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We develop a finite-dimensional approximation of the Frobenius-Perron operator using the finite volume
method applied to the continuity equation for the evolution of probability. A Courant-Friedrichs-Lewy
condition ensures that the approximation satisfies the Markov property, while existing convergence theory
for the finite volume method guarantees convergence of the discrete operator to the continuous operator
as mesh size tends to zero. Properties of the approximation are demonstrated in a computed example of
sequential inference for the state of a low-dimensional mechanical system when observations give rise to
multi-modal distributions.
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1. Introduction

Consider a dynamical system with state x ∈ Rd that evolves according to the ordinary differential equa-
tion

dx
dt

= v(x) (1.1)

where v(x) is a known velocity field. We have written (1.1) in standard autonomous form; if v = v(x, t)
then writing x̃ = (x, t) ∈ Rd+1 and ṽ(x̃) = (v(x, t),1) gives the autonomous form x̃t = ṽ(x̃).

Given the velocity field v(·) and an initial state x0, (1.1) can be solved to determine the future state of
the system. However, if the initial state is uncertain, and is distributed according to a probability density
function (pdf) p0(x), then the future state of the system at time t > 0 is distributed according to some pdf
p(x|t). The operator that maps the initial pdf p0(·) to the future pdf p(·|t) is called a Frobenius-Perron
operator.

Our interest is in performing sequential inference on the state of the dynamical system from incom-
plete and uncertain observations of the system at times 0 < t1, t2, . . ., and when the initial state is uncer-
tain. Such problems have been well studied (see, e.g., [3]) with well-known solutions for special cases
being the Kalman filter and its extensions. In that setting, the Frobenius-Perron operator gives the evolu-
tion of pdfs between observations, that is it defines the transition kernel from one time to another. In the
language of filtering, the Frobenius-Perron operator defines the prediction update, while pdfs between

ar
X

iv
:1

61
0.

02
10

6v
1 

 [
st

at
.C

O
] 

 7
 O

ct
 2

01
6



2 of 15 R.A. NORTON, C. FOX AND M.E. MORRISON

observations enables state estimation or smoothing [3]. This paper is concerned with deriving a numer-
ical approximation to the Frobenius-Perron operator and understanding the mathematical properties of
the resulting discrete operator.

A common route to treating the continuous time system in (1.1) is to discretize the dynamics in time
(see, e.g., [10]) and apply the discrete-time formalism for sequential inference [3]. We take a different
approach, instead forming a discrete approximation directly of the continuous time inference problem,
and establish convergence directly on the space of probability distributions.

1.1 The Frobenius-Perron operator

Let X(·, t) : Rd → Rd denote the operator that maps an initial condition to the solution of (1.1) at time
t > 0. Let Y (·, t) = X(·, t)−1 denote its inverse. If X(·, t) is a non-singular transformation (|Y (E, t)|= 0
if |E| = 0 for all Borel subsets E ⊂ Rd where | · | denotes Lebesgue measure), then for each t > 0, the
Frobenius-Perron operator S(t) : L1(Rd)→ L1(Rd) is defined by∫

E
S(t) f dx =

∫
Y (E,t)

f dx ∀ Borel subsets E ⊂ Rd ,

see e.g. [6, §8].
Alternatively, given an initial pdf p0, the pdf p(·|t) at some future time, t > 0, may be computed by

solving the continuity equation (also called the transport or linear advection equation){
pt +div(vp) = 0 x ∈ Rd , t > 0,
p(x|0) = p0(x) x ∈ Rd .

(1.2)

Then, for each t > 0, the Frobenius-Perron operator S(t) : L1(Rd)→ L1(Rd) is defined such that for any
f ∈ L1(Rd),

S(t) f := p(·|t) where p is a solution to (1.2) with p0 = f . (1.3)

See e.g. [13, Def. 3.2.3 and §7.6] or [6, §11.2] for derivation of the continuity equation from (1.1).
The existence of a Frobenius-Perron operator and (weak) solutions to (1.2) depends on whether or

not X(·, t) is non-singular, which depends on the regularity of v. If v has continuous first order derivatives
and solutions to (1.1) exist for all initial points x0 ∈Rd and all t > 0 then the Frobenius-Perron operator
is well-defined, satisfies the Markov property, and {S(t) : t > 0} defines a continuous semigroup of
Frobenius-Perron operators, see [6, §11.2] or [13, §7.4]. In such cases the solution to the continuity
equation satisfies the ODE dp

dt =−(divv)p , along characteristic paths defined by X(·, t).

DEFINITION 1.1 ([13, Defn. 3.1.1.]) A linear operator S : L1(Rd)→ L1(Rd) is a Markov operator (or
satisfies the Markov property) if for any f ∈ L1(Rd) such that f > 0,

S f > 0 and ‖S f‖L1(Rd) = ‖ f‖L1(Rd).

We refer to the lesser property f > 0 implies S f > 0 as positivity preserving.
The following theorem is due to Liouville ([6, §11.2], [13, §7.8]).

THEOREM 1.2 Let {S(t) : t > 0} be the continuous semigroup of Frobenius-Perron operators associated
with (1.1). Then for f ∈ L1(Rd) satisfying ‖ f‖L1(Rd) = 1 and f > 0,

S(t) f = f ∀t > 0 if and only if div( f v) = 0.
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We call the distribution represented by the pdf f in Theorem 1.2 a stationary distribution. A corol-
lary to Theorem 1.2 is that the Lebesgue measure is invariant under X(·, t) if and only if divv = 0 ([6,
§11.2]), see (1.6) below.

1.2 Hamiltonian systems

Stationary points of {S(t) : t > 0} may not be unique. For example, a Hamiltonian system with Hamil-
tonian H : R2→ R and v = ( ∂H

∂x2
,− ∂H

∂x1
), satisfies both div(v) = 0 and div(g(H)) = 0 for differentiable

functions g : R→ R. In particular, normalizing exp(−H) usually yields a stationary distribution.
To prove that S(t) is asymptotically stable, i.e. that S(t) f will converge to a unique stationary

distribution as t → ∞ for any f , we can appeal to theorems such as [13, Thm. 7.4.1], or [18, Thm.
13.3.1]. Loosely speaking, we can expect the conditions for these theorems to be met when the velocity
field is such that the system can move between any two states in phase space, and will return to a small
volume in phase space in finite time.

Hamiltonian systems are generally not asymptotically stable because the system state evolves along
contours of the Hamiltonian, so the pdf over future states S(t) f is inextricably linked to the initial f .

In the special case when div(v) = 0, e.g. for a Hamiltonian system, then [17, Thm. 1, Cor. 1.1,
Cor. 1.2] provides the following precise statements about the properties of solutions to the continuity
equation.

THEOREM 1.3 If v ∈W 1,∞(Rd ;Rd), div(v) = 0, and p0 ∈ L1
loc(Rd):

1. Equation (1.2) has a unique weak solution in the sense that p ∈ L1
loc(Rd× [0,∞)) satisfies∫

∞

0

∫
Rd

p(φt + v ·∇φ)dxdt +
∫
Rd

p0φ(x,0)dx = 0 ∀φ ∈C∞
0 (Rd× [0,∞)). (1.4)

2. The weak solution p is constant along characteristic paths defined by X ∈C1(Rd× [0,∞);Rd),

p(x|t) = p0(X(x, t)) ∀(x, t) ∈ Rd× [0,∞). (1.5)

Volume is also preserved along these characteristic paths in the sense that

|X(E, t)|= |E| for every t > 0 and every Borel subset E ⊂ Rd . (1.6)

3. For any 06 t 6 T the function X(·, t) defining characteristic paths and its inverse Y (·, t)=X(·, t)−1

satisfy X− IdRd ,Y − IdRd ∈W 1,∞(Rd× [0,T ]) and there exists a constant C0 > 1, depending only
on T , ‖v‖W 1,∞ and d, such that

|X(x, t)− x|6C0t, |∇X(x, t)|6C0,

∣∣∣∣∂X
∂ t

(x, t)
∣∣∣∣6C0,

|Y (x, t)− x|6C0t, |∇Y (x, t)|6C0,

∣∣∣∣∂Y
∂ t

(x, t)
∣∣∣∣6C0.

(1.7)

4. For any measurable function f : R→ R and p0 ∈ L1
loc(Rd) such that f ◦ p0 ∈ L1(Rd),∫

Rd
f (p(x|t))dx =

∫
Rd

f (p0(x))dx ∀t > 0.
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In addition, if p0 ∈ BV (Rd):

5. For any 06 t 6 T , there exists a constant C1 depending only on T , ‖v‖W 1,∞ and d, such that

‖p(·|s)− p(·|t)‖L1 6C1‖p0‖TV |s− t|, 06 s, t 6 T, (1.8)
‖p(·|t)‖TV 6C1‖p0‖TV , 06 t 6 T. (1.9)

Immediate consequences of Theorem 1.3 that are relevant for this article are given in the following
Corollary.

COROLLARY 1.1 If v ∈W 1,∞(Rd ;Rd), div(v) = 0, and p0 ∈ L1(Rd):

1. The weak solution p to (1.2) satisfies p ∈C([0,∞);L1(Rd)).

2. If p0 > 0, then the weak solution p satisfies p(x|t)> 0 for all x ∈ Rd and t > 0.

3. The weak solution p satisfies ‖p(·|t)‖L1(Rd) = ‖p0‖L1(Rd) for all t > 0.

REMARK 1.1 It follows from Corollary 1.1 is that the operator S(t), defined by (1.3), is a Markov
operator for any t > 0, and that {S(t) : t > 0} is a continuous semigroup on L1(Rd).

1.3 Numerical approximation of the Frobenius-Perron operator

For computational purposes it is necessary to numerically approximate the Frobeninus-Perron operator.
Naturally, it is desirable that the approximate operator also has the Markov property, since then the
image of an initial pdf remains a positive normalized probability distribution function.

Klus et al. [11] provide a good summary of methods that have been used to approximate the
Frobenius-Perron operator.

The popular, but slowly converging, Ulam’s method [6, 15, 21] is a Galerkin projection method
using piecewise constant basis functions. It preserves the Markov property but requires computing
|Ei∩Y (E j, t)| for some Ei,E j ⊂ Rd from a partition of the domain. The volume of Ei∩Y (E j, t) can be
estimated using Monte Carlo integration, but this adds computational effort and errors. The effect of the
partition choice and Monte Carlo integration have been investigated in [1, 12, 19].

Faster converging higher order orthogonal Galerkin projections do not, in general, preserve the
Markov property [5], but some Petrov-Galerkin methods with piecewise linear or quadratic polynomial
basis functions and piecewise constant test functions are able to preserve the Markov property [12, §3].
The piecewise linear Markov finite approximation method [5, 6] is an example of such a Petrov-Galerkin
method, that preserves the Markov property and achieves faster convergence with respect to mesh size
compared to Ulam’s method, see [5–7] and references therein.

Other higher order methods have been used to approximate the Frobenius-Perron operator, see ref-
erences in [11], but these methods do not always preserve the Markov property.

The finite volume method (FVM) [9, 14, 16, 17] is a class of methods that has not yet, to the best of
our knowledge, been applied to approximating the Frobenius-Perron operator. This is surprising because
FVMs are specifically designed to preserve the conserved quantity of a conservation law, such as the
continuity equation (1.2). In this case, that property implies preserving the total probability, which is
one half of the requirements for the Markov property. Further, FVMs achieve conservation over each
local region, or ‘cell’, indicating that convergence in a weak sense is a natural property of the method.

We consider a first-order upwind FVM for solving the continuity equation. This method inherently
preserves the integral of the solution, and also preserves positivity of solutions if the time step satisfies
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a Courant-Friedrichs-Lewy (CFL) condition. The latter result is given in Lemma 2.2. Thus, the discrete
solution operator is a Markov operator.

Another advantage of the FVM we consider is that it comes with existing convergence theory, and
we show how the existing theory implies convergence of expectations. There are higher order FVMs
than the one we consider here with accompanying convergence theory. We expect that some of those
higher order methods will also be positivity preserving, provided suitable CFL conditions are satisfied.

Indeed, positivity preserving FVMs already appear in the literature in disguise. For example, [4]
requires a CFL condition for their method to satisfy a ‘maximum priniciple’, and [17, Prop 2.1] has a
CFL condition for an ‘order-preserving’ method. CFL conditions are necessary for stability of FVMs
[14, §4.4], but stability is a weaker condition than positivity preserving.

Much of the literature on numerical approximation of Frobenius-Perron operators appears to be
concerned with approximating stationary densities. The FVM could be used for that by calculating
eigenpairs of the finite-dimensional operator.

However, as mentioned above, our motivation is to approximate the Frobenius-Perron operator for
use as the evolution operator in sequential inference problems, particularly when distributions are non-
Gaussain and possibly multi-modal. In such cases, the Kalman filter and its extensions are no longer
optimal. The example we consider in Section 3.1 considers tracking the position and velocity of a
pendulum using incomplete observations and an uncertain initial condition. The resulting sequence of
evolving pdfs are multi-modal. The implementation we present is feasible for modest sized problems
when d 6 3, and possibly when d = 4. Techniques for meshing problems in higher dimensions may
enable implementation in higher dimension, though we do not consider that here.

In the next section we define a first-order upwinding FVM, show that it satisfies the Markov property,
and then adapt existing covergence theory to show convergence of expectations with respect the pdf
from the approximate Frobenius-Perron operator. Section 3 breifly describes sequential inference and
presents simulations using the FVM to track the motion of a pendulum from incomplete and uncertain
observations.

2. The Finite Volume Method

The finite volume method is a family of numerical methods for approximating the solution to partial dif-
ferential equations (PDEs), including conservation laws. One of their features, that makes them partic-
ularly suitable for conservation laws, is that they preserve (up to round-off error) the conserved quantity
in the conservation law. We propose using a FVM to approximate the Frobenius-Perron operator with a
finite-dimensional Markov operator.

FVMs essentially discretize the integral form of the continuity equation

d
dt

∫
K

pdx+
∮

∂K
pv ·ndS = 0 ∀K ⊂ Rd , (2.1)

where ∂K is the boundary of K and n is the outward pointing normal. A FVM only enforces (2.1) on
the finite volumes K defined by a mesh T .

Define a mesh T on Rd as a family of bounded, open, connected, polygonal, disjoint subsets of Rd

such that Rd = ∪K∈T K. We refer to each K ∈ T as a cell or control volume. We also assume that the
mesh T satisfies two properties: the common interface between two cells is a subset of a hyperplane of
Rd , and the mesh is admissible (see e.g. [9, Def. 6.1]), so that

∃α > 0 :

{
αhd 6 |K|
|∂K|6 1

α
hd−1 ∀K ∈T .
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where h = sup{diam(K) : K ∈ T }, |K| is the d-dimensional Lebesgue measure of K, and |∂K| is the
(d− 1)-dimensional Lebesgue measure of ∂K. If cells K and L have a common interface then we say
that L is a neighbour of K and we let EKL denote the interface between K and L and nKL denote the
outward pointing normal vector from K into L. Let NK denote the set of all neighbours of K.

We discretize the time half-line, {t : t > 0}, using a regular mesh of size ∆ t > 0.
We use the following first-order upwinding scheme for solving (1.2) so that we can use the existing

theoretical analysis of the FVM in [17]. Define

p0
K =

1
|K|

∫
K

p0(x)dx ∀K ∈T , (2.2)

then for k = 0,1,2, . . . , compute pk+1
K from

pk+1
K − pk

K
∆ t

+
1
|K| ∑

L∈NK

vKL pk
KL = 0, ∀K ∈T , (2.3)

where

vKL =
∫

EKL

v ·nKL dS and pk
KL =

{
pk

K if vKL > 0
pk

L if vKL < 0.

The approximate solution ph : Rd× [0,∞)→ R to (1.2) is then defined as a piecewise constant function
satisfying

ph(x|t) = pk
K ∀(x, t) ∈ K× [k∆ t,(k+1)∆ t). (2.4)

Let us also define a discrete Frobenius-Perron operator Sh(t) : L1(Rd)→ Vh for t > 0, where Vh is
the restriction of L1(Rd) to piecewise constant functions on the mesh T ,

Vh := { f ∈ L1(Rd) : f |K = constant ∀K ∈T }.

Then, for every f ∈ L1(Rd) and t > 0 define

Sh(t) f := ph(·|t)

where ph is defined by (2.2)-(2.4) with p0 = f . Note that the operator Sh(t) is mesh dependent and
there is a slight abuse of notation because two distinct meshes with the same h do not define the same
operator. Also note that the family of operators {Sh(k∆ t) : k= 0,1,2, . . .} defines a semigroup on L1(Rd)
because we have chosen a regular discretization in t. Having the discrete operators form a semigroup is
convenient, though not at all necessary for performing sequential inference.

We can also construct a row vector pk from the values {|K|pk
K : K ∈T } and write (2.3) as

pk+1 = pkS (2.5)

where S = I−∆ tA is a countably infinite matrix derived from the matrix A that contains the upwind
and velocity information from (2.3).

2.1 Conditions for Sh(t) to be a Markov Operator

We now determine the conditions under which Sh(t) is a Markov operator.
FVMs preserve the integral of the solution, because they are designed so that the flux leaving a cell

K across EKL exactly matches the flux entering its neighbour L across EKL. This means that the integral
of ph(x|t) will remain constant for all t > 0.
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LEMMA 2.1 For any ∆ t > 0 and any t > 0,∫
Rd

ph(x|t)dx =
∫
Rd

p0(x)dx.

Proof. First note that (2.2) implies ∑K∈T |K|p0
K =

∫
Rd p0(x)dx.

Let K and L be neighbouring cells sharing a common interface EKL. Then their outward pointing
normal vectors have opposite sign, nKL =−nLK , so vKL =−vLK and hence vKL pk

KL =−vLK pk
LK .

If we let E denote the set of all interfaces in the mesh T then for any k = 0,1,2, . . . , by (2.3),

∑
K∈T
|K|pk+1

K = ∑
K∈T
|K|pk

K +∆ t ∑
K∈T

∑
L∈NK

vKL pk
KL

= ∑
K∈T
|K|pk

K +∆ t ∑
EKL∈E

(vKL pk
KL + vLK pk

LK)

= ∑
K∈T
|K|pk

K .

The result follows by induction and (2.4). �
Note that there is no restriction on the mesh or h for Lemma 2.1 to hold.
This particular FVM also preserves positivity provided ∆ t is sufficiently small. This immediately

follows from (2.5) and S = I−∆ tA. We now specify a bound for ∆ t depending on h, which provides
the CFL condition. Suppose that for some ξ ∈ [0,1),

∆ t ∑
L∈NK

(vKL)+ 6 (1−ξ )|K| ∀K ∈T , (2.6)

where (v)+ =max{0,v}. The statement ∆ t 6 (1−ξ )α2‖v‖−1
L∞ h is more recognizable as a CFL condition

of the form ∆ t/h6C, and, by the properties of an admissible mesh, implies that (2.6) is satisfied.

LEMMA 2.2 If ∆ t satisfies CFL condition (2.6) and p0 > 0 then

ph(x|t)> 0 ∀x ∈ Rd , t > 0.

Proof. First note that p0 > 0 implies p0
K > 0 for all K ∈ T . If pk

K > 0 for all K ∈ T , then using (2.3)
and (2.6), for every K ∈T ,

pk+1
K >

(
1− ∆ t
|K| ∑

L∈NK

(vKL)+

)
pk

K > 0.

The result follows by induction and (2.4). �
The following Theorem is a direct consequence of Lemmas 2.1 and 2.2.

THEOREM 2.1 For any t > 0, if ∆ t satisfies the CFL condtion (2.6), then Sh(t) is a Markov operator.

An equivalent statement to Theorem 2.1 is the following Corollary.

COROLLARY 2.1 If ∆ t satisfies the CFL condition (2.6) then the matrix S from (2.5) is a stochastic
matrix, i.e. the elements of S are non-negative and the row sums are all equal to 1.

Proof. We proceed with a proof by contradiction. Let Si j denote the entries of S. Suppose that
Si j is negative for some i and j and let ei be the unit row vector with zeros everywhere except the ith
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position. Then (eiS) j = Si j < 0, a contradiction by Lemma 2.2. Therefore, all of the elements of S are
non-negative.

Now let si denote the ith row of S and suppose ∑ j(si) j 6= 1. By Lemma 2.1, 1=∑ j(ei) j =∑ j(eiS) j =

∑ j(si) j 6= 1, a contradiction. Therefore all row sums of S are equal to 1. �
If S is irreducible and aperiodic (which is the definition of primitive for countably infinite matrices),

and positive recurrent, then S has a single maximal eigenvalue equal to 1 with a right eigenvector 1 and
a left eigenvector that corresponds to the stationary distribution of Sh(t). If S is not aperiodic, then the
eigenvalue may have multiplicity greater than 1. For this result and definitions, see [20, §5 and Thm.
1.1], in particular [20, Thm. 5.5].

Here, irreducibility requires that for any indices i and j, there exists a finite sequence of indices
{i, i1, i2, . . . , im, j} such that Sii1Si1i2 · · ·Sim j > 0. This is an analogous to the state evolving from state i
to state j in finite time. Aperiodicity is satisfied for S if there exists an index i such that Sii > 0, which
is satisfied if vKL > 0 for some edge EKL. Positive recurrence requires that a system starting in state i
has finite expected return time.

When the mesh does not align with the contours of the Hamiltonian for a Hamiltonian system, it is
possible that Sh(t) is asymptotically stable as t → ∞, whereas S(t) is not. This is because the discrete
operator effectively allows the discrete system to move between contours of the Hamiltonian, and if a
sequence of cells allows traversing all contours then the discrete system may traverse all state space,
whereas the continuous system is restricted to contours so cannot traverse state space.

Convergence of a numerical method for a linear PDE is usually a consequence of consistency and
stability established by application of the Lax equivalence theorem, see e.g. [14, Sec. 8.3.2]). Stability
of our scheme is a consequence of Theorem 2.1, but it is known that first order upwind FVMs lack
consistency (the local truncation error does not converge to 0 as ∆ t,h→ 0) [2]. For this reason, a
convergence proof for our FVM is quite delicate. Here we state the convergence results in [17] for our
FVM. Results in [4, 16] and [9, Chap. 6], and references therein, show convergence results for various
first order upwind FVMs and CFL conditions.

We restrict ourselves to the case when divv = 0 as required by [17]. The theory for the case when
divv 6= 0 is more technical, for example ‘viscosity solutions’ or ‘weak entropy solutions’ must be defined
to ensure existence and uniqueness of solutions to the continuity equation, see e.g. [14] and [9].

When divv = 0, (2.3) defines the same FVM as in [17] since for each K ∈T ,

∑
L∈NK

vKL pk
KL = ∑

L∈NK

(vKL)+pk
K +(vKL)−pk

L = ∑
L∈NK

(vKL)−(pk
L− pk

K),

where (v)− = min{0,v}. Also, if divv = 0, ∑L∈NK (vKL)+ = ∑L∈NK |(vKL)−| and CFL condition (2.6)
is the same condition as [17, Eqn. 1.9].

From [17, Thm. 2] we have the following Theorem.

THEOREM 2.2 Suppose divv = 0 and let f ∈ BV (Rd). If ∆ t satisfies CFL condition (2.6) for some
ξ ∈ (0,1), then for any t > 0,

‖S(t) f −Sh(t) f‖L1(Rd) 6Cξ
−1‖ f‖TV (t1/2h1/2 +ξ

1/2th).

Note ξ = 0 is not allowed in the CFL condition for Theorem 2.2.
A consequence of convergence of our FVM is the following Theorem.

THEOREM 2.3 Suppose that 06 t 6 T and ph→ p in L∞([0,T ],L1(Rd)) as ∆ t,h→ 0, and g∈ L∞
loc(Rd).

If there is a constant C such that

Ep(·|t)[|x|]6C, Ep(·|t)[g
2]6C, Eph(·|t)[|x|]6C, Eph(·|t)[g

2]6C, (2.7)
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independently of ∆ t and h, then

Eph(·|t)[g]→ Ep(·|t)[g] as ∆ t,h→ 0.

Proof. For any R > 0, let BR = {x ∈Rd : |x|6 R} and Bc
R =Rd\BR, and let IS be the indicator function

for set S. Then, using Hölder’s inequality, the Cauchy-Schwarz inequality, and Markov’s inequality,∣∣Eph(·|t)[g]−Ep(·|t)[g]
∣∣6 ∫

BR

|g(x)(ph(x|t)− p(x|t))|dx+
∣∣∣Eph [IBc

R
g]
∣∣∣+ ∣∣∣Ep[IBc

R
g]
∣∣∣

6 ‖g‖L∞(BR)‖ph(·|t)− p(·|t)‖L1(Rd)+
√

Eph [IBc
R
]Eph [g

2]+
√

Ep[IBc
R
]Ep[g2]

= ‖g‖L∞(BR)‖ph(·|t)− p(·|t)‖L1(Rd)+
√

Pph [|x|> R]Eph [g
2]+

√
Pp[|x|> R]Ep[g2]

6 ‖g‖L∞(BR)‖ph(·|t)− p(·|t)‖L1(Rd)+2CR−1/2.

Then, for any ε > 0, first choose R such that 2CR−1/2 < ε/2, and then choose ∆ t and h such that
‖g‖L∞(BR)‖ph(·|t)− p(·|t)‖L1(Rd) < ε/2, then

∣∣Eph(·|t)[g]−Ep(·|t)[g]
∣∣< ε , hence result. �

REMARK 2.1 If ph and p have compact support then (2.7) is satisfied for all g ∈ L∞
loc. If ph → p in

L∞([0,T ]×Rd) then the result holds for any g ∈ L1
loc(Rd).

REMARK 2.2 Although Theorem 2.3 does not explicitly require that ∆ t and h satisfy a CFL condition,
it is implicit in the assumption that ph→ p in L∞([0,T ],L1(R2)) as ∆ t,h→ 0.

Using Theorem 2.2 we can specify a convergence result in the case when ph and p have compact
support.

THEOREM 2.4 Let g∈ L∞
loc(Rd) and H,T < ∞. If divv = 0, f ∈ BV (Rd) has compact support, and there

exists ξ ∈ (0,1) such that ∆ t satisfies the CFL condition (2.6), then there exists a constant C independent
of h and t such that ∣∣ESh(t) f [g]−ES(t) f [g]

∣∣6Ch1/2 ∀t ∈ [0,T ],h ∈ (0,H].

Proof. Since f has compact support and v ∈W 1,∞(Rd ;Rd) it follows that S(t) f and Sh(t) f have
compact support for all t ∈ [0,T ], so let B ⊂ Rd be a bounded set containing the support of S(t) f and
Sh(t) f for all t ∈ [0,T ]. Then for all t ∈ [0,T ], by Hölder’s inequality,∣∣ESh(t) f [g]−ES(t) f [g]

∣∣6 ‖g‖L∞(B)‖Sh(t) f −S(t) f‖L1(Rd).

The result then follows directly from Theorem 2.2. �
In practice, the continuity equation is solved on a bounded domain, so Rd must be truncated and

boundary conditions introduced. It is relatively easy to show that Lemmas 2.1 and 2.2 hold when either
periodic boundary conditions or v · n = 0 (Neumann conditions) are specified on a bounded domain.
However, the regularity of v and p could be affected by imposing these boundary conditions, which may
have an effect on convergence of the FVM. Analyses of FVMs on bounded domains is given in [22].
See also [9].

Periodic and Neumann boundary conditions prevent probability from entering or leaving the sys-
tem. Another possibility, when the support of the initial probability distribution is compact and v is
bounded so that the solution always has compact support, is to truncate the domain so that it contains



10 of 15 R.A. NORTON, C. FOX AND M.E. MORRISON

the region of support of the solution and specify homogeneous Dirichlét boundary conditions. If the
continuity equation is evolved for only a short time, the region of support remains in the interior of the
computational domain, though this strategy may not be practical for long integration times.

When the domain is bounded, then S in (2.5) is a finite dimensional matrix and we can use [20,
Thm. 1.1 or Thm. 1.5] to obtain results about the stationary distributions of Sh(t). In particular, positive
recurrence is irrelevant (because it is guaranteed) for finite matrices S.

The FVM (2.2)-(2.4) requires exact integration of p0 over cells to compute p0
K and integration of v

along cell edges to compute vKL. This may not be possible in practice so it may be necessary to replace
integration with quadrature for these calculations. Although convergence analysis of these modified
FVMs appears to be an open problem, we have had success (not presented here) in proving that the
discrete solution operator is Markov in the case when vKL is computed with the mid-point rule, vKL =
v(xKL)|EKL| where xKL is the mid-point of edge EKL, using very similar arguments to the proofs of
Lemmas 2.1 and 2.2.

Higher order FVMs are also possible, and there is convergence analysis available for these cases,
for example see [9, 14]. However, some work is still required to prove that each FVM corresponds to
a Markov operator since the existing theory has not been directed to proving that a method is positivity
preserving.

3. An Example of Sequential Inference

Given a sequence of independent noisy observations {zk} made at increasing times {tk}, we would like
to sequentially infer the state of the observed dynamical system. Assuming that we have the posterior
pdf ρ(xk−1|zzz1:k−1) over the previous state xk−1 = x(tk−1) (from previous observations zzz1:k−1), and we
know the likelihood function ρ(zk|xk) = ρ(zk|xk,zzz1:k−1) for observation zk, then Bayes’ theorem gives
the following expression for the posterior pdf over xk = x(tk) given observations zzz1:k,

ρ(xk|zzz1:k) =
ρ(zk|xk)ρ(xk|zzz1:k−1)

ρ(zk|zzz1:k−1)

where

ρ(xk|zzz1:k−1) =
∫

ρ(xk|xk−1,zzz1:k−1)ρ(xk−1|zzz1:k−1)dxk−1, (3.1)

ρ(zk|zzz1:k−1) =
∫

ρ(zk|xk)ρ(xk|zzz1:k−1)dxk. (3.2)

Since {x(t) : t > 0} is governed by a dynamical system we can replace (3.1) at each step in the
sequential inference with the action of the Frobenius-Perron operator

ρ(xk|zzz1:k−1) = S(tk− tk−1)ρ(xk−1|zzz1:k−1).

In the following example we will approximate operation by the Frobenius-Perron operator using the
FVM to solve the continuity equation with initial condition given by ρ(xk−1|zzz1:k−1).

3.1 Tracking a Pendulum

We now demonstrate the properties of the FVM for use in sequential inference in a simple pendulum
example with incomplete and uncertain observations.
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Table 1: Table of L1(Ω) norms and effective order computed at time t = π/4. N = 2π/h is the number
of cells per dimension on the grid.

L1 Norm Effective order
N = 1/h ‖ph− ph/2‖L1 − log2

‖p2h−ph‖
‖ph−ph/2‖

50 0.25398 -
100 0.19553 0.3855
200 0.14697 0.4037
400 0.10799 0.4446
800 0.062628 0.7860

1600 0.038029 0.7197
3200 0.020514 0.8905
6400 - -

For d = 2, let x = (x1,x2) be a vector of angular displacement and angular velocity of a pendulum.
Let x1 = 0 correspond to the pendulum hanging vertically downwards. The velocity field for the simple
pendulum is

v(x) =
(

x2,−
g
l

sin(x1)
)
, (3.3)

where g is the acceleration due to gravity and l the length of the pendulum. We use g = 1 and l = 1.
We also restrict the computational domain to x ∈ Ω = [−π,π)2 with periodic boundary conditions at
x1 =±π and Neumann boundary conditions at x2 =±π . The Frobenius-Perron operator describing the
motion of the pendulum is thus well-defined.

To approximate the Frobenius-Perron operator using the FVM we define a uniform lattice of N×N
square cells with side length h = 2π/N. Then ∑L∈NK (v

k
KL)+ 6 (π +1)h, so the CFL condition (2.6) is

satisfied for some ξ ∈ [0,π) provided that

∆ t 6 (1−ξ )
h

π +1
. (3.4)

For our simulations we use ∆ t = (2π +1)−1h which corresponds to (3.4) with ξ = (2π +1)−1π .
With these choices for computational domain, boundary conditions, mesh, and CFL condition, the

FVM defines a Markov operator (it’s easy to prove similar results to Lemmas 2.1 and 2.2), and, although
the conditions for Theorem 2.2 are not satisfied, we observe in Table 1 that the FVM for this example
appears to satisfy the conclusion of Theorem 2.2, i.e., a convergence rate of at least order h1/2.

3.1.1 Convergence of the FVM operator. Table 1 values were computed by evaluating S(0.25)p0
where p0 is a Gaussian pdf with mean (0.6π,0) and covariance 0.64I, discretized and truncated to the
computational domain. The p0

K values in (2.2) were approximated with the mid-point rule in each K.
No Bayes’ steps were used (no observations were made) when computing the values in Table 1.

The computed values for effective order suggest that the order of our method is approximately 3/4,
but we would need to perform additional simulations with even smaller h to be sure. Theorem 2.2
suggests the method has order at least 1/2, so our observations agree with theory, but they also suggest
that Theorem 2.2 is not sharp for this example.
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FIG. 1: Probability density functions over angular displacement and velocity of the pendulum at times
t = 0 and t ≈ π/6, π/3 and π , respectively, top left, top right, bottom left, bottom right.

3.1.2 Inference from observations. We simulated the ‘true’ pendulum with initial condition x =
(0.2π,0), and simulated incomplete and noisy observations of |x1| at the six times tk = k 2π

7 , k =

1,2, . . . ,6 in the interval t ∈ [0,2π), each observation is a draw from zk ∼ N(|x1(tk)|,0.12). This sit-
uation is analogous to making observations of the force on the pendulum string, which also provides no
information about the sign of angular displacement. We assumed an initial (prior) distribution that is a
Gaussian with mean (0,0) and covariance 0.64I, truncated to the computational domain.

Figure 1 shows the pdf over the angular displacement and velocity of the pendulum resulting from
sequential inference at various times. As time progresses we see that the distribution becomes multi-
modal due to the ambiguity arising from our deficient observations and symmetric prior.

Figure 2 shows the mean and standard deviation of the distributions over x for the pendulum, with
the true path also shown. Note that the symmetry of multi-modal distributions means that the mean
angular displacement and velocity are always zero, and hence are no use as an estimate of position. In
contrast, the multi-modality and location of modes is clear from the pdfs in Figure 1. This figure also
demonstrates why a sequential inference method that is based on uni-modality, such as the Kalman filter
and its extensions, would be a very poor choice for state estimation in this example. It is interesting that
the standard deviation, which is the uncertainty in location, eventually provides quite a good estimate
for the amplitude of motion of the pendulum.

4. Conclusion

We have demonstrated how a FVM can approximate the Frobenius-Perron operator associated with a
dynamical system, by approximating the solution to the continuity equation.
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FIG. 2: Mean (blue line) and standard deviation (dotted green) about the mean for the sequence of dis-
tributions occurring within the sequential inference process, for angular displacement (top) and angular
velocity (bottom) of the pendulum. True path is shown with a dot-dashed black line. Steps in the
standard deviation are a result of the Bayes step at observations.

When discretizing the Frobenius-Perron operator it is desirable that the discrete operator also satis-
fies the Markov property, and we have shown how a FVM achieves this.

It is perhaps surprising that FVMs have not previously been used to approximate the Frobenius-
Perron operator because, in general, they always preserve the conserved quantity of a conservation law.
For the continuity equation this means they always preserve the integral of the solution, one half of the
requirements for the Markov property.

The other half of the Markov property requires that the method is positivity preserving. We showed
that the FVM we considered achieves this provided a CFL condition is satisfied. CFL conditions are not
new for FVMs as they are often required for stability.

Another advantage of FVMs is that they often come with pre-existing convergence theory that can
be easily adapted to approximating the Frobenius-Perron operator.

Ulam’s method, requires one to compute |Ei∩Y (E j, t)| for some Ei,E j ⊂ Rd from a partition of the
domain, or approximate these values using Monte Carlo integration. Similar calculations are required
for the piecewise linear Markov finite approximation method and other methods based on Galerkin
projection. The FVM we considered only requires averaging the initial condition over each cell in (2.2)
and evaluating integrals of v along edges between cells to compute vKL. Both of these calculations can
be replaced by quadrature to any desired accuracy and their errors included in the analysis. In this sense,
the FVM is easier to implement than some other methods.

With an example we showed how the FVM is well-suited to evolving a pdf that is multi-modal in
sequential inference problems.

Particle filters can also be used to perform sequential inference, and typically converge with order
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1/2 with respect to the number of particles in the system (see e.g., [8, §2.5]). The FVM presented here
only has theoretical order 1/4 (3/8 in practice for the pendulum example) with respect to the number of
cells. However, the FVM presented here could be more efficient than particle filters for some problems.
Also, higher order FVMs and/or adaptive meshes could improve the efficiency of FVMs.

Each inference step with the finite volume approach avoids resampling technicalities of particle
filters and we have shown how to adapt existing technology for grid-based PDE solvers to perform grid
or mesh-based sequential inference.

We have not proven Ulam’s conjecture for the FVM approximation of the Frobenius-Perron operator,
i.e. that the sequence of stationary distributions for Sh(t) converges to a stationary distribution of S(t)
as h→ 0, if S(t) has a stationary distribution. This is an avenue for further study.
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