ, T ];R)) with the process ((T − t)2Yt)T−δ≤t≤T in H. Hence H is complete.

In order to establish the Lipschitz continuity, let YtY ′t be the line segment connecting Yt and Y ′t .

By the mean value theorem we have for Y, Y ′ ∈ BH(R), dP× dt-a.e.,

|f(t, Yt)− f(t, Y ′t )| ≤ sup
y∈YtY ′t

‖∂yf(t, y)‖Hom(R3;R3) |Yt − Y
′
t |

≤ (T − t)2 sup
|y|≤(T−t)2R

‖∂yf(t, y)‖Hom(R3;R3) ‖Y − Y ‖H, (4.3)

where it is used that the line YtY ′t is contained in BR3((T − t)2R), dP× dt-a.e. But,

∂yf(t, y) =


−2y1

η(T−t)2 + 2γy2
η(T−t) + 2γ

η
2γy1
η(T−t) −

2(y2+T−t−ηγ−1)
ηγ−2 0

−y2
η(T−t)2 + γy3

η(T−t)
−y1

η(T−t)2 + 2γy2
η(T−t) −

γy3−1
ηγ−1 − ρt γy1

η(T−t) −
y2+T−t−1

ηγ−2

0 −2y2
η(T−t)2 + 2γy3

η(T−t)
2γy2
η(T−t) −

2y3
ηγ−2 − 2ρt

 ,

from which we see that the supremum in (4.3) is essentially bounded on Ω× [T − δ, T ].
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Choosing R and δ appropriately the preceding lemma allows us to use a standard fix-point

argument to show that Γ has a unique fix-point. The fix-point is just a local solution to (4.2).

Proposition 4.2. For δ > 0 sufficient small there exists a short-time solution (Y,Z) ∈ H ×
L2
F (T − δ, T ;R3×m) to (4.2).

Proof. Let us fix R = 4 max{T‖λ‖L∞+γ2T/η+2γ, ‖ρ‖L∞} and choose L > 0 as in Lemma 4.1.

For Y, Y ′ ∈ BH(R) it then holds dP× dt-a.e.,

|Γ(Y )t − Γ(Y ′)t| ≤ E
[∫ T

t
|f(s, Ys)− f(s, Y ′s )| ds

∣∣∣∣Ft]
≤ L(T − t)3‖Y − Y ′‖H

This yields, as long as 0 < δ ≤ (2L)−1,

‖Γ(Y )− Γ(Y ′)‖H ≤
1

2
‖Y − Y ′‖H.

Hence, Γ is an 1/2-contraction on BH(R). Furthermore, Γ maps BH(R) onto itself. Indeed, for

all Y ∈ BH(R) it holds dP× dt-a.e.,

|Γ(Y )t| ≤ |Γ(Y )t − Γ(0)t|+ |Γ(0)t|

≤ (T − t)2R

2
+ E

[∫ T

t
|f(s, 0)| ds

∣∣∣∣Ft]
≤ (T − t)2R

2
+ E

[∫ T

t
2 max{(T − s)2λs +

γ2

η
(T − s)2 + 2γ(T − s), ρs(T − s)} ds

∣∣∣∣Ft]
≤ (T − t)2R

2
+ 2(T − t)2 max{T‖λ‖L∞ +

γ2

η
T + 2γ, ‖ρ‖L∞} = (T − t)2R.

As a result, Γ has a unique fixed point Y ∈ BH(R). The process Y satisfies

Yt = −
∫ t

T−δ
f(s, Ys) ds+ E

[∫ T

T−δ
f(s, Ys) ds

∣∣∣∣Ft] .
By the martingale representation theorem there exits a process Z ∈ L2

F (T − δ, T ;R3×m) such

that

Yt = −
∫ t

T−δ
f(s, Ys) ds+

∫ t

T−δ
Zs dWs.

Hence, (Y,Z) gives the desired short-time solution to (4.2).

We are now ready to prove Theorem 2.5.

Proof of Theorem 2.5. The short-time solution to (4.2) established by Proposition 4.2 gives in

terms of the ansatz (4.1) a short-time solution

(A,B,C) ∈ L∞F (Ω; ([T − δ, T−];R3))× L2
F (T − δ, T−;R3×m)

to (2.4) that satisfies the singular terminal condition (2.6). In order to see that this short-time

solution extends to a global solution in L∞F (Ω;C([0, T−];R3)) × L2
F (0, T−;R3×m) notice first
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that the system (2.4) satisfies the assumptions of the local L∞-existence results for BSDEs with

locally Lipschitz drivers of Lemma A.2 given in the appendix. Hence, the system (2.4) imposed

with the essentially bounded terminal value (AT−δ, BT−δ, CT−δ) admits an essentially bounded

local extension on [T − δ − δ′, T − δ].

Due to the a priori estimates given in Proposition 3.2 we know that this local extension will

stay (recalling A = η(D + γB)) in the bounded region [0, η(DT−δ + γ)] × [0, 1] × [−1/γ, 0].

When iterating this extension procedure we may therefore choose (cf. the proof of Lemma A.2)

step by step the same local Lipschitz constant L > 0 for the system (2.4), which results in a

constant length δ′ > 0 of the extension interval. Thus, after finitely many steps we obtain a

global extension on [0, T ).

5 Verification

This section devoted to the verification statement of Theorem 2.6. Throughout, let

((A,B,C), (ZA, ZB, ZC)) ∈ L∞F (0, T−;R3)× L2
F (0, T−;R3×m)

denote any solution to (2.4) that satisfies (2.6) and recall that the candidate optimal strategy ξ∗

is given in terms of the processes

D := η−1(A− γB) and E := η−1(γC −B + 1)

for which a priori estimates have been established in Section 3. The proof of the admissibility

of ξ∗ uses the following iterated integral version of Gronwall’s inequality.

Lemma 5.1 ([4, Corollary 11.1]). Let u(t), a(t), and b(t) be nonnegative continuous functions

on [0, T ] with a(t) and b(t) being nondecreasing, and suppose

u(t) ≤ a(t) + b(t)

∫ t

0

∫ s

0
k(s, r)u(r) dr ds, 0 ≤ t ≤ T,

where k(s, r) is a nonnegative continuous function on {0 ≤ r ≤ s ≤ T}. Then

u(t) ≤ a(t) exp

(
b(t)

∫ t

0

∫ s

0
k(s, r) dr ds

)
, 0 ≤ t ≤ T.

We are now ready to verify that the candidate optimal control ξ∗ is indeed admissible.

Lemma 5.2. The feedback control ξ∗ given in (2.5) is admissible.

Proof. Let us fix an initial state (t, x, y) ∈ [0, T ) × R × R. The dynamics of the state process

(X∗, Y ∗) under the candidate optimal control ξ∗ is given by:{
dX∗s = {−DsX

∗
s + EsY

∗
s } ds

dY ∗s = {−(ρs + γEs)Y
∗
s + γDsX

∗
s } ds.

(5.1)

Due to the singularity of D at the terminal time, it is not clear yet that the solution to (5.1) is

well-defined at the terminal time; a priori we only know that (X∗, Y ∗) ∈ L∞F (Ω;C([t, T−];R2).
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In order to show that X∗T = 0 we first apply the variation of constants formula for t ≤ s < T to

get:

X∗s = xe−
∫ s
t Du du +

∫ s

t
e−

∫ s
r Du duErY

∗
r dr

and

Y ∗s = ye−
∫ s
t (ρu+γEu) du +

∫ s

t
e−

∫ s
r (ρu+γEu) duγDrX

∗
r dr. (5.2)

Hence, the process X̃s := X∗s e
∫ s
t Dr dr satisfies,

X̃s = x+

∫ s

t
e
∫ r
t Du duErY

∗
r dr

= x+

∫ s

t
e
∫ r
t Du duEr

(
ye−

∫ r
t (ρu+γEu) du +

∫ r

t
e−

∫ r
u (ρv+γEv) dvγDue

−
∫ u
t Dv dvX̃u du

)
dr.

Since ρ,E ≥ 0, this yields,

|X̃s| ≤ |x|+
∫ s

t
e
∫ r
t Du duEr|y| dr +

∫ s

t
e
∫ r
t Du duEr

∫ r

t
γDue

−
∫ u
t Dv dv|X̃u| du dr

= |x|+ |y|
∫ s

t
e
∫ r
t Du duEr dr +

∫ s

t
γEr

∫ r

t
Due

∫ r
u Dv dv|X̃u| du dr.

By the iterated integral version of Gronwall’s inequality (Lemma 5.1),

|X̃s| ≤
(
|x|+ |y|

∫ s

t
e
∫ r
t Du duEr dr

)
exp

(∫ s

t
γEr

∫ r

t
Due

∫ r
u Dv dv du dr

)
=

(
|x|+ |y|

∫ s

t
e
∫ r
t Du duEr dr

)
exp

(∫ s

t
γEr

(
e
∫ r
t Du du − 1

)
dr

)
.

(5.3)

In view of the a priori upper bounds on D and E, because the antiderivative of coth(·) is given

by ln(sinh(·)) and because cosh(·) ≥ 1,∫ s

t
γEre

∫ r
t Du du dr ≤

∫ s

t
κ tanh(κ(T − r))e

∫ r
t κ coth(κ(T−u)) du dr

=

∫ s

t
κ tanh(κ(T − r)) sinh(κ(T − t))

sinh(κ(T − r))
dr

≤ κ(s− t) sinh(κ(T − t))
≤ κT sinh(κT ).

Along with (5.3) this shows that |X̃s| is bounded as s → T . Therefore, this time using the a

priori lower bound for D,

|X∗s | = |X̃s| exp

(
−
∫ s

t
Dr dr

)
≤ |X̃s| exp

(
−
∫ s

t

η−1γ

eη−1γ(T−r) − 1
dr

)
= |X̃s|

1− e−η−1γ(T−s)

1− e−η−1γ(T−t)
s→T−−−→ 0.

(5.4)
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This shows that X∗T = 0. It also shows that X∗s = O(T − s) in L∞ as s → T . As Ds =

O((T − s)−1) it follows that

DX∗ ∈ L∞F (Ω;C([t, T ];R)).

The boundedness of DX∗ again implies by (5.2) that Y ∗ ∈ L∞F (Ω;C([t, T ];R)). Hence, we

conclude

ξ∗ ∈ L∞F (Ω;C([t, T ];R)).

This proves that ξ∗ is indeed admissible.

Lemma 5.3. For every ξ ∈ A(t, x) it holds E[AsX
2
s +BsXsYs + CsY

2
s |Ft]

s→T−−−→ 0.

Proof. Recalling B,C ∈ L∞F (Ω;C([0, T ];R)), X,Y ∈ L2
F (Ω;C([t, T ];R)), and XT = CT = 0, it

follows by the dominated convergence theorem,

E[BsXsYs + CsY
2
s |Ft]

s→T−−−→ 0.

Furthermore, note that by XT = 0 and Jensen’s inequality,

X2
s =

(∫ T

s
ξr dr

)2

≤ (T − s)
∫ T

s
ξ2
r dr.

Hence, by Corollary 3.3,

E[AsX
2
s |Ft] ≤ E

[
(T − s)As

∫ T

s
ξ2
r dr

∣∣∣∣Ft] s→T−−−→ 0.

We are now ready to prove the verification theorem.

Proof of Theorem 2.6. By a slight abuse of notation we define within this proof the random

fields Vt(x, y) and Zt(x, y) by the linear-quadratic ansatz (2.3) and verify that this gives indeed

the value function of the control problem. For the moment we only know that (V,Z) is a

classical solution the HJB equation (2.2).

Let us fix an initial state (t, x, y) ∈ [0, T )×R×R and admissible control ξ ∈ A(t, x). For n ∈ N
we define the stopping time

τn := inf{t ≤ s ≤ T : |Xs| ∨ |Ys| ≥ n}.

Since (V,Z) solve the HJB equation, it holds by the Itô-Kunita formula [18, Theorem I.8.1] for

all t ≤ s < T ,

Vt(x, y) = Vs∧τn(Xs∧τn , Ys∧τn) +

∫ s∧τn

t
{ξr∂xVr(Xr, Yr)− (−ρrYr + γξr)∂yVr(Xr, Yr)} dr

+

∫ s∧τn

t
inf
ξ∈R
{−ξ∂xVr(Xr, Yr)− (ρtYr − γξ)∂yVr(Xr, Yr) + 1

2ηξ
2 + ξy + 1

2λtx
2} dr

−
∫ s∧τn

t
Zr(Xr, Yr) dWr.

(5.5)
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The above stochastic integral stopped at τn is a true martingale. Hence,

Vt(x, y) ≤ E[Vs∧τn(Xs∧τn , Ys∧τn)|Ft] + E
[∫ s∧τn

t
{1

2ηξ
2
r + ξrYr + 1

2λrX
2
r } dr

∣∣∣∣Ft] . (5.6)

Since the coefficients A,B,C of the random field Vr(x, y) are essentially bounded on [t, s], since

X,Y ∈ L2
F (Ω;C([t, T ];R)), and because ξ ∈ L2

F (t, T ;R) and λ ∈ L∞F (0, T ;R+), it follows by

Hölder’s inequality that

AX2, BXY,CY 2 ∈ L1
F (Ω;C([t, s];R)) and ξ2, ξY, λX2 ∈ L1

F (t, T ;R).

Hence, the dominated convergence theorem applies when letting n→∞ in (5.6), which yields,

Vt(x, y) ≤ E[Vs(Xs, Ys)|Ft] + E
[∫ s

t
{1

2ηξ
2
r + ξrYr + 1

2λrX
2
r } dr

∣∣∣∣Ft] . (5.7)

Hence, by Lemma 5.3 and again the dominated convergence theorem letting s→ T yields,

Vt(x, y) ≤ E
[∫ T

t
{1

2ηξ
2
r + ξrYr + 1

2λrX
2
r } dr

∣∣∣∣Ft] . (5.8)

Finally note that since the feedback control ξ∗ attains the infimum in (5.5) it holds equality in

(5.6)–(5.8) if ξ = ξ∗.

6 Conclusion

In this paper we analyzed a novel stochastic optimal control problem arising in models of

optimal trade execution with instantaneous and persistent price impact and stochastic resilience.

Assuming that the instantaneous impact factor is constant but allowing for stochastic resilience

and market risk we characterized the value function in terms of the unique solution to a three-

dimensional stochastic Riccati equation with singular terminal condition in the first component.

Our existence of solutions results used an extension of the asymptotic expansion approach

introduced in [11] to a multi-dimensional setting. Several open problems remain. First, we

cannot guarantee non-negativity of the trading rate. Intuitively, price-triggered round trips

should not be beneficial if y = 0. Based on our analysis, they can not be ruled out, though.

Second, the assumption that η and γ are constant was important to establish the a priori

estimates. An extension to more general impact factors, especially a random impact factor γ is

certainly desirable as suggested in [8]. Third, a numerical analysis of a deterministic benchmark

model suggests that our model can be viewed as a approximation to a model with both absolutely

continuous and singular controls if η → 0. While a formal proof of this limit result in a general

non-Markovian framework would certainly be desirable it is clearly beyond the scope of the

present paper.

A Appendix

A necessary and sufficient condition under which the comparison theorem holds for multi-

dimensional BSDEs has been first given by Hu and Peng [14]. The equivalent quasi-monotonicity

17



condition (iv) below can be found in [24, Theorem 3.1]. The comparison results in [14, 24] are

stated under an additional continuity condition on the drivers that is not satisfied in our model.

However, the continuity condition is only needed to prove that if a comparison principle holds,

then the system is necessarily quasi-monotone. Continuity is not needed for the converse im-

plication. As such, their results are in fact applicable to our framework. Even though, for

the reader’s convenience we refer instead to a comparison result for multi-dimensional reflected

BSDEs by Wu and Xiao [23] that is formulated explicitly under the weaker regularity assump-

tion (i) given below.

Proposition A.1 ([23, Theorem 3.1]). Let (Y i, Zi) ∈ L2
F (Ω;C([0, T ];Rd)) × L2

F (0, T ;Rd×m),

i = 1, 2, be solutions to the BSDEs

−dY i
t = f i(t, Y i

t , Z
i
t) dt− Zit dWt, 0 ≤ t ≤ T,

with the drivers f i : Ω× [0, T ]× Rd × Rd×m → Rd, i = 1, 2, satisfying

(i) f i(·, y, z) ∈ L2
F (0, T ;Rd) for all y ∈ R and z ∈ Rd×m,

(ii) there exits L > 0 such that for all y, y′ ∈ Rd and z, z′ ∈ Rd×m,

|f i(t, y, z)− f i(t, y′, z′)| ≤ L(|y − y′|+ |z − z′|), dP× dt-a.e.,

and suppose, in addition,

(iii) Y 1
T ≤ Y 2

T ,

(iv) for every k = 1, . . . , d it holds for all y1, y2 ∈ Rd and z1, z2 ∈ Rd×m such that y1
k = y2

k,

z1
k = z2

k, y1
l ≤ y2

l , l 6= k:

f1
k (t, y1, z1) ≤ f2

k (t, y2, z2), dP× dt-a.e.

Then Y 1
t ≤ Y 2

t , t ∈ [0, T ].

Below we state a local L∞-existence result for BSDEs with locally Lipschitz drivers not de-

pending on Z. The result seems well well-known; we give it for completeness. Specifically, we

consider the BSDE

Yt = ζ +

∫ T

t
f(s, Ys) ds−

∫ T

t
Zs dWs, 0 ≤ t ≤ T, (A.1)

where we assume that the terminal value

• ζ ∈ L∞FT (Rd)

is essentially bounded and that the driver f : Ω× [0, T ]× Rd → Rd satisfies

• f(·, 0) ∈ L∞F (0, T ;Rd),

• for every R > 0 there exists L > 0 such that for all |y|, |y′| ≤ R,

|f(t, y)− f(t, y′)| ≤ L|y − y′|. (A.2)

Lemma A.2. Under the above assumptions there exits δ > 0 such that there exits on [T − δ, T ]

a short-time solution (Y, Z) ∈ L∞F (Ω;C([T − δ, T ];Rd))× L2
F (T − δ, T ;Rd×m) to (A.1).
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Proof. We will show that one may choose δ = 1/(2L), where L is the Lipschitz constant given

in (A.2) with respect to R = 2(‖ζ‖L∞ + T‖f(·, 0)‖L∞).

With H = L∞F (Ω;C([0, T ];Rd)) we define the operator Γ : H → H by

Γ(Y )t = E
[
ζ +

∫ T

t
f(s, Ys) ds

∣∣∣∣Ft] .
Then Γ is a contraction on BH(R): For all Y, Y ′ ∈ BH(R) it holds dP× dt-a.e.,

|Γ(Y )t − Γ(Y ′t )| ≤ E
[∫ T

t
|f(s, Ys)− f(s, Y ′s )| ds

∣∣∣∣Ft]
≤ LE

[∫ T

t
|Ys − Y ′s | ds

∣∣∣∣Ft]
≤ L(T − t)‖Y − Y ′‖L∞

≤ Lδ‖Y − Y ′‖L∞ =
1

2
‖Y − Y ′‖L∞ .

Furthermore, Γ maps BH(R) into itself: For all Y ∈ BH(R) it holds dP× dt-a.e.,

|Γ(Y )t| ≤ |Γ(Y )t − Γ(0)t|+ |Γ(0)t|
≤ ‖Γ(Y )− Γ(0)‖L∞ + ‖ζ‖L∞ + (T − t)‖f(·, 0)‖L∞

≤ 1

2
‖Y ‖L∞ + ‖ζ‖L∞ + T‖f(·, 0)‖L∞ ≤ R.

Hence, Γ has a unique fixed point in BH(R). By the martingale representation theorem, this

fixed point gives the desired solution.
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