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Abstract. We propose a variant of the classical augmented Lagrangian method for con-
strained optimization problems in Banach spaces. Our theoretical framework does not require
any convexity or second-order assumptions and allows the treatment of inequality constraints
with infinite-dimensional image space. Moreover, we discuss the convergence properties of our
algorithm with regard to feasibility, global optimality, and KKT conditions. Some numerical
results are given to illustrate the practical viability of the method.
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1 Introduction

Let X, Y be (real) Banach spaces and let f : X → R, g : X → Y be given mappings.
The aim of this paper is to describe an augmented Lagrangian method for the solution of
the constrained optimization problem

min f(x) subject to (s.t.) g(x) ≤ 0. (P )

We assume that Y ↪→ L2(Ω) densely for some measure space Ω, where the natural order
on L2(Ω) induces the order on Y . A detailed description together with some remarks
about this setting is given in Section 2.

Augmented Lagrangian methods for the solution of optimization problems belong to
the most famous and successful algorithms for the solution of finite-dimensional problems
and are described in almost all text books on continuous optimization, see, e.g. [8, 29].
Their generalization to infinite-dimensional problems has received considerable attention
throughout the last decades [6, 7, 16, 18, 20, 21, 22, 24, 25]. However, most existing
approaches either assume a very specific problem structure [6, 7], require strong convexity
assumptions [18] or consider only the case where Y is finite-dimensional [20, 24].

The contribution of the present paper is to overcome these limitations and to provide a
general convergence theory for infinite-dimensional problems. To this end, we extend some
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of the recent contributions on the convergence of certain modified augmented Lagrangian
methods from the finite- to the infinite-dimensional case, cf. [10] and references therein
for more details regarding some of the newer convergence results in the finite-dimensional
setting. The main difference between the classical augmented Lagrangian approach and
its modified version consists of a more controlled way of the multiplier update which is
responsible for a stronger global convergence theory.

Clearly, the main application of our theoretical framework (P ) is constrained optimiza-
tion in function spaces, where the inequality constraint with Y ↪→ L2(Ω) arises naturally.
In particular, our theory covers obstacle-type problems as well as optimal control problems
(including semilinear partial differential equations) with state constraints.

Let us remark that our algorithm can also be viewed as an extension of the quadratic
penalty method (also called Moreau-Yosida regularization in the infinite-dimensional
literature, e.g. [18, 37]). A numerical comparison to this method is given in Section 7.

This paper is organized as follows. In Section 2, we give a detailed overview of our
problem setting and assumptions. Section 3 contains a precise statement of the algorithm,
and we conduct a convergence analysis dedicated to global optimization in Section 4.
Starting with Section 5, we assume that the mappings which constitute our problem are
continuously differentiable, and establish some theoretical foundations regarding KKT
conditions and constraint qualifications. In Section 6, we apply these insights to our
algorithm and deduce corresponding convergence results. Finally, Section 7 contains
practical applications and we conclude with some final remarks in Section 8.

Notation: We use standard notation such as 〈·, ·〉 for the duality pairing on Y ,
(·, ·)Z for the scalar product in the Hilbert space Z, and ⊥ to denote orthogonality in Z.
Moreover, L(X, Y ) denotes the space of continuous linear operators from X into Y . The
norms on X, Y , etc. are denoted by ‖ · ‖, where an index (as in ‖ · ‖X) is appended if
necessary. Furthermore, we write→, ⇀, and ⇀∗ for strong, weak, and weak-∗ convergence,
respectively. Finally, we use the abbreviation lsc for a lower semicontinuous function.

2 Preliminaries and Assumptions

We denote by e : Y → Z the (linear and continuous) dense embedding of Y into Z := L2(Ω),
and by KY , KZ the respective nonnegative cones in Y and Z, i.e.

KZ := {z ∈ Z | z(t) ≥ 0 a.e.} and KY := {y ∈ Y | e(y) ∈ KZ}.

Note that the adjoint mapping e∗ embeds Z∗ into Y ∗. Hence, we have the chain

Y ↪→ Z ∼= Z∗ ↪→ Y ∗, (1)

which is occasionally referred to as a Gelfand triple. The main reason for the specific
configuration of our spaces Y and Z is that the order on Z = L2(Ω) has some structural
properties which may not hold on Y . For instance, the L2-norm satisfies the relation

0 ≤ z1 ≤ z2 =⇒ ‖z1‖Z ≤ ‖z2‖Z , (2)

which does not hold for, say, the spaces H1 or H1
0 . (Note that (2) is one of the defining

properties of so-called Banach or Hilbert lattices [4, 38]. In fact, Z = L2(Ω) is a Hilbert
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lattice, but H1(Ω) and H1
0 (Ω) are not.) We will put the properties of Z to fruitful use by

performing the augmentation which constitutes our algorithm in Z. To simplify this, we
denote by z+ and z− the positive and negative parts of z ∈ Z, i.e.

z+ := max{z, 0} and z− := max{−z, 0}.

These operations have a variety of useful properties. For instance, we have z = z+ − z−
and z+ ⊥ z− for every z ∈ Z.

Recall that, as in the introduction, we are concerned with the optimization problem

min f(x) s.t. g(x) ≤ 0, (P )

where Y ↪→ Z = L2(Ω). Here, the inequality g(x) ≤ 0 has to be understood with respect
to the order induced by the cone KY , which is implicitly given by the order on Z through
the embedding e.

The following is a list of assumptions which we will use throughout this paper.

Assumption 2.1 (General assumptions on the problem setting).

(A1) f and ‖g+‖Z are weakly lower semicontinuous.

(A2) f and g are continuously Fréchet-differentiable.

(A3) y 7→ |y| is well-defined and continuous on Y .

(A4) The unit ball in Y ∗ is weak-∗ sequentially compact.

Most of the theorems we will encounter later use only a subset of these assumptions.
Hence, we will usually list the assumptions for each theorem explicitly by referencing to
the names (A1)-(A4).

One assumption which might require some elaboration is the weak lower semicontinuity
of ‖g+‖Z . To this end, note that there are various theorems which characterize the weak
lower semicontinuity of convex functions, e.g. [5, Thm. 9.1]. Hence, if ‖g+‖ is convex
(which is true if g is convex with respect to the order in Y ), then the (strong) lower
semicontinuity of g already implies the weak lower semicontinuity. We conclude that (A1)
holds, in particular, for every lsc. convex function f and any mapping g ∈ L(X, Y ).

On a further note, the above remarks offer another criterion for the weak lower
semicontinuity of ‖g+‖Z . Since y 7→ ‖y+‖ obviously has this property, we conclude that it
is sufficient for g to be weakly (sequentially) continuous.

Regarding the space Y which is embedded into Z, recall that (A3) assumed the
operation y 7→ |y| to be well-defined and continuous on Y . (Note that this assumption
holds automatically if Y = Z, but in many applications, Y is only a subset of Z, cf. the
first remark below.) Hence, the same holds for the mappings y+, y−, min, max, etc.,
which may be defined in terms of their counterparts on Z.

We now give some general remarks about the setting (P ).

• Clearly, one motivation for this setting is the case where Ω is a bounded domain in
Rd and Y is one of the spaces H1(Ω), H1

0 (Ω), or C(Ω̄). Problems of this type will
be our main application in Section 7. Note that (A3) is satisfied for these spaces, cf.
[13, 26] for a proof in H1.
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• In theory, we could easily generalize our work by allowing Z to be an arbitrary
Hilbert lattice [4, 27, 34, 38]. However, it turns out [27, Cor. 2.7.5] that every Hilbert
lattice is (isometrically and lattice) isomorphic to L2(Ω) for some measure space Ω.
Hence, this seemingly more general setting is already covered by ours.

• Related to the previous point, we note that our setting also covers the case Y = Rm,
which is a Hilbert lattice and can be identified with L2(Ω) on the discrete measure
space Ω = {1, . . . ,m}.

We conclude this section by proving a lemma for later reference. Recall that (·, ·)Z denotes
the scalar product in Z = L2(Ω).

Lemma 2.2. Let (ak) and (bk) be bounded sequences in Z. Then min{ak, bk} → 0 implies(
ak, bk

)
Z
→ 0.

Proof. It is easy to see that
(
ak, bk

)
Z

=
(
min{ak, bk},max{ak, bk}

)
Z

. Since min{ak, bk} →
0 and the sequence (max{ak, bk}) is bounded, it follows that

(
ak, bk

)
Z
→ 0.

Note that the above lemma becomes false if we drop the boundedness of one of the
sequences. For instance, consider the case where Ω = {1} and Z = L2(Ω), which
can be identified with R. Then the sequences ak = k and bk = 1/k provide a simple
counterexample.

3 An Augmented Lagrangian Method

This section gives a detailed statement of our augmented Lagrangian method for the
solution of the optimization problem (P ). It is motivated by the finite-dimensional
discussion in, e.g., [10] and differs from the traditional augmented Lagrangian method as
applied, e.g., in [16, 21] to a class of infinite-dimensional problems, in a more controlled
updating of the Lagrange multiplier estimates.

We begin by defining the augmented Lagrangian

Lρ : X × Z → R, Lρ(x, λ) := f(x) +
ρ

2

∥∥∥∥(g(x) +
λ

ρ

)
+

∥∥∥∥2

Z

. (3)

This enables us to formulate the following algorithm for the solution of (P ), which is a
variant of the (finite-dimensional) method from [10] in the context of our optimization
problem (P ). In fact, formally, the method looks almost identical to the one from [10],
but some of the notations related to the order in Y or Z have a different and more general
meaning than those in the finite-dimensional literature.

Algorithm 3.1 (Augmented Lagrangian method).

(S.0) Let (x0, λ0) ∈ X × Z, ρ0 > 0, wmax ∈ KZ, γ > 1, τ ∈ (0, 1), and set k = 0.

(S.1) If (xk, λk) satisfies a suitable stopping criterion: STOP.

(S.2) Choose 0 ≤ wk ≤ wmax and compute an approximate solution xk+1 of

min
x∈X

Lρk(x,wk). (4)
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(S.3) Set λk+1 :=
(
wk + ρkg(xk+1)

)
+

. If k = 0 or∥∥∥∥min

{
−g(xk+1),

wk

ρk

}∥∥∥∥
Z

≤ τ

∥∥∥∥min

{
−g(xk),

wk−1

ρk−1

}∥∥∥∥
Z

(5)

holds, set ρk+1 := ρk; otherwise, set ρk+1 := γρk.

(S.4) Set k ← k + 1 and go to (S.1).

Note that the case k = 0 is considered separately in Step 3 for formal reasons only since
wk−1 and ρk−1 are not defined for this value of the iteration counter. In any case, the
treatment of this initial step has no influence on our convergence theory.

One of the most important aspects of the above algorithm is the sequence (wk). Note
that wk ≤ wmax implies that (wk) is bounded in Z. Apart from this boundedness, there
is a certain degree of freedom in the choice of wk. For instance, we could always choose
wk := 0 and thus obtain a simplified algorithm which is essentially a quadratic penalty
method. Going a little further, our method also includes the Moreau-Yosida regularization
scheme (see [18, 37] and Section 7) as a special case, which arises if (wk) is chosen as a
constant sequence. However, the most natural choice, which also brings the method closer
to traditional augmented Lagrangian schemes, is wk := min{λk, wmax}. That is, wk is a
bounded analogue of the possibly unbounded multiplier λk.

Another part of Algorithm 3.1 which needs some explanation is our notion of an
“approximate solution” in Step 2. The reason we have not specified this part is because we
will carry out two distinct convergence analyses which each require different assumptions.

4 Global Minimization

We begin by considering Algorithm 3.1 from a global optimization perspective. Note that
most of the analysis in this section can be carried out in the more general case where f is
an extended real-valued function, i.e. f maps to R ∪ {+∞}.

The global optimization perspective is particularly valid for convex problems, where
we can expect to solve the subproblems in Step 2 in a global sense. This is reflected in
the following assumption, which we require throughout this section.

Assumption 4.1. In Step 2 of Algorithm 3.1, we obtain xk+1 such that there is a sequence
εk ↓ 0 with Lρk(xk+1, wk) ≤ Lρk(x,wk) + εk for all x ∈ X and k ∈ N.

This assumption is quite natural and basically asserts that we finish each inner iteration
with a point that is (globally) optimal within some tolerance εk, and that this tolerance
vanishes asymptotically.

Apart from Assumption 4.1, the main requirement for the following theorem is the weak
lower semicontinuity of f and ‖g+‖Z , cf. (A1). Note that ‖g+‖Z being weakly lsc implies
a slightly stronger statement. If xk ⇀ x and zk → 0 in Z, then the nonexpansiveness of
z 7→ z+ (which is just the projection onto KZ) together with (A1) implies that

lim inf
k→∞

∥∥(g(xk) + zk)+

∥∥
Z

= lim inf
k→∞

∥∥g+(xk)
∥∥
Z
≥ ‖g+(x)‖Z . (6)

This fact will be used in the proof of the following theorem.
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Theorem 4.2. Suppose that (A1) and Assumption 4.1 hold. Let (xk) be a sequence
generated by Algorithm 3.1, and let x̄ be a weak limit point of (xk). Then:

(a) x̄ is a global minimum of the function ‖g+(x)‖2
Z.

(b) If x̄ is feasible, then x̄ is a solution of the optimization problem (P ).

Proof. (a): We first consider the case where (ρk) is bounded. Recalling (5), we obtain

‖g+(xk+1)‖Z ≤
∥∥∥∥min

{
−g(xk+1),

wk

ρk

}∥∥∥∥
Z

→ 0.

Hence (A1) implies that x̄ is feasible and the assertion follows trivially.
Next, we consider the case where ρk →∞. Let K ⊂ N be such that xk+1 ⇀K x̄ and

assume that there is an x ∈ X with ‖g+(x)‖2
Z < ‖g+(x̄)‖2

Z . By (6), the boundedness of
(wk), and the fact that ρk →∞, there is a constant c > 0 such that∥∥∥∥(g(xk+1) +

wk

ρk

)
+

∥∥∥∥2

Z

>

∥∥∥∥(g(x) +
wk

ρk

)
+

∥∥∥∥2

Z

+ c

holds for all k ∈ K sufficiently large. Hence,

Lρk(xk+1, wk) > Lρk(x,wk) +
ρkc

2
+ f(xk+1)− f(x).

Using Assumption 4.1, we arrive at the inequality

εk >
ρkc

2
+ f(xk+1)− f(x),

where εk → 0. Since (f(xk+1))K is bounded from below by the weak lower semicontinuity
of f , this is a contradiction.

(b): Let K ⊂ N be such that xk+1 ⇀K x̄, and let x be any other feasible point. From
Assumption 4.1, we get

Lρk(xk+1, wk) ≤ Lρk(x,wk) + εk.

Again, we distinguish two cases. First assume that ρk → ∞. By the definition of the
augmented Lagrangian, we have (recall that x is feasible)

f(xk+1) ≤ f(x) +
ρk
2

∥∥∥∥(g(x) +
wk

ρk

)
+

∥∥∥∥2

Z

+ εk ≤ f(x) +
‖wk‖2

Z

2ρk
+ εk.

Taking limits in the above inequality, using the boundedness of (wk) and the weak lower
semicontinuity of f , we get f(x̄) ≤ f(x).

Next, consider the case where (ρk) is bounded. Using the feasibility of x and a similar
inequality to above, it follows that

f(xk+1) +
ρk
2

∥∥∥∥(g(xk+1) +
wk

ρk

)
+

∥∥∥∥2

Z

≤ f(x) +
ρk
2

∥∥∥∥wkρk
∥∥∥∥2

Z

+ εk.

But (
g(xk+1) +

wk

ρk

)
+

=
wk

ρk
−min

{
−g(xk+1),

wk

ρk

}
and the latter part tends to 0 because of (5). This implies f(x̄) ≤ f(x).
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Note that, for part (a) of the theorem, we did not fully use εk ↓ 0; we only used the
fact that (εk) is bounded. Hence, this result remains true under weaker conditions than
those given in Assumption 4.1. Furthermore, note that Theorem 4.2 does not require
any differentiability assumption, though, in practice, the approximate solution of the
subproblems in (S.2) of Algorithm 4.1 might be easier under differentiability assumptions.
Finally, note that, in view of statement (a), the weak limit point x̄ is always feasible if the
feasible set of the optimization problem (P ) is nonempty, i.e. in this case the feasibility
assumption from statement (b) is always satisfied. On the other hand, if the feasible set
is empty, it is interesting to note that statement (a) still holds, whereas the assumption
from statement (b) cannot be satisfied.

We now turn to a convergence theorem which guarantees, under certain assumptions,
the (strong) convergence of the whole sequence (xk). Such an assertion usually requires a
suitable convexity or second-order condition and, in fact, there are many results along
this line in the context of augmented Lagrangian methods, e.g. [9, 15] in finite or [18] in
infinite dimensions. Here, we prove a theorem which shows that our method converges
globally for convex problems where the objective function is strongly convex. Note that,
in the convex setting, the lower semicontinuity assumption (A1) is fairly weak since it is
always implied by (ordinary) continuity. Moreover, let us emphasize that the theorem
below does not require any Lagrange multiplier or constraint qualification.

Theorem 4.3. Suppose that (A1) and Assumption 4.1 hold, and that X is reflexive.
Furthermore, assume that g is convex, that f is strongly convex, and that the feasible set
of (P ) is nonempty. Then (P ) admits a unique solution x̄, and the sequence (xk) from
Algorithm 3.1 converges (strongly) to x̄.

Proof. Under the given assumptions, it is easy to show that f is coercive and that the
feasible set of (P ) is closed and convex, hence weakly closed. Therefore, existence and
uniqueness of the solution x̄ follow from standard arguments.

Now, denoting by c > 0 the modulus of convexity of f , it follows that

c

8
‖xk+1 − x̄‖2

X ≤
f(xk+1) + f(x̄)

2
− f

(
xk+1 + x̄

2

)
(7)

for all k. By the proof of Theorem 4.2 (b), it is easy to see that lim supk→∞ f(xk+1) ≤ f(x̄).
Hence, taking into account that f is bounded from below, it follows from (7) that (xk) is
bounded. Since X is reflexive and every weak limit point of (xk) is a solution of (P ) by
Theorem 4.2, we conclude that xk ⇀ x̄. In particular, the weak lower semicontinuity of
f together with lim supk→∞ f(xk+1) ≤ f(x̄) implies that f(xk+1)→ f(x̄). Moreover, we
also have f(x̄) ≤ lim infk→∞ f

(
(xk + x̄)/2

)
. Hence, (7) implies ‖xk+1 − x̄‖X → 0.

The above theorem also shows that strong convergence of the primal iterates is not
completely unrealistic, even in infinite dimensions. It may be possible to also prove strong
convergence by using some local condition (e.g. a suitable second-order sufficient condition
in a stationary point). However, we will now explore this subject any further in the
present paper.
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5 Sequential KKT conditions

Throughout this section, we assume that f and g are continuously Fréchet-differentiable
on X, and discuss the KKT conditions of the optimization problem (P ). Recalling that
KY is the nonnegative cone in Y , we denote by

K+
Y := {f ∈ Y ∗ | 〈f, y〉 ≥ 0 ∀y ∈ KY }

its dual cone. This enables us to define the KKT conditions as follows.

Definition 5.1. A tuple (x, λ) ∈ X ×K+
Y is called a KKT point of (P ) if

f ′(x) + g′(x)∗λ = 0, g(x) ≤ 0, and 〈λ, g(x)〉 = 0. (8)

We also call x ∈ X a KKT point of (P ) if (x, λ) is a KKT point for some λ.

From a practical perspective, when designing an algorithm for the solution of (P ), we will
expect the algorithm to generate a sequence which satisfies the KKT conditions in an
asymptotic sense. Hence, it will be extremely important to discuss a sequential analogue
of the KKT conditions.

Definition 5.2. We say that the asymptotic KKT (or AKKT) conditions hold in a
feasible point x ∈ X if there are sequences xk → x and (λk) ⊂ K+

Y such that

f ′(xk) + g′(xk)∗λk → 0 and
〈
λk, g−(xk)

〉
→ 0. (9)

Asymptotic KKT-type conditions have previously been considered in the literature [2, 3, 10]
for finite-dimensional optimization problems. Furthermore, in [10], it is shown that AKKT
is a necessary optimality condition even in the absence of constraint qualifications. With
little additional work, this result can be extended to our infinite-dimensional setting.

Theorem 5.3. Suppose that (A1), (A2) hold, and that X is reflexive. Then every local
solution x̄ of (P ) satisfies the AKKT conditions.

Proof. To simplify the proof, we assume that the squared norm q(x) := ‖x‖2
X is continu-

ously differentiable on X; since X is reflexive, this is no restriction as X can be renormed
equivalently with a continuously differentiable norm [17, 36]. By assumption, there is an
r > 0 such that x̄ solves (P ) on Br(x̄). Now, for k ∈ N, consider the problem

min f(x) + k‖g+(x)‖2
Z + ‖x− x̄‖2

X s.t. x ∈ Br(x̄). (10)

Since the above objective function is weakly lsc and Br(x̄) is weakly compact, this problem
admits a solution xk. Due to (xk) ⊂ Br(x̄), there is a K ⊂ N such that xk ⇀K ȳ for some
ȳ ∈ Br(x̄). Since xk is a solution of (10), we have

f(xk) + k‖g+(xk)‖2
Z + ‖xk − x̄‖2

X ≤ f(x̄) (11)

for every k. Dividing by k and taking the limit k →K ∞, we obtain from (A1) that
‖g+(ȳ)‖Z = 0, i.e. ȳ is feasible. By (11), we also obtain f(ȳ) + ‖ȳ − x̄‖2

X ≤ f(x̄). But
f(x̄) ≤ f(ȳ), hence x̄ = ȳ and (11) implies that xk →K x̄. In particular, we have
‖xk − x̄‖X < r for sufficiently large k ∈ K, and from (10) we obtain

f ′(xk) + 2kg′(xk)∗g+(xk) + q′(xk − x̄) = 0.

Define λk := 2kg+(xk). Then f ′(xk) + g′(xk)∗λk →K −q′(0) = 0 and
〈
λk, g−(xk)

〉
= 0.
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The above theorem also motivates our definition of the AKKT conditions. In particular,
it justifies the formulation of the complementarity condition as

〈
λk, g−(xk)

〉
→ 0, since

the proof shows that (λk) need not be bounded. Hence, the conditions

min{−g(xk), λk} →K 0,
〈
λk, g(xk)

〉
→K 0, and

〈
λk, g−(xk)

〉
→K 0

are not equivalent. Note that the second of these conditions (which might appear as the
most natural formulation of the complementarity condition) is often violated by practical
algorithms [3].

In order to get the (clearly desirable) implication “AKKT ⇒ KKT”, we will need a
suitable constraint qualification. In the finite-dimensional setting, constraint qualifications
such as MFCQ and CPLD [10, 31] have been used to enable this transition. However,
in the infinite-dimensional setting, our choice of constraint qualification is much more
restricted. For instance, we are not aware of any infinite-dimensional analogues of the
(very amenable) CPLD condition. Hence, we have decided to employ the Zowe-Kurcyusz
regularity condition [39], which is known to be equivalent to the Robinson condition [32]
and to be a generalization of the finite-dimensional MFCQ. It should be noted, however,
that any condition which guarantees “AKKT ⇒ KKT” could be used in our analysis.

Definition 5.4. The Zowe-Kurcyusz condition holds in a feasible point x ∈ X if

g′(x)X + cone(KY + g(x)) = Y, (12)

where cone(KY + g(x)) is the conical hull of KY + g(x) in Y .

We note that the complete theory in this paper can be written down with Y = Z only, so,
formally, there seems to be no reason for introducing the imbedded space Y . One of the
main reasons for the more general framework considered here with an additional space
Y is that suitable constraint qualifications like the above Zowe-Kurcyusz condition are
typically violated even in simple applications when formulated in Z, whereas we will see
in Section 7 that this condition easily holds in suitable spaces Y . We therefore stress the
importance of Definition 5.4 being defined in Y , and not in Z.

Let us also remark that the applicability of the Zowe-Kurcyusz condition very much
depends on the particular structure of the constraints. For many simple constraints, the
operator g′(x) is actually surjective, which implies that (12) holds trivially. This is the
case, for instance, when dealing with one-sided box constraints in a suitable function
space. (The case of two-sided box constraints is more difficult; see, e.g., [35].) Another
case where the Zowe-Kurcyusz condition holds automatically is if KY has a nonempty
interior and the problem satisfies a linearized Slater condition, e.g. [35, Eq. 6.18].

One of the most important consequences of the Zowe-Kurcyusz condition is that the
set of multipliers corresponding to a KKT point x is bounded [39]. From this point of view,
it is natural to expect that the sequence (λk) from Definition 5.2 is bounded, provided
the limit point x satisfies the Zowe-Kurcyusz condition.

Theorem 5.5. Suppose that (A2) holds. Let x ∈ X be a point which satisfies the AKKT
conditions, and let (xk), (λk) be the corresponding sequences from Definition 5.2.

(a) If x satisfies the Zowe-Kurcyusz condition, then (λk) is bounded in Y ∗.

9



(b) If (A3), (A4) hold and (λk) is bounded in Y ∗, then x is a KKT point.

Proof. (a): In view of [39, Thm. 2.1], the Zowe-Kurcyusz condition implies that there is
an r > 0 such that

BY
r ⊂ g′(x)BX

1 + (KY + g(x)) ∩BY
1 ,

where BX
r and BY

r are the closed r-balls around zero in X and Y , respectively. By the
AKKT conditions and (A2), there is a k0 ∈ N such that

‖g(xk)− g(x)‖Y ≤
r

4
and ‖g′(xk)− g′(x)‖L(X,Y ) ≤

r

4

for every k ≥ k0. Now, let u ∈ BY
r and k ≥ k0. It follows that −u = g′(x)w + z with

‖w‖X ≤ 1 and z = z1 + g(x), ‖z‖Y ≤ 1, z1 ∈ KY . Furthermore, the AKKT conditions
imply 〈

λk, z1 + g(xk)
〉

=
〈
λk, z1

〉
+
〈
λk, g+(xk)

〉
−
〈
λk, g−(xk)

〉
≥ −

〈
λk, g−(xk)

〉
→ 0,

i.e.
〈
λk, z1 + g(xk)

〉
is bounded from below. Using once again the AKKT conditions, we

see that
〈
λk, g′(xk)w

〉
is also bounded, and it follows that〈

λk, u
〉

= −
〈
λk, g′(x)w

〉
−
〈
λk, z1 + g(x)

〉
≤ r

4
‖λk‖Y ∗ −

〈
λk, g′(xk)w

〉
+
r

4
‖λk‖Y ∗ −

〈
λk, z1 + g(xk)

〉
≤ r

2
‖λk‖Y ∗ + C

for some constant C > 0. We conclude that

‖λk‖Y ∗ = sup
‖u‖≤r

〈
λk,

1

r
u

〉
≤ 1

r

(
C +

r

2
‖λk‖Y ∗

)
and, hence, ‖λk‖Y ∗ ≤ 2C/r.

(b): Since (λk) is bounded in Y ∗ and the unit ball in Y ∗ is weak-∗ sequentially compact
by (A4), there is a K ⊂ N such that λk ⇀∗K λ for some λ ∈ Y ∗. Using λk ∈ K+

Y for all
k ∈ N, it follows that

〈λ, y〉 = lim
k∈K

〈
λk, y

〉
≥ 0

for every y ∈ KY . In other words, λ ∈ K+
Y . Hence, taking the limit in the AKKT

conditions and using g−(xk)→ g−(x) = g(x) in Y , which is a consequence of (A3) and
the feasibility of x, we see that (x, λ) satisfies the KKT conditions.

The above theorem is a generalization of a well-known result for the MFCQ constraint
qualification in finite dimensions. Recall that, for Y = Rm with the natural ordering, the
Zowe-Kurcyusz condition is equivalent to MFCQ [39].
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6 Convergence to KKT Points

We now discuss the convergence properties of Algorithm 3.1 from the perspective of KKT
points. To this end, we make the following assumption.

Assumption 6.1. In Step 2 of Algorithm 3.1, we obtain xk+1 such that L′ρk(xk+1, wk)→ 0
as k →∞.

The above is a very natural assumption which states that xk+1 is an (approximate)
stationary point of the respective subproblem. Note that, from (3), we obtain the
following formula for the derivative of Lρk with respect to x:

L′ρk(xk+1, wk) = f ′(xk+1) + g′(xk+1)∗(wk + ρkg(xk+1))+

= f ′(xk+1) + g′(xk+1)∗λk+1.

Our further analysis is split into a discussion of feasibility and optimality. Regarding the
feasibility aspect, note that we can measure the infeasibility of a point x by means of
the function ‖g+(x)‖2

Z . By standard projection theorems, this is a Fréchet-differentiable
function and its derivative is given by D‖g+(x)‖2

Z = 2g′(x)∗g+(x), cf. [5, Cor. 12.31]. This
will be used in the proof of the following theorem.

Theorem 6.2. Suppose that (A2) and Assumption 6.1 hold. If (xk) is generated by
Algorithm 3.1 and x̄ is a limit point of (xk), then D‖g+(x̄)‖2

Z = 0.

Proof. Let K ⊂ N be such that xk+1 →K x̄. If (ρk) is bounded, then we can argue as in
the proof of Theorem 4.2 (a) and conclude that x̄ is feasible. Hence, there is nothing to
prove. Now, assume that ρk →∞. By Assumption 6.1, we have

f ′(xk+1) + g′(xk+1)∗(wk + ρkg(xk+1))+ → 0.

Dividing by ρk and using the boundedness of (wk) and (f ′(xk+1))K, it follows that

g′(xk+1)∗g+(xk+1)→K 0.

This completes the proof.

Similarly to Theorem 4.2, we remark that the above result does not fully use the fact that
L′ρk(xk+1, wk)→ 0 and remains valid if this sequence is only bounded.

We now turn to the optimality of limit points of Algorithm 3.1. To this end, recall
that Assumption 6.1 implies that

f ′(xk+1) + g′(xk+1)∗λk+1 → 0, (13)

which already suggests that the sequence of tuples (xk, λk) satisfies AKKT for the optimiza-
tion problem (P ). In fact, the only missing ingredient is the asymptotic complementarity
of g and λ. We deal with this issue in two steps. First, we consider the case where (ρk) is
bounded. In this case, we even obtain the (exact) KKT conditions without any further
assumptions.
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Theorem 6.3. Suppose that (A2) and Assumption 6.1 hold. Let (xk) be generated by
Algorithm 3.1 and assume that (ρk) is bounded. If x̄ is a limit point of (xk), then x̄ satisfies
the KKT conditions of (P ) with a multiplier in Z.

Proof. Let K ⊂ N be such that xk+1 →K x̄. Without loss of generality, we assume that
ρk = ρ0 for all k. From Algorithm 3.1, it follows that (λk+1)K is bounded in Z and

min

{
−g(xk+1),

wk

ρ0

}
→ 0 in Z.

As in the proof of Theorem 4.2 (a), this implies ‖g+(xk+1)‖Z → 0. Furthermore, from
Lemma 2.2, we get

(
wk, g(xk+1)

)
Z
→K 0. Using the definition of λk+1, we now obtain

(
λk+1, g(xk+1)

)
Z

= ρ0

((
wk

ρ0

+ g(xk+1)

)
+

, g(xk+1)

)
Z

= ρ0

(
wk

ρ0

−min

{
−g(xk+1),

wk

ρ0

}
, g(xk+1)

)
Z

→K 0.

Since (λk+1)K is bounded in Z, this also implies
(
λk+1, g−(xk+1)

)
Z
→K 0. Hence, recalling

(13), the AKKT conditions hold in x̄. Now, the claim essentially follows from Theorem 5.5
(b), the only difference here is that we are working in the Hilbert space Z instead of Y or
Y ∗, hence the two conditions (A3) and (A4) formally required in Theorem 5.5 (b) are
automatically satisfied in the current Hilbert space situation.

Some further remarks about the case of bounded multipliers are due. In this case, the
multiplier sequence (λk)K is also bounded in Z, and it does not make a difference whether
we state the asymptotic complementarity of g(xk) and λk as

min{−g(xk), λk} →K 0,
(
λk, g(xk)

)
Z
→K 0, or

(
λk, g−(xk)

)
Z
→K 0,

cf. the remarks after Theorem 5.3. However, this situation changes if we turn to the
case where (ρk) is unbounded. Here, it is essential that we define the asymptotic KKT
conditions exactly as we did in Definition 5.2.

Theorem 6.4. Suppose that (A2), (A3) and Assumption 6.1 hold. Let (xk) be generated
by Algorithm 3.1 and let ρk → ∞. Then every limit point x̄ of (xk) which is feasible
satisfies AKKT for the optimization problem (P ).

Proof. Let K ⊂ N be such that xk+1 →K x̄. Recalling (13), it suffices to show that(
λk+1, g−(xk+1)

)
=
(
(wk + ρkg(xk+1))+, g−(xk+1)

)
→K 0.

To this end, let vk := (wk + ρkg(xk+1))+ · g−(xk+1) ∈ L1(Ω). Since vk ≥ 0, we show that∫
Ω
vk → 0 by using the dominated convergence theorem. Subsequencing if necessary, we

may assume that g(xk+1) converges pointwise to g(x̄) and that |g(xk+1)| is bounded a.e.
by an L2-function for k ∈ K [12, Thm. 4.9]. It follows that vk is bounded a.e. by an
L1-function (recall that, if g(xk+1)(t) ≥ 0, then vk(t) = 0). Hence, we only need to show
that vk(t)→ 0 pointwise. Let t ∈ Ω and distinguish two cases:
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Case 1. g(x̄)(t) < 0. In this case, the pointwise convergence implies that wk(t) +
ρkg(xk+1)(t) < 0 for sufficiently large k and, hence, vk(t) = 0 for all such k.
Case 2. g(x̄)(t) = 0. Then consider a fixed k ∈ K. If g(xk+1)(t) ≥ 0, it follows again
from the definition of vk that vk(t) = 0. On the other hand, if g(xk+1)(t) < 0, it follows
that vk(t) ≤ wk(t) · |g(xk+1)(t)|, and the right-hand side converges to zero if this subcase
occurs infinitely many times.

Summarizing these two cases, the pointwise convergence vk(t)→ 0 follows immediately.
The assertion is therefore a consequence of the dominated convergence theorem.

For a better overview, we now briefly summarize the two previous convergence theorems.
To this end, let (xk) be the sequence generated by Algorithm 3.1 and let x̄ be a limit
point of (xk). For the sake of simplicity, we assume that (A2)-(A4) hold. Then Theorems
6.3, 6.4 and 5.5 imply that x̄ is a KKT point if either

(a) the sequence (ρk) is bounded, or

(b) ρk →∞, x̄ is feasible and the Zowe-Kurcyusz condition holds in x̄.

Hence, for ρk →∞, the success of the algorithm crucially depends on the achievement of
feasibility and the regularity of the constraint function g. Recall that, by Theorem 6.2,
the limit point x̄ is always a stationary point of the constraint violation ‖g+(x)‖2

Z . Hence,
situations in which x̄ is infeasible are rare; in particular, this cannot occur for convex
problems (unless, of course, the feasible set itself is empty).

7 Applications

We now give some applications and numerical results for Algorithm 3.1. To this end,
we consider some standard problems from the literature. Apart from the first example,
we place special emphasis on nonlinear and nonconvex problems since the appropriate
treatment of these is one of the focal points of our method.

All our examples follow the general pattern that X, Y , Z are (infinite-dimensional)
function spaces on some bounded domain Ω ⊆ Rd, d ∈ N. In each of the subsections,
we first give a general overview about the problem in question and then present some
numerical results on the unit square Ω = (0, 1)2.

In practice, Algorithm 3.1 is then applied to a (finite-dimensional) discretization of
the corresponding problem. Hence, we implemented the algorithm for finite-dimensional
problems. The implementation was done in MATLAB R© and uses the parameters

λ0 := 0, ρ0 := 1, wmax := 106e, γ := 10, τ := 0.1

(where λ0, wmax, and e := (1, . . . , 1)T are understood to be of appropriate dimension),
together with a problem-dependent starting point x0. The sequence (wk) is chosen as
wk := min{λk, wmax}, i.e. it is a safeguarded analogue of the multiplier sequence. The
overall stopping criterion which we use for our algorithm is given by

‖∇f(x) +∇g(x)λ‖∞ ≤ 10−4 and ‖min{−g(x), λ}‖∞ ≤ 10−4,
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i.e. it is an inexact KKT condition. Furthermore, in each outer iteration, we solve the
corresponding subproblem in Step 2 by computing a point xk+1 which satisfies∥∥L′ρk(xk+1, wk)

∥∥
∞ ≤ 10−6.

Recall that our algorithmic framework contains the quadratic penalty or Moreau-Yosida
regularization technique [18, 37] as a special case (for wk := 0). Since this method is rather
popular (in particular for state-constrained optimal control problems), we have performed
a numerical comparison to our augmented Lagrangian scheme. To make the comparison
fair, we incorporated two modifications into the methods. For the Moreau-Yosida scheme,
it does not make sense to update the penalty parameter conditionally, and it is therefore
increased in every iteration. On the other hand, for the augmented Lagrangian method,
recall that the penalty updating scheme (5) is only defined for k ≥ 1. To enable a proper
treatment of the penalty parameter in the first iteration, we use the updating scheme (5)
with the right side replaced by τ‖min{−g(xk), 0}‖Z for k = 0.

7.1 The Obstacle Problem

We consider the well-known obstacle problem [21, 33]. To this end, let Ω ⊆ Rd be a
bounded domain, and let X := Y := H1

0 (Ω), Z := L2(Ω). The obstacle problem considers
the minimization problem

min f(u) s.t. u ≥ ψ, (14)

where f(u) := ‖∇u‖2
L2(Ω) and ψ ∈ X is a fixed obstacle. In order to formally describe this

problem within our framework (P ), we make the obvious definition

g : X → Y, g(u) := ψ − u.

Using the Poincaré inequality, it is easy to see that f is strongly convex on X [1, Thm.
6.30]. Hence, the obstacle problem satisfies the requirements of Theorem 4.3, which
implies that the augmented Lagrangian method is globally convergent. Furthermore,
since X = Y , it follows that g′(u) = − idX for every u ∈ X. Hence, the Zowe-Kurcyusz
condition (cf. Definition 5.4) is trivially satisfied in every feasible point, which implies the
boundedness of the dual iterates (λk) by Theorem 5.5.

In fact, the constraint function g satisfies much more than the Zowe-Kurcyusz condition.
For every u ∈ X, the mapping g′(u) = − idX is bijective. Hence, if a subsequence (xk)K
converges to a KKT point x̄ of (14) and λ̄ is the corresponding multiplier, then we obtain

f ′(xk)− λk = f ′(xk) + g′(xk)∗λk →K 0.

In other words, we see that λk →K f ′(x̄) = λ̄, i.e. (λk)K converges to the (unique) Lagrange
multiplier corresponding to x̄.

We now present some numerical results for Ω := (0, 1)2 and the obstacle

ψ(x, y) := max

{
0.1− 0.5

∥∥∥∥(x− 0.5
y − 0.5

)∥∥∥∥ , 0} ,
cf. Figure 1. For the solution process, we choose n ∈ N and discretize Ω by means of
a standard grid which consists of n (interior) points per row or column, i.e. n2 interior
points in total. Furthermore, we use

f(u) = ‖∇u‖2
L2(Ω) = −〈∆u, u〉X∗×X for all u ∈ X
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(a) Constraint function ψ (b) Solution ū

Figure 1: Numerical results for the obstacle problem with n = 64.

and approximate the Laplace operator by a standard five-point finite difference scheme.
The subproblems occurring in Algorithm 3.1 are unconstrained minimization problems
which we solve by means of a standard semismooth Newton method.

Augmented Lagrangian Moreau-Yosida
n outer inner final ρk outer inner final ρk

16 6 9 104 7 11 107

32 7 13 105 7 15 107

64 7 17 105 7 18 107

128 7 22 106 8 22 108

256 8 25 107 8 27 108

Table 1: Numerical results for the obstacle problem.

Table 1 contains the inner and outer iteration numbers together with the final penalty
parameter for different values of the discretization parameter n. Both the augmented
Lagrangian and Moreau-Yosida regularization methods scale rather well with increasing
dimension; in particular, the outer iteration numbers remain nearly constant. Performance-
wise, the two methods perform very similarly, with the augmented Lagrangian method
holding a slight advantage in terms of iteration numbers and penalty parameters.

7.2 The Obstacle Bratu Problem

Let us briefly consider the obstacle Bratu problem [14, 19], which we simply refer to as
Bratu problem. This is a non-quadratic and nonconvex problem which differs from (14)
in the choice of objective function. To this end, let

f(u) := ‖∇u‖2
L2(Ω) − α

∫
Ω

e−u(x)dx
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for some fixed α > 0. To ensure well-definedness of f , we require Ω ⊆ R2. As before, we
set X := Y := H1

0 (Ω), Z := L2(Ω) and consider the minimization problem

min f(u) s.t. u ≥ ψ (15)

for some fixed obstacle ψ ∈ X; that is, g(u) := ψ− u. Before we proceed, let us first show
that the function f is well-defined and satisfies the assumptions (A1) and (A2).

Lemma 7.1. The function f is well-defined, weakly lsc and continuously Fréchet differ-
entiable from H1

0 (Ω) into R.

Proof. In the proof we will follow some arguments of [23]. It is only necessary to study the
mapping u 7→

∫
Ω
eu(x)dx. The mapping u 7→ eu maps bounded sets in H1

0 (Ω) to bounded
sets in Lp(Ω) for all p <∞, see [30]. Let (un) be a sequence converging weakly to u in
H1

0 (Ω). By compact embeddings, this sequence converges strongly to u in Lp(Ω) for all
p < ∞. After extracting a subsequence if necessary, we have un → u pointwise almost
everywhere and eun ⇀ ẽ in Lp(Ω) for all p <∞. By a result of Brezis [11, Lemma 3, page
126], it follows ẽ = eu. This proves the weak lower semicontinuity of f .

Let u, h ∈ H1
0 (Ω) be given. Let us write

eu+h − eu − euh =

∫ 1

0

∫ 1

0

eu+sthsh2 dt ds,

which implies

‖eu+h − eu − euh‖L1(Ω) ≤
1

2
‖eu+|h|‖L2(Ω)‖h‖2

L4(Ω) ≤ c‖eu+|h|‖L2(Ω)‖h‖2
H1(Ω).

Using the boundedness property of the mapping u 7→ eu mentioned above, it follows
‖eu+h − eu − euh‖L1(Ω) = o(‖h‖H1(Ω)), which implies the Fréchet differentiability of f .

Due to the constraint u ≥ ψ, the functional f is bounded from below on the feasible set of
(15). Together with the lower-semicontinuity result this implies the existence of solutions
of the minimization problem (15). Note that this statement is no longer valid if Ω ⊆ Rd

with d ≥ 3.
From a theoretical point of view, the Bratu problem is much more difficult than the

obstacle problem from Section 7.1. While the constraint function is equally well-behaved,
the objective function in (15) is neither quadratic nor convex. Hence, we cannot apply
Theorem 4.3 or the theory from Section 4, wheras the KKT-like convergence results from
Sections 5 and 6 still hold.

To analyse how our method behaves in practice, we again considered Ω := (0, 1)2 and
implemented the Bratu problem using the same obstacle and a similar implementation as
we did for the standard obstacle problem. The resulting images are given in Figure 2, and
some iteration numbers are given in Table 2. As with the obstacle problem, we observe
that both the augmented Lagrangian and Moreau-Yosida regularization methods scale
well with increasing dimension, and the augmented Lagrangian method once again holds
a certain advantage in terms of iteration numbers and penalty parameters. In fact, the
gap between the two methods is slightly bigger than for the standard obstacle problem.
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Augmented Lagrangian Moreau-Yosida
n outer inner final ρk outer inner final ρk

16 6 13 104 7 15 107

32 7 17 105 7 17 107

64 7 19 105 7 19 107

128 8 24 106 8 23 108

256 8 24 106 8 28 108

Table 2: Numerical results for the Bratu problem.

(a) Constraint function ψ (b) Solution ū

Figure 2: Numerical results for the Bratu problem with α = 1 and n = 64.

7.3 Optimal Control Problems

We now turn to a class of optimal control problems subject to a semilinear elliptic equation.
Let Ω ⊆ Rd, d = 2, 3, be a bounded Lipschitz domain. The control problem we consider
consists of minimizing the functional

J(y, u) :=
1

2
‖y − yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω) (16)

subject to y ∈ H1
0 (Ω) ∩ C(Ω̄) and u ∈ L2(Ω) satisfying the semilinear equation

−∆y + d(y) = u in H1
0 (Ω)∗

and the pointwise state constraints

y ≥ yc in Ω. (17)

Here, α is a positive parameter, yd ∈ L2(Ω), and yc ∈ C(Ω̄) with yc ≤ 0 on ∂Ω are given
functions. The nonlinearity d in the elliptic equation is induced by a function d : R→ R,
which is assumed to be continuously differentiable and monotonically increasing.

Before we can apply the augmented Lagrangian method to (16), we need to formally
eliminate the state equation coupling the variables y and u. Due to elliptic regularity
results, this equation admits for each control u ∈ L2(Ω) a uniquely determined weak
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Augmented Lagrangian Moreau-Yosida
n outer inner final ρk outer inner final ρk

16 6 16 104 6 19 106

32 7 21 105 7 22 107

64 7 23 106 7 25 107

128 7 26 106 8 30 108

256 8 31 107 9 37 109

Table 3: Numerical results for the optimal control problem.

solution y ∈ H1
0 (Ω)∩C(Ω̄). Moreover, the mapping u 7→ y is Fréchet differentiable in this

setting [35, Thm. 4.17]. Let us denote this mapping by S. Using S, we can eliminate the
state equation to obtain an optimization problem with inequality constraints:

min J(S(u), u) s.t. S(u) ≥ yc. (18)

We can now apply Algorithm 3.1 to this problem. The inequality S(u) ≥ yc has to be
understood in the sense of C(Ω̄), which necessitates the choice Y := C(Ω̄). Furthermore,
we have X := Z := L2(Ω). Assuming a linearized Slater condition, one can prove that the
Zowe-Kurcyusz condition is fulfilled, and there exists a Lagrange multiplier λ ∈ C(Ω̄)∗ to
the inequality constraint S(u) ≥ yc, see, e.g., [35, Thm. 6.8].

The subproblems generated by Algorithm 3.1 are unconstrained optimization problems.
By reintroducing the state variable y, we can write these subproblems as

min J(y, u) +
ρk
2

∥∥∥∥(yc − y +
wk

ρk

)
+

∥∥∥∥2

s.t. y = S(u). (19)

Hence, we have transformed (16) into a sequence of optimal control problems which
include the state equation but not the pointwise constraint (17).

Let us proceed with some numerical results. As a test problem, we chose an example
similar to the one presented in [28], where Ω := (0, 1)2, d(y) := y3, α := 10−3, and

yc(x) := −2

3
+

1

2
min{x1 + x2, 1 + x1 − x2, 1− x1 + x2, 2− x1 − x2}.

Clearly, in this setting, (16) and its reformulation (18) are nonconvex problems. We solve
the subproblems (19) with the MATLAB R© function fmincon, where the Hessian of the
objective is replaced by a semismooth version thereof. Table 3 contains the resulting
iteration numbers and final penalty parameters for both the augmented Lagrangian and
Moreau-Yosida regularization methods. As with the previous examples, both methods
scale well with increasing dimension, and the augmented Lagrangian method is more
efficient in terms of iteration numbers and penalty parameters.
The state constraint yc and the results of our method are given in Figure 3. It is interesting
to note that the multiplier λ̄ appears to be much less regular than the optimal control ū
and state ȳ. This is not surprising because, due to our construction, we have

ū ∈ L2(Ω), ȳ ∈ C(Ω̄), and λ̄ ∈ C(Ω̄)∗.
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(a) Constraint function yc (b) Optimal state ȳ

(c) Optimal control ū (d) Lagrange multiplier λ̄

Figure 3: Numerical results for the optimal control problem with n = 64.

The latter is well-known to be the space of Radon measures on Ω̄, which is a superset
of L2(Ω). In fact, the convergence data shows that the (discrete) L2-norm of λ̄ grows
approximately linearly as n increases, possibly even diverging to +∞, which suggests that
the underlying (infinite-dimensional) problem (16) does not admit a multiplier in L2(Ω)
but only in C(Ω̄)∗.

8 Final Remarks

We have presented an augmented Lagrangian method for the solution of optimization
problems in Banach spaces, which is essentially a generalization of the modified augmented
Lagrangian method from [10]. Furthermore, we have shown how the method can be applied
to well-known problem classes, and the corresponding numerical results appear quite
promising. In particular, the method appears to be (slightly) more efficient than the
well-known Moreau-Yosida regularization scheme, especially with regard to the behavior
of the penalty parameter.

From a theoretical point of view, the main strength of our method is the ability to deal
with very general classes of inequality constraints; in particular, inequality constraints with
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infinite-dimensional image space. Other notable features include desirable convergence
properties for nonsmooth problems, the ability to find KKT points of arbitrary nonlinear
(and nonconvex) problems, and a global convergence result which covers many prominent
classes of convex problems. We believe the sum of these aspects to be a substantial
contribution to the theory of augmented Lagrangian methods.

Another key concern in our work is the compatibility of the algorithm with suitable
constraint qualifications. To deal with this matter properly, we investigated the well-
known Zowe-Kurcyusz regularity condition [39], see also Robinson [32], and showed
that this condition can be used to guarantee the boundedness of suitable multiplier
sequences corresponding to asymptotic KKT conditions. While the main application of
this result is clearly the boundedness of the multiplier sequence generated by the augmented
Lagrangian method, we state explicitly that the underlying theory is independent of our
specific algorithm. With the understanding that most iterative methods for constrained
optimization usually satisfy the KKT conditions in an asymptotic sense, we hope that this
aspect of our theory will facilitate similar research into other methods or find applications
in other topics.
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