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ON ELECTROMAGNETIC SCATTERING FROM A

PENETRABLE CORNER

HONGYU LIU AND JINGNI XIAO

Abstract. This article is concerned with the time-harmonic electro-
magnetic (EM) scattering from a generic inhomogeneous medium. It is
shown that if there is a right corner on the support of the medium,
then it scatters every pair of incident EM fields, excluding a possible
class of EM fields which are of very particular forms. That is, for ev-
ery pair of admissible incident EM fields, the corresponding scattered
wave fields associated to the medium scatterer cannot be identically
vanishing outside the support of the medium. Indeed, we achieve the
corner scattering result by establishing a stronger result, that shows
the failure of the analytic extension across the corner of certain EM
fields satisfying the so-called interior transmission eigenvalue problem.
This extends the relevant study in [4] for the acoustic scattering gov-
erned by the Helmholtz equation to the electromagnetic case governed
by the Maxwell system. Substantial new challenges arise from the cor-
responding extension from the scalar PDE to the system of PDEs. Our
mathematical arguments combine the analysis for interior transmission
eigenvalue problems associated to the Maxwell system; the derivation
of novel orthogonality relation for the solutions of Maxwell systems;
the construction of complex-geometrical-optics (CGO) solutions for the
Maxwell system with new Lp-estimates (p > 6) on the remainder terms;
and the proof of the non-vanishing property for the Laplace transform
of vectorial homogeneous harmonic polynomials.

Keywords Maxwell system, inhomogeneous medium, corner scattering,
inverse scattering, invisibility
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1. Introduction

This paper is concerned with the time-harmonic electromagnetic (EM)
scattering described by the Maxwell system as follows. Let ω ∈ R+ denote
the frequency of the EM wave propagation. Let ε(x), µ(x), σ(x), x ∈ R

3, be
all L∞(R3) functions such that ε and µ are positive and σ is nonnegative.
The functions ε, µ and σ signify the EM medium parameters in R

3, and are
referred to as the electric permittivity, magnetic permeability and electric
conductivity, respectively. It is assumed that there exist positive constants
ε0 and µ0 such that the inhomogeneous medium

Σ := supp (ε− ε0) ∪ supp (µ− µ0) ∪ supp(σ) (1.1)

is bounded. That is, the inhomogeneity of the EM medium is compactly
supported, and ε0 and µ0 signify the permittivity and permeability of the
uniformly homogeneous background space. We shall also write (Σ; ε, µ, σ) to
signify the inhomogeneous medium. In what follows, we assume that there
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exists a bounded Lipschitz domain D with a connected complement R
3\D

such that Σ ⊂ D. Let Ein and Hin be a pair of EM waves that are C3-valued
entire solutions to the following Maxwell equations

∇∧Ein − iωµ0H
in = 0, ∇∧Hin + iωε0E

in = 0 in R
3, (1.2)

where i :=
√
−1 is the imaginary unit. In the setup of our study, one

sends a pair of incident wave fields (Ein,Hin) to interrogate the inhomo-
geneous medium (Σ; ε, µ, σ), which is a common means in non-destructive
wave probe. The inhomogeneity of the medium perturbs the incident waves
and produces the so-called scattered EM fields. Let (Esc,Hsc) and (E,H) :=
(Ein,Hin) + (Esc,Hsc), respectively, denote the scattered and the total EM
fields. Then the EM scattering is described by the following Maxwell system



















∇∧E(x)− iωµ(x)H(x) = 0, x ∈ R
3,

∇∧H(x) + (iωε(x)− σ(x))E(x) = 0, x ∈ R
3,

lim
|x|→+∞

(Hsc(x) ∧ x− |x|Esc(x)) = 0.

(1.3)

The last limit in (1.3) is known as the Silver-Müller radiation condition and
it holds uniformly in all directions x̂ := x/|x| ∈ S

2. We refer to [16, 17]
for the unique existence of (E,H) ∈ Hloc(curl;R

3)3 to the Maxwell system
(1.3). Particularly, one has the following asymptotics as |x| → +∞ (cf. [7]),

E(x) =Ein(x) +
eiω|x|

|x| AE
∞(x̂;Ein,Hin) +O

(

1

|x|2
)

,

H(x) =Hin(x) +
eiω|x|

|x| AH
∞(x̂;Ein,Hin) +O

(

1

|x|2
)

.

There is the following one-to-one correspondence,

AH
∞(x̂;Ein,Hin) = x̂ ∧AE

∞(x̂;Ein,Hin).

In what follows, we set A∞(x̂) to signify either AE
∞(x̂) or AH

∞(x̂), and it
is known as the far-field pattern or the scattering amplitude. An important
inverse scattering problem arising from scientific and technological applica-
tions is to recover (Σ; ε, µ, σ) by knowledge of A∞(x̂) [6, 7, 13,18,19,24].

In this paper, we are particularly interested in the scenario that one has
A∞(x̂) ≡ 0, which is closely related to a significant engineering applica-
tion, the so-called invisibility cloaking (cf. [9, 10,23]). By Rellich’s Theorem
(cf. [7]), if A∞(x̂;Ein,Hin) ≡ 0, then one has (Esc(x),Hsc(x)) ≡ 0 for
x ∈ R

3\D. That is, in such a case, by sending the interrogating wave fields
(Ein,Hin), one observes no perturbation of the EM wave propagation outside
the target/scattering object (D; ε, µ, σ), and hence the scatterer is invisible
to the outside observer. The invisibility cloaking has received significant
attention in the scientific community in recent years due to its practical im-
portance. Blueprints for achieving invisibility via the use of the artificially
engineered metamaterials were proposed in [11,15,21]. Materials therein are
anisotropic and singular. It is of scientific curiosity and practical importance
to know whether one can achieve the invisibility by regular and isotropic ma-
terials. As an important consequence of our results in the present paper, we
affirm this question with a negative answer when there is a right corner on
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the cloaking device. Indeed, we shall show that for a generic isotropic in-
homogeneous EM medium, if there is a right corner on the support of the
medium, then it scatters every pair of incident EM fields, excluding a possi-
ble class of EM fields of special forms. That is, for every pair of admissible
incident EM fields, the corresponding scattered wave fields associated to
the medium scatterer cannot be identically vanishing outside the inhomoge-
neous medium. The corner scattering result is an immediate consequence of
a stronger result that shall be established in the current article. In fact, we
show the failure of the analytic extension across the corner of certain elec-
tromagnetic fields satisfying the so-called interior transmission eigenvalue
problem in that corner.

This work extends the relevant study in [4] for the acoustic scattering
governed by the Helmholtz equation. It is proved in [4] that if the support
of a generic inhomogeneous acoustic medium has a 90◦ corner in R

n, then
it scatters every incident acoustic wave field. It is further shown in [20] that
under similar conditions, if the support of the acoustic medium has a con-
ical corner (with the exception of a discrete set of opening angles in 3D
under which nothing is known so far) in R

2 or R
3, then it scatters every

incident acoustic wave field. Authors in [8] applied different arguments to
show the similar corner scattering results mentioned above in R

2, as well as
some edge scattering result in R

3. Using the corner scattering result in [4],
the authors in [12] considered the inverse problem on recovering the shape
of an inhomogeneous acoustic medium supported in a polyhedral domain
by a single far-field pattern. The aforementioned acoustic results have been
quantified by providing sharp stability estimates in a recent paper [3]. The
current paper is the first one to deal with the corner scattering for the vec-
torial electromagnetic waves governed by the Maxwell system. Substantial
new challenges arise from the corresponding extension from scalar Helmholtz
equation to the system of Maxwell equations.

Our main results on corner scattering associated with EMwaves are stated
in Section 2. The proofs of the main results are given in Section 3. Our math-
ematical arguments combine the analysis for interior transmission eigenvalue
problems associated to the Maxwell system; the derivation of a novel orthog-
onality relation for the solutions of Maxwell systems; the construction of
complex-geometrical-optics (CGO) solutions for the Maxwell system with
new Lp-estimates (p > 6) on the remainder terms; and the proof of the
non-vanishing property for the Laplace transform of vectorial homogeneous
harmonic polynomials. The structure of our proof is sketched as follows.
The identically vanishing of the far-field pattern can leads to an interior
transmission eigenvalue problem associated to the Maxwell system and this
shall be discussed in Section 2. Based on analysis of the interior transmission
eigenvalue problem, one can derive a certain orthogonality relation for the
solutions of Maxwell systems, and this will be given in Section 3. As trial
functions in the orthogonality identity, we shall construct CGO solutions
for the Maxwell system with new Lp-estimates (p > 6) on the remainder
terms. This shall be crucial in our study. There are several existing results
on the CGO solutions for the Maxwell system [6, 18, 19] using ideas pio-
neered in [22], but only associated with L2-estimates which do not fulfil our
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needs. The new CGO results are stated in Theorem 3.1, and its proof is
given in Section 4. Finally, in order to establish a contradiction based on the
orthogonality relation, we shall need a certain non-vanishing property of the
Laplace transform of vectorial homogeneous harmonic polynomials, and the
corresponding result is stated in Theorem 3.3 and proved in Section 5.

2. Electromagnetic scattering from a penetrable corner

2.1. An interior transmission eigenvalue problem. Throughout the
rest of the paper, for notational simplification, we set

γ := ε+ i
σ

ω
,

and

k := ω
√
µ0ε0. (2.1)

Consider the EM scattering problem (1.1)–(1.3) and assume thatA∞(x̂;Ein,
Hin) ≡ 0. By the Rellich theorem, we know that (Esc(x),Hsc(x)) ≡ 0 for
x ∈ R

3\D. Then, by setting (E0,H0) := (Ein,Hin) and (E−,H−) := (E,H)
in (1.1)–(1.3), one can show that there holds











∇∧E− − iωµH− = 0, ∇∧H− + iωγE− = 0, in D,

∇∧E0 − iωµ0H
0 = 0, ∇∧H0 + iωε0E

0 = 0, in D,

n ∧E− = n ∧E0, n ∧H− = n ∧H0, on ∂D,

(2.2)

where n ∈ S
2 is the exterior unit normal vector to ∂D. The system (2.2) is

known as the interior transmission eigenvalue problem. If there exist non-
trivial pairs (E−,H−) and (E0,H0) fulfilling (2.2), then they are referred to
as the interior transmission eigenfunctions associated with the interior trans-
mission eigenvalue ω. That is, if there is no scattering for (1.1)–(1.3), then
the total wave fields (E,H) and the incident wave fields (Ein,Hin) form the
interior transmission eigenfunctions to (2.2). On the other hand, if the inte-
rior transmission eigenfunctions (E0,H0) to (2.2) can be extended to be a
pair of entire solutions to the Maxwell system (1.2), then using the extended
functions as the incident fields (Ein,Hin), there would be no scattering for
(1.1)–(1.3). However, we shall show that if there is a right corner on the
support of the inhomogeneous medium (D; ε, µ, σ), then the aforementioned
extension cannot hold true, unless (E0,H0) are of a very particular form.
This in turn implies that if there is a right corner on the support of the EM
medium, then it scatters every pair of incident EM fields, excluding a possi-
ble class of EM fields of special forms. Finally, we would like to refer to [5,14]
for the relevant study on the existence of interior transmission eigenvalues
and eigenfunctions for the problem (2.2).

2.2. Statement of the main results. Before stating the main results,
we briefly introduce some preliminary knowledge on real-analytic functions.
The next lemma is a well-known result for solutions to (1.2) (cf. [7]).

Lemma 2.1. Suppose that a non-trivial pair (E0,H0) satisfies (1.2) in a
neighborhood of a certain point x0 ∈ R

3. Then E0 and H0 are (real) analytic
in this neighborhood.
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In what follows, we let α = (α(1), α(2), α(3)) ∈ N
3
0 with N0 := N ∪ {0}

denote a multi-index, and |α| :=∑3
j=1 α

(j). For x = (x(j))3j=1, we define

xα :=

3
∏

j=1

(x(j))α
(j)
. (2.3)

It is recalled that for any real-analytic function, say f(x), around the point
x0 = 0 ∈ R

3, one has the following Taylor series expansion in a neighborhood
of x0,

f(x) =
∑

α∈N3
0,|α|≥0

Cαx
α, (2.4)

where Cα are complex-valued constants depending on x0 and α. Let N0 ∈
N0 be the integer such that Cα = 0 in (2.4), for any multi-index α with
|α| < N0, and Cα0 6= 0 for some |α0| = N0. Then

PN0(x) =
∑

α∈N3
0,|α|=N0

Cαx
α

is said to be the lowest-order homogeneous polynomial of the Taylor series
at x0 = 0 for f , with the lowest-order N0. Given a vector field P, we say
that P is a homogeneous polynomial of order N > 0, if P is not identically
zero, and each Cartesian component of P is either identically zero, or a
homogeneous polynomial of order N , j = 1, 2, 3. The vector field P is called
harmonic if all of its Cartesian components are harmonic.

Definition 2.1. Let V = (V (j))3j=1 be a 3-dimensional analytic function in

a neighborhood of x0 = 0 ∈ R
3. Let P (j) be the lowest-order homogeneous

polynomial of the Taylor series at 0 for V (j), and let Nj be the order of P
(j),

j = 1, 2, 3. Denote

N = min
1≤j≤3

Nj.

Set

P
(j)
N =

{

0 if Nj > N,

P (j) if Nj = N,
j = 1, 2, 3.

Then PN = PN [V] := (P
(j)
N )3j=1 is called the lowest-order homogeneous

polynomial of the Taylor series of V at x0 = 0 with the lowest order NV :=
N .

Definition 2.2. A pair of real-analytic functions (E0,H0) in a neighbor-
hood of x0 = 0 is said to be inadmissible if it fulfils the conditions described
in what follows.

Let P[E0] (resp. P[H0]) be the lowest-order homogeneous polynomial of
the Taylor series of E0 (resp. H0) at x0 = 0, with the lowest order NE0

(resp. NH0). Set N := min{NE0 , NH0}, and

S :=











{E0} if N = NE0 < NH0 ,

{H0} if N = NH0 < NE0 ,

{E0,H0} if N = NE0 = NH0 .

(2.5)

One has N ≥ 1 and moreover,
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(I) if N is odd, then there has for all S ∈ S that

P[S] =
(

x(j) P
(j)
N−1[S](x)

)3

j=1
, (2.6)

where P
(j)
N−1[S], j = 1, 2, 3, are homogeneous polynomials of order

N − 1;
(II) if N is even, then for all S ∈ S,

P[S] =









P
(j)
N−2[S](x)

3
∏

l=1
l 6=j

x(l)









3

j=1

, (2.7)

where P
(j)
N−2[S], j = 1, 2, 3, are homogeneous polynomials of order

N − 2.

Definition 2.3. A single real-analytic function E0 is called inadmissible
if the pair (E0,H0), with H0 := E0, is inadmissible. A pair of or a single
real-analytic function(s) is referred to as admissible if it is not inadmissible.

We are now in a position to state the main results on corner scattering.
Henceforth, we denote by K the positive orthant in R

3, namely

K := {x = (x(j))3j=1 ∈ R
3;x(j) > 0, j = 1, 2, 3}. (2.8)

Theorem 2.1. Consider an EM medium with parameters γ and µ as de-
scribed in Section 1, and assume that γ and µ, possibly after a rigid change
of coordinates, can be represented as

γ = φγχK + ε0, µ = φµχK + µ0, (2.9)

where φγ , φµ ∈ C3
c (R

3) are such that

φγ(0) 6= 0, φµ(0) 6= 0. (2.10)

Moreover, there exists a bounded Lipschitz domain D in R
3 with a connected

complement R3\D such that

D ⊃ supp (γ − ε0) ∪ supp (µ − µ0) (2.11)

and that there exists a neighborhood Nǫ of 0 satisfying

D ∩ Nǫ = K ∩Nǫ =: N+
ǫ . (2.12)

Suppose that there exist nontrivial pairs (E0,H0) and (E−,H−) satisfy-
ing (2.2) in D, and (E0,H0) is admissible; that is, (E0,H0) is not of the
particular type described in Definition 2.2. Then E0 and H0 cannot be si-
multaneously extended into any neighborhood of 0, as solutions to (1.2).

We postpone the proof of Theorem 2.1 to Section 3. In Theorem 2.1,
according to (2.9) and (2.10), at the vertex of the corner K, there are both
jump discontinuities for the EM parameters γ and µ. However, this is not
essential and indeed, the following result can also be obtained and its proof
shall be given in Section 3 as well.
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Theorem 2.2. Suppose that γ is the same as described in Theorem 2.1, and
µ ≡ µ0. Let (E

0,H0) and (E−,H−) be non-trivial solutions satisfying (2.2)
in D, and E0 is admissible as defined in Definition 2.3. Then E0 cannot be
extended into any neighborhood of 0 as an electric solution to (1.2).

Analogously, if γ is identically ε0 while µ is the same as described in
Theorem 2.1, and H0 is not inadmissible. Then H0 cannot be extended into
any neighborhood of 0 as a magnetic solution to (1.2).

As an immediate and important consequence of Theorems 2.1 and 2.2,
we have

Corollary 2.1. Consider an EM scatterer with parameters (γ, µ) satisfying
conditions in Theorem 2.1 or those in Theorem 2.2. Then it scatters every
pair of incident fields (Ein,Hin) that are not of the particular forms described
in Definition 2.2.

It is required in Theorems 2.1 and 2.2 that (E0,H0) is admissible, that is,
E0 and H0 are not of the particular forms described in Definition 2.2. How-
ever, we would like to emphasize that this might be a technicality condition
mainly due to our mathematical arguments. In other words, it is unclear to
us whether if (E0,H0) is inadmissible, then both of them or one of them
can or cannot be extended to be entire solution(s) to the Maxwell system
(1.2) to form a pair of incident waves. The same remark equally holds for
Corollary 2.1. This point is definitely worth of future investigation. More-
over, for plane waves and point waves which are widely used in the EM
scattering theory, both of them are admissible in our theorems as remarked
in the following.

Remark 2.1. It is recalled that one needs to require that N ≥ 1 in Defini-
tions 2.2 and 2.3 for the inadmissible waves. However, for any plane incident
waves of the form

Ein = eikx·dd⊥, Hin =
√

ε0/µ0e
ikx·dd ∧ d⊥, (2.13)

with k := ω
√
ε0µ0, and d,d⊥ ∈ S

2 being perpendicular to each other, one
can easily show that N = 0 in this case and hence they do not belong to
the inadmissible class. Moreover, by virtue of Theorem 2.3 in what follows,
where further characterizations of inadmissible waves are given, one can
show that the following point EM waves,

Ein = ∇∧ (aΦy) , Hin =
1

iωµ0
∇∧∇ ∧ (aΦy) , (2.14)

with y /∈ Nǫ and

Φy(x) :=
eik|x−y|

4π|x− y| , x 6= y, (2.15)

do not belong to the inadmissible class. That is, if there is a right corner
on the support of the inhomogeneous EM medium, then it scatters any
incident fields being plane waves or point waves of the forms (2.13) and
(2.14), respectively.
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2.3. Further characterization of inadmissibility. In Theorems 2.1 and
2.2, we need to require that E0 and H0 are not of the particular form
described in Definition 2.2, that is, they are admissible. Noting that E0

and H0 are solutions to the Maxwell system (1.2), we are able to provide
further characterization of the inadmissibility of (E0,H0) in terms of the
vectorial spherical harmonic expansions. First, we recall some preliminary
knowledge on spherical harmonics by following the presentations in [7, 17].

For integers l ≥ 0 and |m| ≤ l, let Y m
l be the Laplace’s spherical harmonic

given in the spherical coordinates (r, θ, ϕ) by

Y m
l (x̂) = Y m

l (θ, ϕ) =

√

2l + 1

4π

(l − |m|)!
(l + |m|)!P

|m|
l (cos θ)eimϕ, (2.16)

where P
|m|
l is the associated Legendre polynomial. Denote by ∇S the surface

gradient on the sphere S
2. Define

Tm
l (x̂) =

1
√

l(l + 1)
∇SY

m
l (x̂) ∧ x̂, l ≥ 1, |m| ≤ l, (2.17)

Iml (x̂) =
1

√

(l + 1)(2l + 3)

(

∇SY
m
l+1(x̂) + (l + 1)Y m

l+1(x̂)x̂
)

, l ≥ 0, |m| ≤ l+1,

(2.18)
and

Nm
l (x̂) =

1
√

l(2l − 1)

(

−∇SY
m
l−1(x̂) + lY m

l−1(x̂)x̂
)

, l ≥ 1, |m| ≤ l − 1.

(2.19)

Lemma 2.2 ( [7,17]). The family {Y m
l ; l ≥ 0, |m| ≤ l} forms an orthonor-

mal basis of L2(S2), and {Tm
l , I

m
l ,N

m
l ; l,m} is that of L2(S2)3.

For integers l ≥ 0 and m with |m| ≤ l + 1, define the functions

El,m(x) := jl+1(k|x|)Tm
l+1(x̂), (2.20)

and

Hl,m(x) :=− i

ωµ0
∇∧El,m(x)

=− i

√

ε0/µ0√
2l + 3

(√
l + 2 jl(k|x|)Iml (x̂) +

√
l + 1 jl+2(k|x|)Nm

l+2(x̂)
)

,

(2.21)

where k is the number defined in (2.1), and jl, l ≥ 0, are the spherical Bessel
functions given by

jl(t) :=

∞
∑

n=0

(−1)n
(l + n)! 2l

n! (2l + 2n+ 1)!
tl+2n, t ∈ R. (2.22)

Lemma 2.3 ( [17]). Any pair of functions (E0,H0) that satisfies (1.2) in a
neighborhood Nǫ of x0 = 0 can be expanded in Nǫ as a linear combination
of the pairs of functions in

{(El,m,Hl,m), (−µ0/ε0Hl,m,El,m); l ≥ 0, |m| ≤ l + 1},
where for each l ≥ 0 and |m| ≤ l+1, the functions El,m and Hl,m are given
by (2.20) and (2.21), respectively.
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Next we introduce the following two 6-dimensional fields,

(EH)l,m = (El,m,Hl,m) and (HE)l,m = (−µ0/ε0Hl,m,El,m), (2.23)

for all integers l ≥ 0 and |m| ≤ l + 1. Then, we have

Theorem 2.3. A non-trivial pair (E0,H0) satisfies (1.2) in a neighborhood
Nǫ of x0 = 0 ∈ R

3 is of the inadmissible type in Definition 2.2 if and only
if they can be represented in Nǫ as,

E0 = E0 +EH + Ẽ, H0 = H0 +HE + H̃, (2.24)

where

(E0,HE) =

[(l0+1)/2]
∑

m=(l0+1)mod 2

al0,m

(

(EH)l0,2m + (−1)l0(EH)l0,−2m

)

, (2.25)

(EH,H0) =

[(l0+1)/2]
∑

m=(l0+1)mod 2

bl0,m

(

(HE)l0,2m + (−1)l0(HE)l0,−2m

)

, (2.26)

and

(Ẽ, H̃) =
∑

l>l0

∑

|m|≤l+1

(al,m(EH)l,m + bl,m(HE)l,m) , (2.27)

where l0 ≥ 1 and

[(l0+1)/2]
∑

m=(l0+1)mod 2

(

a2l0,m + b2l0,m
)

6= 0. (2.28)

The proof of Theorem 2.3 is a bit lengthy with tedious calculations, and
in order to focus on the corner scattering study, we postpone the proof to
Section 6.

3. Proofs of Theorems 2.1 and 2.2

3.1. Auxiliary results. We first derive an orthogonality identify for solu-
tions to the Maxwell systems as follows.

Lemma 3.1. Let (E0,H0) and (E−,H−) solve (2.2). Then the orthogonality
relation

∫

D
(µ − µ0)H

0 ·H− (γ − ε0)E
0 · E = 0 (3.1)

holds for any (E,H) satisfying

∇∧E− iωµH = 0, ∇∧H+ iωγE = 0 in D. (3.2)

Proof. It is noticed by (3.2) that

iω

∫

D
µH0 ·H− γE0 ·E=

∫

D
H0 · (∇∧E) +E0 · (∇∧H) , (3.3)

and by the Maxwell equations satisfied by E0 and H0 that

iω

∫

D
µ0H

0 ·H− ε0E
0 ·E=

∫

D
H ·

(

∇∧E0
)

+E ·
(

∇∧H0
)

. (3.4)
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Hence, subtracting (3.4) from (3.3), integrating by parts and then applying
the boundary condition in (2.2), one can obtain that

iω

∫

D
(µ − µ0)H

0 ·H− (γ − ε0)E
0 · E

=

∫

∂D
n ·
(

H ∧E0 −E ∧H0
)

=

∫

∂D
n ·
(

H ∧E− −E ∧H−
)

= 0.

(3.5)

The last equality in (3.5) owes to integration by part in combination with
the fact that (E,H) and (E−,H−) both satisfy the Maxwell equations (3.2)
in D.

The proof is complete. �

In what follows, a bounded domain Ω ⊂ R
3 is said to be strong local

Lipschitz if it has a locally Lipschitz boundary (cf. [1]); that is, for every
x ∈ ∂Ω, there exists a neighborhood Mǫ of x such that Mǫ ∩ ∂Ω is the
graph of a Lipschitz continuous function. The next theorem, which shall be
proven in Section 4, is a crucial ingredient for the proof of Theorem 2.1.

Theorem 3.1. Given any bounded domain Ω ⊂ R
3 satisfying the strong

local Lipschitz condition, let γ, µ ∈ C3(Ω) ∩ C0(Ω) be nowhere vanishing in
Ω. Let ζ,η ∈ C

3\{0} be such that ζ · ζ = 0 and ζ · η = 0. For any p > 6,
and any constants cEj , c

H
j , j = 1, 2, that are independent of |ζ|, the Maxwell

system (3.2) admits a solution (E,H) of the form

E = e−ζ·x
(

γ−1/2E0 + Ẽζ,E0

)

, H = e−ζ·x
(

µ−1/2H0 + H̃ζ,H0

)

, (3.6)

where

V0 = cV1 ζ̂ + cV2 (η ∧ ζ̂), (3.7)

with V = E,H. Moreover, there exists some constant δ > 0 such that

‖Ẽζ,E0‖Lp(Ω)3 ≤ C

|ζ|3/p+δ
and ‖H̃ζ,H0‖Lp(Ω)3 ≤ C

|ζ|3/p+δ
. (3.8)

The solutions of the particular forms in (3.6) are referred to as the complex-
geometric-optics (CGO) solutions to the Maxwell system. We proceed to
show that

Theorem 3.2. Let V = E0 or V = H0 where (E0,H0) is the same as in
Lemma 2.1 with x0 = 0. Then V can be written in a neighborhood Nǫ of 0
as

V = PNV
+MNV+1RV, (3.9)

such that

(1) PN is a non-trivial 3-dimensional homogeneous harmonic polyno-
mial of order N , which satisfies

∇ ·PNV
= 0; (3.10)
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(2) MNV+1 is a diagonal matrix:

MNV+1 = diag
(

M
(j)
NV+1

)3

j=1

with M
(j)
NV+1, j = 1, 2, 3, homogeneous polynomials of order not less

than NV + 1;
(3) RV is a 3-dimensional vector fields bounded in Nǫ;
(4) recalling the notation of the set S defined in (2.5), one has

∇∧PNS
= 0, ∀S ∈ S. (3.11)

Proof. Lemma 2.1 shows that each Cartesian component of V is analytic

and hence can be represented as a Taylor series in Nǫ. Let PNV
= (P

(j)
NV

)3j=1

be the lowest-order homogeneous polynomial of the Taylor series of V at
x0 = 0 with the lowest order NV, as is introduced in Definition 2.1. It is
known for each j = 1, 2, 3 that V (j) satisfies in Nǫ the Helmholtz equation
(cf. [7])

∆V (j) + k2V (j) = 0 (3.12)

with k given by (2.1). Then the harmonicity of PNV
is readily seen by [4,

Lemma 2.4].

As for the remainder term MNV+1RV in (3.9), set M
(j)
NV+1 = R

(j)
V = 0

if V (j) − P
(j)
N = 0, j = 1, 2, 3; otherwise let M

(j)
NV+1 be the lowest-order

homogeneous polynomial of V (j) − P
(j)
NV

(whose order might be larger than

NV + 1), and let

R
(j)
V :=

(

V (j) − P
(j)
NV

)

/M
(j)
NV+1, (3.13)

for j = 1, 2, 3. Then RV = (R
(j)
V )3j=1 is bounded in Nǫ and V can be written

in the form (3.9).
Noting that the identities (3.10) and (3.11) trivially hold whenever one

has NV = 0 or V = PNV
, we rule out these two cases in the following

arguments. Notice for small |x| that
(V −PNV

) (x) = O(|x|s+1), s ≥ NV. (3.14)

If (3.10) is not true, then the divergence-free property of V in combination
with the relation (3.14) implies that

∇ ·PNV
(x) = O(|x|s), s ≥ NV, (3.15)

which cannot hold since PNV
(x) = O(|x|NV) for sufficiently small |x|.

Finally for the identity (3.11), we assume without loss of generality that
NE := NE0 ≤ NH := NH0 . If ∇∧PNE

does not vanish identically, then

iωµ0H
0(x) = ∇∧PNE

(x) +∇∧ (MNE+1RE)(x) = O(|x|NE−1), (3.16)

and thus

NH = NE − 1, (3.17)

which contradicts the hypothesis NH ≥ NE.
The proof is complete. �
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Corollary 3.1. The vector field V given in Theorem 3.2 can be also repre-
sented as

V = MNV
Ṽ, (3.18)

where MNV
is a diagonal 3× 3 matrix satisfying the condition (2) in The-

orem 3.2 with the integer NV + 1 replaced by NV, and Ṽ satisfies (3).

In what follows, we let L denote the Laplace transform operator defined
by

L [f ](ζ) :=

∫

K
e−x·ζf(x)dx, (3.19)

where K is the positive orthant given in (2.8). The following theorem is of
crucial importance for our proof of Theorem 2.1, which shall be verified in
Section 5.

Theorem 3.3. Let (E0,H0) be a non-trivial pair which satisfies (1.2) in
a neighborhood of x0 = 0. Let P = PNS

be the nonzero homogeneous har-
monic polynomial given by Theorem 3.2. Then ζ · L [P](ζ) cannot vanish
identically on any open subset of the variety ζ · ζ = 0, unless (E0,H0) is of
the inadmissible type given in Definition 2.2 or equivalently, in Theorem 2.3.

3.2. Proof of Theorem 2.1. Throughout the rest of the paper, we denote
by q′ the Hölder conjugate exponent of any given constant q ∈ R, namely,
q′ ∈ R such that 1/q + 1/q′ = 1.

Proof of Theorem 2.1. We prove Theorem 2.1 by contradiction. Suppose
that (E0,H0) can be extended as a solution to (1.2) into a neighborhood Nǫ

of the corner 0. Then by Theorem 3.2, E0 and H0 can be presented in Nǫ

as

E0 = PNE
+MNE+1RE, H0 = PNH

+MNH+1RH, (3.20)

where PNE
and PNH

are three dimensional vector fields satisfying the con-
dition (1) in Theorem 3.2, MNE+1 and MNH+1 are 3× 3 diagonal matrices
satisfying (2), and RE and RH satisfy (3).

Assume without loss of generality that N := NE ≤ NH. In the rest of
the proof, we shall denote for notational simplicity that PN := PNE

and
MN+1 := MNE+1. Let Ω ⊂ R

3 be a bounded domain containing D and
satisfying the strong local Lipschitz condition. Given any p > 6 and any
ζ,η ∈ C

3\{0} such that ζ ·ζ = 0 and ζ ·η = 0, let (E,H) be a pair of CGO
solutions defined in Theorem 3.1 with the domain Ω ⊃ D, and the constants
cE2 = cHj = 0, j = 1, 2. Then E and H are of the form

E = e−ζ·x
(

γ−1/2E0 + Ẽ
)

, H = e−ζ·xH̃, (3.21)

where

E0 = c1ζ̂, (3.22)

and (Ẽ, H̃) = (Ẽζ,E0 , H̃ζ,H0) satisfies the estimates (3.8) with some constant
δ > 0.

Let γ(0) = ceε0 with ce 6= 0, 1. Denote

γ̃ := γ − ε0, µ̃ := µ− µ0. (3.23)
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Let c0 be the value of γ̃γ−1/2 at x0 = 0, namely,

c0 = (ce − 1)c−1/2
e ε

1/2
0 6= 0. (3.24)

Inserting (3.20) and (3.21) into the orthogonality (3.1) yields,

0 = I0 + I1 + I2 + I3, (3.25)

where Ij, 0 ≤ j ≤ 3, are integrals given respectively by

I0 := c0

∫

N+
ǫ

e−x·ζ E0 ·PN , (3.26)

I1 :=

∫

D\N+
ǫ

γ̃e−x·ζ E0 · (γ−1/2E0 + Ẽ)−
∫

D\N+
ǫ

µ̃e−x·ζ H0 · H̃, (3.27)

I2 :=

∫

N+
ǫ

γ−1/2e−x·ζ E0 ·
(

(γ̃ − c0γ
1/2)PN + γ̃MN+1RE

)

, (3.28)

and

I3 :=

∫

N+
ǫ

γ̃e−x·ζẼ ·E0 −
∫

N+
ǫ

µ̃e−x·ζH̃ ·H0. (3.29)

In what follows, we shall estimate the items in the RHS of (3.25), respec-
tively, and derive a contradiction.

Part I: Estimate of I0.

Denote the variety

U := {ζ ∈ C
3; ζ · ζ = 0}. (3.30)

Given a constant c ∈ (0, 1/
√
6), define

Ũc = {ζ = (ζ(j))3j=1 ∈ C
3; min

j
ℜζ

(j)

|ζ| > c}, (3.31)

and
Uc = U ∩ Ũc ∩ {ζ ∈ C

3; |ζ| > 1}. (3.32)

The arguments in [4] indicate that Uc is a non-empty open subset of U .
Therefore, Theorem 3.3 implies that there exists ζ∗ ∈ Uc such that

ζ∗ · L [E0 ·PN ](ζ∗) 6= 0. (3.33)

We fix ζ∗ and set in the sequel that ζ is always of the form

ζ = |ζ| ζ
∗

|ζ∗| . (3.34)

Let ζ = rζr with r a positive constant. It is noticed that

L [E0 ·PN ](ζ) =

∫

K
e−x·ζ E0 ·PN (x) dx (3.35)

= r−(N+3)

∫

K
e−y·ζr E0 ·PN (y) dy (3.36)

= r−(N+3)
L [E0 ·PN ](ζr). (3.37)

As a consequence, we have for any ζ of the form (3.34) that

|L [E0 ·PN ](ζ)| =
( |ζ∗|

|ζ|

)N+3

|L [E0 ·PN ](ζ∗)| =:
C

|ζ|N+3
, (3.38)

with the constant C depending on N and |ζ∗|.
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For sufficiently large |ζ|, it is verified by [4, Equation (18)] that
∣

∣

∣

∣

∣

∫

x∈K,|x|>ǫ
e−x·ζ E0 ·PN

∣

∣

∣

∣

∣

≤ O
(

e−cǫ|ζ|
)

, (3.39)

which in combination with (3.38) yields

|I0| = O
(

|ζ|−(N+3)
)

. (3.40)

Part II: Estimate of I1.

For x ∈ R
3 in the positive orthant, and ζ ∈ C

3 given in (3.34),

ℜ(x · ζ) = x · ℜζ ≥ |x|min
j

ℜζj > c|ζ||x|. (3.41)

Then, we have

|I1| =
∣

∣

∣

∣

∣

∫

D\Nǫ

γ̃e−x·ζ E0 · (γ−1/2E0 + Ẽ)−
∫

D\Nǫ

µ̃e−x·ζ H0 · H̃
∣

∣

∣

∣

∣

≤
∫

D\Nǫ

e−ℜ(x·ζ)
(∣

∣

∣
γ̃E0 · (γ−1/2E0 + Ẽ)

∣

∣

∣
+
∣

∣

∣
µ̃H0 · H̃

∣

∣

∣

)

≤e−cǫ|ζ|
(

‖γ̃γ−1/2E0 · E0‖L1(D) + ‖Ẽ‖Lp(D)3‖γ̃E0‖Lp′ (D)3

)

+ e−cǫ|ζ|‖H̃‖Lp(D)3‖µ̃H0‖Lp′ (D)3

≤Ce−cǫ|ζ|.

(3.42)

Part III: Estimate of I2.

Notice that

γ̃(0) − c0γ
1/2(0) = 0.

Then by the Taylor series expansion of (γ̃−c0γ1/2) around the corner x0 = 0,
the integral I2 in (3.28) can actually be regarded as

I2 =

∫

N+
ǫ

γ−1/2e−x·ζ E0 ·
(

Q̃N+1F
)

, (3.43)

where Q̃N+1 is a 3× 3 diagonal matrix whose diagonal entries are homoge-
neous polynomials of degree not less than N + 1, and F is bounded in Nǫ

with ǫ ≤ ǫ0.
It is observed by the fundamental calculus that

I2 =

∫

N+
ǫ

γ−1/2e−|ζ|x·ζ̂ E0 ·
(

Q̃N+1F
)

dx

=
1

|ζ|N+4

∫

N|ζ|ǫ

e−y·ζ̂ γ−1/2(y/|ζ|) Q̃N+1(y)F(y/|ζ|) dy.
(3.44)

Thus

|I2| ≤
1

|ζ|N+4
‖γ−1/2F‖L∞(N+

ǫ0
)3

∫

K
e−y·ℜζ̂

∣

∣

∣Q̃
N+1(y)

∣

∣

∣ dy

≤ C

|ζ|N+4
,

(3.45)
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where the integral term in (3.45) is bounded since we have

y · ℜζ̂ ≥ τ |y|. (3.46)

Part IV: Estimate of I3.

We write
E0 = MNE

ẼP , H0 = MNH
H̃P , (3.47)

as in (3.18), where ẼP and H̃P are bounded in Nǫ for ǫ ≤ ǫ0, and MNE
and

MNH
are 3×3 diagonal matrices satisfying the condition (2) in Theorem 3.2

with integers NE and NH, respectively. Then

|I3| =
∣

∣

∣

∣

∫

N+
ǫ

γ̃e−x·ζẼP ·MNE
Ẽ−

∫

N+
ǫ

µ̃e−x·ζH̃P ·MNH
H̃

∣

∣

∣

∣

≤‖γ̃ẼP ‖L∞(N+
ǫ0
)3

∫

N+
ǫ

∣

∣

∣
e−x·ζ MNE

Ẽ

∣

∣

∣

+ ‖µ̃H̃P ‖L∞(N+
ǫ0
)3

∫

N+
ǫ

∣

∣

∣
e−x·ζ MNH

H̃

∣

∣

∣

:=‖γ̃ẼP ‖L∞(N+
ǫ0
)3I

E
3 + ‖µ̃H̃P ‖L∞(N+

ǫ0
)3I

H
3 .

(3.48)

Applying the similar strategy as in (3.44) and (3.45), we have

IE3 =
1

|ζ|N+3

∫

N|ζ|ǫ

∣

∣

∣
e−y·ζ̂ MNE

(y)Ẽ(y/|ζ|)
∣

∣

∣
dy

≤ ‖FE‖Lp′

|ζ|N+3
‖Ẽ(·/|ζ|)‖Lp(N|ζ|ǫ)3

=
‖FE‖Lp′

|ζ|N+3−3/p
‖Ẽ‖Lp(N+

ǫ )3 ,

(3.49)

where the function FE is given by FE(x) := e−x·ζ̂ MNE
(x), and the associ-

ated Lp′ norm is taken on the whole positive orthant. Similarly,

IH3 ≤ C

|ζ|NH+3−3/p
‖H̃‖Lp(N+

ǫ )3 , (3.50)

Therefore, applying the estimates (3.8) for Ẽ and H̃, and noting that NH ≤
NE = N , we obtain

|I3| ≤
C

|ζ|N+3+δ
. (3.51)

Summing up the above estimates, we arrive at

I1 + I2 + I3 ≤ o

(

1

|ζ|N+3

)

, (3.52)

which, however, is a contradiction to (3.40) and (3.25).
The proof is complete. �

Proof of Theorem 2.2. Assume, for example, µ ≡ µ0. Then the orthogonal-
ity (3.1) reduces to

∫

D
(γ − ε0)E

0 · E = 0. (3.53)

Following the same arguments, but only with E, γ and other related fields, as
in the proof of Theorem 2.1, one can prove the statement in Theorem 2.2. �
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4. Construction of CGO solutions

The current section aims at proving Theorem 3.1.

4.1. A matrix representation of the Maxwell equations. Throughout
this section, we let the functions γ, µ and the domain Ω be the same as in
Theorem 3.1. We shall apply the 8×8 matrix form of the Maxwell equations

∇∧E− iωµH = 0, ∇∧H+ iωγE = 0. (4.1)

as that in [6], which was originally introduced by Ola and Somersalo in [19]
and shall be further discussed in what follows.

Define the matrix (differential) operator P∓ by

P
∓(ξ) =

(

0 P−(ξ)
P+(ξ) 0

)

, (4.2)

with

P
+(ξ) =

(

0 ξ·
ξ ξ∧

)

and P
−(ξ) =

(

0 ξ·
ξ −ξ∧

)

, (4.3)

for a 3-dimensional field ξ. We also denote

P
∓(ξ,η) =

(

0 P−(ξ)
P+(η) 0

)

and P
±(ξ,η) =

(

0 P+(ξ)
P−(η) 0

)

.

(4.4)

Remark 4.1. It is noticed that

P
∓(∇)2 = ∆I8, (4.5)

and that

P
±(ξ,η)P∓(η, ξ) = diag (ξ · ξ,η · η)

:= diag
(

(ξ · ξ)I4, (η · η)I4
)

.
(4.6)

For an 8-dimensional field X , we next consider the matrix differential
operator equation

(

P
∓(∇) + Vµ,γ

)

X = 0, (4.7)

where the 8× 8 matrix Vµ,γ is defined by

Vµ,γ =









iωµ 0 0 ∇α·
0 iωµI3 ∇α 0
0 ∇β· iωγ 0
∇β 0 0 iωγI3









, (4.8)

with
α := log γ and β := log µ. (4.9)

Throughout the rest of the paper, a 8-dimensional vector X is also denoted
by

X =
(

X h, (XH)T ,X e, (XE)T
)T

, (4.10)

with the scalar fieldsX h and X e, and the 3-dimensional vector fields XH,XE.
It was proved that (cf. [19] and [6]),

Lemma 4.1. Let Ω be any bounded domain in R
3. For any 8-dimensional

field X solving (4.7) in Ω, if X h = X e = 0, then E := XE and H := XH

satisfy in Ω the Maxwell equations (4.1).
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We shall also need the field

Y = diag
(

µ1/2, γ1/2
)

X , (4.11)

and the following result from [6].

Lemma 4.2. X satisfies (4.7) if and only if Y satisfies
(

P
∓(∇) +Wµ,γ

)

Y = 0, (4.12)

where

Wµ,γ = iκI8 +
1

2
P

±(∇α,∇β), (4.13)

with κ := ω(γµ)1/2.

Remark 4.2. For the subsequent use, we remark that one can directly verify
that

∇κ =
1

2
κ(∇α+∇β), (4.14)

where κ is introduced in Lemma 4.2 and α, β are defined in (4.9).

Proposition 4.1. Define

W ′
µ,γ = iκI8 +

1

2
P

±(∇β,∇α). (4.15)

Let Z be a 8-dimensional field such that
(

P
∓(∇)−W ′

µ,γ

)

Z = Y. (4.16)

Then Y solves (4.12) if and only if Z satisfies

(−∆I8 +Qµ,γ)Z = 0, (4.17)

where

Qµ,γ =− κ2I8 +
1

4
diag

(

∇α · ∇α, ∇β · ∇β
)

+
1

2
P

∓(∇α,∇β)P
±(∇β,∇α) + i

(

P
±(∇κ) + P

∓(∇κ)
)

(4.18)

is compactly supported.

Remark 4.3. The 8× 8 matrix Qµ,γ has the form

Qµ,γ = diag(Qµ,γ) + 2i









0 0 0 ∇κ·
0 0 ∇κ 0
0 ∇κ· 0 0
∇κ 0 0 0









, (4.19)

since

P
∓(∇α,∇β)P

±(∇β,∇α)
=diag(∆α, 2∇α(∇α·)−∆αI3, ∆β, 2∇β(∇β·)−∆βI3).

(4.20)

Proposition 4.1 can be easily verified by using the following lemma.

Lemma 4.3. One has
(

P
∓(∇) +Wµ,γ

) (

P
∓(∇)−W ′

µ,γ

)

= ∆I8 −Qµ,γ , (4.21)

and
(

P
∓(∇)−W ′

µ,γ

) (

P
∓(∇) +Wµ,γ

)

= ∆I8 −Q′
µ,γ , (4.22)
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where Qµ,γ is the same as in Proposition 4.1, and Q′
µ,γ is defined by

Q′
µ,γ =− κ2I8 +

1

4
diag

(

∇β · ∇β, ∇α · ∇α
)

− 1

2
P

∓(∇β,∇α)P
±(∇α,∇β) + i

(

P
±(∇κ)− P

∓(∇κ)
)

.

(4.23)

Remark 4.4. The 8× 8 matrix Q′
µ,γ has the form

Q′
µ,γ = diag(Q′

µ,γ) + 2i









0 0 0 0
0 0 0 ∇κ∧
0 0 0 0
0 −∇κ∧ 0 0









. (4.24)

Proof of Lemma 4.3. The proof can actually be found in [6]. However, for
the convenience of readers, we provide a more elementary and straightfor-
ward proof. In what follows, for national simplicity, the subscript µ, γ of
Wµ,γ , W ′

µ,γ and Q′
µ,γ are omitted.

It is directly verified that

κP∓(∇)− P
∓(∇)(κI8) = −P

∓(∇κ), (4.25)

where the equality is understood in the operator sense. We also claim that

P
±(∇α,∇β)P∓(∇)− P

∓(∇)P±(∇β,∇α)
=− P

∓(∇α,∇β)P
±(∇β,∇α),

(4.26)

whose verification will be shown right after the current proof of Lemma 4.3.
Hence, we obtain

WP
∓(∇)− P

∓(∇)W ′

=i
[

κP∓(∇)− P
∓(∇)(κI8)

]

+
1

2

[

P
±(∇α,∇β)P∓(∇)− P

∓(∇)P±(∇β,∇α)
]

=− 1

2
P

∓(∇α,∇β)P
±(∇β,∇α) − iP

∓(∇κ).
(4.27)

Moreover, it is computed by noting (4.6) and (4.14) that

WW ′ =

(

iκI8 +
1

2
P

±(∇α,∇β)
)(

iκI8 +
1

2
P

±(∇β,∇α)
)

=− κ2I8 +
1

4
diag(∇α · ∇α,∇β · ∇β) + iP

±(∇κ).
(4.28)

The identity (4.21) is then shown by (4.27), (4.28) and (4.5). Similarly, we
have

W ′W =− κ2I8 +
1

4
diag(∇β · ∇β,∇α · ∇α) + iP

±(∇κ). (4.29)

Thus, (4.22) can be seen from that

Q′ =W ′W −
(

P
∓(∇)W −W ′

P
∓(∇)

)

=W ′W + i

[

κP∓(∇)− P
∓(∇)(κI8)

]

+
1

2

[

P
±(∇β,∇α)P∓(∇)− P

∓(∇)P±(∇α,∇β)
]

=W ′W − iP
∓(∇κ)− 1

2
P

∓(∇β,∇α)P
±(∇α,∇β).

(4.30)
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�

Proof of the equation (4.27). Let Z be any 8-dimensional vector of the form
Z = (φ,HT , ψ,ET )T . Then

P
∓(∇)Z =









∇ ·E
∇ψ −∇ ∧E

∇ ·H
∇φ+∇∧H









, (4.31)

and hence

P
±(∇α,∇β)P∓(∇)Z =









0 0 0 ∇α·
0 0 ∇α ∇α∧
0 ∇β· 0 0
∇β −∇β∧ 0 0

















∇ · E
∇ψ −∇ ∧E

∇ ·H
∇φ+∇∧H









=DZ +









∇α · ∇φ
∇α ∧∇φ
∇β · ∇ψ

−∇β ∧∇ψ









,

(4.32)

with

DZ =









∇α · (∇ ∧H)
(∇ ·H)∇α+∇H(H · ∇α)− (∇α · ∇)H

−∇β · (∇∧E)
(∇ · E)∇β +∇E(E · ∇β)− (∇β · ∇)E









, (4.33)

by noting for any 3-dimensional fields v and F that

v ∧ (∇∧ F) = ∇F(v · F)− (v · ∇)F, (4.34)

where the subscript F in ∇F means that the differential operator acts only
on F. Similarly, we have that

P
±(∇β,∇α)Z =









E · ∇β
ψ∇β −E ∧ ∇β

H · ∇α
φ∇α+H ∧ ∇α









, (4.35)

and thus by applying the identities

∇(F · ∇v) = (F · ∇)∇v +∇F(F · ∇v), (4.36)

∇∧ (vF) = ∇v ∧ F+ v∇∧ F, (4.37)

∇ · (F ∧ v) = v · (∇ ∧F)− F · (∇∧ v), (4.38)

and

∇∧ (F ∧ v) = (∇ · v)F + (v · ∇)F− (∇ · F)v − (F · ∇)v, (4.39)

that

P
∓(∇)P±(∇β,∇α)Z =DZ +









∇α · ∇φ+ φ∆α
2(H · ∇)∇α+∇α ∧∇φ−H∆α

∇β · ∇ψ + ψ∆β
2(E · ∇)∇β −∇β ∧ ∇ψ −E∆β









.

(4.40)
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Therefore
(

P
±(∇α,∇β)P∓(∇)− P

∓(∇)P±(∇β,∇α)
)

Z

=









−φ∆α
H∆α− 2(H · ∇)∇α

−ψ∆β
E∆β − 2(E · ∇)∇β









= −
(

P
∓(∇α,∇β)P

±(∇β,∇α)
)

Z.

(4.41)

�

4.2. Results on the 8-dimensional Schördinger system (4.17). We
first extend the definition of the functions µ and γ in Theorem 3.1 from
Ω into the whole space R

3, as guaranteed by the following lemma (cf. [1,
Theorem 5.24]).

Lemma 4.4. Given Ω ⊂ R
3 a domain satisfying the strong local Lipschitz

condition, there exists a bounded linear extension operator

E : Wp(Ω) → Wp(R
3), (4.42)

for every p ∈ R, 1 ≤ p <∞, and every integer m, such that

E u = u a.e. in Ω, ∀u ∈ Wp(Ω). (4.43)

Moreover, we assume, possibly after multiplying a C∞
c (R3) function which

equals to 1 in Ω, that E u is compactly supported in R
3. For notational

simplicity, we still write the extended E µ and E γ as µ and γ, respectively.
In addition, all the fields used in Section 4.1 associated with µ and γ, such
as Qµ,γ and Wµ,γ , are correspondingly compactly extended to R

3\Ω.
Given s ∈ R and 1 ≤ q ≤ ∞, we shall make use of the generalized Sobolev

space H s
q defined by (cf. [2])

H
s
q = {f ∈ S

′; ‖f‖H s
q
<∞}, (4.44)

with the norm

‖f‖H s
q
= ‖F−1{(1 + | · |2)s/2Ff}‖Lq , (4.45)

where F and F−1 denotes the Fourier transform and its inverse operator,
respectively.

Recall that for m ∈ N a positive integer, H m
q is equivalent to the normal

Sobolev space W m
q , namely,

H
m
q = W

m
q , m ∈ N. (4.46)

Moreover, one has in R
n the following embedding theorem (cf. [2, Theorem

6.5.1])

H
s
q ⊂ H

s1
q1 , (4.47)

where 1 < q < q1 <∞ and s, s1 ∈ R are such that

s− n/q = s1 − n/q1. (4.48)

The main contribution of the current subsection is the following result.
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Proposition 4.2. Let s ∈ [0, 2], q ∈ [4, 6), Z0 ∈ C
8 and ζ ∈ C

3 with
ζ · ζ = 0. Suppose that |ζ| is sufficiently large. Then there exists a CGO
solution to

(−∆I8 +Qµ,γ)Z = 0, (4.49)

which is of the form

Z = e−ζ·x
(

Z0 + Z̃ζ,Z0

)

, (4.50)

such that

‖Z̃‖H s
q
≤ C|Z0|

|ζ|6/q−1
‖Qµ,γẐ0‖H s

q′
. (4.51)

To prove Proposition 4.2, the following lemma extracted from [20, Propo-
sition 3.3] is of important use.

Lemma 4.5. Let s ∈ R, q ∈ [4, 6] and ζ ∈ C
3\R3. Then for any f ∈

H s
q′ (R

3), there exists a solution ψ ∈ H s
q (R

3) to

(∆ + 2ζ · ∇)ψ = f, (4.52)

which satisfies

‖ψ‖H s
q
≤ C

|ℑζ|6/q−1
‖f‖H s

q′
. (4.53)

Lemma 4.6. Let s and q be real numbers such that s > 0 and q ≥ 2. Denote
q̃ := q/(q− 2). Given an 8× 8-matrix field Q with H s

q̃ regularity, define the
multiplier MQ on any 8-dimensional vector field F by

MQF := QF . (4.54)

Then MQ is continuous from H s̃
q to H s̃

q′ for any s̃ ∈ [0, s].

Proof. The proof follows the idea in the proof of [20, Proposition 3.5], which
shows the similar result but for the scalar case with s ∈ [0, 1].

Define the operator M by

M (Q̃,F) := Q̃F
for any 8× 8-matrix field Q̃ and any 8-dimensional vector field F . Then

M (Q,F) = MQF . (4.55)

Let n0 := [s] + 1 ≥ 1. We claim that

M : H
n
q̃ × H

n
q → H

n
q′ ,

is continuous for any n ∈ N0 such that n ≤ n0. In fact, the case for n = 0 is
immediately implied by the following inequality given in [20, Page 13],

‖Q̃F‖Lq′
≤ ‖Q̃‖Lq̃

‖F‖Lq .

The assertion for any n ≤ n0 can be then verified by induction with the
simple relation

∇(f1f2) = f2∇f1 + f1∇f2.
By [2, Theorem 4.4.1], a result for the interpolation spaces, one further has

M : H
s̃
q̃ × H

s̃
q → H

s̃
q′ ,

is also continuous for any s̃ ∈ R with 0 ≤ s̃ ≤ n0. The proof can then be
completed by recalling the relation (4.55). �
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Lemma 4.7. Let the domain Ω ⊂ R
3 be bounded and satisfy the strong

local Lipschitz condition, and let µ, γ ∈ Cm+1(Ω). Then the extended 8 × 8
matrices Qµ,γ and W ′

µ,γ are in H s
p with 0 ≤ s ≤ m and 1 < p <∞.

Proof. It is an application of the embedding (4.47). �

Proof of Proposition 4.2. For Z given in (4.50) solving (4.49), it can be de-

rived that Z̃ = Z̃ζ,Z0 satisfies

(∆ + 2ζ · ∇) Z̃ = Qµ,γ

(

Z0 + Z̃
)

. (4.56)

Indeed, denoting by Gζ the solution operator of (4.52) introduced in Lemma 4.5,
the equation (4.56) can be achieved by

(I8 − GζQµ,γ)Z̃ = GζQµ,γZ0. (4.57)

Notice by Lemmas 4.5 and 4.6 that,

‖GζQµ,γF‖H s
q
≤ C

|ζ|6/q−1
‖Qµ,γF‖H s

q′
≤ C

|ζ|6/q−1
‖F‖H s

q
(4.58)

holds for any 8-dimensional fields F with H s
q regularity. Hence by taking

ζ ∈ C
3 with |ζ|6/q−1 > C, we can obtain by Neumann series that

‖Z̃‖H s
q
≤ Cq|Z0|

|ζ|6/q−1
‖Qµ,γẐ0‖H s

q′
. (4.59)

�

The following result is a consequence of Proposition 4.2 by taking specific
values of Z0.

Corollary 4.1. Let ζ, q and s be the same as in Proposition 4.2, and let
η ∈ C

3 be such that η · ζ = 0. Given four constants cEj , c
H
j ∈ R, j = 1, 2, set

Z0 = − 1

|ζ|
(

cE1 , −cE2 ηT , cH1 , c
H
2 ηT

)T
. (4.60)

Then

− P
∓(ζ)Z0 =

(

0, cH1 ζ̂T + cH2 (η ∧ ζ̂)T , 0, cE1 ζ̂
T + cE2 (η ∧ ζ̂)T

)T
. (4.61)

Moreover, let the constants cEj , c
H
j , j = 1, 2, be independent of |ζ|. Then

there exists a CGO solution to (4.49) of the form (4.50) such that

‖Z̃‖H s
q
≤ C

|ζ|6/q ‖Qµ,γẐ0‖H s
q′
. (4.62)

4.3. Proof of Theorem 3.1.

Proposition 4.3. Let ζ, Z, Z̃ and Z0 be the same as in Proposition 4.2.
Define the 8-dimensional field Y by

Y =
(

P
∓(∇)−W ′

µ,γ

)

Z. (4.63)

Then Y has the form

Y = e−ζ·x
(

Y0 + Ỹ
)

, (4.64)

with
Y0 = −P

∓(ζ)Z0, (4.65)
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and

Ỹ = P
∓(∇)Z̃ − P

∓(ζ)Z̃ −W ′
µ,γ(Z̃ + Z0). (4.66)

Moreover, for sufficiently large |ζ|, one has

Yh = Ye = 0, (4.67)

provided
(

P
∓(ζ)Z0

)h
=
(

P
∓(ζ)Z0

)e
= 0, (4.68)

where the notations are similar as the ones in (4.10).

Proof. Inserting the form (4.50) of Z into the definition (4.63) of Y, it is
directly obtained that Y has the form (4.64)-(4.66).

Notice by the identities (4.49) and (4.21) that Y is a solution to
(

P
∓(∇) +Wµ,γ

)

Y = 0, (4.69)

and further by (4.22) that Y solves
(

∆I8 −Q′
µ,γ

)

Y = 0. (4.70)

Hence by recalling (4.24), the first and the fifth components of Y satisfy

(−∆+ qβ)Yh = (−∆+ qα)Ye = 0, (4.71)

where the compactly supported potentials qα and qβ are given by

qτ =
1

4
∇τ · ∇τ − 1

2
∆τ − κ2, τ = α, β. (4.72)

Then it is observed by (4.68) that Yh
0 = Ye

0 = 0, and consequently that,

Yτ = e−ζ·x
(

Yτ
0 + Ỹτ

)

= e−ζ·xỸτ , τ = h, e. (4.73)

Further applying (4.71), Ỹh solves

(∆ + 2ζ · ∇)Ỹh = qβỸh. (4.74)

Recalling the solution operator Gζ of (4.52), the equation for Ỹh can be
further expressed by

(I8 − Gζqβ)Ỹh = Ỹh. (4.75)

It can be obtained by similar arguments as in the proof of Proposition 4.2
that the operator (I8 − Gζqβ) is invertible for large |ζ|. Therefore we de-

duce that Ỹh = 0 and hence Yh = 0. The assertion Ye = 0 can be shown
analogously.

The proof is complete. �

Remark 4.5. Notice that

P
∓(ζ)Z0 =









ζ · ZE
0

Ze
0ζ − ζ ∧ ZE

0

ζ · ZH
0

Zh
0 ζ + ζ ∧ ZH

0









. (4.76)

Then the condition (4.68) reads

ζ · ZE
0 = ζ · ZH

0 = 0. (4.77)
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Corollary 4.2. Let ζ, Z and Z0 be the same as in Proposition 4.2, and let
Y be the one defined by (4.63). Define

X := diag
(

µ−1/2, γ−1/2
)

Y in Ω. (4.78)

Suppose that Z0 satisfies (4.77). Then X h = X e = 0, and further by Lemma 4.1,
E := XE and H := XH satisfy the Maxwell equations (4.1) in Ω.

We are now ready to prove Theorem 3.1.

The proof of Theorem 3.1. Let Z0 be the constant 8-dimensional vector de-
fined in (4.60). Then Z0 clearly satisfies (4.77). Hence by Corollary 4.2,

E := γ−1/2YE and H := µ−1/2YH solve the Maxwell equations (3.2), with
the 8-dimensional field Y given by (4.64)-(4.66). More precisely, E and H

have the form (3.6) with

E0 = YE
0 , H0 = YH

0 , (4.79)

and

Ẽζ,E0 = γ−1/2ỸE, H̃ζ,H0 = µ−1/2ỸH. (4.80)

Then (3.7) is obtained by recalling (4.65) and (4.61).
It remains to verify the estimates in (3.8). Taking q ∈ [4, 6) and s ∈

(0, 3/q), Corollary 4.1 implies

‖P∓(∇)Z̃‖H s
q
≤ C

|ζ|6/q ‖Qµ,γẐ0‖H
s+1
q′

, (4.81)

and

‖P∓(ζ)Z̃‖H s
q
≤ C

|ζ|6/q−1
‖Qµ,γẐ0‖H s

q′
. (4.82)

Moreover, recalling by Lemma 4.7 that W ′
µ,γ ∈ H 2

q , we have

‖W ′
µ,γZ̃‖H s

q
≤ CW‖Z̃‖H s

q
≤ C

|ζ|6/q , (4.83)

and

‖W ′
µ,γZ0‖H s

q
=

C

|ζ| ‖W
′
µ,γẐ0‖H s

q
≤ C

|ζ| . (4.84)

Therefore one has by (4.66) that

‖Ỹ‖H s
q
≤ C

|ζ|6/q−1
, (4.85)

with |ζ| sufficiently large. Then the Sobolev embedding H s
q ⊂ Lp for

3/p = 3/q − s

in dimension three yields,

‖Ỹ‖Lp ≤ C

|ζ|3/p+(3/q+s−1)
. (4.86)

For any t ∈ (0, 1), set

s = 3/q − t (6/q − 1) , (4.87)

then

p =
3

t (6/q − 1)
(4.88)



EM SCATTERING FROM A PENETRABLE CORNER 25

can take any number in (6,∞) by proper choices of values for t ∈ (0, 1) and
q ∈ [4, 6). Hence the relation (4.86) can be reformulated as

‖Ỹ‖Lp ≤ C

|ζ|3/p+δ
, (4.89)

with

δ = 3/q + s− 1 = (1− t) (6/q − 1) > 0. (4.90)

Finally, the estimates in (3.8) can be achieved by noting the inequality

‖Ẽζ,E0‖Lp ≤ C‖γ‖L∞‖ỸE‖Lp (4.91)

for Ẽζ,E0 and the analogous one for H̃ζ,H0 .
The proof is complete. �

5. Non-vanishment of the Laplace transform

5.1. Preliminaries. We first fix some notations. Let η ∈ C
3 and let α =

(αj)
3
j=1 be a 3-dimensional multi-index. The factorial α! is given by

α! =

3
∑

j=1
α(j) 6=0

α(j)!. (5.1)

Recall the scalar ηα is defined in (2.3). Particularly, η1 and η2 are respec-
tively the products

η1 =

3
∏

j=1

η(j) and η2 =

3
∏

j=1

(

η(j)
)2
. (5.2)

The following definition of 1
η
shall also be needed,

1

η
:=

(

1

η(j)

)3

j=1

. (5.3)

We define

x

η
:=

(

x(j)

η(j)

)3

j=1

, (5.4)

for any 3-dimensional fields x = (x(j))3j=1. Given j = 1, 2, 3, xĵ signifies the

3-dimensional vector x with the j-th Cartesian component x(j) = 0.
Let PN be a 3-dimensional homogeneous polynomial of degree N . Then

PN = (P
(j)
N )3j=1 can be represented as

P
(j)
N (x) =

∑

|α|=N

p
(j)
α xα, j = 1, 2, 3. (5.5)

By straightforward (though a bit tedious) calculations, one can show the
following proposition.

Proposition 5.1. Some relations on the coefficients of PN are in order.
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i) If the polynomial is divergence-free, namely

∇ ·PN ≡ 0, (5.6)

then one has

3
∑

j=1

∑

|α|=N

α(j)≥1

α(j) p
(j)
α xα−ej ≡ 0,

(5.7)

or equivalently,

3
∑

j=1

p
(j)
β+ej

(β(j) + 1) = 0, ∀|β| = N − 1. (5.8)

ii) If the polynomial is curl-free, namely

∇∧PN ≡ 0, (5.9)

then one has
∑

|α|=N

α(l)≥1

α(l) p
(j)
α xα−el −

∑

|α|=N

α(j)≥1

α(j) p
(l)
α xα−ej ≡ 0.

(5.10)

In other words, for any 3-dimensional index β such that |β| = N−1,
there must hold

(β(l) + 1)p
(j)
β+el

= (β(j) + 1)p
(l)
β+ej

, j, l = 1, 2, 3. (5.11)

iii) The polynomial PN is harmonic if and only if

3
∑

l=1

∑

|α|=N

α(l)≥2

α(l) (α(l) − 1) p
(j)
α xα−2el ≡ 0.

(5.12)

If N ≥ 2, then for any 3-dimensional index β such that |β| = N−2,
there must hold

3
∑

l=1

(β(l) + 1)(β(l) + 2)p
(j)
β+2el

= 0, j = 1, 2, 3. (5.13)

In the following, we let the complex scalar function L (l)[P
(j)
N ] be defined

by

L
(l)[P

(j)
N ](ζ) :=

∫

x(l)=0
x
l̂
>0

e−x·ζP
(j)
N (x) dϑl, j, l = 1, 2, 3, (5.14)

where dϑl signifies the sigma measure of the plane defined by {x ∈ R
3;x(l) =

0 and xl̂ > 0}. Then, one has

Lemma 5.1.

L
(l)[P

(j)
N ](ζ) =

∑

|α|=N

α(l)=0

p
(j)
α α!

1

ζαl̂
+1

l̂

, j, l = 1, 2, 3.
(5.15)
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Proof. Notice that

P
(j)
N (xl̂) =

∑

|α|=N

α(l)=0

p
(j)
α xα, j, l = 1, 2, 3. (5.16)

Then

L
(l)[P

(j)
N ](ζ) =

∫

x(l)=0
x
l̂
>0

e−x·ζP
(j)
N (x) dϑl

=
1

ζ1l̂

∫

y(l)=0
y
l̂
>0

e−y
l̂
·1 P

(j)
N (

yl̂

ζ
) dϑl(y)

=
1

ζ1l̂

∑

|α|=N

α(l)=0

1

ζαl̂
p(j)α

∫

y(l)=0
y
l̂
>0

e−y
l̂
·1 yα dϑl(y)

=
∑

|α|=N

α(l)=0

p
(j)
α α!

1

ζαl̂
+1

l̂

.

(5.17)

�

5.2. Proof of Theorem 3.3. Applying the divergence-free relation (5.6),
one has

L [ζ ·PN ](ζ) =−
∫

K
PN (x) · ∇e−x·ζ + e−x·ζ∇ ·PN (x) dx

=

3
∑

j=1

∫

x(j)=0
x
ĵ
>0

e−x·ζP
(j)
N (x) dϑj

=

3
∑

j=1

L
(j)[P

(j)
N ](ζ),

(5.18)

and hence by Lemma 5.1,

L [ζ ·PN ](ζ) =

3
∑

j=1

∑

|α|=N

α(j)=0

p
(j)
α α!

1

ζ
α

ĵ
+1

ĵ

. (5.19)

Let

ρ :=
1

ζ
. (5.20)

Then

L [ζ ·PN ](ζ) = I [PN ](ρ), (5.21)

with

I [PN ](ρ) :=

3
∑

j=1

∑

|α|=N

α(j)=0

p
(j)
α α!ρα

ĵ
+1

ĵ (5.22)

a homogeneous polynomial of degree N + 2.
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Proposition 5.2. If N ≥ 1, and PN is such that

P
(j)
N = x(j)P

(j)
N−1, j = 1, 2, 3, (5.23)

with P
(j)
N−1, j = 1, 2, 3, homogeneous polynomials of order N − 1, that is,

p(j)α = 0, for all |α| = N , α(j) = 0 and j = 1, 2, 3, (5.24)

then one has

I [PN ](ρ) = 0, ∀ρ ∈ C
3. (5.25)

Proof. This can be readily seen by (5.22). �

The following two Theorems suffice to guarantee Theorem 3.3.

Theorem 5.1. For a given odd number N , I [PN ](ρ) can be divided by

σ(ρ) :=

3
∑

j=1

ρ
2
ĵ , (5.26)

if and only if (5.24) holds true.

Theorem 5.2. For a given even number N , I [PN ](ρ) can be divided by
σ(ρ) in (5.26) if and only if the polynomial PN in (5.21) has the form

PN (x) =
(

x
1
ĵP

(j)
N−2

)3

j=1
, (5.27)

where PN−2 = (P
(j)
N−2)

3
j=1 is a homogeneous polynomial of order N − 2.

5.3. Proofs of Theorems 5.1 and 5.2.

Proof of Theorem 5.1. One side of the assertion is just Proposition 5.2. We
shall show in the rest of the proof that, I [PN ](ρ) being dividable by σ(ρ)
implies (5.24).

Assume that I [PN ](ρ) is dividable by σ(ρ). Then one has

I [PN ](ρ) = σ(ρ)C(ρ), (5.28)

where

C(ρ) :=

N−2
∑

l=0

(

ρ(3)
)N−l−2

Cl(ρ3̂) (5.29)

is a homogeneous polynomial of degree N − 2 with

Cl(ρ3̂) =

l
∑

j=0

cl,j

(

ρ(1)
)j (

ρ(2)
)l−j

, 0 ≤ l ≤ N − 2. (5.30)

Write

σ(ρ) =
(

ρ(3)
)2
σ2(ρ3̂) + σ4(ρ3̂) (5.31)

with

σ2(ρ3̂) =
(

ρ(1)
)2

+
(

ρ(2)
)2

and σ2(ρ3̂) =
(

ρ(1)
)2 (

ρ(2)
)2
. (5.32)
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It is straightforwardly derived that

σ(ρ)C(ρ) =
(

ρ(3)
)N

σ2C0 + σ4C
N−2 +

(

ρ(3)
)N−1

σ2C1 + ρ(3)σ4CN−3

+

N−2
∑

l=2

(

ρ(3)
)N−l

(σ2Cl + σ4Cl−2) .

(5.33)

Write

I [PN ](ρ) =
2
∑

j=1

∑

|α|=N

α(j)=0

p
(j)
α α!

(

ρ(j+)
)α(j+)+1 (

ρ(3)
)α(3)+1

+
∑

|α|=N

α(3)=0

p
(3)
α α!

(

ρ(1)
)α1+1 (

ρ(2)
)α2+1

=:I [PN ]3̂(ρ3̂) +

N
∑

l=0

(

ρ(3)
)N−l+1

2
∑

j=1

p̂
(j)
l+1

(

ρ(j)
)l+1

,

(5.34)

with the notation

j+ :=

{

1, if j = 2,
2, if j = 1,

(5.35)

the homogeneous polynomial

I [PN ]3̂(ρ3̂) =
∑

|α|=N

α(3)=0

p
(3)
α α!

(

ρ(1)
)α1+1 (

ρ(2)
)α2+1

, (5.36)

and the coefficients

p̂
(j)
l+1 = l! (N − l)! p

(j+)
α , (5.37)

where α(j) = l, α(3) = N − l, for j = 1, 2 and 1 ≤ l ≤ N . Notice that the
order of ρ(3) in (5.33) cannot go beyond N . Thus it is observed that

p̂
(j)
1 = 0, j = 1, 2. (5.38)

Equating the terms in (5.34) and (5.33) with the same power, ranging from
1 to N − 1, of ρ(3) gives:

σ2C1 =

2
∑

j=1

p̂
(j)
3

(

ρ(j)
)3
, σ4CN−3 =

2
∑

j=1

p̂
(j)
N+1

(

ρ(j)
)N+1

, (5.39)

and

σ2Cl + σ4Cl−2 =

2
∑

j=1

p̂
(j)
l+2

(

ρ(j)
)l+2

, 2 ≤ l ≤ N − 2. (5.40)

The first identity in (5.39), along with Lemma 5.2 in the following, readily
gives that

C1 ≡ 0. (5.41)
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Lemma 5.2. Suppose that

σ2(ρ3̂)Cl(ρ3̂) ≡ f1(ρ
(1)) + f2(ρ

(2)). (5.42)

If l is an odd number, then

Cl = 0. (5.43)

Otherwise if l is even, then there exists a constant al such that

cl,2j = (−1)jal, cl,2j+1 = 0, 0 ≤ j ≤ l/2, (5.44)

and

σ2(ρ3̂)Cl(ρ3̂) = al

(

(

ρ(2)
)l+2

+ (−1)l/2
(

ρ(1)
)l+2

)

. (5.45)

The proof of Lemma 5.2 is postponed to the end of the current section, and
we proceed with the present proof of Theorem 5.1. Applying an induction
argument on (5.40) with the help of (5.41) and Lemma 5.2, one can derive
that

Cl ≡ 0, for every odd integer l ∈ [1, N − 2], (5.46)

and hence by combining (5.38)-(5.40) that

p̂
(j)
l = 0, j = 1, 2, for every odd l ∈ [1, N ]. (5.47)

Therefore, it is obtained by recalling (5.37) that

p
(1)
(0,l,N−l) = p

(2)
(l,0,N−l) = 0, for every even l ∈ [0, N − 1]. (5.48)

Furthermore, it is noted that (5.29) can be also reformulated as

C(ρ) =

N−2
∑

l=0

(

ρ(1)
)N−l−2

C̃l(ρ1̂). (5.49)

Then by exchanging the roles of ρ(3) and ρ(1) and repeating all the above
arguments starting from (5.29), one can obtain analogously that

p
(2)
(N−l,0,l) = p

(3)
(N−l,l,0) = 0, for every even l ∈ [0, N − 1]. (5.50)

Similarly by exchanging the roles of ρ(3) and ρ(2), one also has

p
(3)
(l,N−l,0) = p

(1)
(0,N−l,l) = 0, for every even l ∈ [0, N − 1]. (5.51)

Here, we emphasize that the proof so far does not depend on the odevity
of the number N , and this fact shall be useful in the proof of Lemma 5.3
in the following. However, if N is odd, then the condition (5.24) is clearly
implied by (5.48)-(5.51), which completes the proof.

�

Proof of Theorem 5.2. The assertion is equivalent to that, if I [PN ](ρ) can
be divided by σ(ρ), then

p(j)α = 0 with α(l) = 0, l 6= j, (5.52)

for all j = 1, 2, 3.
We first verify (5.52) for α ∈ (2N)3, namely,

p
(2)
(0,l,N−l) = p

(3)
(0,l,N−l) = p

(3)
(N−l,0,l) = p

(1)
(N−l,0,l) = p

(1)
(l,N−l,0) = p

(2)
(l,N−l,0) = 0,

(5.53)
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for all even integers l ∈ [0, N ]. This is guaranteed by the following stronger
result.

Lemma 5.3. One has for the given even integer N that

p
(j)
(2l,2n,N−2n−2l) = 0, 0 ≤ l + n ≤ N/2, j = 1, 2, 3. (5.54)

We postpone the proof of Lemma 5.3 and proceed with the proof of Theo-
rem 5.2. It remains to verify (5.53) for odd numbers l. To ease the exposition,
we only verify the case

p
(3)
(0,2l+1,N−2l−1) = 0, 0 ≤ l ≤ (N − 1)/2. (5.55)

Using (5.11) with β = (0, 2l,N − 2l − 1) for each l, it can be shown that
(5.55) holds true by virtue of the fact that

p
(2)
(0,2l,N−2l) = 0, 0 ≤ l ≤ (N − 1)/2, (5.56)

which was established in Lemma 5.3.
The proof is complete. �

Proof of Lemma 5.3. Without loss of generality, we only prove the case when
j = 2, and the other cases can be proved by following a similar argument.
We shall verify

p
(2)
(2l,2n,N−2n−2l) = 0, 0 ≤ l + n ≤ N/2, (5.57)

by induction with respect to n.
First, when n = 0, (5.57) can be readily seen from (5.48) and (5.50) in

the proof of Theorem 5.1. Assume that (5.57) holds true with a fixed integer
n ∈ [0, N/2) and all 0 ≤ l ≤ N/2 − n. We next show that

p
(2)
(2l,2n+2,N−2n−2l−2) = 0, for all 0 ≤ l ≤ N/2 − n− 1. (5.58)

Notice by the assumption for n that

p
(2)
(2l,2n,N−2n−2l) = 0, 0 ≤ l ≤ N/2− n, (5.59)

and that
p
(2)
(2l+2,2n,N−2n−2l−2) = 0, 0 ≤ l ≤ N/2− n− 1. (5.60)

Then (5.58) can be obtained by an application of (5.13) with β = (2l, 2n,N−
2n− 2l − 2).

The proof is complete.
�

Proof of Lemma 5.2. It is directly calculated that

σ2(ρ3̂)Cl(ρ3̂) =cl,0

(

ρ(2)
)l+2

+ cl,l

(

ρ(1)
)l+2

+ cl,1ρ
(1)
(

ρ(2)
)l+1

+ cl,l−1

(

ρ(1)
)l+1

ρ(2)

+

l
∑

j=2

(cl,j + cl,j−2)
(

ρ(1)
)j (

ρ(2)
)l−j+2

.

(5.61)

Therefore,
cl,1 = cl,l−1 = 0, (5.62)
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and

cl,j + cl,j−2 = 0, 2 ≤ j ≤ l. (5.63)

If l is an odd number, it is observed from (5.62) and (5.63) by recursion
that

cl,j = 0, 0 ≤ j ≤ l, (5.64)

and hence Cl is identically zero. Otherwise if l is even, then (5.63) together
with (5.62) implies cl,j = 0 for all odd numbers j. While for even numbers,
one has

cl,2j = (−1)jcl,0, 0 ≤ j ≤ l/2, (5.65)

and

σ2(ρ3̂)Cl(ρ3̂) = cl,0

(

ρ(2)
)l+2

+ cl,l

(

ρ(1)
)l+2

. (5.66)

The proof is complete. �

6. Proof of Theorem 2.3

6.1. Preliminaries.

Lemma 6.1 ( [7]). For any integers l ≥ 0 and |m| ≤ l, Y m
l (x̂)|x|l is a

homogeneous polynomial of order l.

Corollary 6.1. For each pair of integers (l,m) with l ≥ 0 and |m| ≤ l+ 1,
Iml (x̂)|x|l is a homogeneous polynomial of order l, Tm

l+1(x̂)|x|l+1 is a ho-

mogeneous polynomial of order l + 1, and Nm
l+2(x̂)|x|l+2 is a homogeneous

polynomial of order l + 2.

Proof. The property for Iml (x̂)|x|l can be readily seen by noting the identity
√

(l + 1)(2l + 3) Iml (x̂)|x|l = ∇
(

Y m
l+1(x̂) |x|l+1

)

, (6.1)

along with the statement in Lemma 6.1. Furthermore, it is noticed from the
definitions (2.17) and (2.18) that

√

l(l + 1)Tm
l (x̂) =

√

l(2l + 1)Iml−1 ∧ x̂, (6.2)

and hence by (6.1) that
√
l + 2Tm

l+1(x̂)|x|l+1 =
√
2l + 3 Iml (x̂)|x|l ∧ x, (6.3)

where the RHS is clearly a homogeneous polynomial since we have verified
in (6.1) that Iml (x̂)|x|l is a homogeneous polynomial of order l. Similarly, it
is obtained that

Nm
l+2(x̂)|x|l+2

=
|x|l+2

√

(l + 2)(2l + 3)

(

−∇SY
m
l+1(x̂) + lY m

l+1(x̂)x̂
)

=−
√

l + 1

l + 2
|x|2

(

Iml (x̂)|x|l
)

+
2l + 1

√

(l + 2)(2l + 3)

(

|x|l+1Y m
l+1(x̂)

)

x,

(6.4)

which clearly shows thatNm
l+2(x̂)|x|l+2 is a homogeneous polynomial of order

l + 2. �



EM SCATTERING FROM A PENETRABLE CORNER 33

Lemma 6.2. One has

NHl,m
= l, NEl,m

= l + 1, ∀m, l. (6.5)

Moreover,

(Pl[Hl,m]) (x) = −i
√

ε0/µ0

√

l + 2

2l + 3

2l l!

(2l + 1)!
Iml (x̂)|x|l, (6.6)

and

(Pl+1[El,m]) (x) =
1

2l + 3

2l l!

(2l + 1)!
Tm

l+1(x̂)|x|l+1

=
1

√

(l + 2)(2l + 3)

2l l!

(2l + 1)!
Iml (x̂)|x|l ∧ x.

(6.7)

Proof. Recall that the spherical Bessel function jl(t) is analytic for all t ∈ R,
and hence the formula (2.22) is actually the Taylor series of jl(t). It is then
observed by the definition (2.20) of El,m, along with the form (2.22) of jl(t),
that

El,m =

∞
∑

n=0

(l + n+ 1)! 2l+1

n! (2l + 2n+ 3)!
kl+2n+1|x|2n

(

Tm
l+1(x̂)|x|l+1

)

, (6.8)

where, deduced by Corollary 6.1, each term in the summation is a homo-
geneous polynomial of order (2n + l + 1). Therefore, the formula (6.8) is
actually the Taylor series of El,m. Now, (6.7) is a direct consequence of the
above fact. The property (6.6) can be similarly verified.

The proof is complete. �

6.2. Proof of Theorem 2.3. Let (E0,H0) be a pair of functions satisfying
(1.2) in a neighborhood of x0 = 0. Lemma 2.3 then indicates that (E0,H0)
can be expressed as

(E0,H0) =

∞
∑

l=l0

∑

|m|≤l+1

(al,m(EH)l,m + bl,m(HE)l,m) (6.9)

with l0 ∈ N and the coefficients al,m ∈ C such that
∑

|m|≤l0+1

(

a2l0,m + b2l0,m
)

6= 0. (6.10)

Assume without loss of generality that
∑

|m|≤l0+1

a2l0,m 6= 0. (6.11)

Then it is deduced by Lemma 6.2 that NH0 = l0 and

(

Pl0 [H
0]
)

(x) = −i
√

ε0/µ0

√

l0 + 2

2l0 + 3

2l0 l0!

(2l0 + 1)!

∑

|m|≤l0+1

al0,mIml0 (x̂)|x|l0 .

(6.12)
Theorem 2.3 is then a straightforward consequence of the following lemma.
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Lemma 6.3. For fixed integers l ≥ 0 and m, with (l + 1)mod 2 ≤ m ≤
[(l + 1)/2], the vector field defined as

P(x) := |x|l
(

I2ml (x̂) + (−1)lI−2m
l (x̂)

)

, (6.13)

is a homogeneous polynomial of order l, which satisfies the conditions (I)
and (II) introduced in Definition 2.2.

Conversely, up to a linear combination with respect to m, P defined by
(6.13) is the only case for PNH

E
[HE] satisfying (I) and (II) in Definition 2.2.

The proof of Lemma 6.3 is a bit lengthy with tedious calculations, which
we shall accomplish in the whole next subsection.

6.3. Proof of Lemma 6.3. Noticing for any l and m that I−m
l is just the

conjugate of Iml , we shall always assume in the sequel that m ≥ 0. Denote

c̃l,m :=

√

2l + 1

4π

(l −m)!

(l +m)!
and cl,m :=

c̃l+1,m
√

(l + 1)(2l + 3)
. (6.14)

Then

Y m
l (θ, ϕ) = c̃l,mP

m
l (cos θ)eimϕ, (6.15)

and hence

∇SY
m
l (θ, ϕ) = c̃l,m

(

dPm
l (cos θ)

dθ
~θ + i

m

sin θ
Pm
l (cos θ)~ϕ

)

eimϕ, (6.16)

with

~r = sin θ cosϕ e1 + sin θ sinϕ e2 + cos θ e3, (6.17)

~θ = cos θ cosϕ e1 + cos θ sinϕ e2 − sin θ e3, (6.18)

~ϕ = − sinϕ e1 + cosϕ e2. (6.19)

Thus by the definition (2.18) of Iml one has

1

cl,m
Iml (x̂)|x|l =(l + 1)rlPm

l+1(cos θ)e
imϕ~r

+ rl
dPm

l+1(cos θ)

dθ
eimϕ~θ + irl

m

sin θ
Pm
l+1(cos θ)e

imϕ~ϕ.

(6.20)

Notice that the associated Legendre polynomial Pm
l+1 is defined by (cf. [7])

Pm
l+1(t) = (1− t2)m/2 d

mPl+1(t)

dtm
, (6.21)

where Pl is the Legendre polynomial of degree l, which can be expressed as

Pl(t) =

l
∑

n=0

p
(l−n)
l tn. (6.22)

Lemma 6.4. One has for any integers l and n with 0 ≤ n ≤ l that

p
(n)
l = 0, when n is odd. (6.23)

Proof. This is a direct consequence of the fact that the Legendre polynomial
Pl is an even function if l even, and an odd function if l is odd (cf. [7]). �
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It is obtained straightforwardly from (6.22) that

dmPl+1(t)

dtm
=

l+1
∑

n=m

p
(l−n+1)
l+1

n!

(n−m)!
tn−m, (6.24)

and hence that

Pm
l+1(cos θ) =

l+1
∑

n=m

p
(l−n+1)
l+1 n!

(n−m)!
(cos θ)n−m(sin θ)m

=

l−m+1
∑

n=0

p
(n)
l+1(l − n+ 1)!

(l −m− n+ 1)!
(cos θ)l−m−n+1(sin θ)m.

=
l′
∑

n=0

p
(2n)
l+1 (l − 2n + 1)!

(l −m− 2n + 1)!
(cos θ)l−m−2n+1(sin θ)m,

(6.25)

with the non-negative integer

l′ := [(l −m+ 1)/2]. (6.26)

Next, depending on the odevity of the integer (l−m+1), we divide the rest
of the arguments into two parts.

6.3.1. The number (l −m + 1) is odd. In the case (l −m + 1) is odd, one
has l′ = (l−m)/2, and 0 ≤ m ≤ l. Moreover, it is observed from (6.25) that

Pm
l+1(cos θ) =

l′
∑

n=0

p
(2l′−2n)
l+1

(m+ 2n + 1)!

(2n+ 1)!
(cos θ)2n+1(sin θ)m

=
l′
∑

n=0

(−1)nAn,m,l′(sin θ)
m+2n cos θ,

(6.27)

where the coefficients An,m,l′ are given by

An,m,l′ :=

l′
∑

t=n

p
(2l′−2t)
l+1

(m+ 2t+ 1)!

(2t+ 1)!
∁nt , (6.28)

with

∁nt =
t!

n!(n− t)!
. (6.29)

One also has by (6.27) that

dPm
l+1(cos θ)

dθ
=

l′
∑

n=0

(−1)n(m+ 2n)An,m,l′(sin θ)
m+2n−1

−
l′
∑

n=0

(−1)n(m+ 2n+ 1)An,m,l′(sin θ)
m+2n+1.

(6.30)
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Inserting the equations (6.27) and (6.30) into (6.20) one can arrive at

1

cl,m
(Iml (x̂))(1) |x|l

=2

l′
∑

n=1

(−1)nÃn,m,l′(sin θ)
m+2n−1 cos θ cosϕeimϕrl

+m

l′
∑

n=0

(−1)nAn,m,l′(sin θ)
m+2n−1 cos θei(m−1)ϕrl

=:2 (Km
l (x))(1) +m (Km

l (x))(2) ,

(6.31)

with the coefficients

Ãn,m,l′ := nAn,m,l′ − (l′ − n+ 1)An−1,m,l′ . (6.32)

Analogously, one has

1

cl,m
(Iml (x̂))(2) |x|l

=2

l′
∑

n=1

(−1)nÃn,m,l′(sin θ)
m+2n−1 cos θ sinϕeimϕrl

+ im

l′
∑

n=0

(−1)nAn,m,l′(sin θ)
m+2n−1 cos θei(m−1)ϕrl

=2 (Km
l (x))(1) + im (Km

l (x))(2) ,

(6.33)

and

1

cl,m
(Iml (x̂))(3) |x|l =

l′
∑

n=0

(−1)nA′
n,m,l′(sin θ)

m+2neimϕrl

=: (Km
l (x))(3) ,

(6.34)

with the coefficients
A′

0,m,l′ := (2l′ + 1)A0,m,l′ , (6.35)

and

A′
n,m,l′ := (2l′ − 2n+1)An,m,l′ +2(l′ −n+1)An−1,m,l′ , 1 ≤ n ≤ l′. (6.36)

By recalling the change of coordinates:

x(1) = r sin θ cosϕ,

x(2) = r sin θ sinϕ,

x(3) = r cos θ,

(6.37)

one can deduce further from (6.31) and (6.34) that

(Km
l (x))(1) =

l′
∑

n=1

(−1)nÃn,m,l′x
(1)x(3)

(

x(1) + ix(2)
)m

r2n−2
3 r2l

′−2n, (6.38)

(Km
l (x))(2) =

l′
∑

n=0

(−1)nAn,m,l′x
(3)
(

x(1) + ix(2)
)m−1

r2n3 r2l
′−2n, (6.39)
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and

(Km
l (x))(3) =

l′
∑

n=0

(−1)nA′
n,m,l′

(

x(1) + ix(2)
)m

r2n3 r2l
′−2n, (6.40)

with the notation

r3 :=

√

(

x(1)
)2

+
(

x(2)
)2
. (6.41)

To proceed further with the proof of Lemma 6.3, we study the factors

xα with α ∈ {0, 1}3, (6.42)

in the Cartesian components of Iml (x̂)|x|l. Let, for the time being, 2 ≤ m ≤ l.
The following table, which is deducted from (6.38)–(6.40), lists all the factors

of the form (6.42) for
(

x(1) + ix(2)
)m

and Km
l (x):

m is even m is odd
ℜ ℑ ℜ ℑ

(

x(1) + ix(2)
)m

None x(1)x(2) x(1) x(2)

(Km
l (x))(1) x(1)x(3) x(1)x(2)x(3) x(1)x(3) x(1)x(2)x(3)

(Km
l (x))(2) x(1)x(3) x(2)x(3) x(3) x(1)x(2)x(3)

(Km
l (x))(3) None x(1)x(2) x(1) x(2)

Thus, using (6.31), (6.33) and (6.34) one can obtain further for the factors of
the form (6.42) for the homogeneous polynomial Iml (x̂)|x|l in the following
table,

m is even m is odd
ℜ ℑ ℜ ℑ

(Iml (x̂))(1) |x|l x(1)x(3) x(2)x(3) x(3) x(1)x(2)x(3)

(Iml (x̂))(2) |x|l x(3) x(1)x(3) x(1)x(3) x(3)

(Iml (x̂))(3) |x|l None x(1)x(2) x(1) x(2)

There are two special cases when m = 0 or m = 1 that one needs to take
care of:

m = 0 m = 1
ℜ ℜ ℑ

(Iml (x̂))(1) |x|l x(1)x(3) x(3) x(1)x(2)x(3)

(Iml (x̂))(2) |x|l x(1)x(3) x(1)x(3) x(3)

(Iml (x̂))(3) |x|l None x(1) x(2)

Therefore one can deduce from the last two tables that, for (l+m+1) odd,
the case (2.6) cannot occur, and that (2.7) occurs if and only if m is positive
even (and hence l is also even), and the corresponding term is

ℑIml (x) = −i

2

(

Iml (x)− I−m
l (x)

)

, l,m are even, 2 ≤ m ≤ l. (6.43)

6.3.2. The integer (l−m+1) is even. In this case, we have from (6.26) that
l′ = (l −m + 1)/2. Next we distinguish between the cases when m = l + 1
and when 0 ≤ m < l. We first deal with the former case when m = l + 1,
i.e., l′ = 0. It is directly observed from (6.25) that

P l+1
l+1 (cos θ) = Al(sin θ)

l+1, (6.44)
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with the coefficient Al := (l + 1)!p
(0)
l+1, and hence that

dP l+1
l+1 (cos θ)

dθ
=(l + 1)Al(sin θ)

l cos θ. (6.45)

Thus combing (6.20) one further has

1

cl,l+1

(

Il+1
l (x̂)

)(1)
|x|l =(l + 1)Al(sin θ)

leilϕrl

=(l + 1)Al

(

x(1) + ix(2)
)l
,

(6.46)

1

cl,l+1

(

Il+1
l (x̂)

)(2)
|x|l =i(l + 1)Al(sin θ)

leilϕrl

=i
1

cl,l+1

(

Il+1
l (x̂)

)(1)
|x|l,

(6.47)

and

1

cl,l+1

(

Il+1
l (x̂)

)(3)
|x|l =0. (6.48)

Hence the factors xα of the form (6.42) in Iml (x̂)|x|l can be summarized into
the following table:

m = (l + 1) is even m = (l + 1) is odd
ℜ ℑ ℜ ℑ

(Iml (x̂))(1) |x|l x(1) x(2) None x(1)x(2)

(Iml (x̂))(2) |x|l x(2) x(1) x(1)x(2) None

Therefore, for m = l + 1, there is never the case (2.7), and the validity for
(2.6) is equivalent to that m = l + 1 is even (and hence l is odd), and the
corresponding term is

ℜIl+1
l (x) =

1

2

(

Il+1
l (x) + I

−(l+1)
l (x)

)

. (6.49)

Next we assume that 0 ≤ m ≤ l. It is derived from (6.25) that

Pm
l+1(cos θ) =

l′
∑

n=0

p
(2n)
l+1 (l − 2n+ 1)!

(2l′ − 2n)!
(cos θ)2l

′−2n(sin θ)m

=

l′
∑

n=0

p
(2l′−2n)
l+1

(m+ 2n)!

(2n)!
(cos θ)2n(sin θ)m

=
l′
∑

n=0

(−1)nBn,m,l′(sin θ)
m+2n,

(6.50)

with the coefficients

Bn,m,l′ :=

l′
∑

t=n

(m+ 2t)!

(2t)!
∁nt p

(2l′−2t)
l+1 , (6.51)

and hence that

dPm
l+1(cos θ)

dθ
=

l′
∑

n=0

(−1)n(m+ 2n)Bn,m,l′ cos θ(sin θ)
m+2n−1. (6.52)
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Recalling the expression (6.20), one can obtain that

1

cl,m
(Iml (x̂))(1) |x|l

=(l + 1)rl
l′
∑

n=0

(−1)nBn,m,l′(sin θ)
m+2n+1 cosϕeimϕ

+ rl(cos θ)2
l′
∑

n=0

(m+ 2n)(−1)nBn,m,l′(sin θ)
m+2n−1eimϕ cosϕ

− irlm

l′
∑

n=0

(−1)nBn,m,l′(sin θ)
m+2n−1 sinϕeimϕ.

(6.53)

Introducing the coefficients B̃n,m,l′ by

B̃n,m,l′ :=nBn,m,l′ − (l′ − n+ 1)Bn−1,m,l′

=
l′
∑

t=n

(l′ + t− 2n+ 2)p
(2l′−2t)
l+1

(m+ 2t)!

(2t)!
∁n−1
t

+ p
(2l′−2n+1)
l+1

(m+ 2n − 2)!

(2n − 2)!
,

(6.54)

the formula (6.53) can be further reduced to

1

cl,m
(Iml (x̂))(1) |x|l =2

l′
∑

n=1

(−1)nB̃n,m,l′(sin θ)
m+2n−1 cosϕeimϕrl

+m

l′
∑

n=0

(−1)nBn,m,l′(sin θ)
m+2n−1ei(m−1)ϕrl.

(6.55)

Therefore,

1

cl,m
(Iml (x̂))(1) |x|l

=2
l′
∑

n=1

(−1)nB̃n,m,l′x
(1)rn−1

3

(

x(1) + ix(2)
)m

r2l
′−2n

+m

l′
∑

n=0

(−1)nBn,m,l′r
n
3

(

x(1) + ix(2)
)m−1

r2l
′−2n.

(6.56)

Analogously, one has

1

cl,m
(Iml (x̂))(2) |x|l =2

l′
∑

n=1

(−1)nB̃n,m,l′(sin θ)
m+2n−1 sinϕeimϕrl

+ im

l′
∑

n=0

(−1)nBn,m,l′(sin θ)
m+2n−1ei(m−1)ϕrl,

(6.57)
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and hence,

1

cl,m
(Iml (x̂))(2) |x|l

=2
l′
∑

n=1

(−1)nB̃n,m,l′x
(2)rn−1

3

(

x(1) + ix(2)
)m

r2l
′−2n

+ im

l′
∑

n=0

(−1)nBn,m,l′r
n
3

(

x(1) + ix(2)
)m−1

r2l
′−2n.

(6.58)

Moreover,

1

cl,m
(Iml (x̂))(3) |x|l

=

l′
∑

n=0

(−1)n(2l′ − 2n)Bn,m,l′(sin θ)
m+2n cos θeimϕrl

=
l′
∑

n=0

(−1)n(2l′ − 2n)Bn,m,l′x
(3)rn3

(

x(1) + ix(2)
)m

r2l
′−2n.

(6.59)

Similar to the case when (l − m + 1) is odd, one can deduce from (6.56),
(6.58) and (6.59) that, for 0 ≤ m ≤ l,

m is even m is odd
ℜ ℑ ℜ ℑ

(Iml (x̂))(1) |x|l x(1) x(2) None x(1)x(2)

(Iml (x̂))(2) |x|l x(2) x(1) x(1)x(2) None

(Iml (x̂))(3) |x|l x(3) x(1)x(2)x(3) x(1)x(3) x(2)x(3)

Recalling (6.49), one can see that for (l+m+1) even and 0 ≤ m ≤ l+1,
the case (2.7) cannot occur, and the validity of (2.6) is equivalent to that m
is even (and hence l is odd), with the corresponding term given by

ℜIml (x) =
1

2

(

Iml (x) + I−m
l (x)

)

, l is odd, m is even, 0 ≤ m ≤ l + 1.

(6.60)
Finally, we can conclude the proof of Lemma 6.3 by combining (6.43) and

(6.60).
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