
ar
X

iv
:1

40
4.

33
91

v1
 [

cs
.D

S]
 1

3
A

pr
 2

01
4

Adjacency labeling schemes and induced-universal graphs

Stephen Alstrup ∗ Haim Kaplan † Mikkel Thorup ‡ Uri Zwick§

April 11, 2018

Abstract

We describe a way of assigning labels to the vertices of any undirected graph on up to n vertices, each
composed of n/2 + O(1) bits, such that given the labels of two vertices, and no other information
regarding the graph, it is possible to decide whether or not the vertices are adjacent in the graph.
This is optimal, up to an additive constant, and constitutes the first improvement in almost 50 years
of an n/2 + O(log n) bound of Moon. As a consequence, we obtain an induced-universal graph for
n-vertex graphs containing only O(2n/2) vertices, which is optimal up to a multiplicative constant,
solving an open problem of Vizing from 1968. We obtain similar tight results for directed graphs,
tournaments and bipartite graphs.

1 Introduction

An adjacency labeling scheme for a given family of graphs is a way of assigning labels to the vertices
of each graph from the family such that given the labels of two vertices in the graph, and no other
information, it is possible to determine whether or not the vertices are adjacent in the graph. The
labels are assumed to be composed of bits and are required to be of the same length. The goal is, of
course, to make the labels as short as possible. An adjacency labeling scheme can be used to store a
graph implicitly in a distributed manner. Adjacency labeling schemes first appear in Breuer [13], Breuer
and Folkman [14], Müller [35], and Kannan, Naor and Rudich [29]. (See more references below.)

Various other types of labeling schemes were also considered. In a distance labeling scheme, given the
labels of two vertices it should be possible to deduce the distance between them in the represented
graph. In a routing scheme, we may want to be able to identify the first edge on a shortest path,
or an almost shortest path, between the two vertices. There is a vast literature on these subjects.
When the graphs considered are rooted trees, we may want to be able to decide whether a vertex is an
ancestor of another vertex, given just the labels of the two vertices, or to be able to compute the label
of their Nearest Common Ancestor (NCA). (See next section and the extensive survey of Gavoille and
Peleg [26].)

Closely related to adjacency labeling schemes are induced-universal graphs. A graph G = (V, E) is said
to be an induced-universal graph for a family F of graphs, if for every graph G of F there is an induced
subgraph of G that is isomorphic to G. Induced-universal graphs were introduced by Rado [38]. Kannan
et al. [29] note that a family F has an L-bit adjacency labeling scheme if and only if it has an induced-
universal graph on at most 2L vertices. Moon [34] showed that the family of all n-vertex undirected
graphs has an induced-universal graph on O(n2n/2) vertices. To do that, he implicitly constructs an

∗Department of Computer Science, University of Copenhagen, Denmark. E-mail: s.alstrup@di.ku.dk.
†Blavatnik School of Computer Science, Tel Aviv University, Israel. Research supported by The Israeli Centers of

Research Excellence (I-CORE) program (Center No. 4/11). E-mail: haimk@post.tau.ac.il.
‡Department of Computer Science, University of Copenhagen, Denmark. E-mail: mikkel2thorup@gmail.com.
§Blavatnik School of Computer Science, Tel Aviv University, Israel. Research supported by BSF grant no. 2012338 and

by The Israeli Centers of Research Excellence (I-CORE) program (Center No. 4/11). E-mail: zwick@tau.ac.il.

1

http://arxiv.org/abs/1404.3391v1

adjacency labeling scheme for n-vertex graphs that assigns each vertex an (⌊n/2⌋ + ⌈lg n⌉)-bit label.1

Moon [34] uses a simple counting argument to show that adjacency labels for n-vertex graphs must
contain at least (n− 1)/2 bits, and that any induced-universal graph for n-vertex graphs must contain
at least 2(n−1)/2 vertices, showing that his upper bounds are not far from being optimal. Closing the
gap between the upper and lower bounds is mentioned as an open problem in Vizing [41]. Bollobás and
Thomason [10] show that a random graph on ⌈n22n/2⌉ vertices is, with high probability, an induced-
universal graph for the family of n-vertex undirected graphs. While succinct adjacency labeling schemes
and small induced-universal graphs for various families of graphs were subsequently constructed (see
the next section for a summary), no progress was made on the most basic problem of finding adjacency
labeling schemes and induced-universal graphs for the family of all n-vertex graphs.

We obtain an adjacency labeling scheme for n-vertex graphs that assigns each vertex an (⌈n/2⌉+4)-bit
label, which is optimal up to a small additive constant. As a consequence, we also get an induced-
universal graph of size O(2n/2) which is optimal up to a small multiplicative factor.

Using our techniques we also obtain an (n + 3)-bit adjacency labeling scheme for n-vertex directed
graphs, an (⌈n/2⌉ + 4)-bit adjacency labeling scheme for n-vertex tournaments, thus improving an
(⌊n/2⌋ + ⌈lg n⌉)-bit bound of Moon [33], and finally an (n4 + O(1))-bit adjacency labeling scheme for
n-vertex bipartite graphs, improving an (n4 + 2⌈lg n⌉)-bit scheme of Lozin and Rudolf [32]. All these
results are again optimal up to a small additive constant and give rise to induced-universal graphs that
are optimal up to a small multiplicative factor.

The basic challenge

To illustrate the most basic technical challenge, we briefly consider the simplest case of directed graphs.
Suppose that there is an adjacency labeling scheme that assigns each vertex of an n-vertex graph an
L-bit label. As given the labels of two vertices we can determine whether the vertices are adjacent,
the labels of all the vertices determine the graph. As n(n − 1) bits are needed to represent a general
n-vertex directed graph, we get that L ≥ n− 1, i.e., each label must contain at least n− 1 bits. (For a
formal version and a slight strengthening of this argument, see Section 11.)

Suppose now that each vertex u in an n-vertex graph has a distinct index ind(u) ∈ {0, 1, . . . , n − 1}
assigned to it. The graph can then be represented using the adjacency matrix A = (aij), where aij = 1
if and only if there is an edge from the vertex whose index is i to the vertex whose index is j. We can
let the label of u be the (n − 1)-bit string adj(u) which is simply the ind(u)-th row of the adjacency
matrix with the diagonal element omitted. Given the labels adj(u) and adj(v) of two vertices u and v,
and their indices ind(u) and ind(v), we can easily decide whether there is an edge from u to v in the
graph. Such an edge exists if and only if ind(v) < ind(u) and adj(u)[ind(v)] = 1, or ind(v) > ind(u)
and adj(u)[ind(v) − 1] = 1. (As can be seen adj(v) is not even required here.)

This labeling scheme seemingly matches the trivial lower bound. Unfortunately, it is not a valid ad-
jacency labeling scheme. To determine whether u and v are adjacent, we need to know not only their
labels, but also their indices. (In the sequel, we thus refer to adj(u) as the tag, and not the label of u.)

We can of course obtain a valid adjacency labeling scheme by letting the label of a vertex be an encoding
of both its index and its tag. But, the resulting labels would then be of length n + ⌈lg n⌉ − 1. The
fundamental question is whether these extra ⌈lg n⌉ bits are needed. We show that they are not needed.
Using a careful choice of indices, we can encode both indices and tags using only n+O(1) bits.

Organization of paper

The rest of this paper is organized as follows. In Section 2 we provide a concise summary of related
results. In Section 3 we give a formal definition of adjacency labeling schemes and discuss some variants
of the definition. In Section 4 we describe the two building blocks used to obtain all our results. The

1Throughout the paper, we let lg n = log
2
n.

2

Graph family Lower bound Upper bound Reference

General graphs 2
n−1
2 O(n2

n

2) Moon [34]

Tournaments 2
n−1
2 O(n2

n

2) Moon [33]

Bipartite graphs Ω(2
n

4) O(n22
n

4) Lozin-Rudolf [32]

Graphs of max degree d, d even Ω(n
d

2) O(n
d

2) Butler [15]

Graphs of max degree d, d odd Ω(n
d

2) O(n
d+1
2 −

1
d log2+

2
d n) Esperet et al. [22]

Graphs of max degree 2 ⌊ 11n
6 ⌋ ⌊ 5n

2 ⌋+O(1) Esperet et al. [22]

Graphs excluding a fixed minor Ω(n) n2(log n)O(1) Gavoille-Labourel [27]

Planar graphs Ω(n) n2(log n)O(1) Gavoille-Labourel [27]

Planar graphs of bounded degree Ω(n) O(n2) Chung [16]

Outerplanar graphs Ω(n) n(logn)O(1) Gavoille-Labourel [27]

Outerplanar graphs of bounded degree Ω(n) O(n) Chung [16]

Graphs of treewidth k n2Ω(k) n(log n
k)

O(k) Gavoille-Labourel [27]

Graphs of arboricity k nk

2O(k2)
nk min{(logn)O(1), 2O(k log∗ n)} Alstrup-Rauhe [6]

Forests Ω(n) n2O(log∗ n) Alstrup-Rauhe [6]

Forests of bounded degree Ω(n) O(n) Chung [16]

Trees of depth d Ω(n) O(nd3) Fraigniaud-Korman [24]

Caterpillars Ω(n) O(n) Bonichon et al. [12]

Table 1: Induced-universal graphs for various families of graphs. All families considered, except tourna-
ments, are families of undirected graphs. The results for graphs of maximum degree at most d assume
that d is a constant. The Ω(nd/2) lower bound for d odd is due to Butler [15]. In the result for families
of graphs with an excluded minor, the O(1) term in the exponent depends on the fixed minor excluded.

first one of these building blocks, which is the cornerstone of all our constructions, is a labeling scheme
for very unbalanced bipartite graphs. The labels produced by this labeling scheme vary drastically in
size. Our second building block is a spreading scheme used to smooth the differences in the label sizes.
Combining the two schemes we manage to assign all vertices labels of the same size, thus conforming
to the formal requirement. In Section 5 we present our new labeling schemes for directed graphs. In
Section 6 we present our new labeling schemes for undirected graphs. The labeling schemes for directed
graphs are presented first as they are somewhat simpler. In Section 7 we present our schemes for
tournaments. In Section 8 we present our results for bipartite graphs. The schemes for bipartite graphs
require some additional new ideas. In Section 9 we discuss the issue of efficient decoding. In Section 10
we discuss the construction of induced-universal graphs. In Section 11 we discuss lower bounds. We
end in Section 12 with some concluding remarks and open problems.

2 Summary of related results

A summary of known upper and lower bounds on the size of induced-universal graphs for various families
of graphs is given in Table 1. Corresponding results for adjacency labeling schemes can be obtained by
taking logarithms. We improve the first three upper bounds, making them asymptotically tight.

An induced-universal graph for a family F is a graph that contains each graph from F as an induced
subgraph. A universal graph for F , on the other hand, is a graph that contains each graph from F
as a subgraph, not necessarily induced. A clique on n vertices is clearly a universal graph for all n-

3

vertex graphs. The challenge is to construct universal graphs with as few edges as possible. Chung [16]
shows that universal graphs can be used to construct induced-universal graphs. Using universal graphs
constructed by Babai et al. [8], Bhatt et al. [9] and Chung et al. [20, 17, 18, 19], she obtains her induced-
universal graphs cited in Table 1. The induced-universal graphs for planar graphs, outerplanar graphs,
graphs excluding a fixed minor, and bounded degree graphs listed in Table 1 also rely on her ideas.
Alon and Capalbo [2, 3], improving many previous results, show that for every fixed d, there is a graph
with O(n2−2/d) edges which is universal for n-vertex graphs of maximum degree at most d, which is
asymptotically optimal. Esperet et al. [22] use this result to obtain their induced-universal graphs for
graphs of fixed maximum degree d, where d is odd.

Distance labeling schemes were considered by many authors. See, e.g., Peleg [37] and Gavoille et al. [28]
and the references therein. Labeling schemes for flow and connectivity were considered by Katz et
al. [30] and Korman [31].

Labeling schemes for answering ancestor and NCA queries in trees were considered, among others by,
Abiteboul et al. [1], Alstrup et al. [5, 4, 7] and Fraigniaud and Korman [25].

Routing schemes were also considered by many authors. See, e.g., Eilam et al. [21], Fraigniaud and
Gavoille [23], Thorup and Zwick [39, 40] and the references therein.

3 Prelimaries

We begin with a formal definition of adjacency labeling schemes. For concreteness, we assume through-
out the paper that every n-vertex graph is defined on the vertex set V = [n] = {0, 1, . . . , n− 1}. Every
n-vertex graph can of course be made a graph on V = [n] by mapping its vertices to [n].

Definition 3.1 (Adjacency labeling schemes). Let Fn be a family of graphs on vertex set V = [n] =
{0, 1, . . . , n− 1}. A pair of functions Label : Fn →

(

[n] → {0, 1}L
)

and Edge : {0, 1}L ×{0, 1}L → {0, 1}
is an L-bit adjacency labeling scheme for Fn if and only if for every G = (V,E) ∈ Fn, where V = [n],
and every u, v ∈ V , we have (u, v) ∈ E if and only if Edge(Label(G)(u),Label(G)(v)) = 1.

In Definition 3.1, the family Fn can be a family of undirected graphs or of directed graphs. If Fn is a
family of undirected graphs, we should of course have Edge(x, y) = Edge(y, x), for every x, y ∈ {0, 1}L.
Many of the papers on adjacency labeling schemes say that a family Fn admits an L-bit adjacency
labeling scheme if and only if given any graph G ∈ Fn, it is possible to assign each vertex u of G an
L-bit label such that given the labels of two vertices u and v it is possible to decide whether they are
adjacent in G. It is not difficult to check that this definition is equivalent to our definition. We explicitly
refer to the encoding function Label, that assigns labels to the vertices of a given graph, and Edge, the
decoding function, that given two labels decides whether the vertices they belong to are adjacent.

An adjacency labeling scheme (Label,Edge) for a family Fn is said to satisfy the distinctness property
if and only if for every graph G = (V,E) from Fn, and every two distinct vertices u, v ∈ V we
have Label(G)(u) 6= Label(G)(v). Not every labeling scheme satisfies this property. (Of course, if
Label(G)(u) = Label(G)(v), then u and v must have the same set of neighbors in G.)

Some of the published lower bounds for adjacency labeling schemes rely on the distinctness property.
Similar lower bounds can be obtained, however, without relying on it. (See Section 11.) The distinctness
property is required if we want to convert a labeling scheme into an induced-universal graph.

All our labeling schemes satisfy the distinctness property. Furthermore, for all our labeling schemes it
is possible to define an index function Ind : {0, 1}L → [n] such that for every graph G ∈ Fn and every
u 6= v ∈ [n] we have Ind(Label(G)(u)) 6= Ind(Label(G)(v)). However, we would not in general have
Ind(Label(G)(u)) = u. Our labeling schemes make an essential use of the freedom to reassign names,

4

i.e., indices from [n], to the vertices of the graph. Adjacency labeling schemes that posses such an index
function are said to be indexing.

If F is a family of graphs, we let Fn be the n-vertex graphs of F , and F≤n the graphs of F with at
most n vertices. If every n′-vertex graph G′ of F , where n′ < n, can be extended into an n-vertex
graph G of F , e.g., by adding n− n′ isolated vertices, then a labeling scheme for Fn, can also be used
as a labeling scheme for F≤n. A family F that satisfies this property is said to satisfy the extension
property.

When a labeling scheme is used, it is essentially assumed that L, the length of the labels, is known.
(Various coding issues arise if L is not known, or if labels are not of the same length.) We may assume
that n, the number of vertices in the graph, or an upper bound on this number, is also known. This
can be justified as follows. Assume that F satisfies the extension property defined above. Let LF (n)
be the length of the labels assigned by the labeling scheme to the vertices of n-vertex graphs of F . We
may assume, without loss of generality, that LF (n) is non-decreasing in n. Given a label size L, we can
find the largest n for which LF (n) = L and then infer that the encoded graph has at most n vertices.
The same process should of course be followed when assigning the labels to the vertices.

4 Building blocks

In this section we present our two main new ideas. The new ideas give rise to the two main building
blocks used in all our constructions. Both building blocks are labeling schemes for bipartite graphs.
They assign each vertex u both an index ind(u) and an adjacency tag adj(u). The pair (ind(u), adj(u))
may be viewed as the adjacency label of u. The first scheme needs the freedom to assign indices to the
vertices. The second scheme can use indices already assigned to the vertices.

The adjacency tags assigned to the vertices are usually not of the same length. Thus, the resulting
labeling schemes do not conform to Definition 3.1. They can still be used, however, to construct
labeling schemes that do conform to Definition 3.1. In a typical application, the graph G = (V,E) to
be encoded is partitioned into k subgraphs Gi = (Vi, Ei), for i ∈ [k], where E = ∪k

i=1Ei. Each vertex
u ∈ U is assigned a single index ind(u), used in the encoding of all subgraphs, and a separate adjacency
tag adji(u) for each subgraph. (If u 6∈ Vi, then adji(u) is empty.) The label of u is then taken to be
the tuple (ind(u), adj1(u), . . . , adjk(u)). Given ind(u), it would be possible to deduce the length of the
tags adj1(u), . . . , adjk(u). While individual tags may have different lengths, the resulting labels would
all have the same length.

A bipartite graph G = (U, V,E), where |U | = k, |V | = n − k, U ∩ V = ∅, and of course E ⊆ U × V ,
is said to be (k, n − k)-bipartite graph. We usually assume, without loss of generality, that U = [k] =
{0, 1, . . . , k−1} and V = [k, n) = {k, k+1, . . . , n−1}. Such a bipartite graph can clearly be represented
as a k × (n− k) Boolean adjacency matrix A = AG.

4.1 A labeling scheme for extremely unbalanced bipartite graphs

Our main new idea is a labeling scheme for (k, n − k)-bipartite graphs G = (U, V,E) where k ≪ n.
The labeling scheme assigns indices to the vertices of V , thus permuting the columns of the adjacency
matrix A = AG, in a way that enables a succinct encoding of the rows of A.

Every n-bit string is of the form 0t11t2 . . . or 1t10t2 . . ., where t1, t2, . . . ≥ 1. Each such maximal block of
consecutive 0s or 1s is called a run. If A = (ai,j) is a k×n Boolean matrix and π ∈ Sn is a permutation
on [n], we let Aπ = (aπi,j) be the k × n matrix defined by aπi,j = ai,π(j). For convenience, we start the
numbering of the rows and columns of A from 0.

5

Lemma 4.1. Let A be an k × n Boolean matrix. Then, there exists a permutation π ∈ Sn such that
the i-th row of Aπ is composed of at most 2i+1 runs. Furthermore, if the i-th row is composed of 2i+1
runs, then the first run is a run of 0s. (Recall that row indices start from 0.)

Proof. As a warm-up, we begin by proving a slightly weaker statement. We prove that there is a
permutation π ∈ Sn for which the i-th row of Aπ, for 0 ≤ i < k, is composed of at most 2i+1 runs. We
view the columns as binary representations of numbers where the bit in row i is the i-th most significant
bit. For every j ∈ {0, 1, . . . , 2k−1}, let Ij be the set of indices of the columns of A that contain the k-bit
binary representation of j. Any permutation π that sorts the columns in non-decreasing lexicographic
order, i.e., places the indices in I0 first, then those of I1, and so on, ending with the indices in I2k−1,
satisfies the required condition.

To tighten the bound and obtain the claim of the lemma, we order the blocks I0, I1, . . . , I2k−1 using a
gray code. The k-bit gray code is an ordering of the k-bit words such that two consecutive words differ
in a single position. For first gray codes are: 〈0, 1〉 and 〈00, 01, 11, 10〉. Furthermore, if 〈g0, . . . , g2b−1〉
is the b-bit gray code, then 〈0g0, . . . , 0g2b−1, 1g2b−1, . . . , 1g0〉 is the (b + 1)-bit gray code. It is easy to
verify by induction that the number of times the i-th significant bit in a gray code changes is exactly 2i.
Thus, any permutation π that orders the blocks Ij according to a gray code has the property that the
i-th row in Aπ is composed of at most 2i + 1 runs. The number of runs may be smaller as some of the
index sets Ij may be empty. If the number of runs is exactly 2i+1, then the first run is a run of 0s.

Lemma 4.2. The total number of n-bit strings composed of at most 2i+1 runs is R(n, i) = 2
∑2i

j=0

(n−1
j

)

.

Thus, any n-bit string composed of at most 2i +1 runs can be specified using L(n, i) = ⌈lgR(n, i)⌉ bits.

Proof. To represent an n-bit word composed of r non-empty runs, we need to represent the r−1 end-
points of the first r−1 runs. (The first run always starts at position 1, and the r-th run always end at
position n.) There are thus

(n−1
r−1

)

possibilities. (We have n−1 here, as n is the endpoint of the last run,
and is therefore not allowed to be the endpoint of any other run.) We need to multiply this number
by 2, as the first run may be a run of 0s or a run of 1s. Summing up we get the desired result.

Lemma 4.1 states that if the i-th row of Aπ is composed of 2i +1 runs, then the first run is a run of 0s.

Thus, in the sequel we can actually replace R(n, i) and L(n, i) by R′(n, i) =
(n−1

2i

)

+ 2
∑2i−1

j=0

(n−1
j

)

and

L′(n, i) = ⌈lgR′(n, i)⌉. This, however, would have only a negligible effect.

Let H(α) = −α lgα−(1−α) lg(1−α) be the binary entropy function. It is well known that
∑k

j=0

(

n
j

)

≤
2H(k/n)n, for k ≤ n/2. This gives us the following useful upper bound on L(n, i).

Lemma 4.3. If 2i ≤ n/2, then L(n, i) ≤ ⌈H(2i/n)n⌉+ 1.

Using Lemmas 4.1 and 4.2 we obtain the following labeling scheme:

Lemma 4.4. [Run encoding] For every k ≤ lg n there is a labeling scheme with the following properties.
The scheme receives an (k, n − k)-bipartite graph G = (U, V,E), where |U | = k and |V | = n − k,
with a distinct index ind1(u) ∈ [k] assigned to every u ∈ U . The scheme assigns a distinct index
ind2(v) ∈ [n − k] to every v ∈ V . It also assigns each vertex u ∈ U an ℓi-bit tag adj1(u), where
i = ind1(u) and ℓi = L(n − k, i) ≤ L(n, i) ≤

⌈

H
(

2i/n
)

n
⌉

+ 1. For every u ∈ U and v ∈ V , given
(ind1(u), adj1(u)) and ind2(v) it is possible to determine whether (u, v) ∈ E.

Proof. Let G = (U, V,E) be a bipartite graph. For every i ∈ [k], let ui ∈ U be such that ind1(ui) = i.
Let A ∈ {0, 1}k×(n−k) be the adjacency matrix of G in which the i-th row corresponds to ui. The
ordering of the columns of A is arbitrary. Let π ∈ Sn−k be a permutation, whose existence follows from
Lemma 4.1, for which the i-th row of Aπ is composed of at most 2i + 1 runs. For every j ∈ [n− k], let
vj ∈ V be the vertex whose column is the j-th column of Aπ and let ind2(vj) = j.

6

The tag adj1(ui) is simply an encoding of the i-th row of Aπ, composed of at most 2i+1 runs. By
Lemmas 4.2 and 4.3, we can encode this row using ℓi = L(n− k, i) ≤ L(n, i) ≤

⌈

H
(

2i/n
)

n
⌉

+1 bits, as
required. (Note that as i ≤ k− 1 and k ≤ lg n, we have 2i ≤ n/2, so Lemma 4.3 can indeed be applied.)

If is not difficult to check that, for every u ∈ U and v ∈ V , given just ind1(u), adj1(u) and ind2(v),
it can be determined whether (u, v) ∈ E. Indeed, ind1(u) tells us which row of the adjacency matrix
corresponds to u. Using ind1(u) and adj1(u) we can reconstruct this row. The bit in position ind2(v)
then tells us whether (u, v) ∈ E.

In the present setting, ind1(u) can be inferred from the length of adj1(u). However, when the scheme
of Lemma 4.4 is used as a building block in the construction other labeling schemes, adj1(u) forms a
part of a larger label and ind1(u) is then used to infer the length of adj1(u).

In Section 9 we consider a modification of the scheme of Lemma 4.4 that allows decoding, i.e., deter-
mining whether two vertices are adjacent, in constant time, in an appropriate model of computation.

As can be expected, the sum
∑k−1

i=0 L(n, i) plays an important role in the sequel. As L(n, i) ≤
⌈H(2i/n)n⌉+ 1, we get that

∑k−1
i=0 L(n, i) ≤ 2k +

(
∑k−1

i=0 H(2i/n)
)

n ≤ 2k + H̄(2k−1/n)n, where

H̄(α) =
∞
∑

j=0

H
(α

2j

)

.

It is not difficult to verify that H̄(α) is well defined, i.e., that the sum converges for any value of α.
It is also not difficult to check numerically that H̄(12) = 3.15635 . . ., H̄(14) = 2.15635 . . . and H̄(18) =
1.34507 (Note that as H(12) = 1, we have H̄(12) = 1 + H̄(14).)

4.2 A spreading labeling scheme for bipartite graphs

We now present a second labeling scheme for (k, n − k)-bipartite graphs used to counterbalance the
labeling scheme of Lemma 4.4. The labeling scheme receives a bipartite graph G = (U, V,E) with
distinct indices ind1(u), for u ∈ U , and ind2(v), for v ∈ V , already assigned to its vertices. The scheme
assigns adjacency tags adj1(u) and adj2(v) to the vertices u ∈ U and v ∈ V . The scheme also receives
numbers 0 ≤ ℓi ≤ n − k, for i ∈ [k], that control the lengths of the tags assigned to the vertices of U .
The tags of the vertices of V are all of the same length L, which, of course, depends on the ℓi’s. The
bits contained in the tags adj1(u) and adj2(v) are “raw” adjacency bits, no coding tricks are used this
time. The scheme only uses the freedom to decide whether the adjacency bit corresponding to a pair
(u, v) ∈ U × V will reside in adj1(u) or in adj2(v). The indices ind1(u) and ind2(v) will allow us to
determine which of the two tags contains the bit and in which position. No assumption regarding the
relation between k and n is required.

Lemma 4.5. [Spreading] For every 0 ≤ ℓi ≤ n − k, where i ∈ [k], there is a labeling scheme with
the following properties. The scheme receives an (k, n − k)-bipartite graph G = (U, V,E), where |U | =
k, |V | = n − k, with a distinct index ind1(u) ∈ [k] assigned to every vertex u ∈ U and a distinct
index ind2(v) ∈ [n − k] assigned to every vertex v ∈ V . The scheme assigns each vertex u ∈ U an
((n−k)−ℓi)-bit tag adj1(u), where i = ind1(u). It assigns each vertex v ∈ V an L-bit tag adj2(v), where
L = ⌈(∑k−1

i=0 ℓi)/(n − k)⌉. For every u ∈ U and v ∈ V , given (ind1(u), adj1(u)) and (ind2(v), adj2(v)),
and given the ℓi’s, it is possible to determine whether (u, v) ∈ E.

Proof. For every i ∈ [k], let ui ∈ U be the vertex for which ind1(ui) = i. For every j ∈ [n − k], let
vj ∈ V be the vertex for which ind2(vj) = j. Let A = (ai,j) be the adjacency matrix of G in which the
i-th row corresponds to ui and the j-th column corresponds to vj . We start with each vertex ui, for
i ∈ [k], holding a (n− k)-bit tag adj1(ui) that specifies its adjacencies to all vertices of V , i.e., the i-th
row of the adjacency matrix A. Each vertex of vj ∈ V starts with an empty tag adj2(vj). Our goal is

7

to move ℓi bits from adj1(ui), for i ∈ [k], to the tags adj2(vj) of some vertices of V in such a way that
each tag adj2(vj) will contain roughly the same number of bits. This can be easily done in the following
manner. Let s0 = 0 and si = (

∑i−1
j=0 ℓj) mod (n − k), for i > 0. We examine the vertices u0, u1, . . .

of U one by one. Vertex ui removes bit ai,si+j, for j ∈ [ℓi], from its tag and appends it to the tag of
vertex vsi+j. In both cases, si + j is computed modulo n − k. As the tags of the vertices of V acquire

bits in a round-robin manner, none of them ends up with more than L = ⌈(∑k−1
i=0 ℓi)/(n − k)⌉ bits.

Given the indices and the tags ind1(u), adj1(u) and ind2(v), adj2(v) of two vertices u ∈ U and v ∈ V ,
and given all the ℓi’s, it is easy to check whether they are adjacent. Suppose that i = ind1(u) and
j = ind2(v). If j is not in the (possibly wrapped) interval [si, si+1), then the adjacency bit ai,j is
contained in adj1(u). Otherwise, it is contained in adj2(v). Furthermore, the position of ai,j in adj1(u)
or adj2(v) is easily calculated. If ai,j is in adj1(u), then it is in position j, if j < si < si+1, in
position j − ℓi, if si < si+1 ≤ j, or in position j − si+1, if si+1 ≤ j < si. If ai,j is not in adj1(u),

then it is position ⌊ s̄i+((j−si) mod (n−k)
n−k ⌋ of adj2(v), where s̄0 = 0 and s̄i =

∑i−1
j=0 ℓj , for i > 0, where the

summation this time is not modulo n−k. (Note, in particular, that u only needs to know s̄i and ℓi.)

A slightly improved spreading lemma, used to fine-tune our results, can be found in Appendix A.

5 Directed graphs

Let G = (V,E) be a directed graph on V = [n]. As we saw in the introduction, the näıve labeling
scheme of n-vertex directed graphs, without self-loops, assigns to each vertex an (n + ⌈lg n⌉ − 1)-bit
label. We provide the first improvement over this näıve bound. Furthermore, our bound is optimal up
to a small additive constant.

Theorem 5.1. For any n ≥ 100, there is an adjacency labeling scheme for n-vertex directed graphs
that assigns each vertex an (n + 4)-bit label.

Proof. Let G = (V,E) where V = [n] be a directed graph. Partition the vertex set V into two sets
A = [k], and B = [k, n), where k = ⌈lg n⌉ − 2. We can view G as the disjoint union of G[A], G[B],
G[A,B] and G[B,A], where G[A] and G[B] are the induced directed graphs on A and B, respectively,
G[A,B] = (V,E∩(A×B)) is composed of the edges of G from A to B, and G[B,A] = (V,E∩(B×A)) is
composed of the edges of G from B to A. The graphs G[A,B] and G[B,A] correspond to the undirected
bipartite graphs G[A,B] = (A,B,E∩ (A×B)) and G[B,A] = (A,B,E∩ (B×A)), obtained by ignoring
the direction of the edges.

We start by using the labeling scheme for extremely unbalanced bipartite graphs of Lemma 4.4 to
represent G[A,B]. We assign arbitrary distinct indices to the vertices of A. For concreteness, let
ind1(i) = i, for i ∈ A. The scheme of Lemma 4.4 assigns indices ind2(j) ∈ [n − k] to the vertices of B.
It also assigns each vertex i ∈ A an ℓi-bit tag adj1(i), where ℓi = L(n−k, i) ≤ L(n, i) ≤ ⌈H(2i/n)n⌉+1.

Next, we use the spreading scheme of Lemma 4.5 to represent G[B,A], viewed as a bipartite graph
(A,B,E′′). We use the indices ind1(i) and ind2(j) assigned to the vertices of A and B above. We
apply Lemma 4.5 with ℓ′i = (k − 1) + ℓi, for i ∈ [k]. As k = ⌈lg n⌉ − 2 and 0 ≤ i ≤ k − 1, we have
ℓi ≤ ⌈H(2k−1/n)n⌉ + 1 ≤ ⌈H(1/4)n⌉ + 1 ≤ ⌈0.82n⌉ + 1. Therefore, ℓ′i ≤ n − k, for i ∈ [k], as required
by Lemma 4.5. Vertex i of A is thus assigned an ((n − k) − ℓ′i)-bit tag adj2(i). Each vertex of B is

assigned a ∆-bit tag adj3(j), where ∆ = ⌈(∑k−1
i=0 ((k − 1) + ℓi))/(n − k)⌉.

Next, we use the näıve labeling scheme to encode G[A] and G[B]. We again use the indices ind1(i)
and ind2(j) already assigned to the vertices. Each vertex i ∈ A gets a (k − 1)-bit tag adj4(i). Each
vertex j ∈ B gets an ((n− k)− 1)-bit tag adj5(j).

8

Combing the indices ind1 and ind2 assigned separately to the vertices of A andB, we let ind(i) = ind1(i)
if i ∈ A, and ind(j) = k + ind2(j), if j ∈ B. Note that now ind(u) ∈ [n] for every u ∈ V = A ∪B. For
simplicity, we also use ind(u), where u ∈ V , to denote the ⌈lg n⌉-bit binary encoding of ind(u).

Finally, we assign vertex i of A a label composed of the concatenation of ind(i), adj1(i), adj2(i) and adj4(i),
and vertex j of B a label composed of the concatenation of ind(j), adj3(j) and adj5(j).

Vertex i of A is thus assigned a label of length

⌈lg n⌉ + ℓi + ((n − k)− (k − 1)− ℓi) + (k − 1) = ⌈lg n⌉+ (n− k) = n+ 2 .

Each vertex of B is assigned a label of length

⌈lg n⌉ + ∆ + (n− k − 1) = n+ 1 +∆ .

Now,

∆ =

⌈

∑k−1
i=0 ((k − 1) + ℓi)

n− k

⌉

≤
⌈

k(k + 1) + n
∑k−1

i=0 H(2i/n)

n− k

⌉

≤
⌈

k(k + 1)

n− k
+

n

n− k
H̄(2k−1/n)

⌉

.

As k = ⌈lg n⌉ − 2, we have 2k−1/n ≤ 1
4 , and thus H̄(2k−1/n) ≤ H̄(14) < 2.16. It is not difficult to verify

that for n ≥ 100 we have k(k+1)
n−k < 0.5 and n

n−k H̄(14) < 2.5, and thus ∆ ≤ 3.

The label of each vertex is thus composed of at most n + 4 bits. We can easily pad the labels of the
vertices so that they all contain exactly n+ 4 bits.

Given the labels of two vertices it is possible to determine whether they are adjacent. The index of a
vertex, residing in the first ⌈lg n⌉ bits of its label, tells us whether the vertex is a vertex of A or of B. It
also allows us to break the label into the different tags composing it. Given the indices of two vertices
we can easily decide which of the tags to use to determine whether the two vertices are adjacent.

Theorem 5.1 is also valid for n < 100, but for that we need to rely on the exact definition of L(n− k, i)
and not just on the convenient upper bounds L(n− k, i) ≤ L(n, i) ≤ ⌈H(2i/n)⌉+ 1.

The n+ 4 bound of Theorem 5.1 can be improved to n+ 3. When n is a power of 2, for example, this
is easy. Note that in this case 2k−1/n = 1

8 . As H̄(18) < 1.346, we get that ∆ ≤ 2. Essentially the same
calculation works if n is close, from below, to a power of 2, as then 2k−1/n is not much larger than 1

8 .
To get the n + 3 for all sufficiently large values of n, some more work needs to be done. We need to
use the slightly more economical way of encoding indices, described in Appendix B, and the modified
spreading lemma of Appendix A. The details can be found in Appendix C.

The results in this section are for directed graphs without self-loops. Directed graphs with self-loops
could of course be handled by adding a single bit to each label.

We defer the treatment of efficient decoding issues to Section 9.

6 Undirected graphs

Our scheme for undirected graphs is slightly more complicated than the scheme of directed graphs, as
we need to break the graph into more parts. The main ideas, however, are the same. We start with a
simple (⌊n/2⌋ + ⌈lg n⌉)-bit scheme for n-vertex undirected graphs which is implicit in Moon [34].

Theorem 6.1. [Moon[34]] For any n ≥ 1, there is a labeling scheme that receives an n-vertex undirected
graph G = (V,E), with distinct indices ind(u) ∈ [n] assigned to its vertices, and assigns each vertex an
⌊n/2⌋-bit adjacency information tag adj(u). For every two vertices u, v ∈ V , given (ind(u), adj(u)) and
(ind(v), adj(v)) it is possible to determine whether (u, v) ∈ E.

9

Proof. Let ui ∈ V be the vertex for which ind(ui) = i. Let A = (ai,j) be the adjacency matrix of the
graph where the i-th row and column correspond to ui. The tag adj(ui) is composed of the ⌊n/2⌋-bit
string ai,i+1, ai,i+2, . . . , ai,i+⌊n/2⌋, where the addition in the second index is modulo n. This corresponds
to arranging the vertices u0, u2, . . . , un−1 in a circle, with each vertex remembering its adjacencies to
the ⌊n/2⌋ vertices following it in the circle.

Given (ind(u), adj(u)) and (ind(v), adj(v)) we can easily determine whether (u, v) ∈ E. If ind(v) −
ind(u) ≤ ⌊n/2⌋, the answer is adj(u)[ind(v) − ind(u)]; Otherwise, it is adj(v)[ind(u) − ind(v)], where
the subtractions ind(v)− ind(u) and ind(u) − ind(v) are interpreted modulo n.

We note that when n is even, there is slight redundancy in the scheme just describe, as the adjacency
bit ai,i+n/2, for every i ∈ [n], is stored twice. We exploit that later to fine-tune our results.

Theorem 6.1 yields, of course, an (⌊n/2⌋ + ⌈lg n⌉)-bit labeling scheme. Using our techniques, we can
reduce the size of the labels to ⌊n/2⌋+ 6.

Theorem 6.2. For any n ≥ 400, there is a adjacency labeling scheme for n-vertex undirected graphs
that assigns each vertex an (⌊n/2⌋ + 6)-bit label.

Proof. Let G = (V,E) be an undirected graph where V = [n]. We partition V into four disjoint
sets A0, A1, B0 and B1 were |A0| = |A1| = k = ⌈lg n⌉ − 3, |B0| = ⌈n2 ⌉ − k and |B1| = ⌊n2 ⌋ − k. For
concreteness, we let A0 = [0, k), B0 = [k, ⌈n2 ⌉), A1 = [⌈n2 ⌉, ⌈n2 ⌉+k) and B1 = [⌈n2 ⌉+k, n). We partition G
into the disjoint union of the four bipartite graphs G[A0, B0], G[A0, B1], G[A1, B0], G[A1, B1] and the
two undirected graphs G[A0 ∪A1] and G[B0 ∪B1].

We assign arbitrary distinct indices to the vertices of A0. For concreteness, we let ind′(i) = i, for every
i ∈ A0. Similarly, we let ind′(i) = i−⌈n2 ⌉, for every i ∈ A1. We now use Lemma 4.4 to encode G[A0, B0]
and G[A1, B1]. This assigns distinct indices ind′(j) ∈ [⌈n2 ⌉ − k] to all vertices j ∈ B0, and distinct
indices ind′(j) ∈ [⌊n2 ⌋ − k] to all vertices j ∈ B1. We define distinct indices ind(u) ∈ [n] to all vertices
of V as follows. If u ∈ A0, then ind(u) = ind′(u). If u ∈ B0, then ind(u) = ind′(u) + k. If u ∈ A1, then
ind(u) = ind′(u) + ⌈n2 ⌉. Finally, if u ∈ B1, then ind(u) = ind′(u) + ⌈n2 ⌉+ k.

The labeling scheme of Lemma 4.4 also assign the i-th vertices of A0 and A1 an ℓi-bit tag, where
ℓi = L(⌈n2 ⌉ − k, i) ≤ L(⌊n2 ⌋, i). (We refrain from explicitly naming the tags.)

To compensate for the ℓi bits assigned to the i-th vertex of A0 and the i-th vertex of A1, and to leave
room for the representation of G[A0 ∪ A1], we use Lemma 4.5 to represent G[A0, B1] and G[A1, B0],
with ℓ′i = k+ ℓi, for i ∈ [k]. It is easy to verify that ℓ′i ≤ ⌊n2 ⌋− k, for i ∈ [k], as required by Lemma 4.5.
The i-th vertices of A0 and A1 thus get tags composed of (⌈n2 ⌉− k)− ℓ′i bits, and each vertex of B0∪B1

gets a tag composed of ∆ = ⌈(∑k−1
i=0 (k + ℓi)/(⌊n2 ⌋ − k)⌉ bits. (Tags are padded, if necessary.)

Finally, we use the simple labeling scheme of Theorem 6.1 to represent G[A0 ∪A1] and G[B0 ∪B1]. We
again use the indices already assigned to the vertices. Each vertex of A0 ∪ A1 is thus assigned a k-bit
tag, while each vertex of B0 ∪B1 is assigned a (⌊n2 ⌋ − k)-bit tag.

As in the proof of Theorem 5.1, the label assigned to a vertex is the concatenation of the binary
representation of its index, and the tags assigned to it for each part of the graph it participates in.

The i-th vertices of A0 and A1 are thus assigned a label of length

⌈lg n⌉ + ℓi +
((⌈n

2

⌉

− k
)

− (k + ℓi)
)

+ k =
⌈n

2

⌉

+ 3 .

Each vertex of B0 ∪B1 is assigned a label of length

⌈lg n⌉ + ∆ +
(⌊n

2

⌋

− k
)

=
⌊n

2

⌋

+ 3 +∆ .

10

Now, as

ℓi ≤ L
(⌈n

2

⌉

− k, i
)

≤ L
(⌊n

2

⌋

, i
)

≤ H

(

2i

n/2

)

n

2
+ 2 ≤ H

(

2i+1

n

)

n

2
+ 2 ,

we have

∆ =

⌈

∑k−1
i=0 (k + ℓi)

⌊n2 ⌋ − k

⌉

≤
⌈

k(k + 2) + n
2

∑k−1
i=0 H(2i+1/n)

⌊n2 ⌋ − k

⌉

≤
⌈

k(k + 2)

⌊n2 ⌋ − k
+

n
2

⌊n2 ⌋ − k
H̄(2k/n)

⌉

.

As k = ⌈lg n⌉− 3, we have 2k/n ≤ 1
4 , and thus H̄(2k/n) ≤ H̄(14) < 2.16. It is not difficult to verify that

for n ≥ 400 we have k(k+2)
⌊n

2
⌋−k < 0.5 and

n

2

⌊n

2
⌋−k H̄(14) < 2.5, and thus ∆ ≤ 3.

Each vertex is therefore assigned a label of at most ⌊n2 ⌋ + 6 bits. Given the labels of two vertices it is
possible to decide whether they are adjacent or not.

A different approach that can be used to prove Theorem 6.2 is the following. We partition the vertex set
V = [n] into three sets A,B and C, where |A| = k, |B| = ⌈n−k

2 ⌉ and |C| = ⌊n−k
2 ⌋. We partition the graph

G = (V,E) into G[A,B], G[A,C], G[B,C], G[A], G[B] and G[C]. We use recursion to assign indices and
tags to G[C]. We use Lemma 4.4 to assign indices and tags to G[A,B]. Once all indices are assigned,
we use Lemma 4.5 to assign tags to G[A,C]. We use a simple scheme for balanced bipartite graphs to
assign tags to G[B,C] (see Theorem 8.2 below). Finally, we use the Moon’s scheme (Theorem 6.1) to
assign tags to G[A] and G[B]. The length of the labels produced seems to be essentially the same as
those produced in the proof of Theorem 6.2.

A improved (⌈n/2⌉+4)-bit labeling scheme for n-vertex undirected graphs can be found in Appendix D.

7 Tournaments

A tournament is a directed graph G = (V,E) in which every two vertices are connected by an edge in
one of the possible directions, i.e., for every u 6= v ∈ V , either (u, v) ∈ E or (v, u) ∈ E, but not both.

There is a trivial correspondence between tournaments on V = [n] and undirected graphs on V = [n].
Given a tournament G = (V,E), we can construct an undirected graph G′ = (V,E′) where E′ =
{{u, v} | (u, v) ∈ E and u < v}. Conversely, given an undirected graph G′ = (V,E′), we can construct
a tournament G = (V,E) where E = {(u, v) | ({u, v} ∈ E′ and u < v) or ({u, v} 6∈ E′ and u > v}.
It is thus tempting to claim that any labeling scheme for undirected graphs can also be used as a labeling
scheme for tournaments, and vice versa. This, however, is not necessarily the case. The problem is
that to check whether u < v the vertices need to know their original indices. In our labeling scheme for
undirected graphs the labels of the vertices do not retain this information.

However, even though our labeling scheme for undirected graphs assigns new indices to the vertices,
it does so in a way that can still be used to represent tournaments. Recall that the labeling schemes
partitions V into four disjoint sets A0, A1, B0 and B1. The scheme keeps the original indices of the
vertices of A0 ∪A1 but permutes the indices of the vertices of B0 and those of B1. However, these two
permutations depend only on G[A0, B0] and G[A1, B1].

To assign labels to a tournament G = (V,E) on V = [n], we first partition V into A0, A1, B0 and B1

as done by the labeling scheme for undirected graphs. We assume, without loss of generality, that
A0 = {0, 1, . . . , k − 1}, B0 = {k, . . . , ⌈n2 ⌉ − 1}, A1 = {⌈n2 ⌉ + k − 1} and B1 = {⌈n2 ⌉ + k, . . . , n − 1}.
We next generate the undirected graph G′ = (V,E′) corresponding to the tournament G as above, i.e.,
E′ = {(u, v) | (u, v) ∈ E and u < v}. We now apply the labeling scheme for undirected graphs on
G′[A0, B0] ∪ G′[A1, B1]. Let ind(u) denote the new index assigned to vertex u ∈ V . We may assume

11

that ind(u0) < ind(v0) < ind(u1) < ind(v1) for every u0 ∈ A0, v0 ∈ B0, u1 ∈ A1 and v1 ∈ B1. We now
generate a second undirected graphG′′ = (V,E′′), whereE′′ = {(u, v) | (u, v) ∈ E and ind(u) < ind(v)},
and use the scheme for undirected graphs to assign labels to the vertices of G′′. It is not difficult to
check that the indices assigned to the vertices are the same as those assigned by the first application
of the labeling scheme. Thus, given the labels of two vertices in G′′ we can determine whether they are
adjacent in G′′. Using their indices we can then determine the direction of the edge in the tournament G.
We thus have:

Theorem 7.1. For any n ≥ 400, there is an adjacency labeling scheme for n-vertex tournaments that
assigns each vertex an (⌊n/2⌋+ 6)-bit label.

The ⌊n/2⌋+ 6 bound can again be improved to ⌈n/2⌉+ 4 using the labeling scheme of Theorem D.1.

8 Bipartite graphs

In this section we design an almost optimal (n4 + O(1))-bit adjacency labeling scheme for bipartite
graphs. In addition to the ideas of the previous sections, a new idea is used to obtain the result.

The following theorem follows easily form Lemma 4.5 (spreading). The proof is deferred to Appendix E.

Theorem 8.1. For every 0 ≤ r < n
2 , there is a labeling scheme for (n2 − r, n2 + r)-bipartite graphs, with

distinct indices attached to their vertices, that assigns each vertex an ⌈n4 − r2

n ⌉-bit tag. Given the indices
and tags of two vertices, and given r, it is possible to determine whether the two vertices are adjacent.

The challenge is again to absorb the ⌈lg n⌉ index bits, and to do so in a way that works simultaneously
for all values of the bias r. If r is not known in advance, we can add a ⌈lg n⌉-bit encoding of it to
the labels of the vertices. (As we only need to reconstruct r from the labels of two vertices from
opposing sides, ⌈12 lg n⌉ bits are actually enough, but this would not matter.) If r ≥ √

2n lg n, then as
n
4 − r2

n < n
4 − 2 lg n, we can easily absorb the 2⌈lg n⌉ bits used to represent r and the index of each

vertex and still obtain labels of size at most n
4 . As expected, the difficult task is handling bipartite

graphs that are almost balanced, i.e., r <
√
2n lg n.

We begin by designing an adjacency labeling scheme for perfectly balanced bipartite graphs. The proof
of the following theorem is similar to the proofs of Theorem 5.1 and 6.2, though the graph has to be
broken into yet more parts. The proof can be found in Appendix E.

Theorem 8.2. There is a adjacency labeling scheme for (n2 ,
n
2)-bipartite graphs that assigns each vertex

an (n4 + O(1))-bit label. The label of each vertex is composed of a distinct index from [n], and an
(n4 − lg n+O(1))-bit tag.

To obtain an (n4 + O(1))-bit scheme for all bipartite graphs, we design a scheme for almost biased
bipartite graphs in which most vertices do not need to know the bias r.

Theorem 8.3. There is a adjacency labeling scheme for n-vertex bipartite graphs that assigns each
vertex an (n4 +O(1))-bit label. The label of each vertex is composed of a distinct index from [n], and an
(n4 − lg n+O(1))-bit tag.

Proof. As explained after Theorem 8.1, there is a simple (n4 + O(1))-bit scheme for all (n2 − r, n2 + r)-
bipartite graphs, where r ≥ √

2n lg n. We design a new (n4+O(1))-bit scheme for all (n2−r, n2+r)-bipartite
graphs, where r <

√
2n lg n. By combining the two schemes, we obtain an (n4 +O(1))-bit scheme for all

bipartite graphs. (The first bit of each label indicates whether the first or second scheme is used.)

As we have an O(1) term in the statement of the Theorem, and not a specific constant, we allow
ourselves to ignore divisibility and integrality issues and avoid the use of ceilings and floors.

12

Let R = n4/5. Let G = (U, V,E) be a (n2 − r, n2 + r)-bipartite graph, where r <
√
2n lg n. Note, in

particular, that r ≤ 2R2

n = 2n3/5. Partition U into a set U0 of size n
2 − R and a set U1 of size R − r.

Similarly, partition V into a set V0 of size n
2 −R and a set V1 of size R+ r. We view the vertices of U0

and V0 as ordinary, and the vertices of U1 and V1 as special. The graph G is thus partitioned into the
disjoint union of the four bipartite graphs G[U0, V0], G[U0, V1], G[U1, V0] and G[U1, V1]. The main idea
is to assign the ordinary vertices of U0 ∪ V0 labels that do not depend on r. The labels of the special
vertices of U1 ∪ V1 would contain an encoding of r, but as they form only a negligible fraction of all
vertices, this could be ‘smoothed’ out.

We start by encoding G[U0, V0] using the scheme of Theorem 8.2. Each vertex of U0 ∪V0 gets a distinct
index in [n− 2R] and an (n4 − R

2 +O(1))-bit tag. (The label of each vertex includes an encoding of its
index.) We assign the vertices of U1 ∪ V1 distinct indices from [n− 2R,n).

We next use the spreading technique of Lemma 4.5 to encode G[U1, V0]. We find it more informative to
redo the relevant calculations here. We need to split the (R− r)(n2 −R) bits describing the adjacencies
in G[U1, V0] between the vertices of U1 and V0. As the tag of each vertex of V0 is already of size
n
4 − R

2 + O(1), and as we want the tag of each vertex of V0 to be of size n
4 + O(1), each vertex of V0

gets R
2 of these bits. (As |U1| = R − r, this corresponds to applying Lemma 4.5 with ℓi =

R
2 − r, for

every i ∈ [n2 −R], on G[V0, U1]. Note that the sides here are reversed.) The number of bits each vertex
of U1 receives is thus

a =
(R− r)(n2 −R)− R

2 (
n
2 −R)

R− r
=

(n2 −R)(R2 − r)

R− r
.

(Note that a corresponds to L of Lemma 4.5.) The R
2 bits that each vertex of V0 gets are appended to

its tag. Vertices of V0 do not know the meaning of these bits, as they do not know r, but the vertices
of U1 do, as they will know r.

Similarly, each vertex of U0 gets R
2 additional bits, and the number of bits left for each vertex of V1 is

b =
(R+ r)(n2 −R)− R

2 (
n
2 −R)

R+ r
=

(n2 −R)(R2 + r)

R+ r
.

Next, we verify that b ≤ n
4 if and only if r ≤ 2R2

n−4R . As we assumed that r ≤ 2R2

n < 2R2

n−4R , this condition
is satisfied. It can also verified that a ≤ n

4 for every r < R. (To see this check that if r = 0, then
a = n

4 − R
2 , and that a is a decreasing function of r for 0 ≤ r < R, as the derivative of a is terms of r is

−R(n
2
−R)

2(R−r)2
.)

We still need to represent G[U1, V1] by splitting the corresponding adjacency bits between the vertices
of U1 and V1. We again use the spreading technique of Lemma 4.5. Overall, there are (R− r)(R+ r) =
R2 − r2 such adjacency bits. We need to verify that we can accommodate them without any vertex
of U1 and V1 getting more than n

4 bits overall. A simple ‘volume’ argument can be used to show that
we still have enough space in the tags of the vertices of U1 and V1. More specifically, we know that
all adjacencies between U0 ∪ U1 and V0 ∪ V1 can be encoded using at most n

4 bits per vertex. As each
vertex of U0 and V0 already has n

4 bits, and as all adjacencies between U0 and V0, U0 and V1, and U1

and V0 were encoded, there is enough room left in the tags of U1 and V1 to encode the adjacencies
between these two sets. We can also verify it using a simple direct calculation. The total number of
bits currently used by vertices of U1 and V1 is (R − r)a+ (R + r)b = (n2 − R)R. The total capacity of
these vertices is 2R · n4 = Rn

2 , and Rn
2 − (n2 −R)R = R2 > R2 − r2. Thus, there is indeed enough space.

One problem still remains. The label of each vertex of U1 ∪ V1 should also contain 2 lg n bits specifying
the index of the vertex and r. Thus, while the labels of all vertices of U0∪V0 are all of size

n
4 +O(1), the

labels of the vertices of U1∪V1 are currently of size n
4 +2 lg n+O(1). This can be easily fixed, however,

by persuading each vertex of U0 and V0 to hold one more adjacency bit to V1 and U1, respectively. The

13

number of bits in the labels of U1 and V1 decreases by
(n
2
−R)

R+r ≫ 2 lg n, leaving more than enough room
in the label of each vertex to store its index and r.

Finally, given the labels of two vertices, it can be determined whether they are adjacent.

9 Efficient decoding

In this section we show that the schemes of the preceding sections could be modified so that two
vertices need to exchange only O(lg n) bits of information between them, in a constant number of
communication rounds, and spend only O(1) computation time, to decide whether they are adjacent or
not. For concreteness, we consider the case of directed graphs. The same ideas apply to all our schemes.

Note that this is easily achieved using the simple (n + ⌈lg n⌉ − 1)-bit scheme. Consider a distributed
setting in which each vertex of the graph is a RAM machine. The label of each vertex is stored in
its internal random access memory, assumed to be composed of w-bit words, where w ≥ ⌈lg n⌉. In
particular, the index of a vertex resides in the first word used to represent its label. In the simple
(n + ⌈lg n⌉ − 1)-bit scheme, to determine whether there is an edge from u and v, v sends to u its
⌈lg n⌉-bit index. Vertex u can then access the appropriate adjacency bit in its tag in O(1) time. Our
goal is to show that something similar could also be done using our schemes. (Note that when labels
are stored in ⌈lg n⌉-bit words, our improved schemes usually save one memory word.)

To decode our (n+ O(1))-bit scheme in O(1) time, we need to overcome two obstacles. First, we need
to be able to decode the succinct run length encoding used in Lemma 4.4 is constant time. Second,
we need to be able to keep track, in constant time, of the bit movements performed by the spreading
lemma (Lemma 4.5). To solve the first problem we use the following result.

Theorem 9.1. [Pǎtraşcu [36]] On a RAM with Ω(lg n)-bit words, a Boolean array A[0 . . . n−1] contain-
ing k ones and n−k zeros can be represented using lg

(

n
k

)

+ n
lgt(n/t)

+ Õ(n3/4) bits of memory, supporting

rank and select queries in O(t) time.

A rank(i) query, where i ∈ [n], asks for the number of 1s in A[0 . . . i]. A select(i) query requests the
index of the i-th 1 in the array. We only need rank queries. Theorem 9.1 assumes that the number
of 1s in the array is exactly k. However, it is not difficult to extend the result for the case in which
the array contains at most k 1s. Perhaps the simplest way of doing it is to add ⌈lg n⌉ bits, which are
absorbed in the Õ(n3/4) term, to encode the actual number of 1s.

As we saw in the proof of Lemma 4.2, we can represent an n-bit string by its first bit and the end
positions of its runs. Thus, we can represent an n-bit string composed of at most r runs using its first
bit and an n-bit string containing at most r 1s. The first bit of the string and the parity of rank(i)
would then tell us whether the i-th bit of the string is a 0 or a 1.

Note that the lg
(n
k

)

term in Theorem 9.1 is the information theoretic lower bound, which essentially
corresponds to our function L(n, i), when k = 2i. The price paid for the efficient decoding is the
additive n/lgt(n/t)+ Õ(n3/4) term. If we use t = 2, then the number of bits lost is only O(n/ lg2 n). We
need to encode about lg n sparse arrays, with the i-th one of them containing at most 2i 1s. Thus the
total number of bits lost in all these encodings is only O(n/ lg n). We can easily compensate for these
O(n/ lg n) additional bits by slightly adjusting the parameters used in the application of the spreading
lemma. (More specifically, we let ℓi = lg

(n
2i

)

+ n
lg2 n

+Õ(n3/4), instead of ℓi = L(n, i).) As the O(n/ lg n)

additional bits are spread over almost n tags, each tag acquires at most one additional bit.

We next consider the efficient decoding of tags produced using the spreading lemma (Lemma 4.5). We
use the spreading lemma in two different ways. In some applications, all the ℓi’s are equal. In others,
the ℓi’s differ, but k ≤ lg n. If ℓi = ℓ, for every i ∈ [k], the bit movements performed are regular, and
we can easily determine in constant time the location of each adjacency bit. (Note, in particular, that

14

in the proof of Lemma 4.5 we simply have s̄i = iℓ.) Also, ℓ can be deduced from the label. In the other
case, we simply add an encodings of s̄i and ℓi to the appropriate labels. The extra 2 lg n bits added
are again absorbed in the Õ(n3/4) term of the k ≤ lg n corresponding vertices. The decoding can then
again be made in constant time.

10 Induced-universal graphs

As observed by Kannan et al. [29], an L-bit adjacency labeling scheme for a family Fn yields immediately
a 2L-vertex induced-universal graph for Fn. Thus, using Theorem 6.2 we obtain, in particular, an
induced-universal graph for n-vertex undirected graphs containing only O(2n/2) vertices, resolving the
open problem of Moon [34] and Vizing [41].

11 Lower bounds

Previous lower bounds on the label sizes assume that labels of different vertices are distinct. We increase
the lower bounds by 1 without relying on this assumption. For indexing adjacency labeling schemes,
we increase the lower bounds by 2 . Our basic lower bounds follow from the following obvious lemma.

Lemma 11.1. If (Label,Edge) is an adjacency labeling scheme for Fn, then Label is injective, i.e., for
every G 6= G′ ∈ Fn we have Label(G) 6= Label(G′).

Proof. Let G = (V,E), G′ = (V,E′) ∈ Fn. If Label(G) = Label(G′), then for every u, v ∈ V we have

Edge(Label(G)(u),Label(G)(v)) = Edge(Label(G′)(u),Label(G′)(v)) .

Hence (u, v) ∈ E if and only if (u, v) ∈ E′ and thus G = G′.

Theorem 11.2. If there is an L-bit adjacency labeling scheme for Fn, then L > 1
n lg |Fn|.

Proof. Suppose that (Label,Edge) is a labeling scheme for Fn. By Lemma 11.1, Label is injective and
thus |Fn| ≤ 2nL. This immediately implies that L ≥ 1

n lg |Fn|. To show that the inequality is strict,
we need to show that there is at least one ordered tuple of labels that cannot be produced by Label.
Consider the 2L tuples composed of n identical labels. Each such tuple may only correspond to the
empty graph on n vertices or to the clique on n vertices. Thus, at least 2L − 2 of these tuples are not
produced by the labeling scheme. Hence |Fn| < 2nL and thus L > 1

n lg |Fn|.

Note that in Theorem 11.2, |Fn| denotes the number of named graphs from Fn, i.e., graphs of Fn on [n].
Graphs with different names are considered different even if they are isomorphic.

We let Fn be the set of isomorphism classes of graphs from Fn. If the labeling scheme satisfies the
distinctness assumption, then the condition |Fn| < 2nL used in the proof of Theorem 11.2 can be

replaced by the slightly stronger inequality |Fn| ≤
(

2L

n

)

. (See. e.g., Alstrup and Rauhe [6].) (To see

that this is a slightly stronger inequality, note that |Fn|
n! ≤ |Fn| ≤

(

2L

n

)

< 2nL

n! .) However, as L is an
integer, the resulting lower bound on L is usually the same, even though a stronger assumption is made.

We note in passing that, without relying on the distinctness assumption, we can get |Fn| <
((2L

n

))

,

where
((2L

n

))

=
(2L+n−1

k

)

is the number of multi-subsets of [2L] of size n.

In the proof of Theorem 11.2, we viewed Label(G) as the ordered tuple (Label(G)(0),Label(G)(1), . . . ,
Label(G)(n−1)). We let Label(G) denote the corresponding (multi-)set {Label(G)(0),Label(G)(1), . . . ,
Label(G)(n − 1)} in which the order of the labels is ignored. Analogous to Lemma 11.1, we have the
following lemma whose simple proof if omitted.

15

Lemma 11.3. If (Label,Edge) is an adjacency labeling scheme for Fn, then for every G,G′ ∈ Fn, if G
and G′ are not isomorphic, then Label(G) 6= Label(G′).

Relying on Lemma 11.3, we get our second lower bound.

Theorem 11.4. If there is an indexing L-bit adjacency labeling scheme for Fn, then L ≥ 1
n lg |Fn| +

1
n lg nn

n! . For n ≥ 200, we have L > 1
n lg |Fn|+ 1.4

Proof. Suppose that (Label,Edge) is an indexing labeling scheme for Fn and let Ind be an appropriate
index function. Let Li = Ind−1(i), for i ∈ [n]. Note that

∑n−1
i=0 |Li| = 2L. For every graph G ∈ Fn,

we have |Label(G) ∩ Li| = 1, for i ∈ [n]. Thus, the number of sets of labels is at most
∏n−1

i=0 |Li|. By
Lemma 11.3, two non-isomorphic graphs must have distinct label sets. Thus

|Fn|
n!

≤ |Fn| ≤
n−1
∏

i=0

|Li| ≤
(

2L

n

)n

,

or equivalently

L ≥ 1

n
lg

|Fn|nn

n!
=

1

n
lg |Fn|+

1

n
lg

nn

n!
.

It is easy to verify that 1
n lg nn

n! is increasing in n and tends to lg e = 1.41695 . . . as n → ∞. (By Stirling’s

formula, 1
n lg nn

n! ∼ lg e− lg
√
2πn
n .) It is also easy to verify that 1

n lg nn

n! > 1.4 for n ≥ 200.

For directed graphs we have lg |Fn| = n(n − 1). For undirected graphs and tournaments we have
lg |Fn| =

(n
2

)

. Using Theorem 11.2 and Theorem 11.4 we get:

Corollary 11.5. If there is an L-bit adjacency labeling scheme for n-vertex directed graphs, then L ≥ n.
If the labeling scheme is indexing, then L ≥ n+ 1.

Corollary 11.6. If there is an L-bit adjacency labeling scheme for n-vertex undirected graphs or for
n-vertex tournaments, then L ≥ ⌈n2 ⌉. If the labeling scheme is indexing, then L ≥ ⌈n2 ⌉+ 1.

Using a slightly more tedious counting we get the following lower bound for bipartite graphs.

Corollary 11.7. If there is an L-bit adjacency labeling scheme for n-vertex bipartite graphs, then
L ≥ ⌈n4 ⌉. If the labeling scheme is indexing, then L ≥ ⌈n4 ⌉+ 1.

12 Concluding remarks

We presented improved adjacency labeling schemes for directed, undirected and bipartite graphs. Our
schemes are almost optimal. They give rise to almost optimal induced-universal graphs for these families
of graphs. We also presented slightly improved lower bounds. Closing the small remaining gaps between
our upper and lower bounds is an interesting open problem.

An oriented graph is a directed graph with no anti-parallel edges. We believe that using our techniques
it is also possible to design an (lg 32 n+O(1))-bit adjacency labeling scheme for n-vertex oriented graphs.
We also believe that the techniques we used for bipartite graphs could also be used to design almost
optimal schemes for other hereditary families of graphs. (For more on hereditay families of graphs see
Bollobás and Thomason [11].)

16

References

[1] S. Abiteboul, S. Alstrup, H. Kaplan, T. Milo, and T. Rauhe. Compact labeling scheme for ancestor
queries. SIAM J. Comput., 35(6):1295–1309, 2006.

[2] Noga Alon and Michael Capalbo. Sparse universal graphs for bounded-degree graphs. Random
Structures & Algorithms, 31(2):123–133, 2007.

[3] Noga Alon and Michael Capalbo. Optimal universal graphs with deterministic embedding. In
Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’08,
pages 373–378, Philadelphia, PA, USA, 2008. Society for Industrial and Applied Mathematics.

[4] S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe. Nearest common ancestors: A survey and a
new algorithm for a distributed environment. Theory of Computing Systems, 37(3):441–456, May
2004.

[5] S. Alstrup and T. Rauhe. Improved labeling schemes for ancestor queries. In Proc. of the 13th
annual ACM-SIAM Symp. on Discrete Algorithms (SODA), 2002.

[6] S. Alstrup and T. Rauhe. Small induced-universal graphs and compact implicit graph represen-
tations. In In Proc. 43rd annual IEEE Symp. on Foundations of Computer Science, pages 53–62,
2002.

[7] Stephen Alstrup, Esben Bistrup Halvorsen, and Kasper Green Larsen. Near-optimal labeling
schemes for nearest common ancestors. In Proc. of the 25th annual ACM-SIAM Symp. on Discrete
Algorithms (SODA), pages 972–982, 2014.

[8] L. Babai, F. R. K. Chung, P. Erdös R. L. Graham, and J. Spencer. On graphs which contain all
sparse graphs. Ann. discrete Math., 12:21–26, 1982.

[9] S. N. Bhatt, F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg. Universal graphs for bounded-
degree trees and planar graphs. SIAM Journal on Discrete Mathematics, 2(2):145–155, 1989.

[10] Béla Bollobás and Andrew Thomason. Graphs which contain all small graphs. European Journal
of Combinatorics, 2(1):13–15, 1981.

[11] Béla Bollobás and Andrew Thomason. Hereditary and monotone properties of graphs. In RonaldL.
Graham and Jaroslav Neetil, editors, The Mathematics of Paul Erds II, volume 14 of Algorithms
and Combinatorics, pages 70–78. Springer Berlin Heidelberg, 1997.

[12] N. Bonichon, C. Gavoille, and A. Labourel. Short labels by traversal and jumping. Electronic
Notes in Discrete Mathematics, 28:153–160, 2007.

[13] M. A. Breuer. Coding the vertexes of a graph. IEEE Trans. on Information Theory, IT–12:148–153,
1966.

[14] M. A. Breuer and J. Folkman. An unexpected result on coding vertices of a graph. J. of Mathe-
mathical analysis and applications, 20:583–600, 1967.

[15] Steve Butler. Induced-universal graphs for graphs with bounded maximum degree. Graphs and
Combinatorics, 25(4):461–468, 2009.

[16] F. R. K. Chung. Universal graphs and induced-universal graphs. Journal of Graph Theory,
14(4):443–454, 1990.

17

[17] F. R. K. Chung and R. L. Graham. On graphs which contain all small trees. Journal of combina-
torial theory, Series B, 24(1):14–23, 1978.

[18] F. R. K. Chung and R. L. Graham. On universal graphs. Ann. Acad. Sci., 319:136–140, 1979.

[19] F. R. K. Chung and R. L. Graham. On universal graphs for spanning trees. J. London Math. Soc.,
27:203–211, 1983.

[20] F. R. K. Chung, R. L. Graham, and N. Pippenger. On graphs which contain all small trees ii.
Colloquia Mathematica, pages 213–223, 1976.

[21] Tamar Eilam, Cyril Gavoille, and David Peleg. Compact routing schemes with low stretch factor.
Journal of Algorithms, 46(2):97–114, 2003.

[22] Louis Esperet, Arnaud Labourel, and Pascal Ochem. On induced-universal graphs for the class of
bounded-degree graphs. Inf. Process. Lett., 108(5):255–260, November 2008.

[23] P. Fraigniaud and C. Gavoille. Routing in trees. In 28th International Colloquium on Automata,
Languages and Programming (ICALP), volume 2076 of LNCS, pages 757–772, 2001.

[24] P. Fraigniaud and A. Korman. Compact ancestry labeling schemes for XML trees. In SODA, pages
458–466, 2010.

[25] P. Fraigniaud and A. Korman. An optimal ancestry scheme and small universal posets. In Proceed-
ings of the 42nd ACM symposium on Theory of computing, pages 611–620, New York, NY, USA,
2010.

[26] C. Gavoille and D. Peleg. Compact and localized distributed data structures. Distributed Comput-
ing, 16(2-3):111–120, 2003.

[27] Cyril Gavoille and Arnaud Labourel. Shorter implicit representation for planar graphs and bounded
treewidth graphs. In Algorithms–ESA 2007, pages 582–593. Springer, 2007.

[28] Cyril Gavoille, David Peleg, Stéphane Pérennes, and Ran Raz. Distance labeling in graphs. Journal
of Algorithms, 53(1):85 – 112, 2004. See also SODA’01.

[29] S. Kannan, M. Naor, and S. Rudich. Implicit representation of graphs. SIAM J. DISC. MATH.,
pages 596–603, 1992. Preliminary version appeared in STOC’88.

[30] M. Katz, N. A. Katz, A. Korman, and D. Peleg. Labeling schemes for flow and connectivity. SIAM
J. Comput., 34(1):23–40, 2004.

[31] Amos Korman. Labeling schemes for vertex connectivity. ACM Trans. Algorithms, 6(2):39:1–39:10,
April 2010.

[32] Vadim V. Lozin and Gábor Rudolf. Minimal universal bipartite graphs. Ars Comb., 84, 2007.

[33] John W. Moon. Topics on tournaments. New York, 1968.

[34] J.W. Moon. On minimal n-universal graphs. Proceedings of the Glasgow Mathematical Association,
7(1):32–33, 1965.

[35] John Harold Müller. Local structure in graph classes. PhD thesis, Georgia Institute of Technology,
Atlanta, GA, USA, 1988. Order No: GAX88-11342.

[36] Mihai Pǎtraşcu. Succincter. In Proc. 49th IEEE Symposium on Foundations of Computer Science
(FOCS), pages 305–313, 2008.

18

[37] David Peleg. Proximity-preserving labeling schemes. J. Graph Theory, 33(3):167–176, March 2000.

[38] R. Rado. Universal graphs and universal functions. Acta. Arith., pages 331–340, 1964.

[39] M. Thorup and U. Zwick. Approximate distance oracles. Journal of the ACM, 52(1):1–24, 2005.

[40] Mikkel Thorup and Uri Zwick. Compact routing schemes. pages 1–10. ACM Press, 2001.

[41] V.G. Vizing. Some unsolved problems in graph theory. Russian Mathematical Surveys, 23(6):125–
141, 1968.

19

APPENDIX

A A modified spreading lemma

It is sometimes useful to have the spreading lemma assign tags of slightly different lengths to the vertices
of V . The following version receives an additional parameter 0 ≤ C ≤ n − k. Vertices of V of index
smaller than C are assigned L-bit tags, while those with index at least C are assigned (L+ 1)-bit tags.
This difference is later used to offset the difference in the number of bits needed to encode each index.

Lemma A.1. [Spreading] For every 0 ≤ ℓi ≤ n − k, where i ∈ [k], and every 0 ≤ C ≤ n − k, there
is a labeling scheme with the following properties. The scheme receives an (k, n − k)-bipartite graph
G = (U, V,E), where |U | = k, |V | = n − k, with a distinct index ind1(u) ∈ [k] assigned to every
vertex u ∈ U and a distinct index ind2(v) ∈ [n − k] assigned to every vertex v ∈ V . The scheme
assigns each vertex u ∈ U an ((n − k) − ℓi)-bit tag adj1(u), where i = ind1(u). It assigns each vertex
v ∈ V a tag adj2(v). If ind2(v) ∈ [0, C), then adj2(v) is of length L, otherwise it is of length L + 1,
where L = ⌈((∑k−1

i=0 ℓi) + C)/(n − k)⌉ − 1. For every u ∈ U and v ∈ V , given (ind1(u), adj1(u)) and
(ind2(v), adj2(v)), and given the ℓi’s, it is possible to determine whether (u, v) ∈ E.

Proof. The proof is almost identical to the proof of Lemma 4.5. The only difference is that we start
spreading the bits of U to the vertices of V starting with the vertex of index C. This is easily achieved
by letting s0 = C, and si = (si−1 + ℓi) mod (n − k), for i > 0. After moving the first (n − k) − C bits
from vertices of U , each vertex of index at least C gets exactly one bit, and only (

∑k
i=0 ℓi)−((n−k)−C)

additional bits need to be spread among the vertices of V . Each vertex of V gets only

L =

⌈

(
∑k−1

i=0 ℓi)− ((n− k)− C)

n− k

⌉

=

⌈

(
∑k−1

i=0 ℓi) +C

n− k

⌉

− 1

additional bits.

B An slightly improved encoding of indices

When n is not a power of 2, and especially when n is just slightly larger than a power of 2, using ⌈lg n⌉
bits to represent each index is a bit wasteful (pun intended). A slightly more economical encoding can
be used.

Suppose that n = 2b−1 + c, where 0 < c ≤ 2b−1. Note that b = ⌈lg n⌉. If 0 ≤ i < 2c, we encode i
using the b-bit binary representation of i. If 2c ≤ i < n, we encode it using the (b − 1)-bit binary
representation of i − c. For example, if n = 5 = 22 + 1, then b = 3, c = 1, and the encoding of the
indices are 000, 001, 01, 10, 11. It is easy to check that this is a prefix-free encoding. If the first b − 1
bits of an index describe a number less than c, the next bit is also part of the index, otherwise it is not.

C An improved scheme for directed graphs

Theorem C.1. For any n ≥ 100, there is a labeling scheme for n-vertex directed graphs that assigns
each vertex an (n+ 3)-bit label.

Proof. Suppose that n = β2b where b = ⌈lg n⌉ and 1
2 < β ≤ 1. Note that n = 2b−1+c where c = (β− 1

2)2
b

and thus 2c/n = (2β − 1)/β. We repeat the proof of Theorem 5.1 using the more economical way of
encoding indices described in Appendix B, and using Lemma A.1, with C = 2c, instead of Lemma 4.5.
Note that the vertices for which we need one more bit to encode their index are exactly those that get

20

APPENDIX

one less bit by the modified spreading lemma. Each vertex of B thus gets a label composed of n+1+∆
bits, where

∆ ≤
⌈

k(k + 1) + H̄(2k−1/n)n+ 2c

n− k

⌉

− 1 =

⌈

k(k + 1)

n− k
+

n

n− k

(

H̄(
1

8β
) +

2β − 1

β

)⌉

− 1 .

It is not difficult to verify that f(β) = H̄(1
8β)+

2β−1
β is an increasing function of β, when β ∈ (12 , 1] and

that f(1) = H̄(1/8) + 1 < 2.346. It is not difficult to verify that for n ≥ 100 we have k(k+1)
n−k < 0.5 and

n
n−kf(1) < 2.5, and thus ∆ ≤ 2.

Thus, the label of each vertex of B contains at most n+ 3 bits. The labels of the vertices of A contain
only n+ 2 bits, as before, and are padded to length n+ 3.

D An improved scheme for undirected graphs

Theorem D.1. For any n ≥ 100, there is a labeling scheme for n-vertex undirected graphs that assigns
each vertex an (⌈n2 ⌉+ 4)-bit label.

Proof. We begin by proving that the claim for odd values of n. We use the same approach used in
the proof of Theorem C.1. Suppose that n = β2b where b = ⌈lg n⌉ and 1

2 < β ≤ 1. We again have
n = 2b−1+c where c = (β− 1

2)2
b and thus 2c/n = (2β−1)/β. Using the slightly more efficient technique

to code the indices, and Lemma A.1, this time with C = c, we get that each vertex of B0∪B1 is assigned
a label of size at most n−1

2 + 3 +∆, where

∆ =

⌈

k(k + 2)
n−1
2 − k

+
n
2

n−1
2 − k

(

H̄(
1

8β
) +

2β − 1

β

)

⌉

− 1 ,

with the familiar function f(β) = H̄(1
8β) +

2β−1
β appearing again. Again ∆ ≤ 2, and thus the number

of bits in each label is at most n−1
2 + 5 = ⌈n2 ⌉+ 4.

We now turn to the case where n is even. In the proof of Theorem 6.2, the tag that each vertex of
B0 ∪B1 is assigned by Moon’s scheme, used to represent G[B0 ∪B1], is of length

n
2 − k. As mentioned

after the proof of Theorem 6.1, this is somewhat wasteful, as n
2 − k adjacency bits are actually stored

twice. We can thus remove these redundant bits from the tags, saving on average half a bit for each
vertex. More precisely, half of the tags would now be of length n

2 − k − 1 and half of length n
2 − k. We

now use a further modified version of Lemma A.1 to do the spreading. We start moving bits to the
vertices whose tags are of length n

2 − k − 1. It is not difficult to check that the label of each vertex of
B0 ∪B1 would now be of length at most n

2 + 3 +∆′, where

∆′ =

⌈

k(k + 2)
n
2 − k

+
n
2

n
2 − k

(

H̄(
1

8β
) +

2β − 1

β
− 1

2

)⌉

− 1 .

Let g(β) = H̄(1
8β) +

2β−1
β − 1

2 . It is not difficult to check that for β ∈ (12 , 1] we have g(β) < 2. For

sufficiently large n we thus ∆′ = 1 and the claim of the Theorem follows.

E Bipartite graphs

Proof. (Of Theorem 8.1) To represent an (n2 − r, n2 + r) bipartite graph we need (n2 − r)(n2 + r) = n2

4 − r2

bits. Using the spreading lemma we can split these bits almost evenly among the vertices, giving each
vertex a tag of ⌈n4 − r2

n ⌉ bits.

21

APPENDIX

Proof. (Of Theorem 8.2) The proof is similar to the proofs of Theorems 5.1 and 6.2, though the amount
of details increases yet again. Let G = (U, V,E) be an (n2 ,

n
2) bipartite graph. We split U into four

sets A0,0, B0,0, A1,0, A1,0 of sizes k,
⌈

n
4

⌉

− k, k and ⌊n4 ⌋ − k, respectively, where k = ⌈lg n⌉ − 4. We
similarly split V into four sets A0,1, B0,1, A1,1, A1,1. We now use Lemma 4.4 to assign tags to the graphs
G[A0,0, B0,1], G[A1,0, B1,1], G[A0,1, B0,0], G[A1,1, B0,1] and use the spreading lemma to assign tags to
the remaining subgraphs. Using calculations similar to the ones made in the proofs of Theorems 5.1
and 6.2, we get the claimed result.

22

	1 Introduction
	2 Summary of related results
	3 Prelimaries
	4 Building blocks
	4.1 A labeling scheme for extremely unbalanced bipartite graphs
	4.2 A spreading labeling scheme for bipartite graphs

	5 Directed graphs
	6 Undirected graphs
	7 Tournaments
	8 Bipartite graphs
	9 Efficient decoding
	10 Induced-universal graphs
	11 Lower bounds
	12 Concluding remarks
	A A modified spreading lemma
	B An slightly improved encoding of indices
	C An improved scheme for directed graphs
	D An improved scheme for undirected graphs
	E Bipartite graphs

