
HAL Id: hal-01897555
https://inria.hal.science/hal-01897555

Submitted on 17 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

1.5D Parallel Sparse Matrix-Vector Multiply
Enver Kayaaslan, Cevdet Aykanat, Bora Uçar

To cite this version:
Enver Kayaaslan, Cevdet Aykanat, Bora Uçar. 1.5D Parallel Sparse Matrix-Vector Multiply. SIAM
Journal on Scientific Computing, 2018, 40 (1), pp.C25 - C46. �10.1137/16M1105591�. �hal-01897555�

https://inria.hal.science/hal-01897555
https://hal.archives-ouvertes.fr

1.5D PARALLEL SPARSE MATRIX-VECTOR MULTIPLY∗1

ENVER KAYAASLAN† , CEVDET AYKANAT‡ , AND BORA UÇAR§2

Abstract. There are three common parallel sparse matrix-vector multiply algorithms: 1D3
row-parallel, 1D column-parallel and 2D row-column-parallel. The 1D parallel algorithms offer the4
advantage of having only one communication phase. On the other hand, the 2D parallel algorithm5
is more scalable but it suffers from two communication phases. Here, we introduce a novel concept6
of heterogeneous messages where a heterogeneous message may contain both input-vector entries7
and partially computed output-vector entries. This concept not only leads to a decreased number of8
messages, but also enables fusing the input- and output-communication phases into a single phase.9
These findings are exploited to propose a 1.5D parallel sparse matrix-vector multiply algorithm10
which is called local row-column-parallel. This proposed algorithm requires a constrained fine-grain11
partitioning in which each fine-grain task is assigned to the processor that contains either its input-12
vector entry, or its output-vector entry, or both. We propose two methods to carry out the constrained13
fine-grain partitioning. We conduct our experiments on a large set of test matrices to evaluate the14
partitioning qualities and partitioning times of these proposed 1.5D methods.15

Key words. sparse matrix partitioning, parallel sparse matrix-vector multiplication, directed16
hypergraph model, bipartite vertex cover, combinatorial scientific computing17

AMS subject classifications. 05C50, 05C65, 05C70, 65F10, 65F50, 65Y0518

1. Introduction. Sparse matrix-vector multiply (SpMV) of the form y ← Ax19

is a fundamental operation in many iterative solvers for linear systems, eigensystems20

and least squares problems. This renders the parallelization of SpMV operation an21

important problem. In the literature, there are three SpMV algorithms: row-parallel,22

column-parallel, and row-column-parallel. Row-parallel and column-parallel (called23

1D) algorithms have a single communication phase, in which either the x-vector or24

partial results on the y-vector entries are communicated. Row-column-parallel (2D)25

algorithms have two communication phases; first the x-vector entries are communi-26

cated, then the partial results on the y-vector entries are communicated. We propose27

another parallel SpMV algorithm in which both the x-vector and the partial results28

on the y-vector entries are communicated as in the 2D algorithms, yet the commu-29

nication is handled in a single phase as in the 1D algorithms. That is why, the new30

parallel SpMV algorithm is dubbed 1.5D.31

Partitioning methods based on graphs and hypergraphs are widely established to32

achieve 1D and 2D parallel algorithms. For 1D parallel SpMV, row-wise or column-33

wise partitioning methods are available. The scalability of 1D parallelism is limited34

especially when a row or a column has too many nonzeros in the row- and column-35

parallel algorithms, respectively. In such cases, the communication volume is high36

and the load balance is hard to achieve, severely reducing the solution space. The37

associated partitioning methods are usually the fastest alternatives. For 2D parallel38

SpMV, there are different partitioning methods. Among them, those that partition39

matrix entries individually, based on the fine-grain model [4], have the highest flexi-40

bility. That is why they usually obtain the lowest communication volume and achieve41

near perfect balance among nonzeros per processor [7]. However, the fine-grain parti-42

tioning approach usually results in higher number of messages; not surprisingly higher43

∗A preliminary version appeared in IPDPSW [12].
†NTENT, Inc., USA
‡Bilkent University, Turkey
§CNRS and LIP (UMR5668 CNRS-ENS Lyon-INRIA-UCBL),

46, allée d’Italie, ENS Lyon, Lyon, 69364, France.

1

This manuscript is for review purposes only.

2 E. KAYAASLAN, B. UÇAR AND C. AYKANAT

number of messages hampers the parallel SpMV performance [11].44

The parallel SpMV operation is composed of fine-grain tasks of multiply-and-add45

operations of the form yi ← yi + aijxj . Here, each fine-grain task is identified with a46

unique nonzero and assumed to be performed by the processor that holds the associ-47

ated nonzero by the owner-computes rule. The proposed 1.5D parallel SpMV imposes48

a special condition on the operands of the fine-grain task yi ← yi + aijxj : the proces-49

sor that holds aij should also hold xj or should be responsible for yi (or both). The50

standard rowwise and columnwise partitioning algorithms for 1D parallel algorithms51

satisfy the condition, but they are too restrictive. The standard fine-grain partition-52

ing approach does not necessarily satisfy the condition. Here we propose two methods53

for partitioning for 1.5D parallel SpMV. With the proposed partitioning methods, the54

overall 1.5D parallel SpMV algorithm inherits the important characteristics of 1D and55

2D parallel SpMV and the associated partitioning methods. In particular, it has56

• a single communication phase as in 1D parallel SpMV,57

• the partitioning flexibility close to that of 2D fine-grain partitioning,58

• much reduced number of messages compared to the 2D fine-grain partitioning,59

• a partitioning time close to that of 1D partitioning.60

We propose two methods (Section 4) to obtain a 1.5D local fine-grain partition61

each with a different setting and approach where some preliminary studies on these62

methods are given in our recent work [12]. The first method is developed by proposing63

a directed hypergraph model. Since current partitioning tools cannot meet 1.5D64

partitioning requirements, we adopt and adapt an approach similar to that of a recent65

work by Pelt and Bisseling. [15]. The second method has two parts. The first part66

applies a conventional 1D partitioning method but decodes this only as a partition67

of the vectors x and y. The second part decides nonzero/task distribution under the68

fixed partition of the input and output vectors.69

The remainder of this paper is as follows. In Section 2, we give a background70

on parallel SpMV. Section 3 presents the proposed 1.5D local row-column-parallel71

algorithm and 1.5D local fine-grain partitioning. The two methods proposed to obtain72

a local fine-grain partition are presented and discussed in Section 4. Section 5 gives a73

brief review of recent related work. We display our experimental results in Section 674

and conclude the paper in Section 7.75

2. Background on parallel sparse matrix-vector multiply.76

2.1. The anatomy of parallel sparse matrix-vector multiply. Recall that77

y← Ax can be cast as a collection of fine-grain tasks of multiply-and-add operations78

(1) yi ← yi + aij × xj .79

These tasks can share input and output-vector entries. When a task aij and the80

input-vector entry xj are assigned to different processors, say P` and Pr, respectively,81

Pr sends xj to P`, which is responsible to carry out the task aij . An input-vector82

entry xj is not communicated multiple times between processor pairs. When a task83

aij and the output-vector entry yi are assigned to different processors, say Pr and Pk,84

respectively, then Pr performs ŷi ← ŷi +aij×xj as well as all other multiply-and-add85

operations that contribute to the partial result ŷi and then sends ŷi to Pk. The partial86

results received by Pk from different processors are then summed to compute yi.87

2.2. Task-and-data distributions. Let A be an m×n sparse matrix and aij88

represent both a nonzero of A and the associated fine-grain task of multiply-and-89

add operation (1). Let x and y be the input- and output-vectors of size n and90

This manuscript is for review purposes only.

1.5D PARALLEL SPARSE MATRIX-VECTOR MULTIPLY 3

P1 P2 P3

P1 P2 P3

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

a12

a12

a13

a13

a21

a21

a22

a22

3

2

21

1

P1 P1 P2

P2

P3 P1

P2 P2

P3

P3 P2

P1

3

2

21

1 P2

P2 P3

P1

P1P1

P3P2

P2

P2

P3

P1

P2

Fig. 1: A task-and-data distribution Π(y←Ax) of matrix-vector multiply with a 2×3
sparse matrix A.

m, respectively, and K be the number of processors. We define a K-way task-and-91

data distribution Π(y ← Ax) of the associated SpMV as a 3-tuple Π(y ← Ax) =92

(Π(A),Π(x),Π(y)), where Π(A) = {A(1), . . . ,A(K)}, Π(x) = {x(1), . . . ,x(K)}, and93

Π(y) = {y(1), . . . ,y(K)}. We can also represent Π(A) as a nonzero-disjoint summation94

(2) A = A(1) + A(2) + · · ·+ A(K).95

In Π(x) and Π(y), each x(k) and y(k) is a disjoint subvector of x and y, respectively.96

Figure 1 illustrates a sample 3-way task-and-data distribution of matrix-vector mul-97

tiply on a 2×3 sparse matrix.98

For given input- and output-vector distributions Π(x) and Π(y), the columns and99

rows of A and those of A(k) can be permuted, conformably with Π(x) and Π(y), to100

form K×K block structures:101

(3)A=


A11 A12 · · · A1K

A21 A22 · · · A2K

...
...

. . .
...

AK1 AK2 · · · AKK

, (4) A(k) =


A

(k)
11 A

(k)
12 · · · A

(k)
1K

A
(k)
21 A

(k)
22 · · · A

(k)
2K

...
...

. . .
...

A
(k)
K1 A

(k)
K2 · · · A

(k)
KK

.102

Note that the row and column orderings (4) of the individual A(k) matrices are in103

compliance with the row and column orderings (3) of A. Hence, each block Ak` of104

the block structure (3) of A can be written as a nonzero-disjoint summation105

(5) Ak` = A
(1)
k` + A

(2)
k` + · · ·+ A

(K)
k` .106

Let Π(y ← Ax) be any K-way task-and-data distribution. According to this107

distribution, each processor Pk holds the submatrix A(k), holds the input-subvector108

x(k) and is responsible for storing/computing the output subvector y(k). The fine-109

grain tasks (1) associated with the nonzeros of A(k) are to be carried out by Pk.110

An input-vector entry xj ∈ x(k) is sent from Pk to P`, which is called an input111

communication, if there is a task aij ∈ A(`) associated with a nonzero at column j.112

On the other hand, Pk receives a partial result ŷi on an output-vector entry yi ∈ y(k)113

from P`, which is referred to as an output communication, if there is a task aij ∈ A(`)114

associated with a nonzero at row i. Therefore, the fine-grain tasks associated with the115

nonzeros of the column stripe A∗k = [AT
1k, . . . ,A

T
Kk]T are the only ones that require116

an input-vector entry of x(k) and the fine-grain tasks associated with the nonzeros117

of the row stripe Ak∗ = [Ak1, . . . ,AkK] are the only ones that contribute to the118

computation of an output-vector entry of y(k).119

2.3. 1D parallel sparse matrix-vector multiply. There are two main alter-120

natives for 1D parallel SpMV, row-parallel and column-parallel.121

This manuscript is for review purposes only.

4 E. KAYAASLAN, B. UÇAR AND C. AYKANAT

In the row-parallel SpMV, the basic computational units are the rows. For an122

output-vector entry yi assigned to processor Pk, the fine-grain tasks associated with123

the nonzeros of Ai∗ = {aij ∈ A : 1 ≤ j ≤ n} are combined into a composite task of124

inner product yi ← Ai∗x which is to be carried out by Pk. Therefore, for the row-125

parallel algorithm, a task-and-data distribution Π(y←Ax) of matrix-vector multiply126

on A should satisfy the following condition:127

(6) aij ∈ A(k) whenever yi ∈ y(k) .128

Then, Π(A) coincides with the output-vector distribution Π(y)—each submatrix is129

a row stripe of the block structure (3) of A. In the row-parallel parallel SpMV, all130

messages are communicated in an input-communication phase called expand where131

each message contains only input-vector entries.132

In the column-parallel SpMV, the basic computational units are the columns. For133

an input-vector entry xj assigned to processor Pk, the fine-grain tasks associated with134

the nonzeros of A∗j = {aij ∈ A : 1 ≤ i ≤ m} are combined into a composite task of135

“daxpy” operation ŷk ← ŷk + A∗jxj which is to be carried out by Pk where ŷk is136

the partially computed output-vector of Pk. As a result, a task-and-data distribution137

Π(y←Ax) of matrix-vector multiply on A for the column-parallel algorithm should138

satisfy the following condition:139

(7) aij ∈ A(k) whenever xj ∈ x(k) .140

Here, Π(A) coincides with the input-vector distribution Π(x)—each submatrix A(k)141

is a column stripe of the block structure (3) of A. In the column-parallel SpMV, all142

messages are communicated in an output-communication phase called fold where each143

message contains only partially computed output-vector entries.144

The column-net and row-net hypergraph models [3] can be respectively used to145

obtain the required task-and-data partitioning for the row-parallel and column-parallel146

SpMV.147

2.4. 2D parallel sparse matrix-vector multiply. In the 2D parallel SpMV,148

also referred to as the row-column-parallel, the basic computational units are nonze-149

ros [4, 7]. The row-column-parallel algorithm requires fine-grain partitioning which150

imposes no restriction on distributing tasks and data. The row-column-parallel algo-151

rithm contains two communication and two computational phases in an interleaved152

manner as shown in Algorithm 1. The algorithm starts with the expand phase where153

the required input-subvector entries are communicated. The second step computes154

only those partial results that are to be communicated in the following fold phase.155

In the final step, each processor computes its own output-subvector. If we have a156

rowwise partitioning, the steps 2, 3 and 4c are not needed and hence the algorithm157

reduces to the row-parallel algorithm. Similarly, the algorithm without steps 1, 2b158

and 4b, can be used when we have a columnwise partitioning. The row-column-net159

hypergraph model [4, 7] can be used to obtain the required task-and-data partitioning160

for row-column-parallel SpMV.161

3. 1.5D parallel sparse matrix-vector multiply. In this section, we propose162

the local row-column-parallel SpMV algorithm that exhibits 1.5D parallelism. The163

proposed algorithm simplifies the row-column-parallel algorithm by combining the two164

communication phases into a single expand-fold phase while attaining a flexibility on165

nonzero/task distribution close to the flexibility attained by the row-column-parallel166

algorithm.167

This manuscript is for review purposes only.

1.5D PARALLEL SPARSE MATRIX-VECTOR MULTIPLY 5

Algorithm 1 The row-column-parallel sparse matrix-vector multiply

For each processor Pk:

1. (expand) for each nonzero column stripe A
(`)
∗k , where ` 6= k;

(a) form vector x̂
(k)
` which contains only those entries of x(k) corresponding

to nonzero columns in A
(`)
∗k and

(b) send vector x̂
(k)
` to P`,

2. for each nonzero row stripe A
(k)
`∗ , where ` 6= k; compute

(a) y
(`)
k ← A

(k)
`k x(k) and

(b) y
(`)
k ← y

(`)
k +

∑
r 6=k A

(k)
`r x̂

(r)
k

3. (fold) for each nonzero row stripe A
(k)
`∗ , where ` 6= k;

(a) form vector ŷ
(`)
k which contains only those entries of y

(`)
k corresponding

to nonzero rows in A
(k)
`∗ and

(b) send vector ŷ
(`)
k to P`,

4. compute output-subvector

(a) y(k) ← A
(k)
kk x(k),

(b) y(k) ← y(k) + A
(k)
k` x̂

(`)
k and

(c) y(k) ← y(k) +
∑

` 6=k ŷ
(k)
` .

In the well-known parallel SpMV, the messages are homogenous in the sense that168

they pertain to either x- or y-vector entries. In the proposed row-column-parallel169

SpMV algorithm, the number of messages are reduced with respect to the row-column-170

parallel algorithm by making the messages heterogenous (pertaining to both x- and171

y-vector entries), and by communicating them in a single expand-fold phase. If a172

processor P` sends a message to processor Pk in both of the expand and fold phases,173

then the number of messages required from P` to Pk reduces from two to one. However,174

if a message from P` to Pk is sent only in the expand phase or only in the fold phase,175

then there is no reduction in the number of such messages.176

3.1. A Task categorization. We introduce a two-way categorization of input-177

and output-vector entries and a four-way categorization of fine-grain tasks (1) accord-178

ing to a task-and-data distribution Π(y←Ax) of matrix-vector multiply on A. For179

a task aij , the input-vector entry xj is said to be local if both aij and xj are assigned180

to the same processor; the output-vector entry yi is said to be local if both aij and yi181

are assigned to the same processor. With this definition, the tasks can be classified182

into four groups. The task183

yi ← yi + aij × xj on Pk is


input-output-local if xj ∈ x(k) and yi ∈ y(k) ,

input-local if xj ∈ x(k) and yi 6∈ y(k) ,

output-local if xj 6∈ x(k) and yi ∈ y(k) ,

nonlocal if xj 6∈ x(k) and yi 6∈ y(k) .

184

Recall that an input-vector entry xj ∈ x(`) is sent from P` to Pk if there exists a task185

aij ∈ A(k) at column j, which implies that the task aij of Pk is either output-local or186

nonlocal since xj 6∈ x(k). Similarly, for an output-vector entry yi ∈ y(`), P` receives187

This manuscript is for review purposes only.

6 E. KAYAASLAN, B. UÇAR AND C. AYKANAT

a partial result ŷi from Pk if a task aij ∈ A(k), which implies that the task aij of188

Pk is either input-local or nonlocal since yi 6∈ y(k). We can also infer from that the189

input-output-local tasks neither depend on the input-communication phase nor incur190

a dependency on the output-communication phase. However, the nonlocal tasks are191

linked with both communication phases.192

In the row-parallel algorithm, each of the fine-grain tasks is either input-output-193

local or output-local due to the rowwise partitioning condition (6). For this reason,194

no partial result is computed for other processors, and thus no output communication195

is incurred. In the column-parallel algorithm, each of the fine-grain tasks is either196

input-output-local or input-local due to the columnwise partitioning condition (7). In197

the row-column-parallel algorithm, the input and output communications have to be198

carried out in separate phases. The reason is that the partial results on the output-199

vector entries to be sent are partially derived by performing nonlocal tasks that rely200

on the input-vector entries received.201

3.2. Local fine-grain partitioning. In order to remove the dependency be-202

tween the two communication phases in the row-column-parallel algorithm, we pro-203

pose the local fine-grain partitioning where “locality” refers to the fact that each fine-204

grain task is input-local, output-local or input-output-local. In other words, there is205

no nonlocal fine-grain task.206

A task-and-data distribution Π(y←Ax) of matrix-vector multiply on A is said207

to be a local fine-grain partition if the following condition is satisfied:208

(8) aij ∈ A(k) + A(`) whenever yi ∈ y(k) and xj ∈ x(`).209

Notice that this condition is equivalent to210

(9) if aij ∈ A(k) then either xj ∈ y(k), or yi ∈ x(k), or both.211

Due to (4) and (9), each submatrix A(k) becomes of the following form212

(10) A(k) =



0 . . . A
(k)
1k . . . 0

...
. . .

...
. . .

...

A
(k)
k1 · · · A

(k)
kk · · · A

(k)
kK

...
. . .

...
. . .

...

0 . . . A
(k)
Kk . . . 0


.213

In this form, the tasks associated with the nonzeros of diagonal block A
(k)
kk , the off-214

diagonal blocks of the row stripe A
(k)
k∗ , and the off-diagonal blocks of the column-stripe215

A
(k)
∗k are input-output-local, output-local and input-local, respectively. Furthermore,216

due to (5) and (8), each off-diagonal block Ak` of the block structure (3) induced by217

the vector distribution (Π(x),Π(y)) becomes218

(11) Ak` = A
(k)
k` + A

(`)
k` ,219

and for each diagonal block we have Akk = A
(k)
kk .220

In order to clarify Equations (8)–(11), we provide the following 4-way local fine-221

grain partition on A as permuted into a 4×4 block structure.222

This manuscript is for review purposes only.

1.5D PARALLEL SPARSE MATRIX-VECTOR MULTIPLY 7

P1 P2 P3

P1 P2 P3

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

a12

a12

a13

a13

a21

a21

a22

a22

3

2

21

1

P1 P1 P2

P2

P3 P1

P2 P2

P3

P3 P2

P1

3

2

21

1 P2

P2 P3

P1

P1P1

P3P2

P2

P2

P3

P1

P2

Fig. 2: A sample local fine-grain partition. Here, a12 is an output-local task, a13 is
an input-output-local task, a21 is an output-local task, and a22 is an input-local task.

A =


A11 A

(1)
12 A

(1)
13 A

(1)
14

A
(1)
21 0 0 0

A
(1)
31 0 0 0

A
(1)
41 0 0 0

+


0 A

(2)
12 0 0

A
(2)
21 A22 A

(2)
23 A

(2)
24

0 A
(2)
32 0 0

0 A
(2)
42 0 0

+223


0 0 A

(3)
13 0

0 0 A
(3)
23 0

A
(3)
31 A

(3)
32 A33 A

(3)
34

0 0 A
(3)
43 0

+


0 0 0 A

(4)
14

0 0 0 A
(4)
24

0 0 0 A
(4)
34

A
(4)
41 A

(4)
42 A

(4)
43 A44

.224

For instance, A42 = A
(2)
42 + A

(4)
42 , A23 = A

(2)
23 + A

(3)
23 , A31 = A

(1)
31 + A

(3)
31 , . . . , etc.225

Figure 2 displays a sample 3-way local fine-grain partition on the same sparse226

matrix used in Figure 1. In this figure, a13 ∈ A(1) where y1 ∈ y(2) and x3 ∈ x(1) and227

thus a13 is an input-local task of P1. Also, a21 ∈ A(3) where y2 ∈ y(3) and x1 ∈ x(1)228

and thus a21 is an output-local task of P3.229

3.3. Local row-column-parallel sparse matrix-vector multiply. As there230

is no nonlocal tasks, the output-local tasks depend on input communication, and the231

output communication depends on the input-local tasks. Therefore, the tasks groups232

and communication phases can be arranged as: (i) input-local tasks; (ii) output-233

communication, input-communication; (iii) output-local tasks and input-output-local234

tasks. The input and output communication phases can be combined into the expand-235

fold phase, and the output-local and input-output-local task groups can be combined236

into a single computation phase to simplify the overall execution.237

The local row-column-parallel algorithm is composed of three steps as shown in238

Algorithm 2. In the first step, processors concurrently perform their input-local tasks239

which contribute to partially computed output-vector entries for other processors. In240

the expand-fold phase, for each nonzero off-diagonal block A`k = A
(k)
`k + A

(`)
`k , Pk241

prepares a message [x̂
(k)
` , ŷ

(`)
k] for P`. Here, x̂

(k)
` contains the input-vector entries of242

x(k) that are required by the output-local tasks of P`, whereas ŷ
(`)
k contains the partial243

results on the output-vector entries of y(`), where the partial results are derived by244

performing the input-local tasks of Pk. In the last step, each processor Pk computes245

output-subvector y(k) by summing the partial results computed locally by its own246

input-output-local tasks (step 3a) and output-local tasks (step 3b) as well as the247

partial results received from other processors due to their input-local tasks (step 3c).248

For a message [x̂
(k)
` , ŷ

(`)
k] from processor Pk to P`, the input-vector entries of x̂

(k)
`249

correspond to the nonzero columns of A
(`)
`k , whereas the partially computed output-250

This manuscript is for review purposes only.

8 E. KAYAASLAN, B. UÇAR AND C. AYKANAT

Algorithm 2 The local row-column-parallel sparse matrix-vector multiply

For each processor Pk:

1. for each nonzero block A
(k)
`k , where ` 6= k;

compute y
(`)
k ← A

(k)
`k x(k), I input-local tasks of Pk

2. (expand-fold) for each nonzero block A`k = A
(k)
`k + A

(`)
`k , where ` 6= k;

(a) form vector x̂
(k)
` , which contains only those entries of x(k) corresponding

to nonzero columns in A
(`)
`k ,

(b) form vector ŷ
(`)
k , which contains only those entries of y

(`)
k corresponding

to nonzero rows in A
(k)
`k ,

(c) send vector [x̂
(k)
` , ŷ

(`)
k] to processor P`.

3. compute output-subvector

(a) y(k) ← A
(k)
kk x(k), I input-output-local tasks of Pk

(b) y(k) ← y(k) + A
(k)
k` x̂

(`)
k and I output-local tasks of Pk

(c) y(k) ← y(k) +
∑

` 6=k ŷ
(k)
` . I input-local tasks of other processors

aij

P` Pk

xj
yi

xj ŷi

ŷi ŷi + aij ⇥ xj yi yi + ŷi

P` P`Pk Pk

aij aij

xj
xj

yi

yiŷi xj

ŷi ŷi + aij ⇥ xj yi yi + ŷi yi yi + aij ⇥ xj

ŷ2 a22 ⇥ x2y1 a12 ⇥ x2 + a13 ⇥ x3 y2 a21 ⇥ x1 + ŷ2

P1P2 P3

x1

x2x3

y1

y2

a12

a13 a22

a21

[x2] [x1, ŷ2]

Pr

3

2

21

1

P1 P1 P2

P2

P3 P1

P2 P2

P3

P3 P2

P1

Fig. 3: An illustration of Algorithm 2 for the local fine-grain partition in Figure 2.

vector entries of ŷ
(`)
k correspond to the nonzero rows of A

(k)
`k . That is, x̂

(k)
` = [xj :251

aij ∈ A
(`)
`k] and ŷ

(`)
k = [ŷi : aij ∈ A

(k)
`k]. This message is heterogeneous if A

(k)
`k and252

A
(`)
`k are both nonzero and homogeneous otherwise. We also note that the number of253

messages is equal to the number of nonzero off-diagonal blocks of the block structure254

(3) of A induced by the vector distribution (Π(x),Π(y)). Figure 3 illustrates the255

steps of Algorithm 2 on the sample local fine-grain partition given in Figure 2. As256

seen in the figure, there are only two messages to be communicated. One message257

is homogeneous, which is from P1 to P2 and contains only an input-vector entry x2,258

whereas the other message is heterogeneous, which is from P1 to P3 and contains an259

input-vector entry x1 and a partially computed output-vector entry ŷ2.260

4. Two proposed methods for local row-column-parallel partitioning.261

We propose two methods to find a local row-column-parallel partition that is required262

for 1.5D local row-column-parallel SpMV. One method finds vector and nonzero dis-263

tributions simultaneously, whereas the other one has two parts in which vector and264

nonzero distributions are found separately.265

4.1. A directed hypergraph model for simultaneous vector and nonzero266

distribution. In this method, we adopt the elementary hypergraph model for the267

fine-grain partitioning [16] and introduce an additional locality constraint on par-268

titioning in order to obtain a local fine-grain partition. In this hypergraph model269

This manuscript is for review purposes only.

1.5D PARALLEL SPARSE MATRIX-VECTOR MULTIPLY 9

H2D = (V,N), there is an input-data vertex for each input-vector entry, an output-270

data vertex for each output-vector entry and a task vertex for each fine-grain task (or271

per matrix nonzero) for a given matrix A. That is,272

V = {vx(j) : xj ∈ x} ∪ {vy(i) : yi ∈ y} ∪ {vz(ij) : aij ∈ A} .273

The input- and output-data vertices have zero weights, whereas the task vertices have274

unit weights. In H2D, there is an input-data net for each input-vector entry, and an275

output-data net for each output-vector entry. An input-data net nx(j), corresponding276

to the input-vector entry xj , connects all task vertices associated with the nonzeros at277

column j as well as the input-data vertex vx(j). Similarly, an output-data net ny(i),278

corresponding to the output-vector entry yi, connects all task vertices associated with279

the nonzeros at row i as well as the output-data vertex vy(i). That is280

N = {nx(j) : xj ∈ x} ∪ {ny(i) : yi ∈ y} ,281

nx(j) = {vx(j)} ∪ {vz(ij) : aij ∈ A, 1 ≤ i ≤ m} , and282

ny(i) = {vy(i)} ∪ {vz(ij) : aij ∈ A, 1 ≤ j ≤ n}.283

Note that each input-data net connects a separate input-data vertex, whereas284

each output-data net connects a separate output-data vertex. We associate nets with285

their respective data vertices.286

We enhance the elementary row-column-net hypergraph model by imposing di-287

rections on the nets; this is required for modeling the dependencies and their nature.288

Each input-data net nx(j) is directed from the input-data vertex vx(j) to the task289

vertices connected by nx(j), and each output-data net ny(i) is directed from the task290

vertices connected by ny(i) to the output-data vertex vy(i). Each task vertex vz(ij)291

is connected by a single input-data-net nx(j) and a single output-data-net ny(i).292

In order to impose the locality in the partitioning, we introduce the following293

constraint for vertex partitioning on the directed hypergraph model H2D: each task294

vertex vz(ij) should be assigned to the part that contains either input-data vertex295

vx(j), or output-data vertex vy(i), or both. Figure 4a displays a sample 6×7 sparse296

matrix. Figure 4b illustrates the associated directed hypergraph model. Figure 4c297

shows a 3-way vertex partition of this directed hypergraph model satisfying the locality298

constraint, and Fig. 4d shows the local fine-grain partition decoded by this partition.299

Instead of developing a partitioner for this particular directed hypergraph model,300

we propose a task-vertex amalgamation procedure which will help in meeting the301

described locality constraint by using a standard hypergraph partitioning tool. For302

this, we adopt and adapt a simple-yet-effective approach of Pelt and Bisseling [15]. In303

our adaptation, we amalgamate each task vertex vz(ij) into either input-data vertex304

vx(j) or output-data vertex vy(i) according to the number of task vertices connected305

by nx(j) and ny(i), respectively. That is, vz(ij) is amalgamated into vx(j) if column j306

has a smaller number of nonzeros than row i, and otherwise it is amalgamated into307

vy(i), where the ties are broken arbitrarily. The result is a reduced hypergraph that308

contains only the input- and output-data vertices amalgamated with the task vertices309

where the weight of a data vertex is equal to the number of task vertices amalgamated310

into that data vertex. As a result, the locality constraint on vertex partitioning of the311

initial directed hypergraph naturally holds on any vertex partitioning on the reduced312

hypergraph. It so happens that after this process, the net directions become irrelevant313

for partitioning, and hence one can use the standard hypergraph partitioning tools.314

Figure 5 illustrates how to obtain a local fine-grain partition through the described315

task-vertex amalgamation procedure. In Figure 5a, the up and left arrows imply that316

This manuscript is for review purposes only.

10 E. KAYAASLAN, B. UÇAR AND C. AYKANAT

2

2 356 714

x1 x2 x3

y1

y2

y3

1

2

3

2

5

3

4

5

6

1

6 1
4

7

3
4

1
6

5

1 1

2 2

2

22

3 3 3

3

2

3

3

1

3

5

3

1

2

4

5

6

7

1

2

3

4

6

V1

V2

V3

3 7521 64

4

2
3

1

6
5

(a) a 6×7 sparse matrix

2

2 356 714

3 75

4

2

2

3

1
1

6
5

64

x1 x2 x3

y1

y2

y3

1

2

3

2

5

3

4

5

6

1

6 1
4

7

3
4

1
6

5

1 1

2 2

2

22

3 3 3

3

2

3

3

1

3

P1

P2

P3

5

3

1

2

4

5

6

7

1

2

3

4

6

(b) directed hypergraph model

2

2 356 714

3 75

4

2

2

3

1
1

6
5

64

x1 x2 x3

y1

y2

y3

1

2

3

2

5

3

4

5

6

1

6 1
4

7

3
4

1
6

5

1 1

2 2

2

22

3 3 3

3

2

3

3

1

3

5

3

1

2

4

5

6

7

1

2

3

4

6

V1

V2

V3

(c) a 3-way local hypergraph partition

2

2 356 714

3 75

4

2

2

3

1
1

6
5

64

x1 x2 x3

y1

y2

y3

1

2

3

2

5

3

4

5
6

1

6

1

4

7

2

3

2

5

3

4

5

6

1

6 14

7

3
4

1
6

5

1 1

2 2

2

22

3 3 3

3

2

3

3

1

3

P1

P2

P3

(d) local fine-grain partition

Fig. 4: An illustration of attaining a local fine-grain partition through vertex par-
titioning of the directed hypergraph model that satisfies locality constraints. The
input- and output-data vertices are drawn with triangles and rectangles, respectively.

a task vertex vz(ij) is amalgamated into input-data vertex vx(j) and output-data317

vertex vy(i), respectively. The reduced hypergraph obtained by these task-vertex318

amalgamations is shown in Figure 5b. Figures 5c and 5d show a 3-way vertex partition319

of this reduced hypergraph and the obtained local fine-grain partition, respectively. As320

seen in these figures, task a35 is assigned to processor P2 since vz(3, 5) is amalgamated321

into vx(5), and vx(5) is assigned to V2.322

We emphasize here that the reduced hypergraph constructed as above is equiv-323

alent to the hypergraph model of Pelt and Bisseling [15]. In that original work, the324

use of this model was only for two-way partitioning (of the fine grain model) which is325

then used for K-way fine-grain partitioning recursively. But this distorts the locality326

of task vertices so that a partition obtained in further recursive steps is no more a327

local fine-grain partition. That is why the adaptation was necessary.328

4.2. Nonzero distribution to minimize the total communication vol-329

ume. This method is composed of two parts. The first parts finds a vector distri-330

bution (Π(x),Π(y)). The second part finds a nonzero/task distribution Π(A) that331

exactly minimizes the total communication volume over all possible local fine-grain332

partitions which abide by (Π(x),Π(y)) of the first part. The first part can be ac-333

complished by any conventional data partitioning method such as 1D partitioning.334

Therefore, this section is devoted to the second part.335

Consider the block structure (3) of A induced by (Π(x),Π(y)). Recall that in336

a local fine-grain partition, due (11), the nonzero/task distribution is such that each337

This manuscript is for review purposes only.

1.5D PARALLEL SPARSE MATRIX-VECTOR MULTIPLY 11

1

6

1

6

3

4

2

5

2

3

4

7

5

5 6

2

5 462 731

x1 x2 x3

y1

y2

y3

1

4
3

1
6

5

1 2

2 2

2

32

1 2 3

3

3

1

1

"

"

" " " "

""

"

2

3

2 4
6

1

5

3

2

3

4

1

7

V1

V2

V3

3 7521 64

4

2
3

1

6
5

(a) task-vertex amalgamations

1

6

1

6

3

4

2

5

2

3

4

7

5

5 6

2

5 462 731

3 75

4

2

2

3

1
1

6
5

64

x1 x2 x3

y1

y2

y3

1

4
3

1
6

5

1 2

2 2

2

32

1 2 3

3

3

1

1

P1

P2

P3

"

"

" " " "

""

"

2

3

2 4
6

1

5

3

2

3

4

1

7

(b) reduced hypergraph

1

6

1

6

3

4

2

5

2

3

4

7

5

5 6

2

5 462 731

3 75

4

2

2

3

1
1

6
5

64

x1 x2 x3

y1

y2

y3

1

4
3

1
6

5

1 2

2 2

2

32

1 2 3

3

3

1

1

"

"

" " " "

""

"

2

3

2 4
6

1

5

3

2

3

4

1

7

V1

V2

V3

(c) a 3-way hypergraph partition

1

6

1

6

3

4

2

5

2

3

4

7

5

5 6

2

5 462 731

3 75

4

2

2

3

1
1

6
5

64

x1 x2 x3

y1

y2

y3

1

4
3

1
6

5

1 2

2 2

2

32

1 2 3

3

3

1

1

"

"

" " " "

""

"

2

3

2 4
6

1

5

3

2

3

4

1

7

V1

V2

V3
(d) local fine-grain partition

Fig. 5: An illustration of local fine-grain partitioning through task-vertex amalgama-
tions. The input- and output-data vertices are drawn with triangles and rectangles,
respectively. The figure on the bottom right shows the fine-grain partition.

diagonal block Akk = A
(k)
kk , and each off-diagonal block Ak` is a nonzero-disjoint338

summation of the form Ak` = A
(k)
k` + A

(`)
k` . This corresponds to assigning each339

nonzero of Akk to Pk, for each diagonal block Akk, and assigning each nonzero of Ak`340

to either Pk or P`. Figure 6 illustrates a sample 10×12 sparse matrix and its block341

structure induced by a sample 3-way vector distribution which incurs four messages:342

from P3 to P1, from P1 to P2, from P3 to P2, and from P2 to P3 due to A13, A21,343

A23 and A32, respectively.344

Since diagonal blocks and zero off-diagonal blocks do not incur any communica-345

tion, we focus on the nonzero off-diagonal blocks. Consider a nonzero off-diagonal346

block Ak` which incurs a message from P` to Pk. The volume of this message is347

determined by the distribution of tasks of Ak` between Pk and P`. This in turn im-348

plies that distributing the tasks of each nonzero off-diagonal block can be performed349

independently for minimizing the total communication volume.350

In the local row-column-parallel algorithm, P` sends [x̂
(k)
` , ŷ

(`)
k] to Pk. Here, x̂

(k)
`351

corresponds to the nonzero columns of A
(`)
`k , and ŷ

(`)
k corresponds to the nonzero rows352

of A
(k)
`k , for a nonzero/task distribution Ak` = A

(k)
k` + A

(`)
k` . Then, we can derive the353

following formula for the communication volume φk` from P` to Pk:354

(12) φk` = n̂(A
(k)
k`) + m̂(A

(`)
k`),355

where n̂(·) and m̂(·) refer to the number of nonzero columns and nonzero rows of the356

input submatrix, respectively. The total communication volume φ is then computed357

by summing the communication volumes incurred by each nonzero off-diagonal block358

of the block structure. Then, the problem of our interest can be described as follows.359

360

This manuscript is for review purposes only.

12 E. KAYAASLAN, B. UÇAR AND C. AYKANAT

2

2

2

2 2

2

2

3 3 3

2

2

2

2 2

3

3

3

3

3

3

3

3

1

1 1 2

2

2

2

1 1 2 1

2 2

2
3
5
6
8

3 4 6 7 8 9
4

10

1
7
9

2 11 1 5 10

x1 x2 x3

y1

y2

y3

12

2

9

1

7

4

10

6

8

3

5

116 103 4 7 8 9521 12

2
3
5
6
8

3 4 6 7 8 9
4
10

1
7
9

2 11 1 5 10

x1 x2 x3

y1

y2

y3

12
1 1 1 1

1 1 1 1

2

2

2

2 2

2

3

3 3 3

2

2

2

3 3

3

3

3

3

3

3

3

3

3

1 1 1

1

1

1

2 2 2 2

2 2

2
3
5
6
8

3 4 6 7 8 9
4

10

1
7
9

2 11 1 5 10

x1 x2 x3

y1

y2

y3

12
1 1 1 1

1 1 1 1

(a) a sample 10×12 sparse matrix

2

2

2

2 2

2

2

3 3 3

2

2

2

2 2

3

3

3

3

3

3

3

3

1

1 1 2

2

2

2

1 1 2 1

2 2

2
3
5
6
8

3 4 6 7 8 9
4

10

1
7
9

2 11 1 5 10

x1 x2 x3

y1

y2

y3

12

2

9

1

7

4

10

6

8

3

5

116 103 4 7 8 9521 12

2
3
5
6
8

3 4 6 7 8 9
4
10

1
7
9

2 11 1 5 10

x1 x2 x3

y1

y2

y3

12
1 1 1 1

1 1 1 1

2

2

2

2 2

2

3

3 3 3

2

2

2

3 3

3

3

3

3

3

3

3

3

3

1 1 1

1

1

1

2 2 2 2

2 2

2
3
5
6
8

3 4 6 7 8 9
4

10

1
7
9

2 11 1 5 10

x1 x2 x3

y1

y2

y3

12
1 1 1 1

1 1 1 1

(b) the induced block structure

Fig. 6: A sample 10×12 sparse matrix A and its block structure induced by input-
data distribution Π(x) = {x(1),x(2),x(3)} and output-data distribution Π(y) =
{y(1),y(2),y(3)}, where x(1) = {x3, x4, x6, x7, x8, x9}, x(2) = {x2, x11}, x(3) =
{x1, x5, x12, x10}, y(1) = {y4, y10}, y(2) = {y2, y3, y5, y6, y8}, and y(3) = {y1, y7, y9}.

Problem 1. Given A and a vector distribution (Π(x),Π(y)), find a nonzero/task361

distribution Π(A) such that (i) each nonzero off-diagonal block has the form Ak` =362

A
(k)
k` + A

(`)
k` ; (ii) each diagonal block Akk = A

(k)
kk in the block structure induced by363

(Π(x),Π(y)); and (iii) the total communication volume φ =
∑

k 6=` φk` is minimized.364

Let Gk` = (Uk` ∪ Vk`, Ek`) be the bipartite graph representation of Ak`, where365

Uk` and Vk` are the set of vertices corresponding to the rows and columns of Ak`,366

respectively, and Ek` is the set of edges corresponding to the nonzeros of Ak`. Based367

on this notation, the following theorem states a correspondence between the problem368

of distributing nonzeros/tasks of Ak` to minimize the communication volume φk` from369

P` to Pk and the problem of finding a minimum vertex cover of Gk`. Before stating370

the theorem we give a brief definition of vertex covers for the sake of completeness.371

A subset of vertices of a graph is called vertex cover if each of the graph edges is372

incident to any of the vertices in this subset. A vertex cover is minimum if its size373

is the least possible. In bipartite graphs, the problem of finding a minimum vertex374

cover is equivalent to the problem of finding a maximum matching [13]. Aschraft and375

Liu [1] describe a similar application of vertex covers.376

Theorem 1. Let Ak` be a nonzero off-diagonal block and Gk` = (Uk` ∪ Vk`, Ek`)377

be its bipartite graph representation.378

1. For any vertex cover Sk` of Gk`, there is a nonzero distribution Ak` = A
(k)
k` +379

A
(`)
k` such that |Sk`| ≥ n̂(A

(k)
k`) + m̂(A

(`)
k`),380

2. For any nonzero distribution Ak` = A
(k)
k` + A

(`)
k` , there is a vertex cover Sk`381

of Gk` such that |Sk`| = n̂(A
(k)
k`) + m̂(A

(`)
k`).382

Proof. We prove the two parts of the theorem separately.383

1) Take any vertex cover Sk` of Gk`. Consider any nonzero distribution Ak` =384

This manuscript is for review purposes only.

1.5D PARALLEL SPARSE MATRIX-VECTOR MULTIPLY 13

A
(k)
k` + A

(`)
k` such that385

(13) aij ∈


A

(k)
k` if vj ∈ Sk` and ui 6∈ Sk`,

A
(`)
k` if vj 6∈ Sk` and ui ∈ Sk`,

A
(k)
k` or A

(`)
k` if vj ∈ S` and ui ∈ Sk`.

386

Since vj ∈ Sk` for every aij ∈ A
(k)
k` and ui ∈ Sk` for every aij ∈ A

(`)
k` , |Sk` ∩ Vk`| ≥387

n̂(A
(k)
k`) and |Sk` ∩ Uk`| ≥ m̂(A

(`)
k`), which in turn leads to388

(14) |Sk`| ≥ n̂(A
(k)
k`) + m̂(A

(`)
k`).389

2) Take any nonzero distribution Ak` = A
(k)
k` + A

(`)
k` . Consider Sk` = {ui ∈ Uk` :390

aij ∈ A
(`)
k` } ∪ {vj ∈ Vk` : aij ∈ A

(k)
k` } where |Sk`| = n̂(A

(k)
k`) + m̂(A

(`)
k`). Now, consider391

a nonzero aij ∈ Ak` and its corresponding edge {ui, vj} ∈ Ek`. If aij ∈ A
(k)
k` , then392

vj ∈ Sk`. Otherwise, ui ∈ Sk` since aij ∈ A
(`)
k` . So, Sk` is a vertex cover of Gk`.393

At this point, however, it is still not clear how the reduction from the problem394

of distributing the nonzeros/tasks to the problem of finding the minimum vertex395

cover holds. For this purpose, using Theorem 1, we show that a minimum vertex396

cover of Gk` can be decoded as a nonzero distribution of Ak` with the minimum397

communication volume φk` as follows. Let S∗k` be a minimum vertex cover of Gk` and398

φ∗k` be the minimum communication volume incurred by a nonzero/task distribution399

of Ak`. Then, |S∗k`| = φ∗k`, since the first and second parts of Theorem 1 imply |S∗k`| ≥400

φ∗k` and |S∗k`| ≤ φ∗k`, respectively. We decode an optimal nonzero/task distribution401

Ak` = A
(k)
k` + A

(`)
k` out of S∗k` according to (13) where one such distribution is402

(15) A
(k)
k` = {aij ∈ Ak` : vj ∈ S∗k`} and A

(`)
k` = {aij ∈ Ak` : vj 6∈ S∗k`}.403

Let φk` be the communication volume incurred by this nonzero/task distribution.404

Then, |S∗k`| ≥ φk` due to (14), and φk` = φ∗k` since φ∗k` = |S∗k`| ≥ φk` ≥ φ∗k`.405

Figure 7 illustrates the reduction on a sample 5×6 nonzero off-diagonal block406

Ak`. The left side and middle of this figure respectively display Ak` and its bipartite407

graph representation Gk`, which contains 5 row vertices and 6 column vertices. On408

the middle of the figure, a minimum vertex cover Sk` that contains two row vertices409

{u3, u6} and two column vertices {v7, v8} is also shown. The right side of the figure410

displays how this minimum vertex cover is decoded as a nonzero/task distribution411

Ak` = A
(k)
k` + A

(`)
k` . As a result of this decoding, P` sends [x7, x8, ŷ3, ŷ6] to Pk in a412

single message. Note that a nonzero corresponding to an edge connecting two cover413

vertices can be assigned to either A
(k)
k` or A

(`)
k` without changing the communication414

volume from P` to Pk. The only change that may occur is in the values of partially415

computed output-vector entries to be communicated. For instance, in the figure,416

nonzero a37 is assigned to A
(k)
k` . Since both u3 and v7 are cover vertices, a37 could be417

assigned to A
(`)
k` with no change in the communicated entries but the value of ŷ3.418

Algorithm 3 gives a sketch of our method to find a nonzero/task distribution that419

minimizes the total communication volume based on Theorem 1. For each nonzero off-420

diagonal block Ak`, the algorithm first constructs Gk`, then obtains a minimum vertex421

cover Sk`, and then decodes Sk` as a nonzero/task distribution Ak` = A
(k)
k` + A

(`)
k`422

according to (15). Hence, the communication volume incurred by Ak` is equal to the423

size of the cover |Sk`|. In detail, each row vertex ui on the cover incurs an output424

This manuscript is for review purposes only.

14 E. KAYAASLAN, B. UÇAR AND C. AYKANAT

u2

u3

u5

u8

v3

v4

v6

v7

v8

v9

u6

Sk` = {u3, u6, v7, v8}

Gk`Ak`

2
3
5
6
8

3 4 6 7 8 9

yk = {y2, y3, y5, y6, y8}
x` = {x3, x4, x6, x7, x8, x9}

2
3
5
6
8

3 4 6 7 8 9

A
(`)
k`

Output-communication [ŷ3, ŷ6]

A
(k)
k`

2
3
5
6
8

3 4 6 7 8 9

Input-communication [x7, x8]

Fig. 7: The minimum vertex cover model for minimizing the communication volume
φk` from P` to Pk. According to the vertex cover Sk`, P` sends [x7, x8, ŷ3, ŷ6] to Pk.

communication of ŷi ∈ ŷ
(k)
` , and each column vertex vj on the cover incurs an input425

communication of xj ∈ x̂
(`)
k . We recall that P` sends ŷ

(k)
` and x̂

(`)
k to Pk in a single426

message in the proposed row-column-parallel sparse matrix-vector multiply algorithm.427

Algorithm 3 Nonzero/task distribution to minimize the total communication volume

1: procedure NonzeroTaskDistributeVolume(A,Π(x),Π(y))
2: for each nonzero off-diagonal block Ak` do I See (3)
3: Construct Gk` = (Uk` ∪ Vk`, Ek`) I Bipartite graph representation
4: Sk` ← MinimumVertexCover(Gk`)
5: for each nonzero aij ∈ Ak` do
6: if vj ∈ Sk` then I vj ∈ Vk` is a column vertex and vj ∈ Sk`

7: A
(k)
k` ← A

(k)
k` ∪ {aij}

8: else I ui ∈ Uk` is a row vertex and ui ∈ Sk`

9: A
(`)
k` ← A

(`)
k` ∪ {aij}

Figure 8 illustrates the steps of Algorithm 3 on the block structure given in428

Figure 6b. Figure 8a shows four bipartite graphs each corresponding to a nonzero429

off-diagonal block. In this figure, a minimum vertex cover for each bipartite graph430

is also shown. Figure 8b illustrates how to decode a local fine-grain partition from431

those minimum vertex covers. In this figure, the nonzeros are represented with the432

processor to which they are assigned. As seen in the figure, the number of entries sent433

from P1 to P2 is four, that is, φ21 = 4, and the number of entries sent from P3 to P1,434

from P3 to P2 and from P2 to P3 are all two, that is, φ13 = φ23 = φ32 = 2.435

We note here that the objective of this method is to minimize the total com-436

munication volume under a given vector distribution. Since blocks of nonzeros are437

assigned, a strict load balance cannot be always maintained.438

5. Related work. Here we review recent related work on matrix partitioning439

for parallel SpMV.440

Kuhlemann and Vassilevski [14] recognize the need to reduce the number of mes-441

sages in parallel sparse matrix vector multiply operations with matrices corresponding442

This manuscript is for review purposes only.

1.5D PARALLEL SPARSE MATRIX-VECTOR MULTIPLY 15

u2

u3

u5

u8

v3

v4

v6

v7

v8

v9

u6

G21
G13

v12

v5u4

u10

G32

v2

v11

u1

u9

G23

v5v1 v12v10

u3 u5 u6 u8

S21 ={v7, v8, u3, u6} S23 ={v5, u5}

S13 ={v12, u10} S32 ={v2, u9}

(a) a minimum vertex cover for each nonzero
off-diagonal block of Figure 6b.

2
3
5
6
8

3 4 6 7 8 9
4

10

1
7
9

2 11 1 5 10

x1 x2 x3

y1

y2

y3

12

2

9

1

7

4

10

6

8

3

5

116 103 4 7 8 9521 12

2
3
5
6
8

3 4 6 7 8 9
4

10

1
7
9

2 11 1 5 10

x1 x2 x3

y1

y2

y3

12

2

2

2

2 2

2

3

3 3 3

3

2

2

2 2

3

3

3

3

3

3

3

3

3

1 1 1

1

1

1

1 2 2 2

2 2

2
3
5
6
8

3 4 6 7 8 9
4

10

1
7
9

2 11 1 5 10

x1 x2 x3

y1

y2

y3

12
1 1 1 1

1 1 1 1

2

2

2

2 2

2

2

3 3 3

2

2

3

3 2

3

3

3

3

3

3

3

3

1

1 1 2

2

2

2

1 1 2 1

2 2

1 1 1 1

1 1 1 1

(b) a local fine-grain partition attained by optimal
nonzero/task distribution.

Fig. 8: An optimal nonzero distribution minimizing the total communication volume
obtained by Algorithm 3. The matrix nonzeros are represented with the proces-
sors they are assigned to. The total communication volume is 10, where P1 sends
[x7, x8, ŷ3, ŷ6] to P2; P3 sends [x12, ŷ10] to P1; P3 sends [x2, ŷ9] to P1; and P3 sends
[x5, ŷ5] to P2.

to scale-free graphs. They present methods to embed the given graph in a bigger one443

to reduce the number of messages. The gist of the method is to split a vertex into444

a number of copies (the number is determined with a simple calculation to limit the445

maximum number of messages per processor). In such a setting, the SpMV opera-446

tions with the matrix associated with the original graph, y←Ax, is then cast as triple447

sparse matrix vector products of the form y ← QT (B(Qx)). This original work can448

be extended to other matrices (not necessarily symmetric, nor square) by recognizing449

the triplet product as a communication on x for duplication (for the columns that450

are split), communication of x vector entries (duplicates are associated with different451

destinations), multiplication, and as a communication on the output vector (for the452

rows that are split) to gather results. This exciting extension requires further analysis.453

Boman et al. [2] propose a 2D partitioning method obtained by post-processing454

a 1D partition. Given a 1D partition among P processors, the method maps the455

P ×P block structure to a virtual mesh of size Pr ×Pc and reassigns the off-diagonal456

blocks so as to limit the number of messages per processor by Pr + Pc. The post-457

processing is fast, and hence the method is as nearly efficient as a 1D partitioning458

method. However, the communication volume and the computational load balance459

obtained in the 1D partitioning phase are disturbed and the method does not have460

any means to control the perturbation. The proposed two-part method (Section 4.2),461

is similar to this work in this aspect; a strict balance cannot always be achieved; yet462

a finer approach is discussed in the preliminary version of the paper [12].463

Pelt and Bisseling [15] propose a model to partition sparse matrices into two464

parts (which then can be used recursively to partition into any number of parts). The465

essential idea has two steps. First, the nonzeros of a given matrix A are split into466

two different matrices (of the same size as the original matrix), say A = Ar + Ac.467

Second, Ar and Ac are partitioned together, where Ar is partitioned rowwise, and468

Ac is partitioned columnwise. As all nonzeros of A are in only one of Ar or Ac, the469

final result is a two-way partitioning of the nonzeros of A. The resulting partition on470

This manuscript is for review purposes only.

16 E. KAYAASLAN, B. UÇAR AND C. AYKANAT

A achieves load balance and reduces the total communication volume by the standard471

hypergraph partitioning techniques.472

Two-dimensional partitioning methods that bound the maximum number of mes-473

sages per processor, such as the checkerboard [5, 8] and orthogonal recursive bisec-474

tion [17] based methods, have been used in modern applications [18, 20], sometimes475

without graph/hypergraph partitioning [19]. In almost all cases, inadequacy of 1D476

partitioning schemes are confirmed.477

All previous work (including those that were summarized above) assumes the478

standard SpMV algorithm based on expanding x-vector entries, performing multiplies479

with matrix entries, and folding y-vector entries. Compared to all these previous work,480

ours has therefore a distinctive characteristic. In this work, we introduce the novel481

concept of heterogeneous messages where x-vector and partially computed y-vector482

entries are possibly communicated within the same message packet. In order to make483

use of this, we search for a special 2D partition on the matrix nonzeros in which a484

nonzero is assigned to a processor holding either the associated input-vector entry, or485

the associated output-vector entry, or both. The implication is that the proposed local486

row-column-parallel SpMV algorithm requires only a single communication phase (all487

the previous algorithms based on 2D partitions require two communication phases)488

as is the case for the parallel algorithms based on 1D partitions; yet the proposed489

algorithm achieves a greater flexibility to reduce the communication volume than the490

1D methods.491

6. Experiments. We performed our experiments on a large selection of sparse492

matrices obtained from the University of Florida (UFL) sparse matrix collection [9].493

We used square and structurally symmetric matrices with 500–10M nonzeros. At the494

time of experiments, we had 904 such matrices. We discarded 14 matrices as they495

contain diagonal entries only, and we also excluded one matrix (kron g500-logn16)496

because it took extremely long to have a partition with the hypergraph partitioning497

tool used in the experiments. We conducted our experiments for K = 64 and K =498

1024 and omit the cases when the number of rows is less than 50×K. As a result, we499

had 566 and 168 matrices for the experiments with K = 64 and 1024, respectively.500

We separate all our test matrices into two groups according to the maximum number501

of nonzeros per row/column, more precisely, according to whether the test matrix502

contains a dense row/column or not. We say a row/column dense if it contains at503

least 10
√
m nonzeros, where m denotes the number of rows/columns. Hence, for504

K = 64 and 1024, the first group respectively contains 477 and 142 matrices that505

have no dense rows/columns out of 566 and 168 test matrices. The second group506

contains the remaining 89 and 26 matrices, each having some dense rows/column, for507

K = 64 and 1024, respectively.508

In the experiments, we evaluated the partitioning qualities of the local fine-grain509

partitioning methods proposed in Section 4 against 1D rowwise (1D-H [3]), the 2D510

fine-grain (2D-H [4]), and two checkerboard partitioning methods (2D-B [2], 2D-C [5]).511

For the method proposed in Section 4.1, we obtain a local fine-grain partition through512

the directed hypergraph model (1.5D-H) using the procedure described at the end of513

that subsection. For the method proposed in Section 4.2 (1.5D-V), the required vector514

distribution is obtained by 1D rowwise partitioning using the column-net hypergraph515

model. Then, we obtain a local fine-grain partition on this vector distribution with a516

nonzero/task distribution that minimizes the total communication volume.517

The 1D-H, 2D-H, 2D-C and 1.5D-H methods are based on hypergraph models. Al-518

though all these models allow arbitrary distribution of the input- and output-vectors,519

This manuscript is for review purposes only.

1.5D PARALLEL SPARSE MATRIX-VECTOR MULTIPLY 17

in the experiments, we consider conformal partitioning of input and output vectors,520

by using vertex amalgamation of the input- and output-vector entries [16]. We used521

PaToH [3, 6] with default parameters where the maximum allowable imbalance ratio522

is 3% for partitioning. We also notice that the 1.5D-V and 2D-B methods are based523

on 1D-H and keeps the vector distribution obtained from 1D-H intact. Hence, in the524

experiments, the input and output vectors for those methods are conformal as well.525

Finally, since PaToH depends on randomization, we report the geometric mean of ten526

different runs for each partitioning instance.527

In all experiments, we report the results using performance profiles [10] which is528

very helpful in comparing multiple methods over a large collection of test cases. In a529

performance profile, we compare methods according to the best performing method530

for each test case and measure in what fraction of the test cases a method performs531

within a factor of the best observed performance. For example, a point (abscissa =532

1.05, ordinate = 0.30) on the performance curve of a given method refers to the fact533

that for 30% of the test cases, the method performs within a factor of 1.05 of the best534

observed performance. As a result, a method that is closer to top-left corner is better.535

In the load balancing performance profiles displayed in Figures 9b, 9d, 10b and 10d,536

we compare performance results with respect to the performance of perfect balance537

instead best observed performance. That is, a point (abscissa = 6% and ordinate =538

0.40) on the performance curve of a given method means that for 40% of the test539

cases, the method produces a load imbalance ratio less than or equal to 6%.540

Figures 9 and 10 both display performance profiles of four task-and-data distri-541

bution methodsin terms of the total communication volume and the computational542

load imbalance. Figure 9 displays performance profiles for the set of matrices with543

no dense rows/columns, whereas Figure 10 displays performance profiles for the set544

of matrices containing dense rows/columns.545

As seen in Figure 9, for the set of matrices with no dense rows/columns, the546

relative performances of all methods are similar for K = 64 and K = 1024 in terms547

of both communication volume and load imbalance. As seen in Figures 9a and 9c,548

all methods except the 1.5D-H method achieve a total communication volume at most549

30% more than the best in almost 80% of the cases in this set of matrices. As seen550

in these two figures, the proposed 1.5D-V method performs significantly better than551

all other methods, whereas the 2D-H method is the second best performing method.552

As also seen in the figures, 1D-H displays the third best performance, whereas 1.5D-H553

shows the worst performance. As seen in Figures 9b and 9d, in terms of load balance,554

the 2D-H method is the best performing method. As also seen in the figures, the555

proposed 1.5D-V method displays considerably worse performance than the others.556

Specifically, all methods except 1.5D-V achieve a load imbalance below 3% in almost all557

test cases. In terms of the total communication volume, 2D checkerboard partitioning558

methods perform considerably worse than 1.5D-V, 2D-H and 1D-H methods. The first559

alternative 2D-B obtains better results than 2D-C. For load balance, 2D-C behaves560

similar to 1D-H, 2D-H and 1.5D-H methods except that 2D-C achieves a load imbalance561

below 5% (instead of 3%) for almost all instances. 2D-B behaves similar to 1.5D-V,562

and does not achieve a good load balance.563

As seen in Figure 10, for the set of matrices with some dense rows/columns, all564

methods display a similar performance for K = 64 and K = 1024 in terms of the565

total communication volume. As in the previous dataset, in terms of the total com-566

munication volume, the 1.5D-V and 2D-H methods are again the best and second best567

methods, respectively, as seen in Figures 10a and 10c. As also seen in these figures,568

1.5D-H is the third best performing method in terms of the total communication vol-569

This manuscript is for review purposes only.

18 E. KAYAASLAN, B. UÇAR AND C. AYKANAT

SpMV Partitioning MethodMethod

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Partitioning time relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 te

st
ca

se
s

1D
2D
1.5D
1.5D-V
1.5D-L

Matrices with or without dense rows (K = 1024)

local row-column-parallel local fine-grain1.5D-H §4.1

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Partitioning time relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 te

st
ca

se
s

1D
2D
1.5D
1.5D-V
1.5D-L

Matrices with or without dense rows (K = 1024)

local row-column-parallel1.5D-V local fine-grain §4.2

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Partitioning time relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 te

st
ca

se
s

1D
2D
1.5D
1.5D-V
1.5D-L

Matrices with or without dense rows (K = 1024)

row-parallel rowwise [2]

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Partitioning time relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 te

st
ca

se
s

1D
2D
1.5D
1.5D-V
1.5D-L

Matrices with or without dense rows (K = 1024)

row-column-parallel fine-grain [3]

row-column-parallel checker-board [4]
row-column-parallel checker-board [1]

1D-H

2D-H

2D-B

2D-C

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Communication volume relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti

o
n
 o

f
te

s
t

c
a
s
e
s

Matrices with no dense rows/columns

(a) Total volume (K = 64)

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Load imbalance ratio

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti

o
n
 o

f
te

s
t

c
a
s
e
s

Matrices with no dense rows/columns

(b) Load balance (K = 64)

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Communication volume relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti

o
n
 o

f
te

s
t

c
a
s
e
s

Matrices with no dense rows/columns

(c) Total communication volume (K = 1024)

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Load imbalance ratio

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti

o
n
 o

f
te

s
t

c
a
s
e
s

Matrices with no dense rows/columns

(d) Load balance (K = 1024)

Fig. 9: Performance profiles comparing the total communication volume and load
balance using test matrices with no dense rows/columns for K=64 and 1024.

ume, whereas 1D-H shows considerably worse performance. The 2D-H method achieves570

near-to-perfect load balance in almost all cases, as seen in Figures 10b and 10d. As571

also seen in these figures, the 1.5D-H method displays a load imbalance lower than ap-572

proximately 6% and 14% for all test matrices for K = 64 and 1024, respectively. This573

shows the success of the vertex amalgamation procedure within the context of the574

directed hypergraph model described in Section 4.1. As seen in Figure 10c, the total575

communication volume does not exceed the best method by 40% in about 75% and576

85% of the test cases for the 1.5D-H and 2D-H methods, respectively, for K = 1024.577

The two 2D checkerboard methods display considerably worse performance than the578

others (except 1D-H, which also shows a poor performance) in terms of the total com-579

munication volume. When K = 64, 2D-C shows an acceptable performance however580

when K = 1024 its performance considerably deteriorates in terms of load balance.581

2D-B obtains worse results. This not surprising since 2D-B is a modification of 1D-H582

This manuscript is for review purposes only.

1.5D PARALLEL SPARSE MATRIX-VECTOR MULTIPLY 19

SpMV Partitioning MethodMethod

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Partitioning time relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 te

st
ca

se
s

1D
2D
1.5D
1.5D-V
1.5D-L

Matrices with or without dense rows (K = 1024)

local row-column-parallel local fine-grain1.5D-H §4.1

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Partitioning time relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 te

st
ca

se
s

1D
2D
1.5D
1.5D-V
1.5D-L

Matrices with or without dense rows (K = 1024)

local row-column-parallel1.5D-V local fine-grain §4.2

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Partitioning time relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 te

st
ca

se
s

1D
2D
1.5D
1.5D-V
1.5D-L

Matrices with or without dense rows (K = 1024)

row-parallel rowwise [2]

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Partitioning time relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 te

st
ca

se
s

1D
2D
1.5D
1.5D-V
1.5D-L

Matrices with or without dense rows (K = 1024)

row-column-parallel fine-grain [3]

row-column-parallel checker-board [4]
row-column-parallel checker-board [1]

1D-H

2D-H

2D-B

2D-C

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Communication volume relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti

o
n
 o

f
te

s
t

c
a
s
e
s

Matrices with dense rows/columns

(a) Total volume (K = 64)

0% 4% 8% 12% 16% 20% 24% 28% 32% 36% 40%

Load imbalance ratio

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti

o
n
 o

f
te

s
t

c
a
s
e
s

Matrices with dense rows/columns

(b) Load balance (K = 64)

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Communication volume relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti

o
n
 o

f
te

s
t

c
a
s
e
s

Matrices with dense rows/columns

(c) Total communication volume (K = 1024)

0% 4% 8% 12% 16% 20% 24% 28% 32% 36% 40%

Load imbalance ratio

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti

o
n
 o

f
te

s
t

c
a
s
e
s

Matrices with dense rows/columns

(d) Load balance (K = 1024)

Fig. 10: Performance profiles comparing the total communication volume and the
load balance on test matrices with dense rows/columns for K=64 and 1024.

whose load balance performance is already very poor.583

Figures 11a and 11b compare the methods in terms of the total and maximum584

message counts, respectively, using all test matrices for K = 1024. We note that585

these are secondary metrics and none of the methods addresses them explicitly as the586

main objective function. Since 1.5D-V uses the conformal distribution of the input-587

and output-vectors obtained from 1D-H, the total and the maximum message count588

of 1.5D-V are equivalent to those of 1D-H in these experiments. As seen in the figures,589

in terms of the total and the maximum message counts, 2D-B, 2D-C and 1D-H (also590

1.5D-V) display the best performance, 2D-H performs considerably poor and 1.5D-H591

performs in between. At a finer look, the method 2D-B is the winner with both592

metrics. 1.5D-V (as 1D-H) and the other checkerboard method 2D-C follows it, where593

2D checkerboard methods show clearer advantage.594

Figure 11c compares all four methods in terms of the maximum communication595

This manuscript is for review purposes only.

20 E. KAYAASLAN, B. UÇAR AND C. AYKANAT

volume sent from a processor for K = 1024. The 1.5D-V method performs significantly596

better than all others, 2D-H is the second best performing method, 1D displays the597

third best, and 1.5D-H displays the worst performance. These relative performances of598

the methods in terms of the maximum communication volume resemble their relative599

performances in terms of the total communication volume as expected.600

Figure 11d compares the methods in terms of partitioning times for K = 1024.601

The run time of the 1.5D-V method involves the time spent for obtaining the vector602

distribution, which is the run time of the 1D-H method in our case. As seen in603

the figure, the 1D-H, 1.5D-V and 1.5D-H methods display comparable performances,604

whereas the 2D-H method takes significantly longer. The longer run time of 2D-H stems605

from the large size of the hypergraph model. 2D-B displays comparable performance606

(in terms of running-time) with that of 1D-H, 1.5D-V and 1.5D-H methods. Meanwhile,607

2D-C is considerably slower than all others except 2D-H.608

In summary, the 1.5D-H method is a promising alternative for sparse matrices609

with dense rows/columns. It obtaines a total communication volume close to 2D-H,610

near-perfect balance, considerably lower message count than 2D-H, and has short par-611

titioning time. The 1.5D-V method performs at the extremes: the best for the total612

communication volume, and the worst for the load balance, especially for matrices613

with dense rows/columns. Nevertheless, 1.5D-V could still be favorable to other meth-614

ods for particular matrices due to lower communication volume. In short, if a sparse615

matrix contains dense rows/columns, then 1.5D-H seems to be the method of choice in616

general; otherwise, 1.5D-V and 1D-H are reasonable alternatives competing with each617

other. The 2D checkerboard based methods perform worse than the 1.5D methods,618

but they have good performance in terms of the message count based metrics. In619

particular, 2D-B is a fast method with a striking performance in reducing the latency,620

but load balance can be an issue. These could be deciding factors for large scale621

systems. On the other hand, 2D-C obtains better balance than 2D-B, but is slower.622

7. Conclusion and further discussions. This paper introduced 1.5D paral-623

lelism for the sparse matrix-vector multiply (SpMV) operations. We presented the624

local row-column parallel SpMV that uses this novel parallelism. This multiply algo-625

rithm is the fourth one in the literature for SpMV in addition to the well-known 1D626

row-parallel, 1D column-parallel and 2D row-column-parallel ones. In this paper, we627

also proposed two methods (1.5D-H and 1.5D-V) to distribute tasks and data in accor-628

dance with the requirements of the proposed 1.5D parallel algorithm. Using a large629

set of matrices from the UFL sparse matrix collection, we compared the partitioning630

qualities of these two methods against the standard 1D and 2D methods.631

The experiments suggest the use of the local row-column-parallel SpMV with a632

local fine-grain partition obtained by the proposed directed hypergraph model for633

matrices with dense rows/columns. This is because the performance of the proposed634

1.5D partitioning is close to that of 2D fine-grain partitioning (2D-H) in terms of635

the partitioning quality, with considerably less number of messages and much faster636

execution.637

We considered the problem mainly from a theoretical point of interest and leave638

the performance of 1.5D parallel SpMV algorithms in terms of the parallel multiply639

timings as a future work. We note that the main ideas behind the proposed 1.5D640

parallelism, such as heterogeneous messaging and avoiding nonlocal tasks by a locality641

constraint on partitioning, are of course not restricted to the parallel SpMV operation642

and these ideas can be extended to other parallel computations as well.643

This manuscript is for review purposes only.

1.5D PARALLEL SPARSE MATRIX-VECTOR MULTIPLY 21

SpMV Partitioning MethodMethod

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Partitioning time relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 te

st
ca

se
s

1D
2D
1.5D
1.5D-V
1.5D-L

Matrices with or without dense rows (K = 1024)

local row-column-parallel local fine-grain1.5D-H §4.1

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Partitioning time relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 te

st
ca

se
s

1D
2D
1.5D
1.5D-V
1.5D-L

Matrices with or without dense rows (K = 1024)

local row-column-parallel1.5D-V local fine-grain §4.2

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Partitioning time relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 te

st
ca

se
s

1D
2D
1.5D
1.5D-V
1.5D-L

Matrices with or without dense rows (K = 1024)

row-parallel rowwise [2]

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Partitioning time relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 te

st
ca

se
s

1D
2D
1.5D
1.5D-V
1.5D-L

Matrices with or without dense rows (K = 1024)

row-column-parallel fine-grain [3]

row-column-parallel checker-board [4]
row-column-parallel checker-board [1]

1D-H

2D-H

2D-B

2D-C

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Number of messages relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
te

st
 c

as
es

All matrices

(a) Total message count

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Maximum number of messages relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
te

st
 c

as
es

All matrices

(b) Maximum message count

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Maximum communication volume relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti

o
n
 o

f
te

s
t

c
a
s
e
s

All matrices

(c) Maximum volume

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Partitioning time relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
te

st
 c

as
es

All matrices

(d) Partitioning time

Fig. 11: Performance profiles comparing the total message count and the maximum
message count for three methods 1D-H, 2D-H and 1.5D-H, maximum communication
volume per processor and partitioning time for all methods on all test matrices for
K = 1024. In 11a and 11b, 1.5D-V’s profiles are identical to that of 1D-H, and hence
not shown.

REFERENCES644

[1] C. Ashcraft and J. W. H. Liu, Applications of the Dulmage-Mendelsohn decomposition and645
network flow to graph bisection improvement, SIAM Journal on Matrix Analysis and Ap-646
plications, 19 (1998), pp. 325–354.647

[2] E. G. Boman, K. D. Devine, and S. Rajamanickam, Scalable matrix computations on large648
scale-free graphs using 2d graph partitioning, in Proceedings of the International Conference649
on High Performance Computing, Networking, Storage and Analysis, SC ’13, New York,650
NY, USA, 2013, ACM, pp. 50:1–50:12.651

[3] Ü. Çatalyürek and C. Aykanat, Hypergraph-partitioning-based decomposition for parallel652
sparse-matrix vector multiplication, Parallel and Distributed Systems, IEEE Transactions653
on, 10 (1999), pp. 673–693.654

This manuscript is for review purposes only.

22 E. KAYAASLAN, B. UÇAR AND C. AYKANAT

[4] Ü. Çatalyürek and C. Aykanat, A fine-grain hypergraph model for 2d decomposition of655
sparse matrices, Parallel and Distributed Processing Symposium, International, 3 (2001),656
p. 30118b.657

[5] Ü. Çatalyürek and C. Aykanat, A hypergraph-partitioning approach for coarse-grain decom-658
position, in Supercomputing, ACM/IEEE 2001 Conference, IEEE, 2001, pp. 42–42.659

[6] Ü. Çatalyürek and C. Aykanat, Patoh (partitioning tool for hypergraphs), in Encyclopedia660
of Parallel Computing, Springer, 2011, pp. 1479–1487.661

[7] Ü. Çatalyürek, C. Aykanat, and B. Uçar, On two-dimensional sparse matrix partitioning:662
Models, methods, and a recipe, SIAM Journal on Scientific Computing, 32 (2010), pp. 656–663
683.664

[8] Ü. V. Çatalyürek, C. Aykanat, and B. Uçar, On two-dimensional sparse matrix partition-665
ing: Models, methods, and a recipe, SIAM J. Sci. Comput., 32 (2010), pp. 656–683.666

[9] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math.667
Softw., 38 (2011), pp. 1:1–1:25.668

[10] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles,669
Mathematical programming, 91 (2002), pp. 201–213.670

[11] K. Kaya, B. Uçar, and U. V. Çatalyürek, Analysis of partitioning models and metrics in671
parallel sparse matrix-vector multiplication, in Parallel Processing and Applied Mathemat-672
ics (PPAM2014), R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Waśniewski, eds.,673
Lecture Notes in Computer Science, Warsaw, Poland, 2014, Springer Berlin Heidelberg,674
pp. 174–184.675

[12] E. Kayaaslan, B. Uçar, and C. Aykanat, Semi-two-dimensional partitioning for parallel676
sparse matrix-vector multiplication, in Parallel and Distributed Processing Symposium677
Workshop (IPDPSW), 2015 IEEE International, IEEE, 2015, pp. 1125–1134.678

[13] D. Konig, Gráfok és mátrixok. matematikai és fizikai lapok, 38: 116–119, 1931.679
[14] V. Kuhlemann and P. S. Vassilevski, Improving the communication pattern in matrix-vector680

operations for large scale-free graphs by disaggregation, SIAM Journal on Scientific Com-681
puting, 35 (2013), pp. S465–S486.682

[15] D. M. Pelt and R. H. Bisseling, A medium-grain method for fast 2d bipartitioning of sparse683
matrices, in Parallel and Distributed Processing Symposium, 2014 IEEE 28th International,684
IEEE, 2014, pp. 529–539.685

[16] B. Uçar and C. Aykanat, Revisiting hypergraph models for sparse matrix partitioning, SIAM686
review, 49 (2007), pp. 595–603.687

[17] B. Vastenhouw and R. H. Bisseling, A two-dimensional data distribution method for parallel688
sparse matrix-vector multiplication, SIAM Review, 47 (2005), pp. 67–95.689

[18] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica, Graphx: A resilient distributed690
graph system on spark, in First International Workshop on Graph Data Management Ex-691
periences and Systems, GRADES ’13, New York, NY, USA, 2013, ACM, pp. 2:1–2:6.692

[19] A. Yoo, A. H. Baker, R. Pearce, and V. E. Henson, A scalable eigensolver for large693
scale-free graphs using 2D graph partitioning, in Proc. International Conference for High694
Performance Computing, Networking, Storage and Analysis, ACM, 2011, pp. 63:1–63:11.695

[20] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson, and U. Catalyurek,696
A scalable distributed parallel breadth-first search algorithm on bluegene/l, in Proceedings697
of the 2005 ACM/IEEE Conference on Supercomputing, SC ’05, Washington, DC, USA,698
2005, IEEE Computer Society, p. 25.699

This manuscript is for review purposes only.

	Introduction
	Background on parallel sparse matrix-vector multiply
	The anatomy of parallel sparse matrix-vector multiply
	Task-and-data distributions
	1D parallel sparse matrix-vector multiply
	2D parallel sparse matrix-vector multiply

	1.5D parallel sparse matrix-vector multiply
	A Task categorization
	Local fine-grain partitioning
	Local row-column-parallel sparse matrix-vector multiply

	Two proposed methods for local row-column-parallel partitioning
	A directed hypergraph model for simultaneous vector and nonzero distribution
	Nonzero distribution to minimize the total communication volume

	Related work
	Experiments
	Conclusion and further discussions
	References

