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Abstract. This paper introduces a novel framework for model adaptivity in the context of
heterogeneous multiscale problems. The framework is based on the idea to interpret model adaptivity
as aminimization problem of local error indicators, that are derived in the general context of the Dual
Weighted Residual (DWR) method. Based on the optimization approach a post-processing strategy
is formulated that lifts the requirement of strict a priori knowledge about applicability and quality
of effective models. This allows for the systematic, “goal-oriented” tuning of effective models with
respect to a quantity of interest. The framework is tested numerically on elliptic diffusion problems
with different types of heterogeneous, random coefficients, as well as an advection-diffusion problem
with strong microscopic, random advection field.
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1. Introduction. A number of different approaches for modeling multiscale phe-
nomena in the context of finite-element methods have been introduced over the last
years. They either rely on the existence of a periodic or stochastic substructure or
on the scale-dependent splitting of variational solution- and test spaces [7, 9, 10, 13].
The use of multiscale methods comes at a significant price with respect to sources
of error: Among the usual discretization error due to a numerical approximation of
the partial differential equation (PDE), multiscale methods exhibit an inherent model
error resulting from a modeling assumption for scale separation. This makes the idea
of a posteriori error estimation, where a quantitative estimate for the different sources
of error is computed by means of a post-processing approach highly attractive. The
a posteriori control of discretization errors for multiscale methods is well understood
[1, 11, 12, 14, 15].

The novelty of a posteriori error estimation with respect to multiscale methods lies
in the possibility for model adaptivity. First results for estimating and controlling the
model error in the context of multiscale schemes were given by Oden et al. [19–21] and
Braack and Ern [6] in the context of the Heterogeneous Multiscale Method (HMM) [9].
The key idea is to use the error-identity stemming from the Dual Weighted Residual
(DWR) method introduced by Becker and Rannacher [4, 5] to quantify a local model
error. This information can then be used for different model-adaptation strategies:
A possible approach is to locally switch from a cheap, coarse model to an expensive,
full model within an adaptation cycle [6]. Alternatively, as a pure post-processing
strategy, region of influence can be constructed on which a finescale correction is
computed in full [19–21].

Based on a multiscale framework introduced in a previous publications by the
authors [16, 17], this paper presents a novel approach for model adaptivity. Instead
of using an a priori choice of increasingly accurate models to switch between them
(depending on the local error estimate), it uses the error identity obtained by the
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duality argument directly in a minimization problem. This has the advantage that
no a priori knowledge about effective models and reconstruction principles has to be
available. The optimization problem itself is used to select the optimal model.

The optimization approach requires a certain quality of the approximation of the
dual solution that will be addressed with an efficient local reconstruction approach.
The error identity lifts the question of suitable approximation in terms of a quantity
of interest to the question of suitable approximation properties of the localization
technique for the dual problem. The latter is typically measured in the L2-norm
of the gradient of the error of the dual approximation, for which—depending on
the localization approach—strong approximation properties are available. Thus, the
proposed optimization framework can be interpreted as a multiscale method in its
own right, where a reconstruction process is used for the dual solution. The modeling
aspect of the optimization problem lies in the choice of the quantity of interest and
the choice of local reconstruction of the dual solution.

The outline of the paper is as follows. In Section 2 an abstract multiscale scheme
for model adaptation is outlined shortly [16, 17]. The section also covers the necessary
a posteriori error analysis with the DWR method and an efficient approximation strat-
egy for the solution of the dual problem involved. With this prerequisites at hand,
a model-optimization framework is introduced in Section 3. It is based on a mini-
mization problem formulated with the help of an error identity from the a posteriori
error analysis. Implementational details are discussed in Section 4. In Section 5 an
extensive numerical study for an elliptic diffusion problem and an advection-diffusion
problem is shown. A conclusion and outlook is given in Section 6.

2. An abstract multiscale scheme for model adaptation. The discussion
in this section is based on a multiscale scheme for model adaptation introduced by
the authors [16, 17] that explicitly decouples all discretization and modeling param-
eters. It is a reformulation of the classical HMM method by E and Engquist [9] and
shares similarities with model adaptation frameworks introduced by Oden and Vema-
ganti [19, 20] and Braack and Ern [6]. We briefly discuss a slightly simplified variant in
this section. For a detailed introduction we refer to the aforementioned publications.

Let us consider the following multi-scale model problem: Find uε ∈ H1
0 (Ω) s. t.

(Aε∇uε,∇ϕ) = (f, ϕ) ∀ϕ ∈ H1
0 (Ω) ,(2.1)

on a bounded domain Ω ⊂ Rd (d = 2, 3) where the generally tensor-valued function
Aε ∈ L∞ (Ω)

d×d is of heterogeneous character and highly oscillating on a small length
scale indicated by a scaling parameter ε. Here, H1

0 (Ω) is the usual first-order Sobolev
Hilbert space with zero Dirichlet data along the boundary ∂Ω. (·, ·) denotes the L2

scalar product on Ω and ‖ · ‖ = (·, ·)1/2 the corresponding norm. The norms of other
function spaces are indicated by subscripts, e. g., ‖ · ‖L∞(Ω) or ‖ · ‖K = ‖ · ‖L2(K) for
a subset K ⊂ Ω̄. We assume the coefficient tensor Aε to be symmetric and positive
definite (uniformly in ε),

Aεij = Aεji, α|ξ|2 ≤
d∑

i,j=1

Aεijξiξj ≤ β|ξ|2, a. e. on Ω, ξ ∈ Rd,(2.2)

with constants α, β ∈ R+, so that (2.1) admits a unique solution.
Due to the finescale character of Aε, a direct numerical simulation of (2.1) is

computationally very expensive. We thus introduce an effective model problem(
Āδ∇uδ,∇ϕ

)
= (f, ϕ) ∀ϕ ∈ H1

0 (Ω)(2.3)
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TH(Ω)

Tδ(Ω)

Y δK

ĀδK ∈ Rd×d

Figure 1: The computational domain Ω together with the sampling mesh Tδ(Ω) con-
sisting of sampling regions K ∈ Tδ. The coarse mesh TH(Ω) used for the final
finite-element discretization is a refinement of the sampling mesh Tδ.

based on a sampling mesh Tδ(Ω) of Ω together with an effective tensor

Āδ : Tδ(Ω)→ Rd×d(2.4)

with region-wise constant values; see Figure 1.
Remark 2.1. Effective parameters

(
Tδ(Ω), Aδ

)
can be obtained by different

means, e. g., by using cell problems derived within a corresponding homogenization
theory [2, 8]:

Āδij(K) :=

 
Y δK

Aε(x)
(
∇xωi(x) + ei

)
·
(
∇xωj(x) + ej

)
dx,(2.5)

where ei denotes the i-th cartesian unit vector and the ωi ∈ H̃1
per(Y

δ
K) are solutions

of a so-called cell problem
ˆ
Y δK

Aε(x)
(
∇xωi(x) + ei) · ∇ϕ = 0 ∀ϕ ∈ H̃1

per(Y
δ
K),(2.6)

or by using simple averaging strategies such as the geometric mean value [23]:

log Āδij(K) :=
1

|Y δK |

ˆ
Y δK

(
logAεij(y)

)
dy.(2.7)

Here, Y δK denotes a rescaled copy of the unit cell Y = [0, 1]d centered at the midpoint
of a given sampling-mesh cell K ∈ Tδ(Ω). H̃1

per(Y
δ
K) is the subspace of H1(Y δK)

consisting of d-periodic functions with zero mean value.
ffl
K

:= 1/|K|
´
K

denotes the
arithmetic average.

The purpose of this paper is to discuss a novel approach of determining the
effective values Āδ (for a given sampling discretization) by means of an optimization
process. It will be based on an error identity given by the solution of a dual problem.
For the sake of simplicity, we will neglect finescale discretization errors that emerge
by numerically approximating (2.5), or (2.7), and will only introduce a macroscale
discretization.

Let TH(Ω) be a coarse grid for numerically approximating the variational equation
(2.3).
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Definition 2.2 (Fully discretized problem). Let TH be a mesh covering Ω, and
let VH(Ω) ⊂ H1

0 (Ω) be a corresponding finite-element ansatz space. The fully discrete
problem reads: Find U ∈ VH(Ω) s. t.(

Āδ∇U,∇ϕH
)

=
(
f, ϕH

)
∀ϕH ∈ VH(Ω).(2.8)

Remark 2.3. The problems (2.1), (2.3), and (2.8) are well-posed. Further,
specific a priori assumptions on Aε and corresponding concrete choices of upscaling
(such as (2.5), and (2.7)) lead to different a priori error estimates. We refer to
[16, 17], for a detailed discussion.

Remark 2.4. Typically, a macroscale discretization error is associated with the
scale H, and (depending on the sampling/upscaling strategy) a model error and sam-
pling error can be associated with the scales ε and δ [16, 17]. (We have omitted
introducing a microscale discretization error associated with a scale h.) In principle,
all of these scales have to be controlled and chosen appropriately in order to achieve
a certain accuracy, we refer to [16] for a detailed discussion. In this publication we
focus on the control of the model error, i. e. on the task of finding a suitable model
Āδ. We will thus assume that discretization errors are well controlled by choosing H
and h suitably small.

2.1. Duality-based error identity. Suppose that a quantity of interest is given
by the value 〈j, uε〉, where j ∈ H−1(Ω) is a linear and continuous functional and 〈. , .〉
denotes the duality pairing. Define a dual problem to find zε ∈ H1

0 (Ω) s. t.(
Aε∇ϕ,∇zε

)
= 〈j, ϕ〉 ∀ϕ ∈ H1

0 (Ω).(2.9)

The dual problem is well-posed and its solution immediately gives rise to an error
identity.

Lemma 2.5 (Error identity [16, 17]). Let uε be the solution of (2.1), U be the
solution of (2.8), and zε be the solution of (2.9). Then,

〈j, uε〉 − 〈j, U〉 =
(
f, zδ

)
−
(
Āδ∇U,∇zδ

)︸ ︷︷ ︸
=: θH

+
(
Āδ∇uδ,∇zε

)
−
(
Aε∇uδ,∇zε

)︸ ︷︷ ︸
=: θδ

,(2.10)

with the following two error estimators: θH representing a residual on the macroscale,
and θδ estimating the model error. Here, zδ ∈ H1

0 (Ω) is the solution of a correspond-
ing effective dual problem [17],(

Āδ∇ϕ,∇zδ
)

= 〈j, ϕ〉 ∀ϕ ∈ H1
0 (Ω).(2.11)

The model error θδ is splitted into a sum of local model-error indicators:

θδ =
∑

K∈Tδ(Ω)

ηδK , ηδK :=
(
{Aε − Āδ}∇uδ,∇zε

)
K
.(2.12)

2.2. A localization strategy for the dual problem. A fundamental difficulty
arises from the fact that computing the solution of the dual problem is (in case of
the elliptic model problem) of the same complexity as the primal problem itself. A
global fine-scale approximation of zε has to be considered infeasible. Thus, a strategy
to approximate the dual problem with low computational overhead is needed.
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We proposed [16, 17] a strategy that combines the usage of a global, effective
approximation of zε (such as zδ) with a local enhancement. The enhancement is
given by localized reconstruction problems in spirit of a variational multiscale ansatz.

Definition 2.6 (Local enhancement). Let zδ be the solution of (2.11), and let{
ωK : K ∈ Tδ(Ω)

}
be a set of reconstruction patches fulfilling ωK ⊃ K. Define a

patch-wise reconstruction zδK ∈ H1
0 (ωK) by(

Aε∇ϕ,∇(zδ + zδK)
)

= 〈j, ϕ〉 ∀ϕ ∈ H1
0 (ωK).(2.13)

With the choice ω(K) = K, the locally reconstructed dual solution leads to a
conforming ansatz zδ +

∑
K ∈Tδ z

δ
K ∈ H1(Ω). In this case the above local enhance-

ment strategy can be regarded as a variant of the VMM formulation that only has a
reconstruction coupling from coarse- to finescale (and omits the opposite compression
coupling).

In contrast to residual-type estimators that can be evaluated in a simple post-
processing step, the practical evaluation of the error estimators require the approxima-
tion of an additional, intermediate dual solution and effective coefficients; for details
we refer to [16, 17].

3. Model-optimization framework. In the previous section an error iden-
tity and local error estimates were introduced for the model error, as well as, the
macroscale discretization error. The treatment of discretization errors by adaptive
mesh refinement with the help of local error indicators is well established [4, 5]. The
question arises what to do in case of the model error: Based on the concept of the
effective model

Āδ : Tδ(Ω)→ Rd×d,(3.1)

two fundamentally different approaches for model adaptivity are possible. The first is
based on the refinement of the sampling mesh Tδ(Ω) and associated sampling regions
{Y δK : K ∈ Tδ(Ω)} while keeping the same reconstruction process for all sampling
regions [17]. This is comparable to a classical discretization adaptation. The second
strategy consists of switching the effective model used for the reconstruction process [6,
19–21]. This is done by locally selecting a more expensive but also more precise
sampling strategy from an a priori chosen list of effective models. Typically, the same
fixed sampling discretization is used throughout the process.

In this section a novel approach for model adaptivity is introduced that expresses
the adaptation process as a minimization problem of the error estimator θδ: Given
the error identity (2.10),

〈j, uε〉 − 〈j, U〉 = θH + θδ, θδ =
(
(Āδ −Aε)∇uδ,∇zε

)
,(3.2)

model adaptivity is interpreted as solving an optimization problem

arg inf
Aδ

∑
K∈Tδ(Ω)

[∣∣((Āδ −Aε)∇uδ,∇zε)
K

∣∣2 + regularization
]
.(3.3)

This approach can be used as amodel-optimization framework to locally select optimal
coefficients from a set of available models, as well as in situations where a strategy to
derive an effective model is not known and, thus, an efficient post-processing strategy
is needed to construct one. The latter approach has the advantage that no a priori
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knowledge about effective models and reconstruction principles has to be available.
The optimization problem itself is used to select the optimal model. For the sake
of simplicity we will omit the macroscale discretization error θH in the subsequent
discussion. We thus choose H to be suitably small to guarantee U ≈ uδ. Techniques
to control θH simultaneously with the model error are discussed in [16].

3.1. An optimization approach. The quality of an effective model Āδ with
respect to a quantity of interest 〈j, uε〉 can be measured with the help of the error
identity (2.10):

〈j, uε〉 − 〈j, uδ〉 =
(
(Aδ −Aε)∇uδ(Āδ),∇zε

)
L2(Ω)d

.(3.4)

Given a fixed, a priori chosen sampling discretization Tδ(Ω), define a set of admissible
coefficients consisting of symmetric and elliptic coefficient tensors (as defined in (2.2),

Aδ :=
{
Āδ : Tδ(Ω)→ Rd×d : Āδ fulfills (2.2)

}
.(3.5)

Definition 3.1 (Model-optimization problem). Let Āδ,0 be an initial effective
model and let {αK}K∈Tδ(Ω), αK ∈ R+, be a set of (local) regularization parameters.
Then, an optimal model Āδ,opt is defined to be a solution of

arg inf
Āδ∈Aδ

∑
K∈Tδ(Ω)

{∣∣((Āδ −Aε)∇uδ(Āδ),∇zε)
K

∣∣2 + αK
∥∥ ĀδK − Āδ,0K ∥∥2

Rd×d

}
,(3.6)

subject to the side condition(
Āδ∇uδ(Āδ),∇ϕ

)
= (f, ϕ) ∀ϕ ∈ H1

0 (Ω).(3.7)

The regularization parameters αK are best fixed to a uniform value αK = α0 on all
sampling regions. Here, α0 is chosen to be roughly 0.01 − 1 times the typical size of
|θ̃δ|2/|ĀδK |2.

Remark 3.2. Given the fact that ellipticity (2.2) is impractical to enforce, be-
cause the correct lower-bound α is usually not known, the ellipticity constraint present
in Aδ is dropped in the concrete numerical computations. The regularization together
with a factor αK appropriately chosen is enough to ensure sensible coefficients Āδ.

Proposition 3.3. The optimization problem admits a (not necessarily unique)
minimum.

Proof. The functional dependency uδ(Āδ) described by (3.7) with respect to Āδ ∈
Aδ is well-posed—i. e., (3.7) is always uniquely solvable—and continuous. Further,

‖∇uδ(Āδ)‖ ≤ 1

α
‖f‖,(3.8)

by definition of Aδ. Hence, the function

F(Āδ) :=
∑

K∈Tδ(Ω)

{∣∣((Āδ −Aε)∇uδ(Āδ),∇zε)
K

∣∣2 + αK
∥∥ ĀδK −Aδ,0K ∥∥2

Rd×d

}
(3.9)

is well-defined, continuous, and coercive, i. e., it holds true that

F(Āδ)→∞ for ‖ Āδ‖ → ∞.(3.10)
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The optimization problem thus possesses a minimizer.
Remark 3.4. The functional dependency uδ(Āδ) given by the side-condition

(3.7) is highly nonlinear. In fact, ‖∇uδ‖L2(K) → 0 has to be expected for the limit
‖ ĀδK‖ → ∞. Consequently, the term

∣∣((Āδ −Aε)∇uδ(Āδ),∇zε)
K

∣∣2 is generally not
convex. The optimization problem is therefore not uniquely solvable in general.

In preparation for the numerical treatment of the optimization problem (3.6), we
formulate the following regularity result for the cost functional F given in (3.9).

Proposition 3.5. The functional dependency F(Āδ) is Gâteaux-differentiable
and its derivative DF(Āδ)[δĀδ] in direction δĀδ is given by

(3.11) DF(Āδ)[δĀδ] =
∑

K∈Tδ(Ω)

{
2ηδK

(
δĀδK∇uδ(Āδ) ,∇zε

)
K

+ 2ηδK
(
(Āδ −Aε)∇w ,∇zε

)
K

+ 2αK (ĀδK − Ā
δ,0
K ) : δĀδK

}
,

with the solution w
(

= Duδ(Āδ)[δĀδ]
)
of the equation(

Āδ∇w ,∇ϕ
)

+
(
δĀδ∇uδ(Āδ),∇ϕ

)
= 0 ∀ϕ ∈ H1(Ω).(3.12)

Proof. The crucial part is to assert that the side condition (3.7) interpreted as a
functional dependency uδ(Āδ) is Gâteaux-differentiable and its derivative is given by
(3.12). The rest of the statement then follows in a straightforward manner. Due to
the fact that Aδ is finite dimensional it suffices to show that the limit

lim
s↘0

ws, ws :=
1

s

(
uδ(Āδ + δĀδ)− uδ(Āδ)

)
(3.13)

is well-defined for arbitrary δĀδ. For this, we note that for s sufficiently small, the
difference ws is given by(

(Āδ + sδĀδ)∇(uδ(Āδ) + sws) ,∇ϕ
)

= (f, ϕ) ∀ϕ ∈ H1(Ω).(3.14)

Equivalently,(
Āδ∇ws ,∇ϕ

)
+ s

(
δĀδ∇ws ,∇ϕ

)
+
(
δĀδuδ(δAδ) ,∇ϕ

)
= 0.(3.15)

By continuity, it follows that the limit of (3.15) for s→ 0 is well-defined and indeed
given by (3.12).

3.2. An efficient post-processing strategy. The optimization problem (3.6)
can be used as an efficient post-processing strategy that does not require—with the
exception of an initial model—any additional a priori knowledge of effective models.
Fix a macroscale and a sampling discretization TH(Ω) and Tδ(Ω), as well as an initial
effective coefficients Āδ,0. This results in the following general optimization strategy
formulated for the case of a reduced, locally enhanced approximation of the dual
solution:

Definition 3.6 (Reduced, locally enhanced model-optimization problem).
Let Tδ(Ω) be a fixed sampling mesh and TH(Ω) a fixed macroscale discretization. Fix
a microscale discretization {Th(K) : K ∈ Tδ(Ω)} as well and let Āδ,0 : Tδ(Ω) →
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Rd×d be an initial effective model. The reduced, locally enhanced model-optimization
problem reads: Find a solution Āδ,opt ∈ Aδ of

(3.16) arg inf
Āδ∈Aδ

∑
K∈Tδ(Ω)

{∣∣((Āδ −Aε)∇U(Āδ),∇
(
Z̃(Āδ) + Z̃K(Āδ)

))
K

∣∣2
+ αK

∥∥ ĀδK − Āδ,0K ∥∥2

Rd×d

}
,

with U, Z̃ ∈ V H(Ω), and Z̃K ∈ V h(K) subject to the side conditions:(
Āδ∇U(Āδ),∇ϕ

)
= (f, ϕ) ∀ϕ ∈ V H(Ω),(3.17) (

Āδ∇ϕ,∇Z̃(Āδ)
)

= 〈j, ϕ〉 ∀ϕ ∈ V H(Ω),(3.18) (
Aε∇ϕ,∇Z̃(Āδ) +∇Z̃K(Āδ)

)
K

= 〈j, ϕ〉 ∀ϕ ∈ V h(K).(3.19)

Analogously to Proposition 3.5 we formulate the following result:
Proposition 3.7. Let F̃ be the modified cost functional of (3.16). Then, in full

analogy of the result for F in Proposition 3.5, the functional dependency of F̃(Āδ)
is also Gâteaux-differentiable and it holds true that

(3.20) DF̃(Āδ)[δĀδ] = DF(Āδ, U, Z̃)[δĀδ] +∑
K∈Tδ(Ω)

2ηδK
(
(Āδ −Aε)∇U,∇(DZ̃ + DZ̃K)(Āδ)[δĀδ]

)
,

with DZ̃ ∈ V H(K) being defined as the solution of(
Āδ∇ϕ,∇DZ̃(Āδ)[δĀδ]

)
+
(
δĀδ∇ϕ,∇Z̃(Āδ)

)
= 0 ∀ϕ ∈ V H(Ω),(3.21)

and DZ̃K ∈ V h(K) solving

(3.22)
(
Aε∇ϕ,∇DZ̃K(Āδ)[δĀδ]

)
K

+
(
Aε∇ϕ,∇δZ̃(Āδ)[δĀδ]

)
K

= 0 ∀ϕ ∈ V h(K).

Proof. The first part of the statement is already proved in Proposition 3.5. The
additional terms arise from the derivatives of Equations (3.18) and (3.19).

4. Implementational aspects. The optimization problem (3.6) and its mod-
ified variant (3.16) contain strongly nonlinear side conditions, where computing the
Gâteaux-derivative for a given direction δĀδ alone already involves solving the vari-
ational equation (3.12), and, depending on the reconstruction approach, also (3.21)
and (3.22). Consequently, a straightforward application of the Newton method to
solve the optimization problem has to be avoided.

4.1. Gauss-Newton Method. In order to avoid computing the second order
derivatives d2F(Āδ,i) a modified Gauss-Newton method [18] is used. For this, we
reformulate the optimization problem slightly. Introduce a multi-index (K, i, j) ∈
Tδ × Rd×d and define the vector-valued function

G :=
{(
ηK
)
K
,
(
gKij

)
Kij

}
, with(4.1)

ηK :=
(
(Āδ −Aε)∇U(Āδ) ,∇(Z̃ + Z̃K)

)
K
, gKij :=

√
αK
(
ĀδK,ij − Ā

δ,0
K,ij

)
.(4.2)
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Lemma 4.1. The modified optimization problem (3.16) can equivalently be ex-
pressed as the minimization of the squared Euclidian norm | · | of G:

arg inf
Āδ∈Aδ

∣∣G ∣∣2 = arg inf
Āδ∈Aδ

∑
K∈Tδ(Ω)

{
η2
K +

∑
ij

g2
Kij

}
.(4.3)

For a given index (K, i, j) let δĀδ(Kij) : Tδ → Rd×d be defined as the value(
δĀδQ

)
mn

:= δQK δmi δni,(4.4)

for a cell Q ∈ Tδ(Ω), where δQK is the Kronecker delta. Define the short notation

DKijηQ := DηQ[δĀδ(Kij)],(4.5)

DKijgQmn := DgQmn(Āδ)[δĀδ(Kij)].(4.6)

Lemma 4.2. By virtue of Propositions 3.5 and 3.7 it holds that

(4.7) DKijηQ = δQK

ˆ
Q

∇jU ∇i(Z̃ + Z̃Q) dx

+

ˆ
Q

(Āδ −Aε)∇DKijU · ∇(Z̃ + Z̃Q) dx

+

ˆ
Q

(Āδ −Aε)∇U · ∇DKij(Z̃ + Z̃Q) dx,

as well as

DKijgQmn = δQK δmi δni
√
αQ.(4.8)

With these prerequisites at hand, a modified Gauss-Newton iteration following a
discussion by Levenberg and Marquardt [18] is defined:

Definition 4.3 (Gauss-Newton iteration). Let J be the Jacobian matrix of G,

J =
{(

DKijηQ
)Kij
Q

,
(
DKij g̃Qmn

)Kij
Qmn

}
.(4.9)

Given a penalty λ ≥ 0 and starting from an initial effective model Āδ,0 the modified
Gauss-Newton iteration readsĀ

δ,n+1 ← Āδ,n + δĀδ,n,(
JJ T (Āδ,n) + λ Id

)
δĀδ,n = −JGT (Āδ,n).

(4.10)

The penalization term λ Id acts as a damping term in the Gauss-Newton method
to stabilize the iteration and to reduce the influence of approximation errors of the
Jacobian J . Depending on the situation, it will be chosen between 0 − 1 times the
mean value of the diagonal elements of JJ T . In general, the number of Gauss-
Newton iterations will depend on the problem and sampling strategy, as well as the
strength of the regularization.
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4.2. Reduction of computational complexity. The computationally expen-
sive part of computing the Jacobi matrix J are the non-local responses DKijU ,
DKijZ̃, and DKijZ̃Q that have to be computed for each choice (K, i, j) individually
according to (3.12), (3.21), and (3.22). Another aspect that has to be kept in mind is
the fact that JJ T is actually a dense matrix of size N×N with N =

∣∣Tδ(Ω)
∣∣ (1+d2).

Storing such a matrix, even for moderate sizes of the sampling mesh Tδ(Ω), is com-
putationally infeasible. Thus, a reduction strategy to efficiently approximate J is
necessary.

The microscale response DKijU is given by (cf. Equation 3.12):

(
Āδ∇DKijU ,∇ϕ

)
= −

ˆ
K

∇jU∇iϕdx ∀ϕ ∈ V H(Ω).(4.11)

The right hand side of this equation is highly localized. Consequently, the contribution
of ˆ

Q

(Āδ −Aε)∇DKijU · ∇(Z̃ + Z̃Q) dx(4.12)

rapidly decreases the farther Q is away from K—and can be neglected at some point.
A sensible compromise is, for example, to compute the above contribution only for
the case K = Q, or alternatively, as a more precise strategy, only if Q belongs to
a small patch around K, e. g., if K ∩ Q 6= ∅. All of these choices result in a block
diagonal matrix J̃ whose band size is independent of |Tδ(Ω)|.

In contrast the microscale response DZ̃, DZ̃Q will just be neglected entirely:
ˆ
Q

(Āδ −Aε)∇U · ∇DKij(Z̃ + Z̃Q) dx ≈ 0.(4.13)

The reasoning behind this choice is the fact that in case of a fully resolved dual solution
zε, such finescale response does not exist at all. To further justify this approach, we
will discuss detailed numerical comparisons of optimization results obtained by zε and
zδ +

∑
zδK , respectively, in Section 5.

In summary, the following approximation strategies of the derivative DKijηQ will
be considered:

Definition 4.4 (Approximative Jacobian). Define a patch ω(K) := {Q ∈
Tδ(Ω) : K ∩ Q 6= ∅} and let IQω(K) be the indicator function that is equal to 1
for Q ∈ ω(K) and 0 otherwise. The derivative DKijηQ is approximated by

(4.14) DKijηQ ≈ δQK

ˆ
Q

∇jU ∇i(Z̃ + Z̃Q) dx

+ IQω(K)

ˆ
Q

(Āδ −Aε)∇DKijU · ∇(Z̃ + Z̃Q) dx.

One last obstacle for the patch-centered reconstruction (4.14) remains. Namely, that
the response DKijU is needed in combination with the microscale reconstruction
Z̃Q for different K and Q. In an efficient algorithm, fine-scale reconstructions of such
kind cannot be stored for further use. They have to be kept local to the computation
on the current sampling region Q. One way to mitigate this problem is to not use a
finescale reconstruction ZQ defined on Q, but to use a slightly more expensive Z̃ω(K)

defined on the patch ω(K) around K with patch-depth 1. This allows for an efficient
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Algorithm 1: Assembly of {ηK} and J
– Set up TH(Ω) and assemble matrix A: Aνµ = (Āδ,i∇ϕµ ,∇ϕν)
– Compute matrix decomposition of A: LU = A
for K ∈ Tδ(Ω) do

– Assemble ω(K) and compute Z̃K ∈ V h(ω(K))

– Compute ηδK with (2.12)
for i = 1, . . . , d do

for j = 1, . . . , d do
– Compute response DKijU with above decomposition
for Q ∈ ω(K) do

– Compute contribution DKijηQ for J according to (4.14)

Algorithm 2: Model-optimization algorithm
– Compute initial model Āδ,0

– Solve primal and dual problem for U(Āδ,0), Z̃(Āδ,0) with the help of (2.8)

while stopping criterion not reached do

– Compute the error estimator and local indicators {ηK}

θ̃δ =
∑

K∈Tδ(Ω)

ηδK ,

as well as, the Jacobian J with Algorithm 1

– Solve
(
JJ T (Āδ,n) + λId

)
δĀδ,n = −JGT (Āδ,n).

– Update model: Āδ,n+1 ← Āδ,n + δĀδ,n

– Compute U(Āδ,n+1), Z̃(Āδ,n+1) again with updated model Āδ,n+1, (2.8)

assembly as described in Algorithm 1. Finally, a model-optimization algorithm can
be defined; see Algorithm 2.

Remark 4.5. Due to the fact that J is always approximated with a substantially
reduced variant, the value ‖J ‖ does not provide a good stopping criterion with ‖J ‖ �
1. Instead, it is better to use the approximative estimator value |θ̃δ| directly. For
example, stop if |θ̃δ| is reduced to 1 % of its initial value.

5. Numerical tests. A series of short numerical tests is conducted in order to
examine specific behavior and aspects of the model-optimization approach that was
proposed in the previous sections. The computations are done with the finite-element
toolkit deal.II [3].

In particular, the dependence of the optimization result on the initial value Āδ,0,
on the size of the sampling discretization Tδ(Ω), and on the strength of the regular-
ization parameters αK is examined for a global functional, as well as a local variant
(Subsection 5.1). This is done with a choice of random coefficients for both, the fully
resolved dual solution zε, as well as the reduced, locally enhanced variant zδ+

∑
zδK .

Finally, Subsection 5.2 concludes with an advection-diffusion example with dominant
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(a) (b)

Figure 2: (a) Log-normally distributed permeability with Gaussian correlation shown
in log-scale. (b) The corresponding reference solution.

transport.

5.1. Parameter study for random coefficients. The purpose of the first nu-
merical test is to examine the stability of the optimization approach for a variety
of differently chosen discretization and optimization parameters. In particular, the
feasibility of using the reduced, locally enhanced approximation approach within the
optimization framework shall be assessed as this property is essential for the opti-
mization approach to be computationally feasible and thus comparable to VMM or
HMM approaches.

Consider a computational domain Ω = (0, 1)2 with a log-normally distributed,
random microstructure. In detail, we choose Aε to be

Aε(x) := Id × γ × exp(10× g(x) / 255) Id ,(5.1)

where g(x) is an 8 bit grayscale picture (with integral values between 0 and 255)
with 1024×1024 pixels resolution (cf. Fig. 2). The grayscale picture is generated using
the QuantIm library [22]. It is a (discrete) Gaussian random field with an additional
Gaussian correlation with a correlation length chosen to be r = 0.0025.

Further, define a global and a local functional as follows:

〈j1, ϕ〉 =

ˆ
Ω

ϕdx, 〈j2, ϕ〉 = ϕ(x0).(5.2)

For a fixed choice of 65.5K macrocells and a microscale resolution of h = 2−12, a
parameter study is conducted with sampling discretizations δ = 2−3 and δ = 2−4,
a choice of mild penalty with λ = 0.1m and regularization αK = 0.001 and strong
penalty λ = 1.0m and regularization αK = 0.01, where m is the absolute mean value
of the diagonal entries of the matrix J TJ , see (4.10). The optimization algorithm
is run for the optimization strategy with precise approximative Jacobian (4.14) for
both types of reconstruction approaches for the dual solution: fully resolved zε and
the reduced, local enhanced variant zδ +

∑
zδK . With reference values of 〈j1, uεref〉 ≈

0.14641 and 〈j2, uεref〉 ≈ 0.189403 the initial model errors are in the range of around
1 % for the geometric average.

For each choice of parameters, Table 1 shows the final error after a fixed number
of 15 optimization cycles for periodic and random coefficients. The first observation
that can be made is that in all cases the model-optimization approach is able to
consistently reduce well below 1 %. More importantly, the reduced, locally enhanced
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Table 1: Parameter study for a random permeability and the global functional j1, as
well as the local functional j2. For each choice the absolute and relative error after
cycle 15 of the optimization algorithm is shown.

(a) Full model-optimization (4.14), geometric average Āδ,0, global functional j1

zε zδ +
∑
zδK

cycle δ = 2−3 δ = 2−4 δ = 2−3 δ = 2−4

1 1.8e-3 (1.3%) 1.3e-3 (0.9%) 1.8e-3 (1.3%) 1.3e-3 (0.9%)

αK = 10−2 15 7.5e-4 (0.5%) 4.2e-4 (0.3%) 6.7e-4 (0.5%) 3.7e-4 (0.3%)
αK = 10−3 15 8.0e-4 (0.6%) 7.9e-4 (0.5%) 7.1e-4 (0.5%) 7.2e-4 (0.5%)

(b) Full model-optimization (4.14), geometric average Āδ,0, local functional j2

zε zδ +
∑
zδK

cycle δ = 2−3 δ = 2−4 δ = 2−3 δ = 2−4

1 2.1e-3 (1.1%) 2.2e-3 (1.2%) 2.1e-3 (1.1%) 2.2e-3 (1.2%)

αK = 10−2 15 6.0e-4 (0.3%) 6.2e-4 (0.3%) 8.7e-4 (0.5%) 9.5e-4 (0.5%)
αK = 10−3 15 6.9e-4 (0.4%) 7.2e-4 (0.4%) 9.5e-4 (0.5%) 1.0e-3 (0.5%)

variant zδ+
∑
zδK with increased patch size (and thus reduced impact of the artificial

Dirichlet boundary conditions of the reconstruction problems) leads to comparable
results very similar to the results for the full variant zε.

5.2. An advection-diffusion example with dominant transport. As sec-
ond test case consider an advection-diffusion problem

γ (∇uε,∇ϕ) + (bε · ∇uε, ϕ) = (f, ϕ) ∀ϕ ∈ V(5.3)

driven by a divergence-free vector field bε ∈ H1,∞(Ω)d, i. e. ∇ · bε = 0 a. e. on Ω
and bε ≡ 0 on ∂Ω, together with a positive scaling factor γ ∈ R+. This time, the
multiscale character is given by bε that shall consist of small (but strong) eddies. We
again use the QuantIm library [22] to construct a random, divergence-free vector field
bε(x); see [16]. For a given sampling discretization Tδ(Ω), we define an averaged
transport coefficient

bδ : Tδ(Ω)→ Rd, bδK :=

 
K

bε dx for K ∈ Tδ(Ω).(5.4)

The random advection field influences the macroscopic diffusion in two ways.
Firstly, an averaged macroscopic transport occurs (as described by bδ). Secondly, and
more importantly, the microscopic eddies lead to influence the macroscopic behavior
by means of an additional effective diffusivity. Consequently, let the task be to find
effective (diffusion) coefficients Āδ : Tδ(Ω) → Rd×d such that the solution uδ of the
effective advection-diffusion problem

(Āδ∇uδ,∇ϕ) + (bδ · ∇uδ, ϕ) = (f, ϕ) ∀ϕ ∈ V,(5.5)

is a good approximation of uε in some quantity of interest.
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Ω ΓA

ΓD

ΓC

ΓB

ΓE

(a) Domain Ω (b) bε, x-comp. (c) bε, y-comp.

Figure 3: The computational domain Ω for the advection-diffusion test case (a) and
the random vector field bε (b/c).

The only significant change in the model-adaptation framework for the above
advection-diffusion problem is the occurrence of additional terms (bε · ∇uε, zε) in the
error identity (2.10) that now splits into

(5.6) 〈j, uε〉 − 〈j, U〉 =
(
f, zδ

)
−
(
Aδ∇U,∇zδ

)
−
(
bδ · ∇U, zδ

)︸ ︷︷ ︸
=: θH

+
(
Aδ∇uδ,∇zε

)
− γ

(
∇uδ,∇zε

)
−
(
(bε − bδ) · ∇uδ, zε

)︸ ︷︷ ︸
=: θδ

This leads to a local model-error indicator

ηδK :=
(
{γ Id−Aδ}∇uδ,∇zε

)
K
−
(
(bε − bδ) · ∇uδ, zε

)
K
.(5.7)

With the above assumptions on bε the corresponding dual problem reads

γ (∇ϕ,∇zε)− (bε · ∇zε, ϕ) = 〈j, ϕ〉 ∀ϕ ∈ V.(5.8)

A rectangular domain Ω is chosen (see Fig. 3) with homogeneous Dirichlet bound-
ary conditions on ΓD, homogeneous Neumann conditions on ΓA, ΓB and ΓC , and
γ ∂nu

ε ≡ 1 on ΓE . The source term is set to f ≡ 0 and the quantity of interest is
chosen to be

〈j, ϕ〉 =

ˆ
ΓB

ϕdox.(5.9)

In spirit of Definition 2.6, a reduced dual problem with a local enhancement can
be defined (

Āδ∇ϕ,∇zδ
)
− (bδ · ∇zδ, ϕ) = 〈j, ϕ〉 ∀ϕ ∈ V,(5.10)

γ
(
∇ϕ,∇(zδ + zδK)

)
K
−
(
(bε − bδ) · ∇(zδ + zδK), ϕ

)
K

= 〈j, ϕ〉 ∀ϕ ∈ V (K).(5.11)
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(a) (b) (c)

Figure 4: Plot of the reference solution (a), the initial solution uδ,0 of the optimization
problem (b), and the final solution uδ,10 (c) obtained for the reduced, locally enhanced
dual solution.

Here, the local reconstruction zδK ∈ V (K) has homogeneous Dirichlet conditions on
interior boundary parts ∂K but shall have homogeneous Neumann conditions on
all Neumann boundaries of the primal problem, i. e., on boundaries ∂K ∩ Γi with
i = A, B, C, E. For the choice ε = 2−8, γ = 0.1, as well as values of the advection
field with magnitude in the range 0− 300, a reference computation with 8.39× 106

degrees of freedom yields the result 〈j, uεref〉 ≈ 0.2170. A uniform sampling mesh with
32 sampling regions is chosen, as well as a macroscale discretization of 1.3 × 105

cells and a (fully resolved) microscale discretization with h = 2−11. The optimization
framework is run for a fully resolved dual solution (“full”) with 2.1 × 106 cells as
well as the reduced, locally enhanced variant given in Definition 2.6 (“enhanced”). As
stopping criterion a reduction of |θ̃δ| to less than 5 % of the initial value is chosen
with a penalty λ = 1.0m, where m is the absolute mean value of the diagonal entries
of the matrix J TJ , see (4.10), and a very small regularization αK = 0.1 (compared
to |θ̃δ|2/|ĀδK |2 ∼ 1 000). The numerical results are given in Table 2.

To examine the numerical stability of the optimization algorithm the computa-
tion is actually run for 15 adaptation cycles well beyond the stopping criterion that
is reached with step 12 for the full dual solution and with step 10 for the local
enhancement strategy. The initial error of 80 % in the target functional with a start-
ing model ĀδK = γ Id can be reduced to around 2 − 3 % for both variants of dual
solution. Further, the adaptation cycle remains stable beyond the point where the
stopping criterion was reached. Reference, initial and final (for step 12 and 10, re-
spectively) solutions are depicted in Figure 4. As can be seen from the numerical
results, the microscale advection due to bε leads to a locally increased value for ĀδK
in the range 0.01 − 0.02 compared to the initial choice ĀδK = γ Id ∼ 0.01. The
effective models found with the optimization approach match the reference solution
quite well near the boundary ΓB . In contrast, on the far end of ΓB near the inho-
mogeneous Neumann condition on ΓE , the effective solutions deviate from uε. This
has to be expected as the optimization problem only minimizes the error given by an
integral over ΓB .

6. Conclusion. A novel approach for model adaptivity is proposed that is based
on solving an optimization problem by minimizing the local model-error indicators
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Table 2: Results for the model-optimization algorithm (Algorithm 2) applied to the
advection-diffusion problem (5.3) with fully resolved dual solution (a) and for the
reduced, locally enhanced variant (b). After steps 12 and 10, respectively, the esti-
mator |θ̃δ| is reduced to less than 5 % of its initial value.

(a) model-optimization algorithm with fully resolved dual solution

L2(Ω) |〈j, U〉| |〈j, uε−U〉| |θ̃δ| Ieff Iloc

1 4.43e-1 3.86e-1 1.69e-1 (77.9%) 1.69e-1 1.00 2.21
3 2.80e-1 2.71e-1 5.36e-2 (24.7%) 5.38e-2 1.00 4.24
5 2.29e-1 2.49e-1 3.16e-2 (14.6%) 3.18e-2 1.00 5.86
7 1.90e-1 2.37e-1 2.02e-2 (9.30%) 2.04e-2 1.00 7.68
9 1.60e-1 2.30e-1 1.32e-2 (6.08%) 1.34e-2 1.00 10.2

11 1.39e-1 2.26e-1 9.14e-3 (4.21%) 9.35e-3 1.00 13.2
12 1.30e-1 2.25e-1 7.91e-3 (3.64%) 8.12e-3 1.00 14.7
15 1.13e-1 2.23e-1 6.28e-3 (2.89%) 6.51e-3 0.99 17.3

(b) model-optimization algorithm with reduced, locally enhanced dual
solution

L2(Ω) |〈j, U〉| |〈j, uε−U〉| |θ̃δ| Ieff Iloc

1 4.43e-1 3.86e-1 1.69e-1 (77.9%) 2.96e-1 1.76 2.15
3 2.33e-1 2.62e-1 4.48e-2 (20.6%) 4.92e-2 1.10 4.01
5 1.46e-1 2.39e-1 2.20e-2 (10.1%) 2.85e-2 1.30 3.85
7 9.86e-2 2.28e-1 1.08e-2 (4.97%) 2.06e-2 1.90 3.80
9 8.21e-2 2.22e-1 5.22e-3 (2.40%) 1.58e-2 3.04 4.20

10 7.99e-2 2.20e-1 3.02e-3 (1.39%) 1.27e-2 4.18 4.91
15 9.70e-2 2.14e-1 3.07e-3 (1.41%) 7.00e-3 2.28 10.4

derived from a DWR formulation. The optimization approach allows to derive an
efficient post-processing strategy that can be regarded as a multiscale approach in its
own right. Its strength lies in the fact that it is in principle independent of strong
a priori knowledge about applicability of efficient models—its efficiency is rooted in
the almost quantitative behavior of the DWR method when combined with a suitable
localization technique for the dual problem. The modeling aspect of the optimization
problem lies in the choice of the functional 〈j, ·〉 as quantity of interest (given by the
application in mind) and the choice of the localization approach for the dual problem.
In this sense it lifts the question of suitable approximation in terms of a quantity of
interest (for the primal problem) to the question of suitable approximation properties
of the localization technique for the dual problem. The important property here is
that the latter is typically measured in the L2-norm of the gradient of the error of
the dual approximation, for which—depending on the localization approach—strong
approximation properties are available. Prototypical numerical results are presented
for a heterogeneous elliptic diffusion and an advection-diffusion problem, that indicate
that the optimization approach combined with a localization technique that globally
uses the same effective model as the primal problem and locally reconstructs finescale
features of the full dual solution does result in an efficient model-adaptation strategy.
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