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Abstract. We propose two algorithms for simulating continuous time Markov chains in the
presence of metastability. We show that the algorithms correctly estimate, under the ergodicity
assumption, stationary averages of the process. Both algorithms, based on the idea of the parallel
replica method, use parallel computing in order to explore metastable sets more efficiently. The
algorithms require no assumptions on the Markov chains beyond ergodicity and the presence of iden-
tifiable metastability. In particular, there is no assumption on reversibility. For simpler illustration
of the algorithms, we assume that a synchronous architecture is used throughout of the paper. We
present error analyses, as well as numerical simulations on multi-scale stochastic reaction network
models in order to demonstrate consistency of the method and its efficiency.
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1. Introduction. We focus on computing stationary averages of continuous time
Markov chains in a synchronous architecture. More precisely, if π is the stationary
distribution of a continuous time Markov chain (CTMC) and f is a function on the
state space, we aim at estimating the average π(f) ≡ Eπ[f ] by taking a time average
on a long trajectory of the CTMC. There are many methods for computing stationary
averages of stochastic processes, however, the vast majority of them rely on reversibil-
ity of the process, e.g., as in Markov chain Monte Carlo [19]. Computational cost of
the ergodic (trajectory) averaging becomes prohibitive when the convergence to the
stationary distribution is slow due to metastability of the dynamics, for example in
the presence of rare events or large time scale disparities (multi-scale dynamics), [20].
A possible remedy for this issues is to use parallel computing in order to acceler-
ate sampling of the state space. For instance, the parallel tempering method (also
known as the replica exchange) [12, 10, 9, 17] has been successfully applied to many
problems by simulating multiple replicas of the original systems, each replica at a
different temperature. However, the method requires the time reversibility of the
underlying processes, which is typically not true for processes that model chemical
reaction networks or systems with non-equilibrium steady states. In fact, there are
not many methods that parallelize Monte Carlo simulation for irreversible processes
with metastability, in particular if long-time sampling such as ergodic averaging, is
required. We present a parallel computing approach for CTMCs without time re-
versibility. One advantage of the proposed algorithms is that they may be used,
in principle, on arbitrary CTMCs. The same idea applies to the continuous state
space Markov processes. However, gains in efficiency can occur only if the process is
metastable.

In this contribution we consider only models described by continuous time Markov
chains. As a motivating example we study a multi-scale chemical reaction network
model in which molecules of different types react with different rates depending on
their concentrations and reaction rate constants. In this model metastability emerges
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due to the infrequent occurrence of reactions with small rates which makes the re-
laxation to the steady state dynamics extremely slow. In the transient regime the
finite time distribution can be approximated using the stochastic averaging technique
[24, 14], or the tau-leap method [18]. However, the former does not apply for sta-
tionary distribution estimation and that the error they introduce on the stationary
state is generally difficult to evaluate; the latter can be still computationally expen-
sive for long-time simulations. It is thus desirable to have an efficient algorithm for
computing the stationary averages. Thus the proposed algorithm will provide a new
multi-scale simulation method (in particular for stationary averaging estimation) for
the stochastic reaction networks community.

The presented approach builds on the parallel replica (ParRep) dynamics intro-
duced in the context of molecular simulations in [22]. The ParRep method used in the
context of stochastic differential equations, e.g. Langevin dynamics, was rigorously
analysed in [15, 16]. The algorithm we present and analyse builds on the recent work
of [1, 2] where the ParRep process was studied for discrete-time Markov chains. In
our algorithms, each time the simulation reaches a local equilibrium in a metastable
set W , R independent replicas of the CTMC are launched inside the set allowing for
parallel simulations of the dynamics at this stage. The main contribution of this work
is a procedure for using the replicas in order to efficiently and consistently estimate
the exit time and exit state from W , along with the contribution to the stationary
time average of f from the time spent in W . We emphasize that we are able to
handle arbitrary functions (or observables) on the state space, not only those that
are piece-wise constant, i.e., assuming a single value in each W . In the best case,
if there are R replicas, then the simulation leaves a metastable set about R times
faster compared to a direct serial simulation. The consistency of our algorithms relies
on certain properties of the quasi-stationary distribution (QSD) which are essentially
local equilibria associated with the metastable sets.

We propose two algorithms for computing π(f), called CTMC ParRep and em-
bedded ParRep. The former uses parallel simulation of the CTMC, while the latter
employs parallel simulation of its embedded chain, which is a discrete time Markov
chain (DTMC). CTMC ParRep (resp. embedded ParRep) relies on the fact that,
starting at the QSD in a metastable set, the first time to leave the set is an ex-
ponential (resp. geometric) random variable and independent of the exit state; see
Theorem 5 below. The algorithms require some methods for identifying metastable
sets, though this need not be done a priori – it is sufficient to identify when the
CTMC is currently in a metastable set, and when it exits such set. While both algo-
rithms can be useful for efficient simulation of π(f) in the presence of metastability,
we expect the embedded ParRep can be significantly more efficient, especially when
combined with a certain type of QSD sampling, called Fleming-Viot [3, 4]. Though
we focus here on the computation of π(f), we note that one of our algorithms, CTMC
ParRep, can be used to compute the dynamics of the CTMC on a coarse space in
which each metastable set is considered a single (meta-)state. See the discussion below
Algorithm 1.

The advantages of the proposed algorithms include: (a) no requirement of time
reversibility for the underlying dynamics; (b) they are suitable for long-time sam-
pling; (c) they may be used, in principle, on arbitrary CTMCs in the presence of
metastability.

In Section 2, we briefly review CTMCs before defining QSDs and detailing relevant
properties thereof. In Section 3, we present CTMC ParRep, and study how the error
in the algorithm depends on the quality of QSD sampling. In Section 4, we present
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embedded ParRep and provide an analogous error analysis. We detail some numerical
experiments on multi-scale chemical reaction network model in Section 5 in order to
demonstrate the consistency and accuracy of the algorithms.

2. Background and problem formulation.

2.1. Continuous Time Markov Chains. Throughout this paper, X(t) is an
irreducible and positive recurrent continuous time Markov chain (CTMC) with values
in a countable set E and π denotes the stationary distribution of X(t). We are
interested in computing stationary averages π(f) for a bounded function f : E → R
by using the ergodic theorem

(1) lim
t→∞

1

t

∫ t

0

f(X(s))ds = π(f),

which holds almost surely for any initial distribution of X(t). The jump times τn and
holding times ∆τn for X(t) are defined recursively by

τ0 = 0, τn = inf{t > τn−1 : X(t) 6= X(τn−1)},

and
∆τn−1 = τn − τn−1

for n ≥ 1. We assume that X(t) is non-explosive, that is, limn τn =∞ almost surely
for every initial distribution of X(t). This precludes the possibility of infinitely many
jumps in finite time. We denote Xn = X(τn) the embedded chain of X(t). It is easy
to see that Xn is a discrete time Markov chain (DTMC).

Recall that X(t) is completely determined by its infinitesimal generator matrix
Q = {q(x, y)}x,y∈E . Recall that by convention q(x,x) is chosen such that

∑
y q(x, y) =

0 and we write q(x) := −q(x, x). Note that irreducibility implies q(x) > 0 for all x ∈
E. It is easy to check thatXn has the transition probability matrix P = {p(x, y)}x,y∈E
satisfying

p(x, y) =

{
q(x,y)
q(x) , x 6= y,

0, x = y
.

We state the following well known fact for the later reference.
Lemma 1. For a CTMC X(t) with the corresponding embedded Markov chain Xn,

the holding time between successive jumps ∆τ0,∆τ1, · · · ,∆τi, · · · are independent con-
ditioned on the embedded chain Xn. Moreover, ∆τi|{Xn} is exponentially distributed
with the rate q(Xi) and hence E [∆τi|{Xn}] = q(Xi)

−1.
For details on the above facts, see for instance [5].

2.2. The Quasi-stationary Distribution and Metastability. Below, we
write P, E for various probabilities and expectations, the precise meaning of which
will be clear from context. We use a superscript Pξ, Eξ to indicate that the initial
distribution is ξ. When the initial distribution is δx, we write Px, Ex. The symbol
∼ will indicate equality in probability law. Re(·) and | · | denote the real part and
modulus of a complex number.

Our ParRep algorithms rely on certain properties of quasi-stationary distribu-
tions, which we now briefly review. Let W ⊂ E be fixed and consider the first exit
time of X(t) from W , that is,

T = inf{t > 0;X(t) /∈W}.
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We consider also the first exit time of Xn from W ,

N = inf{n > 0;Xn /∈W}.

A quasi-stationary distribution (QSD) of X(t) in W (or Xn in W ) is defined as follows.
Definition 2. A probability distribution ν with support in W is a quasi-stationary

distribution for X(t) in W if for each y ∈W and t > 0,

(2) ν(y) = Pν(X(t) = y |T > t).

Similarly, a probability distribution µ with support in W is a QSD for Xn in W if for
each y ∈W and n > 0,

(3) µ(y) = Pµ(Xn = y |N > n).

Throughout we write ν for a QSD of the CTMCX(t) and µ for a QSD of the embedded
chain Xn. The associated set W will be implicit since no ambiguities should arise.
We will write

(4) νt(A) = Px(X(t) ∈ A |T > t)

for the distribution of X(t) conditioned on T > t, and

(5) µn(A) = Px(Xn ∈ A |N > n).

for the distribution of Xn conditioned on N > n. Notice we do not make explicit the
dependence on the starting point x.

We summarize existence, uniqueness, and convergence properties of the QSD in
Theorem 3 below (see [6, 21]). In Theorem 3 below, for simpler presentation, we
assume W is finite. That allows us to characterize convergence to the QSD of X(t)
and Xn in terms of spectral properties of their generator and transition matrices. We
emphasize, however, there exists more general results to guarantee the convergence
to the QSD and hence the finiteness of W is not necessary for consistency of the
algorithms proposed in this paper.

Recall that Q is the infinitesimal generator matrix of X(t) and P is the transition
probability matrix of the DTMC Xn. We denote QW = {qxy}x,y∈W and PW =
{pxy}x,y∈W the restrictions of P and Q to W .

Theorem 3. Let W be finite and nonabsorbing for X(t), and assume PW is
irreducible.

(a) The eigenvalues λ1, λ2, . . . of QW can be ordered so that

0 > λ1 > Re(λ2) ≥ . . . ,

where λ1 has the left eigenvector ν which is a probability distribution on W .
Moreover, ν is the unique quasi-stationary distribution of X(t) in W , and for
all x, y ∈W ,

(6) |νt(y)− ν(y)| = |Px(X(t) = y|T > t)− ν(y)| ≤ C(x)e−(λ1−β)t,

with C(x) a constant depending on x, and β any real number satisfying
Re(λ2) < β < λ1.
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(b) Suppose PW is also aperiodic. Then the eigenvalues σ1, σ2, . . . of PW can be
ordered so that

1 > σ1 > |σ2| ≥ . . . ,

where σ1 has the left eigenvector µ which is a probability distribution on W .
Moreover, µ is the unique quasi-stationary distribution of Xn in W and for
all x, y ∈W ,

(7) |µn(y)− µ(y)| = |Px(Xn = y|N > n)− µ(y)| ≤ D(x)

(
γ

σ1

)n
,

with D(x) a constant depending on x, and γ any real number satisfying |σ2| <
γ < σ1.

Proof. We first justify the expression for the eigenvalues. Observe that for x 6=
y ∈W , we have q(x, y) > 0 if and only if p(x, y) > 0. It follows that QW is irreducible
if and only if PW is irreducible; see Definition 2.1 in [21]. Now let I be the all ones
column vector, I(x) = 1 for x ∈ W . Recall that q(x, y) ≥ 0 for every x 6= y ∈ E
and

∑
y q(x, y) = 0 for every x ∈ E. This implies that QW I ≤ 0 component-wise.

Since W is non-absorbing, for some x ∈ W and y /∈ W we have q(x, y) > 0, and it
follows that

∑
z∈W q(x, z) < 0. This shows that at least one component of QW I is

strictly negative. The expression for the eigenvalues, and the fact that ν is signed
(hence a probability distribution, after normalization) now follows from Theorem 2.6
of Seneta [21].

To see ν is the QSD for X(t) in W , we define the stopped process XT (t) = X(t∧T )
such that X(t) is absorbed outside W . For any x, z ∈ E, let Ix be the column
vector Ix(z) = 1 if x = z and Ix(z) = 0 otherwise. Finiteness of W ensures that
Px(XT (t) = y) = I ′xe

QW tIy. Thus, for each y ∈W ,

Pν(X(t) = y, T > t) = Pν(XT (t) = y) = νeQW tIy = eλ1tν(y)

and
Pν(T > t) = Pν(XT (t) ∈W ) = eλ1t,

which leads to ν(y) = Pν(X(t) = y|T > t).
Now we turn to the convergence to ν. It follows from Theorem 2.7 in [21] that

there is a constant C(x) depending on x such that for any real β with Re(λ2) < β,

(8) Px(X(t) = y, T > t) = Px(XT (t) = y) = C(x)eλ1tν(y) +O(eβt)

and

(9) Px(T > t) = C(x)eλ1t +O(eβt),

It follows that

|νt(t)− ν(y)| = |Px(X(t) = y |T > t)− ν(y)| ≤ C(x)e−(λ1−β)t

where C(x) is now a (possibly different) constant depending on x.
The arguments in (b) are similar, using the Perron-Frobenius theorem (Seneta [21,

Theorem 1.1]).
For analogous results on the QSD in more general settings, see [6, Theorem4.5] for

CTMCs and [8, Theorem 1] for DTMCs. We are now ready to define metastability.
Definition 4. Let W and λi, σi be as in Theorem 3.
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1. W is metastable for X(t) if λ1 ≈ 0 and

(10) |λ1| � |λ1 − Re(λ2)|.

X(t) is metastable if it has at least one metastable set W .
2. W is metastable for Xn if σ1 ≈ 1 and

(11) σ1 �
|σ2|
σ1

.

Xn is metastable if it has at least one metastable set W .
In light of Theorem 3, Conditions 1-2 in Definition 4 essentially say that the time to
leave W is large in an absolute sense, and the time to leave W is large relative to the
time to converge to the QSD in W . Metastability of the CTMC is not necessarily
equivalent to the metastability of its underlying embedded chain, as we now show.
Consider X(t) with the infinitesimal generator

Q =


−1 1/2 1/2 0
1/2 −1 1/2 0
0 ε/2 −ε ε/2
0 0 1 −1

 ,

where ε ≈ 0 is positive. Then W = {1, 2, 3} is metastable for X(t) but not for Xn,
since

σ1 ≈ 0.81, |σ2| ≈ 1/2, λ1 ≈ −ε/2, Re(λ2) ≈ −1/2.

Now consider X(t) with the infinitesimal generator

Q =


−ε−1 ε−1/2 ε−1/2 0
ε−1 − 1 −ε−1 1 0

0 ε−1 − 1 −ε−1 1
0 0 1 −1

 .

Then W = {1, 2, 3} is metastable for Xn but not for X(t), since

σ1 ≈ 1− ε/5, |σ2| ≈
√

2/2, λ1 ≈ −1/5, Re(λ2) ≈ −3ε−1/2.

Algorithm 1 below requires a collection of metastable sets for X(t), and Algo-
rithm 2 requires a collection of metastable sets for Xn. The only assumption we make
on these sets is that they are pairwise disjoint. (The sets may be different for the two
algorithms, as noted above.) Throughout we write W to denote a generic metastable
set. We emphasize that we do not assume the metastable sets form a partition of E:
the union of the metastable sets may be a proper subset of E. Here and below, we
assume that each W has a unique QSD and that νt (and µt) converge to the QSD
in total variation norm, for any starting point x. Recall that this is true under the
assumptions of Theorem 3

We conclude this section by mentioning properties of the QSD which are essential
for the consistency of our algorithms in Section 3 and 4 below.

Theorem 5.
1. Suppose X(0) ∼ ν. Then T is exponentially distributed with the parameter
−λ1:

Pν(T > t) = eλ1t, t > 0,

and T and X(T ) are independent.
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2. Suppose X0 ∼ µ. Then N is geometrically distributed with the parameter
1− σ1:

Pµ(N > n) = σn1 , n = 1, 2, . . . ,

and N and XN are independent.
Proof. The first part of 1 and 2 was shown in Theorem 3. For the rest of the

proof see [6].

3. The CTMC ParRep Method.

3.1. Formulation of the CTMC Algorithm. In this section, we introduce
a method for accelerating the computation of π(f), where we recall f : E → R is
any bounded function and π is the stationary distribution. We call this algorithm
CTMC ParRep, for reasons that will be outlined below. Before we describe CTMC
ParRep, we introduce some notation. Throughout, X1(t), . . . , XR(t) will be indepen-
dent processes with the same law as X(t) and with initial distributions supported in
W . Recall that the first exit time of X(t) from W is

T = inf{t > 0 : X(t) /∈W}.

Similarly, for r = 1, . . . , R, we define the first exit time of Xr(t) from W by

T r = inf{t > 0 : Xr(t) /∈W}

and the smallest one among them by

T ∗ = min
r
T r.

We denote the index of the replica with the first exit time T ∗ by M , i.e.,

M = arg min
r

T r.

T , T r, T ∗ and M depend on W , but we do not make this explicit.
We are in the position to present the CTMC ParRep in Algorithm 1. In this

algorithm, we will need user-chosen parameters tc associated with each metastable set
W . Roughly speaking, these parameters correspond to the time forX(t) to converge to
the QSD inW . The accumulated value F (f)sim serves as a quantity that approximates

the integral
∫ Tend

0
f(X(s)) ds when the algorithm terminates. Note that at the end of

the algorithm we often have Tsim ≥ Tend since the ParRep process could reach Tend

during the parallel stage. However, this is not an issue as long as Tsim is large enough
at the end of the algorithm so that the time average is well approximated.

If Xpar(t) remains in W for sufficiently long time (i.e., decorrelation threshold
tc), it is distributed nearly according to the QSD ν of X(t) in W by Theorem 3.
This means that at the end of the decorrelation stage, Xpar(Tsim) can be considered
a sample of ν.

The aim of the dephasing stage is to prepare a sequence of independent initial
states with distribution ν. There are several ways for achieving this. Perhaps the
simplest is the rejection method. In this procedure, each of the R replicas evolves
independently. A parameter tp similar to the decorrelation threshold tc is selected.
If a replica leaves W before spending a time interval of length tp in W , it restarts
in W from the original initial state. Once all the replicas remain in W for time tp,
we stop and take x1, . . . , xR as the final states of all the replicas in the dephasing
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Algorithm 1 CTMC ParRep

1: Set a decorrelation threshold tc for each metastable set W . Initialize the simula-
tion time clock Tsim = 0 and the accumulated value F (f)sim = 0. We will write
Xpar(t) for a simulation process that obeys the law of X(t). A complete ParRep
cycle consists of three stages.

2: Decorrelation Stage : Starting at t = Tsim, evolve Xpar(t) until it spends an
interval of the time length tc inside the same metastable set W . That is, evolve
Xpar(t) from time t = Tsim until time

Tcorr = inf{t ≥ Tsim + tc : Xpar(s) ∈W for all s ∈ [t− tc, t] for some W}.

Then update

F (f)sim = F (f)sim +

∫ Tcorr

Tsim

f(Xpar(t)) dt,

set Tsim = Tcorr, and proceed to the dephasing stage.
3: Dephasing Stage : Let W be such that Xpar(Tsim) ∈ W , that is, W is the

metastable set from the end of the last decorrelation stage. Generate R indepen-
dent samples x1, . . . , xR from ν, the QSD of X(t) in W .
Then proceed to the parallel stage.

4: Parallel Stage : Start R parallel processes X1(t), . . . , XR(t) at x1, . . . , xR, and
evolve them simultaneously from time t = 0 until time T ∗ = minr T

r. Here all R
processes are simulated in parallel. Then update

F (f)sim = F (f)sim +

R∑
r=1

∫ T∗

0

f(Xr(s))ds,

Tsim = Tsim +RT ∗,

(12)

set Xpar(Tsim) = XM (T ∗), and return to the decorrelation stage.
5: The algorithm is stopped when Tsim reached a user-chosen terminal time Tend.

The stationary average π(f) is estimated as

π(f) ≈ F (f)sim/Tsim.

stage and use them for the subsequent parallel stage. Besides rejection sampling,
another method is a Fleming-Viot based particle sampler; see the discussion after
Algorithm 2 below. Finally, we comment that we can reduce the overhead related to
the dephasing stage by starting the dephasing stage immediately (instead of waiting
for decorrelation stage to finish) when the XPar(t) enters into a new metastable set
[3].

The acceleration of CTMC ParRep comes from the parallel stage. Recall that,
for each r = 1, . . . , R, if x1, . . . , xR are independent, identically distributed (iid) with
the common distribution ν, then T 1, . . . , TR are independent exponential random
variables with common parameter λ1. Using T ∗ = minr T

r, it is then easy to check
that RT ∗ has the same distribution as T 1. See Lemma 6 below. This means one
only needs to wait for T ∗ instead of T 1 to observe an exit from W . Note that
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this is true whether or not W is metastable, so efficiency of the parallel stage does
not require metastability. However, the dephasing stage is not efficient if W is not
metastable. That is because, in practice, the samples x1, . . . , xR are obtained by
simulating trajectories which remain in W for a sufficiently long time tp. Such samples
are hard to obtain when the typical time tp for x1, . . . , xR to reach the QSD in W is
not much smaller than the typical time to leave W .

To see that each parallel stage has a consistent contribution to the stationary
average, we make the following two observations. Suppose that x1, . . . , xR are iid
samples from ν.

1. The joint law of (RT ∗, XM (T ∗)) is the same as that of (T 1, X(T 1)). That is,
the joint distribution of the first exit time and the exit state in the parallel
stage is independent of the number of replicas.

2. The expected value of
∑R
r=1

∫ T∗

0
f(Xr(s))ds in (12) is the same as that of∫ T 1

0
f(X1(s))ds. That is, the expected contribution to F (f)sim from each

parallel stage is independent of the number of replicas.
The first observation is a consequence of the Theorem 5, and the second will be proved
in Theorem 7 below. Consistency of stationary averages follows from the points 1-2
above and the law of large numbers. Since there are indefinitely many parallel stages
in a given W , consistency is ensured as long as the expected contribution to F (f)sim

from the parallel stage has the correct expected value. See [1] for details and discussion
in a related discrete time version of the algorithm under some idealized assumptions.

The CTMC ParRep algorithm suffers some serious drawbacks. Even if the parallel
processors are synchronous, M and T ∗ may not be known at the wall clock time when
the first replica leaves W . The reason is that the holding times for a CTMC are
random, while the wall clock time for simulating each jump of the CTMC is always
roughly the same. We illustrate this problem in Figure 1. In the worst possible

1

2

0 1 2 2.5 4 5 6 7

0 1 1.5 4 8

Fig. 1. The parallel stage of the CTMC ParRep algorithm with two replicas. R1 escapes from
W at t = 7 with 7 transitions while R2 escapes at t = 8 but with only 4 transitions. In the parallel
stage of the CTMC ParRep algorithm, R2 escaped from W before R1 does but T 2 > T 1. There is
no acceleration in this case since the parallel stage does not terminate when R2 escapes.

case, in order to determine M and T ∗, we must wait for all the replicas to leave
W . However, one can set a variable Tmin to record the current minimum first exit
time over all replicas which have left W , and terminate any replicas which reach time
Tmin but have not left W , since no replica contributes to the accumulated value past
time Tmin. Since the expected first exit times E[T r], r = 1, . . . , R are roughly the
same, if the variance in the number of jumps of Xr(t) before time T ∗ is small for all
r = 1, . . . , R, then we can expect that the parallel stage stops after only a few replicas
leave W .

For the same reason, there is another major drawback of CTMC ParRep. If f

takes multiple values in W , then the computation of
∑R
r=1

∫ T∗

0
f(Xr(s))ds in (12)

requires storing the entire history of the value of f on each replica in that parallel
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stage. We illustrate this drawback by considering the case of two replicas r1 and r2

with first exit time T 1 and T 2, respectively. Suppose T 1 < T 2 and hence T ∗ = T 1.
Let us assume that in terms of wall clock time, r2 exits W before r1 does. At the end
of the parallel stage (i.e., after both of T 1 and T 2 are sampled ) we have the running

sum
∫ T 2

0
f(X2(s))ds from r2. However, by the CTMC ParRep algorithm, we only

need
∫ T∗

0
f(X2(s))ds indeed. If we only keep track of the running sum, we are unable

to recover
∫ T∗

0
f(X2(s))ds from T 2. Hence, the implementation of the CTMC ParRep

might be memory demanding unless one is interested in the equilibrium average of a
metastable-set invariant function f , i.e., if f(x) has only one value in each metastable
set W . In Section 4 we present another algorithm, called embedded ParRep, which
addresses these drawbacks.

3.2. Error Analysis of CTMC ParRep. Here and below we will write EνR

for the expectation of (X1(t), . . . , XR(t)) starting at νR, where for

νR(x1, . . . , xR) =

R∏
r=1

ν(xr), x1, . . . , xR ∈W.

We begin with a simple well known lemma.
Lemma 6. Suppose T 1, . . . , TR are iid exponential random variables with the pa-

rameter λ1. Then T ∗ = min1≤r≤R T
r is exponentially distributed with the parameter

Rλ1. In particular, RT ∗ has the same distribution as T 1.
We now show that if the dephasing sampling is exact, then the expected con-

tribution to the accumulated value F (f)sim from the parallel step of Algorithm 1 is
exact.

Theorem 7. Suppose in the dephasing step (x1, . . . , xR) ∼ νR. Then the expected
contribution to F (f)sim from the parallel stage of Algorithm 1 is independent of the
number of replicas,

Eν
R

[
R∑
r=1

∫ T∗

0

f(Xr(s))ds

]
= Eν

[∫ T

0

f(X(s))ds

]
= ν(f)Eν [T ].

Proof. First we consider the case with a single replica. We condition on the exit
time T 1 and write

Eν
[∫ T 1

0

f(X1(s))ds

]
=

∫ ∞
0

Eν
[∫ t

0

f(X1(s))ds

∣∣∣∣T 1 = t

]
Pν(T 1 ∈ dt).

Interchanging the two integrals of the right-hand side leads to∫ ∞
0

∫ ∞
s

Eν
[
f(X1(s))|T 1 = t

]
P(T 1 ∈ dt)ds.

Note that the inner integral can be written as Eν
[
f(X1(s))1T 1>s

]
and hence

Eν
[∫ T 1

0

f(X1(s))ds

]
=

∫ ∞
0

Eν
[
f(X1(s))|T 1 > s

]
Pν(T 1 > s)ds.

Owing to the definition of QSD and the fact that Eν [T 1] =
∫∞

0
Pν(T 1 > s)ds,

Eν
[∫ T 1

0

f(X1(s))ds

]
= ν(f)Eν [T 1].
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In the case of multiple replicas, similar steps can be used to show that

R∑
r=1

Eν
R

[∫ T∗

0

f(Xr(s))ds

]
=

R∑
r=1

∫ ∞
0

Eν
R

[f(Xr(s))|T ∗ > s]Pν
R

(T ∗ > s)ds.

Recall that T ∗ > s if and only if T r > s for all r = 1, . . . , R. Using this, the fact that
T 1, . . . , T r are independent, and the definition of the QSD, we get

Eν
R

[f(Xr(s))|T ∗ > s] = Eν [f(Xr(s))|T r > s] = ν(f).

Thus

R∑
r=1

Eν
R

[∫ T∗

0

f(Xr(s))ds

]
= ν(f)

R∑
r=1

∫ ∞
0

Pν
R

(T ∗ > s)ds = ν(f)REν
R

[T ∗].

Finally, the result follows from Lemma 6.
The purpose of CTMC ParRep is to efficiently simulate very long trajectories of

a metastable CTMC and estimate the equilibrium average π(f). CTMC ParRep can
produce accelerated dynamics of the CTMC on a coarse state space where each coarse
set corresponds to some W ; see the discussion below Algorithm 2 below. Our numer-
ical experiments suggest that CTMC ParRep (and also embedded ParRep described
below) are consistent for estimating the stationary distribution.

For CTMC ParRep, we justify this claim in Theorem 8 below, which shows that,
starting in some W and waiting until the simulation leaves W , the error for a complete
ParRep cycle in CTMC ParRep compared to direct (serial) simulation vanishes as tc
increases. See Theorem 12 below for the analogous result on embedded ParRep. We
note that each ParRep cycle produce an error in the estimation of stationary averages
that does not disappear as Tsim →∞. However, we expect that the error vanishes as
the thresholds tc = tp →∞. Study of the this error is more involved and will be the
focus of another work.

Recall we have assumed convergence of ‖νtc − ν‖TV → 0 as tc → ∞, for every
starting point x ∈ E, where ‖·‖TV denotes total variation norm. See for instance The-
orem 3 for conditions guaranteeing this convergence.

Theorem 8. Consider CTMC ParRep starting at x ∈ W in the decorrelation
stage. Assume the dephasing stage sampling is exact, that is, (x1, . . . , xR) ∼ νR.
Consider the expected contribution to F (f)sim until the first time the simulation leaves
W (either in the decorrelation or in the parallel stage),

∆F (f)sim , Ex
[∫ tc∧T

0

f(X(s)) ds

]
+ Ex,ν

R

[
1T>tc

R∑
r=1

∫ T∗

0

f(Xr(s))ds

]
,

where Ex,νR

denotes expectation for (X(t), X1(t), . . . , XR(t)) with X(t) starting at
x and the replicas (X1(t), . . . , XR(t)) starting at initial distribution νR. The error
compared to direct (serial) simulation satisfies the bound

(13)

∣∣∣∣∣Ex
[∫ T

0

f(X(s))ds

]
−∆F (f)sim

∣∣∣∣∣ ≤ ‖f‖∞ sup
x∈W

Ex [T ] ‖νtc − ν‖TV.
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Proof. We estimate∣∣∣∣∣Ex
[∫ T

0

f(X(s))ds

]
−∆F (f)sim

∣∣∣∣∣
=

∣∣∣∣∣Ex
[∫ T

tc∧T
f(X(s))ds

]
− Ex,ν

R

[
1T>tc

R∑
r=1

∫ T∗

0

f(Xr(s))ds

]∣∣∣∣∣
=

∣∣∣∣∣Ex
[∫ T

tc

f(X(s))ds

∣∣∣∣∣ T > tc

]
− Ex,ν

R

[
R∑
r=1

∫ T∗

0

f(Xr(s))ds

∣∣∣∣∣ T > tc

]∣∣∣∣∣Px(T > tc)

≤

∣∣∣∣∣Ex
[∫ T

tc

f(X(s))ds

∣∣∣∣∣ T > tc

]
− Eν

R

[
R∑
r=1

∫ T∗

0

f(Xr(s))ds

]∣∣∣∣∣ ,
where we used the fact that X(t) and the replicas (X1(t), . . . , XR(t)) are independent.
By the Markov property,

Ex
[∫ T

tc

f(X(s))ds

∣∣∣∣∣ T > tc

]
= Eνtc

[∫ T

0

f(X(s))ds

]
.

By Theorem 7,

Eν
R

[
R∑
r=1

∫ T∗

0

f(Xr(s))ds

]
= Eν

[∫ T

0

f(X(s)) ds

]
.

Combining the above estimates and equalities,∣∣∣∣∣Ex
[∫ T

0

f(X(s))ds

]
−∆F (f)sim

∣∣∣∣∣
≤

∣∣∣∣∣Eνtc
[∫ T

0

f(X(s))ds

]
− Eν

[∫ T

0

f(X(s)) ds

]∣∣∣∣∣
=

∣∣∣∣∣∑
x∈W

Ex
[∫ T

0

f(X(s))ds

]
νtc(x)−

∑
x∈W

Ex
[∫ T

0

f(X(s))ds

]
ν(x)

∣∣∣∣∣
≤‖f‖∞ sup

x∈W
Ex [T ] ‖νtc − ν‖TV.

We note that Ex[T ] is uniformly bounded in x ∈ W if, for instance, PW is irre-
ducible and W is finite and non-absorbing for X(t), as in Theorem 3. This uniform
boundedness guarantees that the right hand side of (13) vanishes as tc →∞.

4. The Embedded ParRep Method.

4.1. Formulation of the Embedded ParRep Algorithm. In this section, we
introduce another algorithm for accelerating the computation of π(f). The algorithm,
called embedded ParRep, circumvents the disadvantages of CTMC ParRep discussed
above. As mentioned in the previous section, CTMC ParRep can be slow due to
the randomness of the holding times. In the worst case, one has to wait until all
replicas leave W in order to determine the first exit time T ∗. To circumvent this issue
we propose an algorithm based on the embedded chain in which the parallel stage
terminates as soon as one of the replicas leaves W .
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Before we describe embedded ParRep, we introduce some notations. Throughout,
X1
n, . . . , X

R
n will be independent processes with the same law as Xn and with initial

distributions supported in W . Moreover, we consider X1
n, . . . , X

R
n as the embedded

chains of X1(t), . . . , Xr(t) defined above, and let ∆τ1
n, . . . ,∆τ

R
n be the corresponding

holding times. Recall that the first exit time of Xn from W is

N = inf{n > 0 : Xn /∈W}.

For r = 1, . . . , R, we define the first exit time of Xr
n from W by

Nr = min{n ∈ N;Xr
n /∈W}

and the smallest among them by

N∗ = min{Nr; r = 1, . . . , R}.

Note that it is possible that more than one replica leave W for the first time after N∗

transitions. We denote by K the smallest index among these escaped replicas. That
is,

K = min{r = 1, . . . , R;Xr
N∗ /∈W}.

It is clear from the above definition that NK = N∗. Of course N , Nr, N∗ and K
depend on W , but we do not make this explicit.

Here and below we write EµR

for expectation of (X1
n, . . . , X

R
n ) starting at µR,

where

µR(x1, . . . , xR) =

R∏
r=1

µ(xr), x1, . . . , xR ∈W.

We begin by reproducing from [2] Theorem 9 and 10 below, with proofs for complete-
ness.

Theorem 9. Suppose (X1
n, . . . , X

R
n ) has initial distribution µR. Then R(NK −

1) +K has the same distribution as N1.
Proof. Note that for any n ≥ 0 and k = 1, . . . , R, the event {NK = n,K = k}

is equivalent to the event {N1 > n, . . . , Nk−1 > n,Nk = n,Nk+1 > n− 1, . . . , NR >
n − 1}. Since X1

n, . . . , X
R
n are iid and N1 is geometrically distributed with rate

p = PµR

(N1 > 1) (see Theorem 5),

Pµ
R

(NK = n,K = k) = (1−p)n(k−1)(1−p)n−1p(1−p)(n−1)(k−1) = (1−p)R(n−1)+k−1p.

That is, R(NK − 1) +K has geometric distribution with rate p.
Theorem 10. Suppose (X1

n, . . . , X
R
n ) has the initial distribution µR. Then XK

NK

is independent of R(NK − 1) +K and the distribution of (XK
NK , R(NK − 1) +K) is

same as that of (X1
N1 , N1).

Proof. We first prove that XK
NK is independent of K. Since XR

n , . . . , X
R
n are iid

and Nk is independent of Xk
Nk for each k, then Xk

Nk is independent of N1, . . . , NR.
Note that K ∈ σ(N1, . . . , NR), hence Xk

Nk is independent of K for each k. Now
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observe that for any A ⊂ E,

Pµ
R

(XK
NK ∈ A) =

R∑
r=1

Pµ
R

(Xk
Nk ∈ A,K = r)

=

R∑
r=1

Pµ
R

(X1
N1 ∈ A)Pµ

R

(K = r)

= Pµ
R

(X1
N1 ∈ A),

that is, XK
NK and X1

N1 are equally distributed. This implies that XK
NK is independent

of K. To see the independence between XK
NK and R(NK − 1) +K, note that

Pµ
R

(XK
NK ∈ A,NK = n,K = r) = Pµ

R

(Xr
Nr ∈ A,Nr = n,K = r)

= Pµ
R

(Xr
Nr ∈ A,K = r|Nr = n)Pµ

R

(Nr = n)

= Pµ
R

(Xr
Nr ∈ A|Nr = n)Pµ

R

(Nr = n,K = r)

= Pµ
R

(Xr
Nr ∈ A)Pµ

R

(Nr = n,K = r)

= Pµ
R

(XK
NK ∈ A)Pµ

R

(NK = n,K = r)

for any measurable A ⊂ E, n ∈ Z+ and r = 1, . . . , R. Finally, Theorem 9 and
the above analysis imply that (XK

NK , R(NK − 1) + K) and (X1
N1 , N1) are equally

distributed.
Now we present the embedded ParRep algorithm in Algorithm 2. In this algo-

rithm we will need user-chosen parameters nc associated with each metastable set W .
Roughly, these parameters correspond to the time for Xn to converge to the QSD in
W .

0

0

0

0

0

=R
1

=R!1
1

= 3
1

= 2
1

= 1
1

=R
N$

=R!1
N$

= 3
N$

= 2
N$

= 1
N$

=R
N$!1

=R!1
N$!1

= 3
N$!1

= 2
N$!1

= 1
N$!1

R

R! 1

3

2

1

Fig. 2. The diagram for one parallel stage of the embedded ParRep algorithm with R replicas.
Each blue dot represents an exit event along the time line. Both replica 2 and 3 leave W after
N∗ = 6 transitions (the blue dot with the red “x”), in which case K = 2.

The DTMC Xn and holding times ∆τn are simulated by the stochastic simulation
algorithm (SSA), see, for instance, [13], just as in the CTMC ParRep. If Xpar

n remains
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Algorithm 2 Embedded ParRep

1: Set a decorrelation threshold nc for each metastable set W . Initialize the simula-
tion time clock Nsim = 0 and the accumulated value F (f)sim = 0. We will write
Xpar
n and ∆par

n for a DTMC and holding time process following the law of the
embedded chain and holding times of X(t) respectively. A complete ParRep cycle
consists of three stages.

2: Decorrelation Stage: Starting at n = Nsim, evolve Xpar
n and ∆τpar

n until Xpar
n

spends nc consecutive time steps inside of the same metastable set W . That is,
evolve Xpar

n and ∆τpar
n from time n = Nsim until time

Ncorr = inf{n ≥ Nsim+nc−1 : Xpar
m ∈W for m ∈ {n−nc+1, . . . , n} for some W}.

Then update

F (f)sim = F (f)sim +

Ncorr−1∑
n=Nsim

f(Xpar
n )∆τpar

n ,

set Nsim = Ncorr, and proceed to the dephasing stage.
3: Dephasing Stage : Let W be such that Xpar

Nsim
∈W , that is, W is the metastable

set from the end of the decorrelation stage. Generate R independent samples
x1, . . . , xR from µ, the QSD of Xn in W . Then proceed to the parallel stage.

4: Parallel Stage : Start R parallel processes X1
n, . . . , X

R
n at x1, . . . , xR, and evolve

them and the corresponding holding times ∆τ1
n, . . . ,∆τ

R
n from time n = 0 until

time N∗. Then update

F (f)sim = F (f)sim +

R∑
r=1

N∗−2∑
k=0

f(Xr
k)∆τ rk +

K∑
r=1

f(Xr
N∗−1)∆τ rN∗−1

Nsim = Nsim +R(N∗ − 1) +K,

(14)

set Xpar
Nsim

= XK
N∗ , and return to the decorrelation stage.

5: The algorithm is stopped when Nsim reaches some user-chosen time Nend. The
stationary average π(f) is estimated as

π(f) ≈ F (f)sim/F (1)sim.

in W for sufficiently long time (i.e., time tc), it is distributed nearly according to the
QSD µ of Xn in W . See Theorem 3. This means that at the end of the decorrelation
stage, Xpar

n can be considered a sample of µ.
The aim of the dephasing stage is to prepare a sequence of iid initial states

with distribution µ. Like the CTMC ParRep, rejection sampling can be used for
the embedded ParRep as well. However, a more natural and efficient option for the
embedded ParRep is a Fleming-Viot based sampling procedure [3, 11]. The procedure
can be summarized as follows.

The R replicas X1
n, . . . , X

R
n , starting in W , evolve until one or more of them leaves

W . Then each replica that left W is restarted from the current state of another replica
that is currently in W (usually chosen uniformly at random). The procedure stops
after the replicas have evolved for n = np time steps, where np is a parameter similar
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to nc. (If all the replicas leave W at the same time, the procedure restarts from the
beginning.) With this type of sampling, the number of time steps simulated for each
replica in the dephasing step is the same. In particular, if the R parallel processors are
synchronous (i.e. if each processor takes the same wall clock time to simulate one time
step), then each processor finishes the dephasing step at the same wall clock time. We
comment that the Fleming Viot technique can be used to estimate the decorrelation
and dephasing thresholds as well when they are difficult to choose a priori [3].

The acceleration of the embedded ParRep comes from the parallel stage. Roughly,
we only have to wait N∗ time steps instead of N to observe an exit from W . The
theoretical wall clock time speedup can be approximately a factor of R. See Theorem 9
below. Like with CTMC ParRep, the parallel step does not require metastability for
this time speedup, but if W is not metastable, then the dephasing step will not be
efficient. See the remarks below Algorithm 1.

Similar to the CTMC ParRep, each parallel stage of the embedded ParRep has a
consistent averaged contribution to the stationary average. Suppose that x1, . . . , xR
are iid samples from µ.

1. The joint law of (XK
NK , R(NK − 1) + K) is the same as that of (X1

N1 , N1).
That is, the joint distribution of the first exit time and the exit state for each
parallel stage is independent of the number of replicas.

2. The expected value of

R∑
r=1

N∗−2∑
k=0

f(Xr
k)∆τ rk +

K∑
r=1

f(Xr
N∗−1)∆τ rN∗−1

is the same as that of
N−1∑
n=0

f(X1
n)∆τ1

n.

Hence the expected contribution to F (f)sim from each parallel stage is inde-
pendent of the number of replicas. See Theorem 11 below.

See Theorem 10 and 11 for proofs of these statements.
We expect that embedded ParRep is superior to the CTMC ParRep for the fol-

lowing two reasons. First, consider the parallel stages of both algorithms. In the
CTMC ParRep, observing the first exit event in the parallel stage is not sufficient to
determine T ∗. But in embedded ParRep, once any replica leaves W , we know N∗.
Thus the embedded ParRep parallel step terminates once any of the replicas leaves
W . For this reason we expect the parallel stage of the embedded ParRep to be signif-
icantly faster than that of the CTMC ParRep. Second, consider the dephasing stage.
For the embedded ParRep, Fleming-Viot sampling is a natural technique because if
the processors are synchronous then they all finish the dephasing stage at the same
wall clock time, and only the current states of each processor are needed at each time
step to decide where to restart replicas which left W . For asynchronous processors,
one can simply implement a polling time. This is not true, however, for Fleming-Viot
sampling with the CTMC ParRep. Indeed, to implement Fleming-Viot sampling
with the CTMC ParRep, one would have to store the histories of every replica, and
the replicas would finish at potentially very different wall clock times. The rejection
method can be slow for both algorithms, particularly when the metastability is weak
or when the number of replicas is large.

4.2. Error analysis of the embedded ParRep. Now we are able to show
that if the dephasing sampling is exact, then the expected contribution to F (f)sim
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from the parallel stage is exact.
Theorem 11. Suppose in the dephasing step (x1, . . . , xR) ∼ µR. Then the ex-

pected contribution to F (f)sim from the parallel stage of Algorithm 2 is the same for
every number of replicas.

Eµ
R

[
R∑
r=1

N∗−2∑
k=0

f(Xr
k)∆τ rk +

K∑
r=1

f(Xr
N∗−1)∆τ rN∗−1

]
= Eµ

[
N−1∑
n=0

f(Xn)∆τn

]
= µ(fq−1)Eµ [N ] ,

where q is the function as defined in section 2.1.
Proof. We first rewrite

R∑
r=1

N∗−2∑
k=0

f(Xr
k)∆τ rk +

K∑
r=1

f(Xr
N∗−1)∆τ rN∗−1

=

R∑
r=1

N∗−1∑
i=0

f(Xr
i )∆τ ri −

R∑
r=K+1

f(Xr
N∗−1)∆τ rN∗−1.

(15)

For the first part, we condition N∗ and obtain

Eµ
R

[
R∑
r=1

N∗−1∑
i=0

f(Xr
i )∆τ ri

]
=

R∑
r=1

∞∑
n=1

n−1∑
i=0

Eµ
R

[f(Xr
i )∆τ ri IN∗=n]

Interchanging the iterated summations leads to

R∑
r=1

∞∑
n=1

n−1∑
i=0

Eµ
R

[f(Xr
i )∆τ ri IN∗=n] =

R∑
r=1

∞∑
i=0

Eµ
R

[f(Xr
i )IN∗>i∆τ

r
i ] .

Notice N∗ > i is equivalent to N1 > i, . . . , NR > i and ∆τ ri is independent of Ns for
s 6= r. Thus

R∑
r=1

∞∑
i=0

Eµ
R

[f(Xr
i )∆τ ri |N∗ > i]Pµ

R

(N∗ > i)

=

R∑
r=1

∞∑
i=0

Eµ
R

[f(Xr
i )∆τ ri |Nr > i]Pµ

R

(N∗ > i).

Now by Lemma 1 and the definition of the QSD,

Eµ [f(Xr
i )∆τ ri |Nr > i] = Eµ [Eµ [f(Xr

i )∆τ ri | {Xr
n}n=0,1,...]|Nr > i]

= Eµ [f(Xr
i )Eµ [∆τ ri | {Xr

n}n=0,1,...]|Nr > i]

= Eµ
[
f(Xr

i )q(Xr
i )−1

∣∣Nr > i
]

= µ(fq−1).

Combining the last four equations gives

(16) Eµ
R

[
R∑
r=1

N∗−1∑
i=0

f(Xr
i )∆τ ri

]
= µ(fq−1)REµ

R

[N∗].
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A similar argument can be applied to the second term on the right hand side of
(15). First we condition N∗ and K simultaneously such that

Eµ
R

[
R∑

r=K+1

f(Xr
N∗−1)∆τ rN∗−1

]

=

∞∑
n=1

R∑
r=1

R∑
r=k+1

Eµ
R [
f(Xr

n−1)∆τ rn−1|N∗ = n,K = k
]
Pµ

R

(N∗ = n,K = k).

Interchanging the second and third summations the right-hand side equals

∞∑
n=1

R∑
r=2

r−1∑
k=1

Eµ
R [
f(Xr

n−1)∆τ rn−1|N∗ = n,K = k
]
Pµ

R

(N∗ = n,K = k)

Recall that

N∗ = n, K = k ⇐⇒ N1 > n, . . . , Nk−1 > n, Nk = n, Nk+1 > n−1, . . . , NR > n−1.

Thus, using independence of X1
n, . . . , X

R
n and the definition of the QSD,

∞∑
n=1

R∑
r=2

r−1∑
k=1

Eµ
R [
f(Xr

n−1)∆τ rn−1|N∗ = n,K = k
]
Pµ

R

(N∗ = n,K = k)

=

∞∑
n=1

R∑
r=2

r−1∑
k=1

Eµ
[
f(Xr

n−1)∆τ rn−1|Nr > n− 1
]
Pµ

R

(N∗ = n,K = k)

=µ(fq−1)

∞∑
n=1

R∑
r=2

r−1∑
k=1

Pµ
R

(N∗ = n,K = k)

=µ(fq−1)(R− Eµ
R

[K]).

Combining the last three equations leads to

(17) Eµ
[

R∑
r=K+1

f(Xr
N∗−1)∆τ rN∗−1

]
= µ(fq−1)(R− Eµ

R

[K]).

Subtracting (17) from (16), we have

Eµ
R

[
R∑
r=1

N∗−1∑
i=0

f(Xr
i )∆τ ri −

R∑
r=K+1

f(Xr
N∗−1)∆τ rN∗−1

]
= µ(fq−1)Eµ

R

[R(N∗ − 1) +K] .

Now the result follows since

µ(fq−1)Eµ
R

[R(N∗ − 1) +K] = µ(fq−1)Eµ[N ]

by Theorem 10. In particular, when R = 1 we have N∗ = N and K = 1, and thus

Eµ
[
N−1∑
n=0

f(Xn)∆τn

]
= µ(fq−1)Eµ[N ].
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We now prove an analog of Theorem 8 for the embedded ParRep. Recall we have
assumed convergence of ‖µnc

−µ‖TV → 0 as nc →∞, for every starting point x ∈ E.
See for instance Theorem 3 for conditions guaranteeing this convergence.

Theorem 12. Consider the embedded ParRep starting at x ∈W in the decorrela-
tion stage. Assume the dephasing stage sampling is exact, that is, (x1, . . . , xR) ∼ µR.
Consider the expected contribution to F (f)sim up until the first time the simulation
leaves W (either in the decorrelation stage or in the parallel stage):

∆F (f)sim , Ex
[
nc∧N−1∑
n=0

f(Xn)∆τn

]
+ Ex,µ

R

[
1N>nc

R∑
r=1

N∗−2∑
k=0

f(Xr
k)∆τ rk

+ 1N>nc

K∑
r=1

f(Xr
N∗−1)∆τ rN∗−1

]
,

where Ex,µR

denotes expectation for (Xn, X
1
n, . . . , X

R
n ) with Xn starting at x and the

replicas (X1
n, . . . , X

R
n ) starting at the initial distribution µR. The error compared to

a direct (serial) simulation satisfies the bound

(18)

∣∣∣∣∣Ex
[
N−1∑
n=0

f(Xn)∆τn

]
−∆F (f)sim

∣∣∣∣∣ ≤ ‖f‖∞ sup
x∈W

Ex [T ] ‖µnc
− µ‖TV.

Proof. The proof is similar to that for the CTMC ParRep,∣∣∣∣∣Ex
[
N−1∑
n=0

f(Xn)∆τn

]
−∆F (f)sim

∣∣∣∣∣
=

∣∣∣∣∣Ex
[

N−1∑
n=nc∧N

f(Xn)∆τn

]
− Ex,µ

R

[
1N>nc

R∑
r=1

N∗−2∑
k=0

f(Xr
k)∆τ rk

+ 1N>nc

K∑
r=1

f(Xr
N∗−1)∆τ rN∗−1

]∣∣∣∣∣
≤

∣∣∣∣∣Ex
[
N−1∑
n=nc

f(Xn)∆τn

∣∣∣∣∣N > nc

]

− Eµ
R

[
R∑
r=1

N∗−2∑
k=0

f(Xr
k)∆τ rk +

K∑
r=1

f(Xr
N∗−1)∆τ rN∗−1

]∣∣∣∣∣ .
By the Markov property

Ex
[
N−1∑
n=nc

f(Xn)∆τn

∣∣∣∣∣N > nc

]
= Eµnc

[
N−1∑
n=0

f(Xn)∆τn

]
.

Owing to Theorem 11,

Eµ
R

[
R∑
r=1

N∗−2∑
k=0

f(Xr
k)∆τ rk +

K∑
r=1

f(Xr
N∗−1)∆τ rN∗−1

]
= Eµ

[
N−1∑
n=0

f(Xn)∆τn

]
.
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Therefore∣∣∣∣∣Ex
[
N−1∑
n=0

f(Xn)∆τn

]
−∆F (f)sim

∣∣∣∣∣
≤

∣∣∣∣∣Eµnc

[
N−1∑
n=0

f(Xn)∆τn

]
− Eµ

[
N−1∑
n=0

f(Xn)∆τn

]∣∣∣∣∣
=

∣∣∣∣∣∑
x∈W

Ex
[
N−1∑
n=0

f(Xn)∆τn

]
µnc

(x)−
∑
x∈W

Ex
[
N−1∑
n=0

f(Xn)∆τn

]
µ(x)

∣∣∣∣∣
≤ ‖f‖∞ sup

x∈W
Ex[T ]‖µnc − µ‖TV

with the last equation coming from the fact that Ex[
∑N−1
n=0 ∆τn] = Ex[T ].

5. Numerical Experiments. We present two numerical examples from the
stochastic reaction networks in order to demonstrate the consistency and efficiency of
the ParRep algorithms.

5.1. Reaction networks with linear propensity. We consider the following
stochastic reaction network

(19) ∅ −→ A
 B −→ C −→ ∅

taken from [7], where A,B and C represent reacting species. The time evolution of
the population (the number of species) in the reaction network is commonly modeled
as a CTMC X(t) = (X1(t), X2(t), X3(t)) with state space E ⊂ Z3

+. The jump rate
of each reaction is governed by the propensity function (intensity) λj(x), j = 1, . . . , 5
such that for all t > 0,

λj(x) = lim
h→0

P(X(t+ h) = x+ ηj |X(t) = x)

h
,

where ηj is the state change vector associated with the jth reaction. We list the
reactions and their corresponding propensity functions and state change vectors in
Table 1.

Table 1
Reactions, propensity functions and state change vectors

Reaction Propensity function State change vector

∅ −→ A λ1(x) = c1 η1 = (1, 0, 0)
A −→ B λ2(x) = c2x1 η2 = (−1, 1, 0)
B −→ A λ3(x) = c3x2 η3 = (1,−1, 0)
B −→ C λ4(x) = c4x2 η4 = (0,−1, 1)
C −→ ∅ λ5(x) = c5x3 η5 = (0, 0,−1)

In this numerical experiment, we take the initial state x0 = (5, 10, 10) and the
rate constants

(c1, c2, c3, c4, c5) = (0.1, 100, 100, 0.01, 0.01).

With this choice of parameters the timescale separation is about ε = 10−4 and hence
the process X(t) demonstrates metastability. The reactions A→ B and B → A occur
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with a much higher probability than the other reactions and hence we call A→ B and
B → A fast reactions and the other reactions slow reactions. The occurrence of slow
reactions is a rare event. We define the observables f1(x) = x1 + x2 and f2(x) = x3,
the collection of sets {Wm,n}m,n∈Z+ with

Wm,n = {x ∈ E : f1(x) = m, f2(x) = n}

form a full decomposition of the state space E. Note that both the total population
of species A and B (i.e., f1(X(t))) and the population of species C (i.e. f2(X(t)))
remain constant until one of the slow reactions occurs. Hence the typical sojourn
time for X(t) in each Wm,n is very long comparing to the transition time between
any two states that are in Wm,n. In this case, we say X(t) is metastable in Wm,n.
For example, with the initial population x0 = (1, 1, 0), the states (1, 1, 0), (2, 0, 0) and
(0, 2, 0) form a metastable set since the fast reactions A → B and B → A occur
with a significantly higher probability than slow reactions and only the occurrence of
the slow reactions can allow the process to move from the metastable set to another
metastable set. Note that both observables f1 and f2 defined above are invariant in
each metastable set, we call them slow observables. In general, an observable f is
called a slow observable if it is invariant in each metastable set Wm,n, i.e., there is
a constant C(m,n) such that f(x) = C(m,n) for each x ∈ Wm,n. An observable is
called a fast observable if it is not slow (e.g., f(x) = x1).

This kind of two-scale problems arise in many fields other than the stochastic
reaction networks, such as the queuing theory and population dynamics. Estimation
of the distributions of two-scale processes can be computationally prohibitive due to
the insufficient sampling of the rare events. Therefore, it is desirable to apply the two
ParRep algorithms proposed in this paper to accelerate the long time simulation and
estimate the stationary distribution.
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Fig. 3. The stationary average of the slow observable f1(x) = x1+x2 computed with the CTMC
ParRep (left) and with the embedded ParRep (right). The user-specified terminal time is Tend = 104

in the simulation.

We apply both the CTMC ParRep and the embedded ParRep to estimate the
stationary averages of the slow observables f1 and f2. The stationary distribution of
the fast observable f3(x) = x1 is also computed using the embedded ParRep. On the
other hand, for the reaction network (19) under consideration, one can calculate the
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Fig. 4. The stationary average of the slow observable f2(x) = x3 computed with the CTMC
ParRep (left) and with the embedded ParRep (right). The user-specified terminal time is Tend = 104

in the simulation.
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Fig. 5. The stationary average of the fast observable f3(x) = x1 computed with the embedded
ParRep (left) and the speedup comparison between the CTMC ParRep and the embedded ParRep
(right). The user-specified terminal time is Tend = 104 in the simulation.

stationary distribution analytically since it only involves mono-molecular reactions.
In fact, it can be shown that the stationary distribution is a multivariate Poisson
distribution [7], that is,

(20) π(x1, x2, x3) =
λ̄x1

1 λ̄x2
2 λ̄x3

3

x1!x2!x3!
e−(λ̄1+λ̄2+λ̄3),

where

λ̄1 =
c1(c3 + c4)

c2c4
, λ̄2 =

c1
c4
, λ̄3 =

c1
c5
.

Hence the exact stationary averages of the slow observables f1 and f2 are π(f1) =
20.001 and π(f2) = 10 and the exact stationary averages of the fast observable f3(x) =
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x1 is 10.001. We use this exact result to compare with our result from numerical
simulation.

Our simulations compare the CTMC ParRep and the embedded ParRep with
the Stochastic Simulation Algorithm (SSA), [13]. In Figure 3, we demonstrate the
estimation of π(f1) using the CTMC ParRep and the embedded ParRep with various
numbers of replicas (R = 10, 20, · · · , 100) and with SSA (R = 1). Similarly, Fig-
ure 4 shows the estimation of π(f2). Note that only the embedded ParRep is used
to compute the stationary average of the fast variable f(x) = x1 since the CTMC
ParRep is not efficient for fast observables as we commented at the end of Section 3.1.
Currently, the rejection sampling is used for dephasing and the decorrelation and
dephasing thresholds are taken to be tc = tp = 0.01 for the CTMC ParRep and
nc = np = 15 steps for the embedded ParRep. In Figure 5, the estimation for the
fast observable and speedup are shown. It can be seen that with 10 replicas, the
speedup factor is about 4.5 for the CTMC ParRep and 5.5 for the embedded ParRep.
When the number of replicas increases, the embedded ParRep becomes much more
efficient than the CTMC ParRep. However, even the embedded ParRep is far away
from the linear speedup (with 100 replicas, about 27 times faster than SSA). This
sublinear speedup comes from the fact that when the number of replica is large, the
acceleration is offset by the inefficient rejection sampling based dephasing procedure.
We expect that the embedded ParRep would be more efficient if the Fleming-Viot
particle processes are used for dephasing.

5.2. Reaction networks with nonlinear propensity. In the second example,
we focus on the following network from [24],

(21) S1 
 S2, S1 
 S3, 2S2 + S3 
 3S4.

The propensity function and state change vector associated with each reaction is
shown in Table 2. Note that by the law of mass action, the reactions 2S2 +S3 
 3S4

have nonlinear propensity functions.

Table 2
Reactions, propensity functions and state change vectors

Reaction Propensity function State change vector

S1 −→ S2 λ1(x) = c1x1 η1 = (−1, 1, 0, 0)
S2 −→ S1 λ2(x) = c2x2 η2 = (1,−1, 0, 0)
S1 −→ S3 λ3(x) = c3x1 η3 = (−1, 0, 1, 0)
S3 −→ S1 λ4(x) = c4x3 η4 = (1, 0,−1, 0)
2S2 + S3 −→ 3S4 λ5(x) = c5x2(x2 − 1)x3 η5 = (0,−2,−1, 3)
3S4 −→ 2S2 + S3 λ6(x) = c6x3(x3 − 1)(x3 − 2) η6 = (0, 2, 1,−3)

Throughout this example, we choose the initial state x0 = (3, 30, 30, 30) and the
reaction rate constants

(c1, c2, c3, c4, c5, c6) = (0.1, 0.1, 0.1, 0.1, 2, 2)

for simulation. In this reaction network, 2S2 + S3 
 3S4 are fast reactions due to
the cubic form of the propensity functions. The rest of the reactions are considered
as slow reactions. We plot time evolution of the total propensity of reaction 5 and 6
versus the total propensity of reaction 1 to 4 in Figure 6 The timescale separation is
more than ε = 10−4 as shown in the plot. The slow observables f1(x) = x2 + x3 + x4
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and f2(x) = x1 remain unchanged until any of the slow reactions occur. Therefore,
the state space E can be partitioned as a disjoint union of metastable sets in terms
of slow observables f1 and f2. That is, E = ∪Wm,n, where Wm,n = {x ∈ E : f1(x) =
m, f2(x) = n}.
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Fig. 6. The timescale separation between fast reactions and slow reactions. The blue curve
above and the red curve below show the time evolution of λ5 +λ6 and λ1 +λ2 +λ3 +λ4, respectively.
It can be seen that the total propensity (reaction rate) of the last two reactions are more than 104

larger than that of the first four reactions.

In the numerical simulation of (21), we apply the embedded ParRep with rejec-
tion sampling and with Fleming-Viot (FV) sampling, respectively. We are interested
in the stationary average of the fast variable π(x4). The user-specified terminal time
is chosen to be Tend = 103, which is large enough for the system to be well into the
stationary dynamics. Figure 7 shows the estimated result (with confidence interval)
for π(x4) with the rejection sampling based embedded ParRep (left) and the FV sam-
pling based embedded ParRep (right), each with different decorrelation and dephasing
thresholds. The corresponding speedup factor is shown in Figure 8, where the left
plot shows the speedup for nc = np = 20 and the right plot shows the speedup for
nc = np = 60. It can be seen that when the decorrelation and dephasing thresholds
are small (i.e., 20), there is no performance enhancement (as shown in the left plot)
when the rejection sampling is replaced by the FV sampling. This is consistent with
our expectation that most of the replicas finish the dephasing stage after 20 transi-
tions (that is, no replicas escape the metastable set in 20 transitions) and hence the
FV sampling is not needed to improve the performance. However, when the thresh-
olds are increased to 60, the FV sampling based embedded ParRep outperforms the
rejection sampling based embedded ParRep especially when the number of replica
is large, as shown in the right plot. We expect that the FV sampling based ParRep
would be more advantageous than the rejection sampling based ParRep when large nc
and np are needed, e.g., when the time scale separation is very large (say ε = 10−10).

Finally, we comment that in many cases of stochastic reaction network model the
timescales of the dynamics could change over time. For instance, the last two reac-
tions are slow if we choose (100, 3, 3, 3) as the initial state in this numerical example.
However, when the number of S2 and S3 increases, the last two reactions become
fast. If we still define the last two reactions as the slow reactions, then the parallel
stage will be not be activated in which case the ParRep becomes equivalent to SSA.
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Fig. 7. Stationary average (with confidence interval) of the fast observable x4 computed with
20 decorrelation and dephasing steps and 60 decorrelation and dephasing steps, respectively. Both
the rejection sampling and the Fleming-Viot sampling are used for the dephasing stage.
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Fig. 8. Speedup of the ParRep with the rejection sampling based dephasing and the ParRep
with Fleming-Viot sampling based dephasing.

A possible remedy for this issue is to use dynamic partition of slow and fast reactions.
See [24] for a detailed discussion. We will deal with this issue in a separate work [23].

6. Conclusions. In this paper, we propose a new method for simulating metastable
CTMCs and estimating its stationary distribution with an application to stochastic
reaction network models. The method is based on the parallel replica dynamics which
first appeared in [22]. The ParRep method proposed here does not require the re-
versibility (detailed balance) of the simulated Markov chain, which is the necessary
assumption for most accelerated algorithms for metastable dynamics simulation. This
makes the ParRep particularly well suited for stochastic reaction network model where
the reversibility is not satisfied in general.

To accelerate the estimation of stationary distribution of a metastable CTMC,
our method introduces a source of error: we sample an approximation of the QSD
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of the metastable set in each decorrelation and dephasing stages. However, our error
analysis shows that in average the error from each ParRep cycle decays exponentially
assuming the dephasing stage sampling is exact. Moreover, our numerical examples
also suggest the consistency of the ParRep method. The global error analysis for
ParRep (i.e., the error accumulated over the entire simulation) is much more involved
and will be the focus of our future work.

The mathematical theory underlying the ParRep method predicts that we could
achieve approximately linear speedup in terms of the number of replicas. However,
due to the computation in the decorrelation and dephasing stages, the acceleration
achieved in practical implementations is sub-linear. Nevertheless, we observe a con-
siderable performance enhancement in presented numerical examples. We believe
further speedup is possible with a better parallel implementation of the algorithm on
massively parallel clusters.

In the numerical examples considered in this paper, we define the metastable
sets in terms of the slow observable and assume that the partition of fast and slow
reactions are fixed with time. However, it is quite common that the timescales of
the dynamics can change over time in many cases, especially in stochastic reaction
model. In many models the separation of time scales can change of timescales over
the course of system’s evolution. Another type of For example, such situation occurs
in stochastic reaction networks with multiple stationary points. In such a case the
partition of the fast and slow reactions changes when the process leaves from the
neighborhood of a current stable stationary point and move to the neighborhood of
another stable stationary point. In this case, a different strategy (rather than fast -
slow reactions) can be used to define the metastable sets. The ParRep method for
dynamics with bistability is discussed in [23].

The algorithms developed in this paper assumes that the underlying processors
are synchronous. However, we believe both the CTMC ParRep and the embedded
ParRep can be implemented in asynchronous architectures as well. In particular,
the idea for handling asynchronous processors discussed in [15] (Section 3) can, in
principle, be applied to the embedded ParRep as well. We will focus on formalizing
these synchronization ideas in our future work.
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[5] P. Brémaud, Markov Chains: Gibbs fields, Monte Carlo simulation, and Queues, Springer,
1998.



PARALLEL REPLICA METHODS FOR CTMC 27

[6] P. Collet, S. Mart́ınez, and J. San Mart́ın, Quasi-stationary distributions: Markov chains,
diffusions and dynamical systems, Springer Science & Business Media, 2012.

[7] S. L. Cotter, K. C. Zygalakis, I. G. Kevrekidis, and R. Erban, A constrained approach
to multiscale stochastic simulation of chemically reacting systems, J. Chem. Phys., 135
(2011), p. 094102.

[8] P. Del Moral and A. Doucet, Particle motions in absorbing medium with hard and soft
obstacles, Stoch. Anal. Appl., 22 (2004), pp. 1175–1207.

[9] P. Dupuis, Y. Liu, N. Plattner, and J. D. Doll, On the infinite swapping limit for parallel
tempering, Multiscale Model Simul., 10 (2012), pp. 986–1022.

[10] D. J. Earl and M. W. Deem, Parallel tempering: Theory, applications, and new perspectives,
Phys. Chem. Chem. Phys., 7 (2005), pp. 3910–3916.

[11] P. A. Ferrari and N. Maric, Quasi stationary distributions and fleming-viot processes in
countable spaces, Electron. J. Probab., 12 (2007), pp. 684–702.

[12] C. J. Geyer, Markov chain monte carlo maximum likelihood, in Computing Science and Statis-
tics: Proceedings of the 23rd Symposium on the Interface, (1991), pp. 156–163.

[13] D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem.,
81 (1977), pp. 2340–2361.
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[20] C. Schütte and M. Sarich, Metastability and Markov State Models in Molecular Dynamics,
Courant Lecture Notes, 2013.

[21] E. Seneta, Non-negative matrices and Markov chains, Springer Science & Business Media,
2006.

[22] A. F. Voter, Parallel replica method for dynamics of infrequent events, Phys. Rev. B, 57
(1998), p. R13985.
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