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Abstract. Redatuming is a data processing technique to transform measurements recorded in
one acquisition geometry to an analogous data set corresponding to another acquisition geometry,
for which there are no recorded measurements. We consider a redatuming problem for a wave
equation on a bounded domain, or on a manifold with boundary, and model data acquisition by
a restriction of the associated Neumann-to-Dirichlet map. This map models measurements with
sources and receivers on an open subset Γ contained in the boundary of the manifold. We model
the wavespeed by a Riemannian metric, and suppose that the metric is known in some coordinates
in a neighborhood of Γ. Our goal is to move sources and receivers into this known near boundary
region. We formulate redatuming as a collection of unique continuation problems, and provide a two
step procedure to solve the redatuming problem. We investigate the stability of the first step in this
procedure, showing that it enjoys conditional Hölder stability under suitable geometric hypotheses.
In addition, we provide computational experiments that demonstrate our redatuming procedure.
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1. Introduction. We consider an exact redatuming procedure for the inverse
boundary value problem for the wave equation. We let M be a bounded domain
in Rn, or more generally a smooth manifold with boundary, and assume that its
boundary ∂M is smooth. Then, we consider the wave equation

(∂2
t −∆g)u(t, x) = 0, (t, x) ∈ (0,∞)×M,(1)

∂νu(t, x) = f(t, x), (t, x) ∈ (0,∞)× ∂M,

u(0, x) = ∂tu(0, x) = 0, x ∈M,

where ∆g denotes the Laplace-Beltrami operator for a metric tensor g on M . Let
us remark that, in the case of a domain, this Riemannian formulation allows us
to consider both the cases of isotropic and elliptically anisotropic wavespeeds. We
suppose that the metric g is known, for some fixed r > 0 and in some fixed coordinates,
in the domain of influence M(Γ, r), defined by:

(2) M(Γ, r) := {x ∈M : d(x,Γ) ≤ r}.

Outside of this set, the metric will be assumed to be unknown. We suppose that g
is smooth in M(Γ, r), but allow for g to possess singularities of conormal type in the
complement of this set.
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The term redatuming comes from the seismic literature, where it is used to refer
to procedures to synthesize measurements for another set where data has not been
recorded (see e.g. [19]). In the present setting, we suppose that data has been collected
on an open subset Γ ⊂ ∂M in the form of the Neumann-to-Dirichlet map (N-to-D
map). Specifically, we suppose that for a fixed fixed time T > 0, we have the N-to-D
map Λ2T

Γ , defined by:

Λ2T
Γ f = uf |(0,2T )×Γ, f ∈ C∞0 ((0, 2T )× Γ)

where uf is the solution of (1). Let Ω ⊂M(Γ, r) be the set into which we would like
to “move” the sources and receivers. To make this precise, let F be an interior source
supported in [0, T/2]× Ω, and let wF solve

(∂2
t −∆g)w(t, x) = F (t, x), (t, x) ∈ (0,∞)×M,(3)

∂νw(t, x) = 0, (t, x) ∈ (0,∞)× ∂M,

w(0, x) = ∂tw(0, x) = 0, x ∈M.

We define the map:

(4) L : F 7→ wF |[0,T/2]×Ω, for F ∈ L2([0, T/2]× Ω).

Then, redatuming into Ω can be accomplished by constructing the map L using the
data Λ2T

Γ and g|M(Γ,r). Thus the central focus of this paper is the following problem:

(P) Given Λ2T
Γ and g|M(Γ,r), determine the map L.

In Section 3 we develop an algorithm to solve problem (P) constructively.
Our primary motivation for studying the problem (P) stems from the fact that

it arises as a step in several variations of the Boundary Control (BC) method, see
[3] for the original formulation of the method. In theory, the BC method allows
one to reconstruct (M, g) given Λ2T

Γ for T > maxx∈M d(x,Γ). This reconstruction is
based on a layer stripping argument, for which the first step is to recover g in the
semigeodesic coordinates of Γ. As these coordinates do not cover the whole M , we
refer to this procedure as the local recovery step. The second step is to solve the
redatuming problem (P), and consequently we refer to this step as the redatuming
step. Solving Problem (P) allows one to propagate the data Λ2T

Γ into the interior of
M and thus enables one to repeat the local recovery step with data in the interior.
By alternating between the local recovery and redatuming steps, one can reconstruct
the Riemannian structure (M, g) further and further away from Γ. In particular, one
can reconstruct the structure outside the domain where the semigeodesic coordinates
of Γ are applicable.

Such an alternating iteration has been used in several uniqueness results for in-
verse boundary value problems [9, 10, 14, 16], however, the iteration is unstable, and it
has not been implemented computationally to our knowledge. In order to understand
how to regularize the iteration, we need to study the inherent instability of the local
recovery and redatuming steps. The present paper considers the redatuming step,
that is, the problem (P), while we have previously studied the local recovery step [5].

We divide our redatuming procedure into two steps, which we call moving receivers
and sources, respectively. The moving receivers step concerns solving the following
time-windowed problem:

(WP) Given Λ2T
Γ f |(T−r,T+r)×Γ for f ∈ L2([0, T−r]×Γ), determine

uf (T, ·) in Ω. Here, g is known in M(Γ, r).
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Fig. 1: Geometry of the windowed problem (WP). The shaded region indicates where
the metric is unknown.

Time-windowing arises naturally in the redatuming problem, and it also allows us to
consider the problem (WP) as a unique continuation problem for the wave equation on
(T − r, T + r)×M(Γ, r). We illustrate the geometry of (WP) in Figure 1. Let us note
that, as f is assumed to be supported on [0, T − r]× Γ, uf satisfies the homogeneous
Neumann boundary condition on (T−r, T+r)×∂M . In our computational procedure,
we will allow f to have support in [T − r, T ] × Γ. This does not affect the stability
properties of the moving receivers step, since if f ∈ L2([T −r, T ]×Γ), then solving (1)
in M to obtain uf (T, ·) is a classical well-posed problem, when g is known on M(Γ, r).

We will show that, after a transposition, the moving sources step reduces to a
problem analogous to (WP). For this reason, we develop stability theory only for the
moving receivers step.

The problem (WP) is a special case of the following unique continuation problem

(UC) Given Cauchy data (u, ∂νu) on (T − r, T + r)×Γ, determine
u(T, ·) near Γ. Here, u satisfies ∂2

t u − ∆gu = 0, and g is
known in M(Γ, r).

Thus, the stability of (WP) can be no less favorable than that of (UC). On the other
hand, since problem (WP) considers waves that satisfy a global Neumann boundary
condition, while no such boundary conditions are imposed in (UC), it is not immedi-
ately evident how the stability of (WP) compares to that of (UC). Nonetheless, we
will show that (WP) enjoys the same stability as (UC), and we present sharp stability
theory for the problem (WP) in Section 2.

Let us briefly summarize the stability theory. Under suitable conditions, the
problem (UC) is known to be conditionally Hölder stable, see e.g. [8, Thm. 3.2.2].
We give a geometric reformulation of this result in terms of convexity of Γ, and show
that conditional Hölder stability is optimal for (UC). Our counterexample establishing
the optimality of Hölder type stability works in the case of strictly convex Γ, and
moreover, we show that a refined version of this counterexample also works in the case
of the windowed problem (WP). In particular, this shows that the global homogeneous
Neumann boundary condition on (T − r, T + r)× ∂M in (WP) does not improve the
stability. This should be contrasted with [1], where unconditional Lipschitz stability is
obtained for a problem of the form (WP), with strictly convex Γ, under the additional
assumption that uf (T, ·) and ∂tu

f (T, ·) are supported near Γ.
Unique continuation problems have been studied from computational point of
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view, for example, the so-called quasireversibility method has been used to solve
(UC) in [13]. In this paper we propose to use the iterative time-reversal control
method due to Bingham et. al. [4] to solve (WP). In [4] this method was applied
to the coefficient determination problem to find g given Λ2T

Γ , however, as explained
in Section 3, it can be used to solve (WP) as well. We describe also the moving
sources step in Section 3 and give there a complete algorithm solving (P). Finally,
we give computational examples in Section 4. To our knowledge, this is the first
computational implementation of the iterative time-reversal control method.

2. Stability Theory for the Windowed Problem. In this section, we con-
sider the stability theory for the windowed problem (WP). We begin by recalling
the stability theory for the more general problem (UC). We were not able to find all
the results in Sections 2.1-3 in the literature, however, the techniques used there are
well-known.

2.1. Conditional Hölder stability for UC under convexity conditions.
We use ideas from [8, 22] to prove the following conditional Hölder stability estimate:

Lemma 1. Let T > 0, x0 ∈ Γ, and suppose that Γ ⊂ ∂M is strictly convex in
the sense of the second fundamental form. Then there exist a neighbourhood U of
(0, x0) in (−T, T )×M , κ ∈ (0, 1) and C > 0 such that for all u ∈ H2((−T, T )×M)
satisfying ∂2

t u−∆gu = 0 it holds that

(5) ‖u‖H1(U) ≤ C(F +A1−κFκ),

where F = ‖u‖H3/2((−T,T )×Γ) + ‖∂νu‖H1/2((−T,T )×Γ) and A = ‖u‖H1((−T,T )×M).

Proof. Let Γ′ ⊂ Γ be a coordinate neighbourhood of x0, let s0 > 0 be small, and
set Ω = (−s0, s0)× Γ′. We will use semigeodesic coordinates (s, y) ∈ Ω associated to
Γ′. Here a point x ∈M near x0 has the coordinates (s, y) where y is the closest point
to x in Γ′ and s = d(x, y). Furthermore, we choose the coordinates so that x0 = (0, 0),
and extend g smoothly to Ω. All norms, inner products, gradients and Hessians will
be taken with respect to the Riemannian structure associated with g on Ω.

Let Q = (−T0, T0) × Ω for some T0 ∈ (0, T ]. We recall that if a function φ is
strongly pseudo-convex in Q with respect to the wave operator P := ∂2

t −∆g, then,
for v ∈ C∞0 (Q) one has the Carleman estimate [7, Thm. 28.2.3]:

(6) τ

∫
Q

e2τφ(|∂tv|2 + |∇v|2 + τ2|v|2)dtdx ≤ C
∫
Q

e2τφ|Pv|2dtdx, τ > 1.

By approximation, this estimate also extends to v ∈ H2
0 (Q) .

To obtain a function φ that is strongly pseudo-convex in Q , we follow the ap-
proach from [22]. Specifically, we construct a function ψ satisfying:

(i) |∂tψ| 6= |∇ψ| in Q,
(ii) H2

pψ > 0 on T ∗(Ω) \ 0 whenever ψ = p = Hpψ = 0,

where, Hp denotes the Hamiltonian flow associated with principal symbol p of P . If
ψ satisfies (i)-(ii), then the function φ := exp(βψ)− 1 will be strongly pseudo-convex
in Q, provided that β � 1. Moreover, when ψ(t, x) = θ(t) + ρ(x), condition (ii) is
equivalent to

∂2
t θ +D2ρ(ξ, ξ) > 0, ξ ∈ SxM, (t, x) ∈ Q,(7)

holding whenever ∂tθ ± (ξ,∇ρ) = 0, see e.g. [22]. Here, we use SxM to denote the
unit sphere at x.
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In order to derive (5) from (6) via a cut-off argument, the function ψ needs to be
chosen so that it decays when the distance to the origin (t, s, y) = (0, 0, 0) grows in
the region s > 0. Let R, δ, µ > 0, and consider the polynomial

ψ(t, s, y) = (R− s)2 − δt2 − µ|y|2 −R2.

Here, we identify y with its coordinate representation and use |y| to denote the Eu-
clidean length of the coordinate vector for y. The function ψ decays as needed when
0 < s < R. Let us show that R, δ and µ can be chosen so that ψ satisfies (7). Consider
first the case µ = 0. Then, on the boundary, s = 0 and this inequality reduces to

−δ + σ2 +R II(η, η) > 0, ξ = (σ, η),

where II denotes the second fundamental form for Γ. By strict convexity, it holds that
R II(η, η) ≥ |η|2 for large enough R > 0. Moreover, σ2 + |η|2 = |ξ|2 = 1, and therefore
(7) holds if δ < 1. The inequality (7) remains valid in a neighbourhood of the origin
for small µ > 0 by smoothness. To show that (i) holds, we note that ∂tψ(0, 0) = 0
and |∇ψ(0, 0)| ≥ 2R, thus |∂tψ| 6= |∇ψ| at the origin. Smoothness of ψ implies that
this condition also holds in a neighborhood of the origin. Then, we can shrink Q by
decreasing s0, T0, and Γ′, in order to ensure that ψ satisfies (i) and (ii) on Q.

Fig. 2: A cartoon illustrating the geometry for Lemma 1 at t = 0. The lightly shaded
region represents Q+ ∩{t = 0}, while the dark region depicts U(ε)∩{t = 0}. For this
simple case we have taken Γ′ = Γ.

We write Q+ = Q ∩ {s > 0}, and use the right inverse of the trace map to get
w ∈ H2(Q+) with Cauchy data (u, ∂νu) on (−T, T )×Γ′ satisfying ‖w‖H2(Q+) ≤ CF .
Then, v = u−w has zero Cauchy data on (−T, T )× Γ′ and we extend v by zero as a
function on Q. Then, f = Pv = −Pw satisfies ‖f‖L2(Q+) ≤ CF . We note that ψ < 0

in Q+ so φ < 0 there too. Choose ε > 0 sufficiently small so that the set

U(ε) = {(t, s, y) ∈ R1+n; φ(t, s, y) ≥ −ε, s > 0}

satisfies U(ε) ⊂ Q+, and choose χ ∈ C∞0 (Q) such that χ = 1 in U(ε). See Figure 2
for an illustration.

We will apply (6) to χv. Note that

P (χv) = χPv + [P, χ]v = χf + [P, χ]v,

where the commutator [P, χ] is a first-order differential operator that vanishes on the



6 M.V. DE HOOP, P. KEPLEY, AND L. OKSANEN

set U(ε). Thus

τ

∫
U(ε/2)

e2τφ
(
|∂tv|2 + |∇v|2 + τ2|v|2

)
dtdx

≤ C

(∫
Q+

e2τφ|f |2dtdx+

∫
Q+\U(ε)

e2τφ|[P, χ]v|2dtdx

)
.

Using that τ > 1, and setting p = 2 ‖φ‖L∞(Q) + ε, it holds that

‖v‖2H1(U(ε/2)) ≤ C
(
eτp ‖f‖2L2(Q+) + e−τε ‖v‖2H1(Q+)

)
.

Since v = u+w and ‖w‖H2(Q+) ≤ CF we have that ‖v‖H1(Q+) ≤ C(A+F ). Recalling
that ‖f‖L2(Q+) ≤ CF , we find:

‖v‖2H1(U(ε/2)) ≤ C
(
eτpF 2 + e−τε(A+ F )2

)
.

Choosing τ as in [8, Thm. 3.2.2], we obtain

‖v‖H1(U(ε/2)) ≤ CF
κ(A+ F )1−κ,

where κ = ε/(p+ε). Then, since 0 < 1−κ < 1, we see that (A+F )1−κ ≤ A1−κ+F 1−κ.
Finally, we again use that v = u+ w and the bound on ‖w‖H2(Q+) to conclude:

‖u‖H1(U(ε/2)) ≤ C(F +A1−κFκ).

Fig. 3: Example where a geodesic γ passes through U but fails to intersect Γ. The
dark shaded region is a slice of U at some time t, and the light shaded region is the
spatial projection of the effective support of a Gaussian beam centered on γ.

2.2. Convexity is necessary for Hölder stability. In this section, we demon-
strate that a convexity condition must hold between the sets Γ and U in order for a
Hölder stability estimate of the type (5) to hold. We follow ideas from [21], and show
that if there is a bicharacteristic ray that passes over U but does not meet [−T, T ]×Γ,
then (5) can not hold.

Let γ be a unit speed geodesic on M and consider the corresponding bicharac-
teristic ray β(t) = (t, γ(t)). We suppose that there exists t0 ∈ (−T, T ) for which
(t0, γ(t0)) ∈ U but γ(t) 6∈ Γ for all t ∈ [−T, T ]. Let us consider a Gaussian beam
uε concentrated on γ. We refer to [10, 21] for the construction of Gaussian beams,
and recall here only that, for ε > 0, uε is a family of solutions to the wave equation
∂2
t uε −∆guε = 0 on (−T, T )×M satisfying for any j ∈ N0 and multi-index λ ∈ Nn0

|∂jt ∂λx (uε(t, x)− χ(t, x)UNε (t, x))| ≤ Cj,λ,N εN−(j+|λ|+n/4), t ∈ (−T, T ), x ∈M.
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Here, χ is a smooth function having small support around β and satisfying χ = 1
near β, and in local coordinates (t, z), UNε is a smooth function of the form

UNε (t, z) = ε−n/4 exp
(
iε−1Θ(t, z)

) N∑
j=0

εjaj(t, z), N ∈ N.

Here, Θ is a complex valued function whose imaginary part vanishes on β, and satisfies
=Θ(t, z) ≥ θ(t)|z − γ(t)|2 for some continuous strictly positive function θ. Moreover,
the function a0 does not vanish on β.

First we discuss how the right hand side of (5) behaves with respect to the family
uε. We define, for an integer r > 0 and each ε > 0, the quantities,

Aε := ‖uε‖Hr([−T,T ]×M), Fε := ‖uε‖Hr([−T,T ]×Γ) + ‖∂νuε‖Hr−1([−T,T ]×Γ),

and investigate how they behave as ε→ 0. Since β does not intersect [−T, T ]×Γ, we
can choose χ so that it vanishes on [−T, T ]× Γ. Then,

|∂jt ∂λxuε(t, x)| ≤ Cj,λ,N εN−(j+|λ|+n/4), for (t, x) ∈ [−T, T ]× Γ.

Consequently, for any r ∈ N, it holds that Fε ≤ Cr,N εN−(r+n/4). Now, let us consider
the quantity Aε. We have

∥∥UNε ∥∥Hr([−T,T ]×M)
≤ Cr,N ε

−r−n/4, and therefore also

Aε ≤ Cr,N ε
−r−n/4. Thus, for any fixed 0 < κ < 1, there exists a constant Cr,N > 0

such that

Fε +A1−κ
ε Fκε ≤ Cr,N

(
εN−(r+n/4) + εκN−(r+n/4)

)
.

Finally, we choose N sufficiently large such that κN > r + n/4, and conclude that

(8) Fε +A1−κ
ε Fκε → 0 as ε→ 0.

We now consider how the left-hand side of (5) behaves with respect to the family
uε. In view of (8), it remains to show that ‖uε‖Hr(U) stays positive as ε → 0. Since
‖uε‖Hr(U) ≥ ‖uε‖L2(U), we can consider only the L2 norm. Let B be a ball containing
the point γ(t0) and satisfying {t0} × B ⊂ U . On [10, p. 176], it is shown that
limε→0 ‖uε(t, ·)‖L2(B) = a(t), where a is a continuous strictly positive function. Thus
for small δ > 0 it holds that limε→0 ‖uε‖L2([−δ,δ]×B) > 0. This concludes the proof,
showing that if there is a bicharacteristic ray passing over U that does not meet
[−T, T ]× Γ, then (5) cannot hold.

2.3. A counterexample to Lipschitz stability for UC. In this section, we
give a counterexample showing that (5) cannot hold with κ = 1. This example is a
variation of the classical counterexample by Hadamard [6, p. 33], adapted to a strictly
convex setting.

Let us consider a case where M is contained in the half disk

{reiθ ∈ C; r ∈ (0, 1], |θ| < π/2}.

We assume that M is equipped with the Euclidean metric and suppose that Γ ⊂ ∂M
is of the form Γ = {eiθ ∈ C; |θ| < θ0}, for some θ0 ∈ (0, π/2).

We consider a family of stationary waves in M . For n ∈ N, we define

φn(reiθ) := r−neinθ.
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Then, we recall that in polar coordinates (r, θ) 7→ reiθ the Laplacian has the form

∆ = ∂2
r + r−1∂r + r−2∂2

θ .

Using this formula, it is straightforward to check that the φn are harmonic in M (note
that 0 6∈M). Letting un(t, x) = φn(x), it is immediate that (∂2

t −∆)un = 0 on R×M .
Next, we observe that φn(1, θ) = einθ and ∂νφn(1, θ) = ineinθ. Thus,

‖(φn, ∂νφn)‖Hk(Γ)×Hk−1(Γ) ≤ ‖φn‖Hk(Γ) + n‖φn‖Hk−1(Γ) ∼ nk.

Then, we let ε, θ1, s > 0 be small and define the sets Ω = (1 − ε, 1) × (−θ1, θ1) and
U = (T − s, T + s) × Ω. We note that, if θ1 ≤ θ0 and ε is sufficiently small, then
Ω ⊂M . Letting q = 1− ε, we observe that

‖φn‖2L2(Ω) =

∫ 1

q

r−2nrdr

∫ θ1

−θ1
|einθ|2dθ ∼ q−2(n−1)

n− 1

for large n > 0. Thus, a Lipschitz stability estimate of the form

‖u‖Hk(U) ≤ C ‖(u, ∂νu)‖Hk×Hk−1((T−s,T+s)×Γ)

leads to a contradiction when we take u = un. To see this, we first note that the
left-hand side is bounded below by Cq−(n−1)/

√
n− 1, where C is independent of n.

This holds because ‖un‖L2(U) = 2s‖φn‖L2(Ω). On the other hand, the right-hand side

of this inequality is comparable to nk. Thus, we get the contradiction that

q−(n−1) . nk
√
n− 1

for large n.

2.4. A counterexample to Lipschitz stability for WP. In this section, we
construct a counterexample to Lipschitz type stability for the problem (WP) in the
strictly convex boundary setting. Our construction is based on finding a family of
Neumann sources {fn} producing a family of waves {ufn} solving (1) that exhibit
similar stability properties to the waves considered in Section 2.3. The waves ufn will
then satisfy the hypotheses of (WP), and show that Lipschitz type stability does not
hold for (WP). We carry out our construction in two steps. First, for some ε > 0, we
find waves un with vanishing Neumann traces that behave like the waves from Section
2.3 on t ∈ [T −ε, T +ε]. Then, we use exact controllability to obtain Neumann sources
fn ∈ L2([0, T −ε]×Γ) that reproduce these waves, in the sense that ufn(t, ·) = un(t, ·)
for t ≥ T − ε.

We consider the case where M is the unit disk equipped with the Euclidean metric,
and Γ = (−θ0, θ0) for some θ0 ∈ (π/2, π) in polar coordinates. Let 0 < ε < T and
Ω ⊂M a neighborhood of M(Γ, ε), and select ε and Ω sufficiently small that (0, 0) 6∈ Ω.
We will make use of a fixed cut-off function χ ∈ C∞([0, 2T ] ×M) which we choose
to have the form χ(t, x) = χt(t)χx(x) with χt ∈ C∞([0, 2T ]) and χx ∈ C∞(M). In
particular, we choose χt so that it satisfies χt = 1 on a neighborhood of [T − ε, 2T ]
and χt = 0 on a neighborhood of [0, T − 2ε]. Also, we choose χx to satisfy χx ≡ 1 on
M(Γ, ε) and χx ≡ 0 on M \ Ω.

Let φ be any harmonic function in Ω. Using φ, we define w to be the solution to:

(∂2
t −∆)w(t, x) = 0, (t, x) ∈ (0, 2T )×M,

∂νw(t, x) = ∂ν(χ(t, x)φ(x)), (t, x) ∈ (0, 2T )× ∂M,

w(T, x) = χxφ, ∂tw(T, x) = 0, x ∈M,
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and, let v solve

(∂2
t −∆)v(t, x) = 0, (t, x) ∈ (0, 2T )×M,

∂νv(t, x) = ∂ν(χ(t, x)φ(x)), (t, x) ∈ (0, 2T )× ∂M,

v(T − 2ε, x) = ∂tv(T − 2ε, x) = 0, x ∈M.

We define u = w − v and study the properties of u in terms of w, v and φ. Let us
observe that ∂νu = 0 on (0, 2T )× ∂M , since ∂νw and ∂νv coincide there.

To begin our analysis of u, we show that w(t, x) = φ(x) for (t, x) ∈ K, where

K = {(t, x) ∈ [T − ε, T + ε]×M(Γ, ε) : d(x,M \M(Γ, ε)) > |t− T |} .

In order to show that w = φ on K, let us abuse notation and identify φ with its
constant extension in time. Then, we note that φ is harmonic in Ω and constant in
time, thus, (∂2

t − ∆)φ(t, x) = (∂2
t − ∆)w(t, x) = 0 on (T − ε, T + ε) × Ω. Next, we

note that w(T, ·) = φ and ∂tw(T, ·) = ∂tφ = 0 in M(Γ, ε). Finally, we observe that
∂νw = ∂νφ on [T − ε, T + ε]× (∂M ∩M(Γ, ε)), since χ = 1 there. Thus, finite speed
of propagation for (1) implies that w and φ coincide in K.

We define Σ = [T − ε, T + ε]× Γ and Σ′ = [T − 2ε, T + 2ε]× ∂M . Then, for a set
U ⊂ [T − ε, T + ε]×M , we investigate how the size of u on U compares to the size of
(u, ∂νu) on Σ. To that end, we note that ∂νu = 0 on Σ and observe that

‖(u, ∂νu)‖Hk(Σ)×Hk−1(Σ) = ‖u‖Hk(Σ) ≤ ‖w‖Hk(Σ) + ‖v‖Hk(Σ).

We will bound the norms on the right in terms of norms of φ. First, we bound the
Hk norm of v. Since χt is identically zero on a neighborhood of T − 2ε, ∂νv = ∂ν(χφ)
vanishes identically on a neighborhood of {T − 2ε} × ∂M . Because v(T − 2ε, ·) =
∂tv(T − 2ε, ·) = 0, we see that v satisfies compatibility conditions to all orders at
t = T−2ε. Appealing to standard estimates for the wave equation and trace theorems,
we can then show that

‖v‖Hk(Σ′) . ‖∂νv‖H`(Σ′),

where ` > k (in particular ` = 2k + 1 works). Combining this with the previous
estimate and using that ∂νv = ∂νw on Σ′ yields:

‖(u, ∂νu)‖Hk(Σ)×Hk−1(Σ) . ‖w‖Hk(Σ) + ‖∂νw‖H`(Σ′).

Then, since ∂νw = ∂ν(χφ), w = φ on K, and both Σ ⊂ K and Σ ⊂ Σ′ we conclude:

‖(u, ∂νu)‖Hk(Σ)×Hk−1(Σ) . ‖φ‖Hk(Σ′) + ‖∂νφ‖H`(Σ′).

Next, we let q = 1− ε
2 and note that 0 < q < 1. We consider the set

U :=
{

(t, r, θ) : T − ε

2
< t < T +

ε

2
, q < r < 1, θ ∈ Γ

}
.

Observe that U ⊂ K, so w = φ on U . Again, using standard estimates for the wave
equation and that ∂νv = ∂ν(χφ) on Σ′, we can show that

‖v‖Hk(U) . ‖∂νv‖H2k(Σ′) . ‖∂νφ‖H2k(Σ′).

Whereas, w = φ on U , so ‖w‖Hk(U) = ‖φ‖Hk(U).



10 M.V. DE HOOP, P. KEPLEY, AND L. OKSANEN

Let us now take φ = φn from the preceding section, and note that φn is harmonic
in Ω. We let wn, vn and un denote the waves associated with φn as constructed above.
Then, the estimates given in Section 2.3 imply that, for any j ∈ N, ‖φn‖Hj(Σ′) ∼ nj

and ‖∂νφn‖Hj(Σ′) ∼ nj+1, while ‖φn‖Hj(U) ≥ ‖φn‖L2(U) & q−(n−1)/
√
n− 1. So,

‖un‖Hk(U) = ‖wn − vn‖Hk(U) &
∣∣‖φn‖Hk(U) − ‖∂νφn‖H2k(Σ′)

∣∣ & q−(n−1)/
√
n− 1.

On the other hand,

‖(un, ∂νun)‖Hk(Σ)×Hk−1(Σ) . ‖φn‖Hk(Σ′) + ‖∂νφn‖H`(Σ′) . nk + n`+1.

Thus, a Lipschitz stability estimate of the form ‖u‖Hk(U) ≤ C‖(u, ∂νu)‖Hk(Σ)×Hk−1(Σ)

leads to the contradiction that for all n,

q−(n−1) . (nk + n`+1)
√
n− 1.

We now show that, if τ := T−ε is sufficiently large, there exists a Neumann source
fn ∈ L2([0, T − ε]× Γ) for which ufn = un on [T − ε, T + ε]×M . To see this, we first
recall thatM is the unit disk equipped with the Euclidean metric and that Γ contains a
neighborhood of the half-circle θ ∈ (−π/2, π/2). This setting is considered on p. 1030
of [2], where it is noted that if τ > 6, then any bicharacteristic ray beginning above a
point x ∈ M will pass over [0, τ ] × Γ in a non-diffractive point. Thus by choosing T
large enough that τ = T − ε > 6, the hypotheses of [2, Th. 4.9] for exactly controlling
M from [0, τ ] × Γ will be satisfied. Specifically, the map f 7→ (uf (τ, ·), ∂tuf (τ, ·))
taking L2([0, τ ] × Γ) → H1(M) × L2(M) is surjective (see [2, ex. 2], p. 1059). It is
straightforward to check that (un(T − ε, ·), ∂tun(T − ε, ·)) ∈ H1(M) × L2(M), thus
there exists a source fn ∈ L2([0, T − ε]×Γ) for which (ufn(T − ε, ·), ∂tufn(T − ε, ·)) =
(un(T−ε, ·), ∂tun(T−ε, ·)). Finally, we note that the Cauchy data of ufn and un agree
at t = T−ε, and the Neumann traces of both ufn and un vanish on [T−ε, T+ε]×∂M .
Hence, uniqueness for solutions to (1) implies that ufn |[T−ε,T+ε]×M = un|[T−ε,T+ε]×M .

To conclude, we have constructed a family of waves {ufn} that satisfy the hy-
potheses of (WP). Because these waves coincide with the waves in the family {un} on
both U and Σ, we see that a Lipschitz type stability estimate cannot hold for (WP).

3. Redatuming. In this section, we present our redatuming procedure, which
gives a constructive solution to (P). We begin in subsection 3.1 by briefly reviewing
concepts from the iterative time reversal control method [4]. As discussed in the
introduction, our approach to redatuming is accomplished in two steps: subsection
3.2 is devoted to moving receivers, while subsection 3.3 is devoted to moving sources.

3.1. Notation and techniques. The Riemannian Volume measure on M is
denoted by dV , and dS will denote the associated surface measure on ∂M . When we
evaluate L2 inner products, the corresponding integrals will be evaluated with respect
to these measures.

We define the control map, which is defined for f ∈ L2([0, T ]× Γ), by,

(9) WT f := uf (T, ·).

We recall that WT is bounded,

(10) WT : L2([0, T ]× Γ)→ L2(M),
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which follows from [15]. Now we form the connecting operator,

(11) KT := (WT )∗WT .

The operator KT derives its name from the fact that it connects inner-products
between waves in the interior to measurements made on the boundary. That is,
for f, h ∈ L2([0, T ]× Γ),

(12) 〈uf (T, ·), uh(T, ·)〉L2(M) = 〈WT f,WTh〉L2(M) = 〈KT f, h〉L2([0,T ]×Γ).

An essential fact about KT is that it can be obtained by processing the boundary
data, Λ2T

Γ . Specifically, one can construct KT via the Blagoveščenskĭı identity, which
we use in a form analogous to the expression found in [20],

(13) KT = JTΛ2T
Γ ΘT −RTΛTΓR

TJTΘT .

Here, the operators RT , JT , and ΘT are defined as follows: the time reversal operator,
RT : L2([0, T ]× Γ)→ L2([0, T ]× Γ), is defined by

(14) RT f(t, ·) = f(T − t, ·), for 0 < t < T ,

the time filtering operator, JT : L2([0, 2T ]× Γ)→ L2([0, T ]× Γ), is given by,

(15) JT f(t, ·) =
1

2

∫ 2T−t

t

f(s, ·) ds, for 0 < t < T ,

and the zero extension operator, ΘT : L2([0, T ]× Γ)→ L2([0, 2T ]× Γ), is given by,

(16) ΘT f(t, ·) =

{
f(t, ·) 0 ≤ t ≤ T
0 T < t ≤ 2T.

In addition, we will use the restriction, ρT : L2([0, 2T ] × Γ) → L2([0, T ] × Γ),
given by ρT f = f |[0,T ]×Γ. We will also use, for r ∈ [0, T ], the family of orthogonal
projections PTr : L2([0, T ] × Γ) → L2([T − r, T ] × Γ), which too are obtained by
restriction. Lastly, for s > 0, we will use time delay operators, given by

(17) Zsφ(t, ·) :=

{
0 for t ∈ [0, s]

φ(t− s, ·) for t > s.

We will need analogous operators defined on spaces of the form L2([0, S] × A),
where A ⊂M and S > 0. For those operators, we use similar notation. For instance,
we will also write RS to denote the time-reversal operator on L2([0, S]×A). We note
that, in all cases, our notation will only indicate the appropriate final time S, since all
four operators R, J,Θ, ρ act essentially in the temporal domain. We do not indicate
the spatial domain in our notation since it will be evident from context.

Finally, in some longer equations, we will suppress the spatial dependence of
functions in our notation. For example, let F : [0, T ]×M → R and t ∈ R. Then, we
will occasionally write F (t) to denote F (t, ·).

3.2. Moving Receivers. In this section, we will construct the map L,

(18) L : f 7→ uf |[0,T ]×M(Γ,r), for f ∈ L2([0, T ]× Γ).

We refer to the procedure for constructing L as moving receivers, since evaluating L is
tantamount to extrapolating receivers into M(Γ, r). Moving receivers is accomplished
through Algorithm 1, and we demonstrate the correctness of this algorithm via Lemma
2. We note that Lemma 2 is essentially demonstrated in [4, Lemma 7]. However, we
repeat the proof here, since it is constructive and forms the basis for Algorithm 1.
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Algorithm 1 Continuum level moving receivers procedure.

for f ∈ C∞0 ([0, T ]× Γ) :
for all 0 < t < T :
for all 0 < α :

Let : h = hα,t denote the solution to

PTr (KT + α)PTr h = PTr K
TZT−tf

Solve : the wave equation in [T − r, T ]×M(Γ, r) to obtain uhα,t(T, ·)
Compute :

Lf(t) = uf (t, ·)|M(Γ,r) = lim
α→0

uhα,t(T, ·).

Lemma 2. The map L can be constructed from the data Λ2T
Γ and the known sub-

manifold (M(Γ, r), g). Furthermore, L is a bounded operator,

(19) L : L2([0, T ]× Γ)→ L2(M(Γ, r)× [0, T ]).

Proof. We first note that the continuity of L is demonstrated in [15, Thm 2.0.0],
where it is shown that the map f 7→ uf is bounded from L2([0, T ]×Γ)→ Hβ([0, T ]×
M) for β = 3/5 − ε and any ε > 0. Since Hβ([0, T ] × M) ⊂ L2([0, T ] × M) for
0 < ε < 3/5, and M(Γ, r) ⊂M , it follows that L is bounded.

Because L is bounded and C∞0 ([0, T ]×Γ) is dense in L2([0, T ]×Γ), it will suffice
to show that Lf can be constructed for any smooth f . We let f ∈ C∞0 ([0, T ] × Γ),
and obtain Lf by computing wavefield snapshots Lf(t) = uf (t, ·)|M(Γ,r) for t ∈ [0, T ].
To get Lf(t), we first construct a family of sources hα,t ∈ L2([T − r, T ]×Γ) satisfying

(20) lim
α→0

uhα,t(T, ·)|M(Γ,r) = uf (t, ·)|M(Γ,r),

where the limit is taken in L2(M(Γ, r)). Since supp(hα,t) ⊂ [T −r, T ]×Γ, finite speed
of propagation for (1) implies that supp(uhα,t(s, ·)) ⊂ M(Γ, r) for 0 ≤ s ≤ T . Thus,
the waves uhα,t(T, ·) can be evaluated by solving (1) in M(Γ, r), and the wavefield
snapshot Lf(t) can be obtained from the limit (20).

We now recall how the sources hα,t can be obtained using the data Λ2T
Γ . As in

[4], we consider the Tikhonov minimization problem,

(21) hα,t := argmin
h∈L2([T−r,T ]×Γ)

‖uh(T, ·)− uf (t, ·)‖2 + α‖h‖2.

Since the operator ∂2
t −∆g commutes with time translations, uf (t, ·) = uZT−tf (T, ·).

Using the operators defined above, we can rephrase (21) in the form

(22) hα,t = argmin
h∈L2([T−r,T ]×Γ)

‖WTPh−WTZT−tf‖2 + α‖h‖2,

where we have written P = PTr to avoid some notational clutter. Since the operator
WT is bounded, [12, Thm. 2.11] implies that the unique solution to (21) is given by:

(23) hα,t =
(
P ∗(WT )∗WTP + α

)−1
(WTP )∗WTZT−tf.
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Because KT = (WT )∗WT , we can rewrite this as,

(24) hα,t = (PKTP + α)−1PKTZT−tf.

Since the operator KT can be constructed via the Blagoveščenskĭı identity (13), ex-
pression (24) shows that hα,t can be obtained from the data Λ2T

Γ .
Finally, we show that (20) holds. We recall, if g is smooth, that Tataru’s Theorem

[23] implies that WTP has dense range in L2(M(Γ, r)), and that this also holds if g
is piece-wise smooth [11]. Thus, [20, Lemma 1] implies that WTPhα,t → WTZT−tf
as α→ 0. Hence, the sources hα.t satisfy (20), which is what we wanted to show.

3.3. Moving Sources. As stated above, we refer to the procedure for con-
structing L from L as moving sources. We present the moving sources procedure as
Algorithm 2 and demonstrate its validity in Lemma 5.

Algorithm 2 Continuum level moving sources procedure.

for F ∈ C∞0 ([0, T/2]× Γ) :
for all 0 < t < T/2 :
for all 0 < α :

Let : h = hα,t denote the solution to

PT/2r (KT/2 + α)PT/2r h = PT/2r K∗ZT/2−tF,

where K is given by (29).
Solve : the wave equation in [T/2− r, T/2]×M(Γ, r) to obtain uhα,t(T/2, ·)

Compute :

LF (t) = wF (t, ·)|M(Γ,r) = lim
α→0

uhα,t(T/2, ·)

We show that L can be constructed from L via a transpostion argument. With
that goal in mind, let us introduce a final value problem that coincides with the
time-reversal of (3),

(∂2
t −∆g)v(t, x) = H(t, x), (t, x) ∈ (0, T )×M,(25)

∂νv(t, x) = 0, (t, x) ∈ (0, T )× ∂M
v(T, ·) = ∂tv(T, ·) = 0, x ∈M.

Here, H ∈ L2([0, T ] ×M(Γ, r)), and we denote the solution to (25) by vH . We have
the following result concerning the transpose of L.

Lemma 3. Let F ∈ L2([0, T ]×M(Γ, r)), then,

(26) RTL∗RTF = wF |[0,T ]×Γ.

Proof. We first note that by [15, Thm 2.0.0], the map F 7→ vF |[0,T ]×Γ is bounded

from L2([0, T ] × M(Γ, r)) → Hβ([0, T ] × Γ) where β = 3/5. Thus it is also a
bounded operator mapping L2([0, T ] × M(Γ, r)) → L2([0, T ] × Γ). Since the map
F 7→ wF |[0,T ]×Γ is the time reversal of this map, it is also bounded.

To prove (26), we let F ∈ C∞0 ([0, T ] ×M(Γ, r)), h ∈ C∞0 ([0, T ] × Γ), and argue
by density. Using the divergence theorem, the fact that uh solves (1), and that vF
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solves (25), we see,

〈F,Lh〉L2([0,T ]×M(Γ,r)) = 〈F, uh〉L2([0,T ]×M)

= 〈(∂2
t −∆g)v

F , uh〉L2([0,T ]×M) − 〈vF , (∂2
t −∆g)u

h〉L2([0,T ]×M)

= 〈−∂νvF , uh〉L2([0,T ]×∂M) − 〈vF ,−∂νuh〉L2([0,T ]×∂M)

= 〈vF , h〉L2([0,T ]×Γ).

On the last line, we have used (26) and the support properties of F and h. By
the density of C∞0 spaces in their respective L2 spaces and the boundedness of the
operator L, we conclude that

(27) L∗F = vF |[0,T ]×Γ.

Let us denote R = RT and show that RvRF = wF . To see this, we first note that:

(∂2
t −∆g)(Rv

RF )(t) = (∂2
t −∆g)v

RF (T − t) = RF (T − t) = F (t).

Furthermore, ∂t(Rv
RF )(0) = −∂tvRF (T − 0) = −∂tvRF (0) = 0, and (RvRF )(0) =

vRF (T ) = 0. Finally, (RvRF )|[0,T ]×∂M = R((vRF )|[0,T ]×∂M ) = 0. Hence, RvRF

solves (3) with right-hand side F . By uniqueness of solutions to (3), it follows that
wF = RvRF . Thus, in conjunction with (27),

RL∗RF = RvRF |[0,T ]×Γ = wF |[0,T ]×Γ,

which is what we wanted to show.

Next, we introduce a Blagoveščenskĭı type identity relating the inner-product
between wF (T/2, ·) and uh(T/2, ·) to an inner-product between F and an operator
applied to h. We remark that our proof follows an analogous strategy to the technique
used to derive (13).

Lemma 4. Let F ∈ L2([0, T/2]×M(Γ, r)) and h ∈ L2([0, T/2]× Γ). Then,

(28) 〈wF (T/2, ·), uh(T/2, ·)〉L2(M) = 〈F,Kh〉L2([0,T/2]×M(Γ,r)),

where, K : L2([0, T/2]×Γ)→ L2([0, T/2]×M(Γ, r)) is bounded and can be constructed
by,

(29) K = JT/2LΘT/2 − ρT/2RTLRTΘT/2JT/2ΘT/2.

Proof. To simplify our notation, for this proof we let R = RT , J = JT/2, Θ =
ΘT/2, and ρ = ρT/2.

To see that K is bounded, let us write W
T/2
int : F 7→ wF |[0,T/2]×M(Γ,r). Then W

T/2
int

is bounded by [17]. By definition, K = (W
T/2
int )∗WT/2, hence K is bounded since it is

a composition of bounded operators.
Since K is bounded, we argue by density. Let F ∈ C∞0 ([0, T/2] ×M(Γ, r)) and

h ∈ C∞0 ([0, T/2] × Γ). Because we are interested in obtaining the inner-product
〈wF (T/2, ·), uh(T/2, ·)〉L2(M), we will consider the family of inner-products I(t, s) :=

〈wF (t, ·), uh(s, ·)〉L2(M), parametrized with 0 ≤ s ≤ T and 0 ≤ t ≤ T/2. We note that
this quantity behaves like a one-dimensional wave with a forcing term:

(∂2
t − ∂2

s )I(t, s) = (∂2
t − ∂2

s )〈wF (t), uh(s)〉L2(M)

= 〈∆gw
F (t) + F (t), uh(s)〉L2(M) − 〈wF (t),∆gu

h(s)〉L2(M),
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since wF and uh solve (3) and (1) respectively. Next, we apply the divergence theorem,
use Lemma 3 and the fact that ∂νw

F = 0, and appeal to the support properties of F
and h, to find

(∂2
t − ∂2

s )I(t, s) = 〈F (t), uh(s)〉L2(M) − 〈wF (t), ∂νu
h(s)〉L2(∂M)

= 〈F (t), LΘh(s)〉L2(M(Γ,r)) − 〈RL∗RΘF (t),Θh(s)〉L2(Γ).

Then, we note that I(0, ·) = ∂tI(0, ·) = 0, since wF (0, ·) = ∂tw
F (0, ·) = 0. Thus

I solves an inhomogeneous one dimensional wave equation in the rectangle (t, s) ∈
(0, T/2)×(0, T ), with unit wavespeed and vanishing initial conditions. By finite speed
of propagation, the boundary condition at s = 0 does not affect the solution I(t, s)
when s ≥ t. Hence, for s ≥ t we can solve for I(t, s) by Duhamel’s principle,
(30)

I(t, s) =
1

2

∫ t

0

∫ s+(t−τ)

s−(t−τ)

〈F (τ), LΘh(σ)〉L2(M(Γ,r)) − 〈RL∗RΘF (τ),Θh(σ)〉L2(Γ) dσ dτ.

Setting s = t = T/2 we see,

I(T/2, T/2) = 〈wF (T/2), uh(T/2)〉L2(M)

=
1

2

∫ T/2

0

∫ T−t

t

〈F (t), LΘh(s)〉L2(M(Γ,r)) − 〈RL∗RΘF (t),Θh(s)〉L2(Γ) ds dt

= 〈F, JLΘh)L2([0,T/2]×M(Γ,r)) − 〈RL
∗RΘF,ΘJΘh〉L2([0,T/2]×Γ)

= 〈F, (JLΘ− ρRLRΘJΘ)h〉L2([0,T/2]×M(Γ,r)) .

Thus we conclude that K = JLΘ− ρRLRΘJΘ.

Lemma 5. The map L can be constructed from the operator L and the known
sub-manifold (M(Γ, r), g). Moreover, L is a bounded operator,

(31) L : L2([0, T/2]×M(Γ, r))→ L2([0, T/2]×M(Γ, r)).

Proof. We begin by noting that the boundedness of L is known, see e.g. [17].
We will ultimately need to obtain K∗, and any method to transpose K will suffice.

However, we remark that evaluating K∗ by transposing the operator expression (28)
would require one to construct L∗, which would entail a similar cost to constructing
K∗ itself. We give an efficient method to evaluate K∗ in Section 4.4.

The strategy that we use to construct L follows a similar pattern to the method
which we used to construct L. For a source F ∈ C∞0 ([0, T/2] ×M(Γ, r)) and time
t ∈ [0, T/2], we will obtain the wavefield snapshot LF (t) = wF (t, ·)|M(Γ,r) by finding a

family of sources hα,t ∈ L2([0, T/2−r]×Γ) for which uhα,t(T/2, ·)→ wF (T/2, ·)|M(Γ,r).

We then evaluate uhα,t(T/2, ·) by solving (1) in [0, T/2]×M(Γ, r) and obtain LF (t)
by taking the limit as α→ 0.

Let α > 0. To obtain the source hα,t we consider the following Tikhonov problem,

(32) hα,t := argmin
h∈L2([T/2−r,T/2]×Γ)

‖uh(T/2, ·)− wF (t, ·)‖2L2(M) + α‖h‖2.

We note that this regularized control problem is structurally similar to the problem
(21), however the present problem has a control time of T/2 and its target state is
wF (t, ·). Thus by the argument given in the proof of Lemma 2, this problem has a
unique solution, hα,t, given by,

(33) hα,t = ((WT/2P )∗(WT/2P ) + αI)−1(WT/2P )∗wF (t, ·),
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where we have written P in place of P
T/2
r for notational clarity. Now, we note

that wF (t, ·) = wZT/2−tF (T/2, ·), so we can use equation (28) to conclude that
(WT/2)∗wF (t, ·) = K∗ZT/2−tF . Since (WT/2P )∗WT/2P = PKT/2P , we find

(34) hα,t = (PKT/2P + αI)−1PK∗ZT/2−tF.

Thus hα,t can be obtained from known quantities. Finally, by Lemma 1 in [20], we
have that uhα,t(T/2, ·)|M(Γ,r) → wF (T/2, ·)|M(Γ,r).

4. Computational examples. In this section, we present computational ex-
amples that demonstrate both the receiver moving procedure discussed in Section
3.2 and the source moving procedure discussed in Section 3.3. We demonstrate our
methods in a conformally Euclidean setting, however, we stress that our techniques
can be applied in the general Riemannian setting.

4.1. Forward modeling and discretization. In our computational experi-
ment, we take M = R × [−1, 0] with a conformally Euclidean metric g = c−2dx2.
For the wave-speed c, we use c(x, y) = 1− y. We simulate waves propagating for 2T
time units, where T = 2.0, and make source and receiver measurements on the set
[0, 2T ]×Γ, where Γ = [−`, `]×{0} ⊂ ∂M and ` = 3.1. The wave-speed c is known in
Euclidean coordinates on the subset M(Γ, r) where r = 0.5. Let us point out that Γ
is strictly convex in the sense of the second fundamental form of (M, g).

For sources, we use a basis of Gaussian pulses of the form

ϕi,j(t, x) = C exp
(
−at(t− ts,i)2 − ax(x− xs,j)2

)
,

with parameters at = ax = 1.382 · 103, and we choose C to normalize the ϕi,j in
L2([0, T ]× Γ, dt⊗ dSg). Sources are applied at regularly spaced points (xs,j , 0) with
xs,j = −3.0 + (j − 1)∆xs for j = 1, . . . , Nx,s and times ts,i = 0.025 + (i − 1)∆ts
for i = 1, . . . , Nt,s. The source offset ∆xs and time between source applications
∆ts are both taken to be ∆xs = ∆ts = .025. At each of the Nx,s = 241 source
positions we apply Nt,s = 79 sources. For each basis function, we record the Dirichlet
trace data at regularly spaced points (xr,k, 0) with xr,k = −3.1 + (k − 1)∆xr for
k = 1, . . . , Nx,r at times tr,l = (l − 1)∆tr for l = 1, . . . , Nt,r. The receiver offset
∆xr, satisfies ∆xr = 0.5∆xs resulting in Nx,r = 497 receiver positions. The time
between receiver measurements, ∆tr, satisfies ∆tr = 0.1∆ts, resulting in Nt,r = 1601
measurements at each receiver position.

We discretize the Neumann-to-Dirichlet map by solving the forward problem for
each source ϕi,j and recording its Dirichlet trace at the receiver positions and times
described above. That is, we simulate the following data,

(35)

{
Λ2T

Γ ϕi,j(tr,l, xr,k) = uϕi,j (tr,l, xr,k) :
i = 1, . . . , Nt,s, j = 1, . . . , Nx,s,
l = 1, . . . , Nt,r, k = 1, . . . , Nx,r

}
.

To perform the forward modelling, we use a continuous Galerkin finite element method
with piecewise linear Lagrange polynomial elements and implicit Newmark time-
stepping. This is implemented using the FEniCS package [18].

For 0 ≤ τ1 < τ2 ≤ T we define Sτ2τ1 := span{ϕi,j : τ1 < ts,j < τ2}, and let Sτ = Sτ0 .
We note that, since the sources ϕij are well localized in time, the space Sτ2τ1 serves as a
finite dimensional substitute for the spaces L2([τ1, τ2]×Γ). Then, to apply the moving
receivers and moving sources procedures we need the operators Kτ for τ = T and
τ = T/2 respectively. Thus, for τ = T, T/2 we discretize the connecting operator Kτ
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by computing its action as an operator on Sτ . We accomplish this by restricting the
discrete Neumann-to-Dirichlet data, (35), to Sτ and computing a discrete analog of
(13). Specifically, we first compute the Gram matrix [Gτ ]ij = 〈ϕi, ϕj〉L2([0,τ ]×Γ,dt⊗dSg)

and its inverse [Gτ ]−1. Then, for A = JτΛ2τ
Γ , RτΛτΓ and RτJτ , we compute the matrix

for A acting on Sτ by:

[A]ij =
∑
k

[Gτ ]−1
ik 〈ϕk, Aϕj〉L2([0,τ ]×Γ,dt⊗dSg).

Finally, we use these matrices to compute the matrix for Kτ :

(36) [Kτ ] = [JτΛ2τ
Γ ]− [RτΛτΓ][RτJτ ].

The control problems introduced in the moving receivers and moving sources
problems are posed over L2([τ − r, τ ]× Γ) for τ = T, T/2 respectively. In both cases
we must solve linear problems of the form (PKτP +α)hα = Pb where b is a function
in L2([0, τ ] × Γ) and P is the projection P : L2([0, τ ] × Γ) → L2([τ − r, τ ] × Γ).
To approximate the action of P , we construct a mask [P ] that selects the indices
belonging to Sττ−r. We then recast the control problem in the finite dimensional case
by finding the coefficient vector [hα] for a function hα ∈ Sττ−r satisfying:

(37) ([P ][Kτ ][P ] + α)[hα] = [P ][b],

where [b] denotes the coefficients of the projection of b onto Sτ . We solve (37) using
restarted GMRES with an appropriate choice of α, documented below.

The last step in both the moving receivers and moving sources procedures is to
solve (1) with the source hα given by (37) in order to compute uhα(τ, ·)|M(Γ,r). To
do this, note that hα ∈ Sττ−r, so hα is effectively supported in [τ − r, τ ]× Γ. Thus by
finite speed of propagation and the fact that c is known in M(Γ, r) we can compute
uhα(τ, ·) by solving (1) using the same computational scheme as used to generate (35)
and then restricting the result to M(Γ, r).

4.2. Computational implementation of moving receivers. We now spe-
cialize the preceding discussion to the moving receivers setting. For this problem,
we want to compute an approximation to uf (t, ·)|M(Γ,r) for t ∈ [0, T ] and f ∈
L2([0, T ]× Γ). By Lemma 2, the control problem we must solve for this procedure is
a discrete version of (24). Thus the parameters for the discrete control problem (37)
are τ = T and b = KTZT−th. So we let hα,t denote the solution to:

(38) ([P ][KT ][P ] + α)[hα,t] = [P ][KT ][ZT−tf ].

We finally approximate uf (t, ·)|M(Γ,r) by computing uhα,t(T, ·), as described after (37).
For the discrete moving sources procedure we need a discrete version of L. We

partially discretize L by applying the moving receivers procedure to each the basis
functions ϕ1,j ∈ ST , at regularly spaced times tl = 0,∆ts, ..., T and saving the receiver
measurements on a regularly spaced grid of points pk ∈ [−`, `]×[0, r] ⊂M(Γ, r), where
the spacing between adjacent pk is equal to ∆xs in both directions. More explicitly,
we let hjl denote the solution to (38) with f = ϕ1,j , t = tl, and α = 10−4. We then
compute the wave uhjl(T, ·) approximating uϕ1,j (tl, ·) in M(Γ, r) and save the values
of uhjl at the points pk. In total, we compute the following data:

(39)

{
Lϕ1,j(tl, pk) = uhjl(T, pk) :

j = 1, . . . , Nx,s, l = 1, . . . , Nt,s,
k = 1, . . . , Np

}
.
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Note that we do not explicitly compute Lϕi,j for i > 1. We avoid carrying out these
computations because Lϕi,j(tl, ·) = Lϕ1,j(tl−(i−1), ·) for l ≥ i and Lϕi,j(tl, ·) = 0 for
l < i. This follows because the time between source applications coincides with the
temporal spacing between measurement times and because the wave equation is time
translation invariant. Thus it would be redundant to compute Lϕi,j for all i > 1.
Moreover, storing every such value would increase the amount of data by a factor of
Nt,s, which would be prohibitively costly.

Finally, we mention that for the discrete version of the moving sources procedure,
we must compute inner-products between Lϕij and certain functions in L2([0, T ] ×
M(Γ, r)). To approximate these integrals we use a tensor product of trapezoidal rules
on the data (39).

4.3. Moving receivers example. We provide an example to demonstrate our
moving receivers procedure. For a source we use:

f(t, x) = exp
(
−((t− tc)2 + (x− xc)2)/σ2

)
,

with parameters tc = 0.25, xc = 0.0, and σ = 0.1. We solve (38) with α = 5 · 10−5

for several times t, and compare the results with the true wavefields in Figure 4.
Since r = 0.5, we note that, for t > 0.5, it would not be possible to directly simulate
uf (t, ·) without knowing the metric in the complement of M(Γ, r). Thus the wavefield
snapshots depicted in Figure 4 with t > 0.5 could not be directly simulated under our
assumption that the wave-speed is only known in M(Γ, r). Of particular interest are
the snapshots with t ≥ 1.25. There, we observe a reflection off ∂M\Γ that has traveled
through the unknown set M \M(Γ, r) before returning to the known set M(Γ, r), yet
our moving receivers procedure was able to capture this reflected wave-front.

4.4. Computational implementation of moving sources. To apply the
moving sources procedure to a source F ∈ L2([0, T ]×M(Γ, r)) we need the quantity
K∗F . The formula (29) for computing K uses the quantity L, and as discussed above,
it is costly to fully dicretize L. In order to avoid this, we instead compute the action
of K∗ by transpostion. To that end, we note that K∗F = (WT/2)∗wF (T/2, ·), thus it
will suffice to approximate (WT/2)∗wF (T/2, ·).

We first recall from Lemma 3 that L∗F = RwRF |[0,T ]×Γ. Thus, for a basis
function ϕi ∈ ST we have,

(40) 〈ϕi, RwF 〉L2([0,T ]×Γ) = 〈Lϕi, RF 〉L2([0,T ]×M(Γ,r)).

After applying the receiver moving technique to compute Lϕi, we can compute the
right hand side of this expression. Then, (40) allows us to compute the inner-product
between RwF |[0,T ]×Γ and any basis function, which allows us to compute the coeffi-
cients of the projection of RwF |[0,T ]×Γ onto ST . Computing the function associated
with these coefficients and time-reversing the allows us to approximate wF |[0,T ]×Γ.

We now return to the derivation of (29) in order to show how to approximate
(WT/2)∗wF (T/2, ·). Let us suppose that F ∈ C∞(M(Γ, r)× [0, T/2]) and ϕi ∈ ST/2.
Then, we define I2(t, s) := 〈wF (t, ·), uϕi(s, ·)〉L2(M), and observe that I2(T/2, T/2) =

〈ϕi, (WT/2)∗wF (T/2, ·)〉 . We note that I2 is defined analogously to I from the deriva-
tion of (29), the only difference between these expressions is that we have exchanged
the roles of t and s. Then, a similar computation to our earlier derivation shows,

(∂2
t − ∂2

s )I2(t, s) = 〈wF (t), ∂νu
ϕi(s)〉L2(∂M) − 〈F (t), uϕi(s)〉L2(M).
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True wavefield uf (t, ·) Approximate wavefield uhα,t(T, ·)

Fig. 4: True wavefields (left) along with wavefields obtained from the moving receivers
procedure (right) at times t = 0.5, 0.75, . . . , 2.0. Sources and receivers are placed in
Γ = [−3.1, 3.1] × {0}, i.e. the top of the images. The known region is M(Γ, r) with
r = 0.5. In the snapshots, the known region corresponds to the rectangle [−3.1, 3.1]×
[−s, 0], where s = e1/2 − 1 ≈ 0.649, above the solid black line.

Applying the definition of L, noting that ∂νu
ϕi = ϕi, and using the support properties

of ϕi and F we can rewrite this as,

(∂2
t − ∂2

s )I2(t, s) = 〈wF (t)|Γ, ϕi(s)〉L2(Γ) − 〈F (t), Lϕi(s)〉L2(M(Γ,r)).

We then use Duhamel’s principle and set t = s = T/2 in the result to obtain,

〈ϕi, (WT/2)∗wF (T/2, ·)〉L2([0,T/2]×Γ) = 〈ϕi, JTwF |[0,T ]×Γ〉L2([0,T/2]×Γ)

− 〈Lϕi, JTF 〉L2([0,T/2]×M(Γ,r)).
(41)

To approximate JTwF |[0,T ]×Γ, we use the approximation to wF |[0,T ]×Γ computed
from (40) and apply the definition of JT . We compute the other term on the right
by directly applying (40) with JTF in place of F . Finally, we use the inner-products
(41) to compute the coefficients of (WT/2)∗wF (T/2, ·) in the basis for ST/2.

We now describe our computational implementation of the moving sources pro-
cedure. Let us recall that our goal is, for a source F ∈ L2([0, T/2] ×M(Γ, r)), to
approximate the wave wF in M [0, T/2] × (Γ, r). By Lemma 5, our first step in ap-
proximating wF (t, ·)|M(Γ,r) is to solve a discrete version of (34). So we solve (37) with

τ = T/2 and b = (WT/2)∗wZT/2−tF (T/2, ·). That is, we compute hα,t by solving

(42) ([P ][KT/2][P ] + α)[hα,t] = [P ][(WT/2)∗wZT/2−tF (T/2, ·)],
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where we use (41) to compute the right-hand side of this expression. Finally, we
compute the wave uhα,t(T/2, ·) as in the moving receivers implementation.

4.5. Moving sources results. To demonstrate our moving sources procedure,
we consider a source

(43) F (t, x, y) = exp
(
−a((t− tc)2 + (x− xc)2 + (y − yc)2)

)
,

where tc = 0.1, (xc, yc) = (0, 0.25), and a = at. We use the moving sources procedure
to approximate wF (t, ·)|M(Γ,r) for several times t. That is, for these t we solve (42)

using α = 10−4 and compute the associated wavefield uhα,t(T/2, ·) approximating
wF (t, ·) in M(Γ, r). We compare the results of our procedure with the true wavefields
in Figure 5.

True wavefield wF (t, ·) Approximate wavefield uhα,t(T, ·)

Fig. 5: We plot the true wavefields (left) along with wavefields obtained from the
moving sources procedure (right) at times t = 0.125, 0.25, . . . , 1.0. We again note
that, for the moving sources wavefields, the sources and receivers are placed in Γ =
[−3.1, 3.1] × {0}, i.e. the top of the images. The known region corresponds to the
rectangle [−3.1, 3.1]× [−s, 0], where s ≈ 0.649, above the solid black line.
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