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Abstract

We propose a fast method to approximate the real stability radius of a linear dynamical sys-
tem with output feedback, where the perturbations are restricted to be real valued and bounded
with respect to the Frobenius norm. Our work builds on a number of scalable algorithms that
have been proposed in recent years, ranging from methods that approximate the complex or
real pseudospectral abscissa and radius of large sparse matrices (and generalizations of these
methods for pseudospectra to spectral value sets) to algorithms for approximating the complex
stability radius (the reciprocal of the H∞ norm). Although our algorithm is guaranteed to find
only upper bounds to the real stability radius, it seems quite effective in practice. As far as
we know, this is the first algorithm that addresses the Frobenius-norm version of this prob-
lem. Because the cost mainly consists of computing the eigenvalue with maximal real part for
continuous-time systems (or modulus for discrete-time systems) of a sequence of matrices, our
algorithm remains very efficient for large-scale systems provided that the system matrices are
sparse.

1 Introduction

Consider a linear time-invariant dynamical system with output feedback defined, for continuous-time
systems, by matrices A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n and D ∈ Rm×p as

ẋ = Ax+Bw (1)

z = Cx+Dw (2)

where w is a disturbance feedback depending linearly on the output z [HP05, p. 538]. For simplicity,
we restrict our attention to continuous-time systems for most of the paper, but we briefly explain
how to extend our results and methods to discrete-time systems in Section 6.

The real stability radius, sometimes called the real structured stability radius, is a well known
quantity for measuring robust stability of linear dynamical systems with output feedback [HP90a,
HP90b, HK94, HP05, ZGD95, Kar03]. It measures stability under a certain class of real perturba-
tions where the size of the perturbations are measured by a given norm ‖·‖. Most of the literature has
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focused on spectral norm bounded perturbations for which there exists a characterization in terms of
an explicit formula [QBR+95] and a level-set algorithm [SVDT96]. This algorithm has been proven
to be convergent; however, it is not practical for systems where large and sparse matrices arise as it
requires a sequence of Hamiltonian eigenvalue decompositions, each with a complexity of O(n3).

As an alternative to the spectral norm, Frobenius-norm bounded perturbations have also been of
interest to the control community [LKL96, BS99, BS98, BB01, Bob99, BBD01]. It has been argued
that the Frobenius norm is easier to compute and is more advantageous to consider in certain types
of control systems [Bob99, BBD01], admitting natural extensions to infinite-dimensional systems
[BB01]. In the special case B = C = I,D = 0, there exists an algorithm [Bob99, BBD01] that gives
upper and lower bounds for the Frobenius-norm bounded real stability radius; however, there is no
algorithm to our knowledge that is applicable in the general case. Indeed, [BV14] describes this as
an unsolved research problem. In this paper, we present the first method to our knowledge that
provides good approximations to the Frobenius-norm bounded real stability radius.

Our method relies on two foundations. The first is the theory of spectral value sets associated
with the dynamical system (1)–(2) as presented in [HP05, Chapter 5]. The second is the appearance
of a number of recent iterative algorithms that find rightmost points of spectral value sets of various
sorts, beginning with the special case of matrix pseudospectra (the case B = C = I,D = 0)
[GO11], followed by a related method for pseudospectra [KV14] and extensions to real-structured
pseudospectra [GL13, GM15, Ros15, Gug16], and to spectral value sets associated with (1)–(2)
[GGO13, MO16] and related descriptor systems [BV14].

The paper is organized as follows. In Section 2 we introduce spectral value sets, establishing a
fundamental relationship between the spectral value set abscissa and the stability radius. In Section
3 we introduce an ordinary differential equation whose equilibria are generically associated with
rightmost points of Frobenius-norm bounded real spectral value sets. In Section 4 we present a
practical iterative method to compute these points. This leads to our method for approximating
the Frobenius-norm bounded real stability radius, presented in Section 5. We outline extensions
to discrete-time systems in Section 6, present numerical results in Section 7, and make concluding
remarks in Section 8.

2 Fundamental Concepts

Throughout the paper, ‖·‖2 denotes the matrix 2-norm (maximum singular value), whereas ‖·‖F
denotes the Frobenius norm (associated with the trace inner product). The usage ‖·‖ means that
the norm may be either ‖·‖2 or ‖·‖F, or both when they coincide, namely for vectors or rank-one
matrices. We use the notation C− to denote the open left half-plane {λ : Re(λ) < 0} and H+= to
denote the closed upper half-plane {λ : Im(λ) ≥ 0}.

2.1 Spectral Value Sets and µ-Values

Given real matrices A,B,C and D defining the linear dynamical system (1)–(2), linear feedback
w = ∆ z leads to a perturbed system matrix with the linear fractional form

M(∆) = A+B∆(I −D∆)−1C for ∆ ∈ Kp×m (3)

where the field K is either R or C. Note that since

‖D∆‖2 ≤ ‖D‖2‖∆‖2 ≤ ‖D‖2‖∆‖F (4)

we can ensure that M(∆) is well defined by assuming ‖∆‖ ≤ ε and ε‖D‖2 < 1, regardless of whether
‖∆‖ is ‖∆‖2 or ‖∆‖F.

Definition 2.1. Let ε ∈ R, with ε‖D‖2 < 1. Define the spectral value set with respect to the norm
‖·‖ and the field K as

σK,‖·‖
ε (A,B,C,D) =

⋃{
σ(M(∆)) : ∆ ∈ Kp×m, ‖∆‖ ≤ ε

}
.
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Here σ denotes spectrum. Note that

σK,‖·‖2
ε (A,B,C,D) ⊇ σK,‖·‖F

ε (A,B,C,D) ⊇ σK,‖·‖
0 (A,B,C,D) = σ(A).

It is well known that when K = C, the spectral value set can equivalently be defined as the set
of points s ∈ C for which the spectral norm, i.e., the largest singular value, of the transfer matrix

G(s) = C(sI −A)−1B +D

takes values at least 1/ε [HP05, Chap. 5]. Furthermore, it is well known that

σC,‖·‖
ε (A,B,C,D) =

⋃{
σ(M(∆)) : ∆ ∈ Cp×m, ‖∆‖ ≤ ε and rank(∆) ≤ 1

}
. (5)

As a consequence of this rank-one property, it is clear that

σC,‖·‖2
ε (A,B,C,D) = σC,‖·‖F

ε (A,B,C,D).

In contrast, when perturbations are restricted to be real, the inclusion

σR,‖·‖2
ε (A,B,C,D) ⊇ σR,‖·‖F

ε (A,B,C,D)

is generically strict. Instead of ordinary singular values, we must consider real structured singular
values or real µ-values, that is with perturbations restricted to real matrices. This topic is discussed
at length in [HP05, Section 4.4], allowing additional structure to be imposed on ∆ beyond simply
∆ ∈ Kp×m, and treating a general class of operator norms, including the spectral norm, but not,
however, the Frobenius norm. See also [Kar03, Chapter 6].

Definition 2.2. The µ-value of a matrix H ∈ Cm×p with respect to the field K and the norm ‖·‖ is
defined by

µ
‖·‖
K (H) =

[
inf
{
‖∆‖ : ∆ ∈ Kp×m, det(I −H∆) = 0

}]−1
. (6)

We use the convention that taking the infimum over the empty set always yields ∞ and that

∞−1 = 0, so that µ
‖·‖
K (0)−1 = ∞. Definition 2.2 defines the real µ-value when K = R for complex

matrices H as well as real matrices.
The following lemma is well known in the case of the spectral norm, where it is usually known

as the Eckart-Young theorem. See [QBR+95, Lemma 1] and [HP05, Prop. 4.4.11] for extensions to
other structures and other operator norms. A key point to note here is that while this result holds
both for K = C and K = R, it does not hold for the real µ value when H is complex.

Lemma 2.3. Let H ∈ Km×p and let ‖·‖ be either ‖·‖2 or ‖·‖F. Then, µ
‖·‖
K (H) = ‖H‖2.

Proof. If H = 0, the result is clear. Assume H 6= 0. If ‖∆‖ < ‖H‖−1
2 , then we have from (4) that

det(I − H∆) 6= 0. This shows that µ
‖·‖
K (H) ≤ ‖H‖2. For the reverse inequality, let H have the

singular value decomposition UΣV T where U and V are unitary and

Σ = diag{σ1(H), σ2(H), . . . , σmin{p,m}(H)}

is a diagonal matrix with singular values on the diagonal in descending order by magnitude. Define

∆ = V diag{σ1(H)−1, 0, . . . , 0}UT.

Then ‖∆‖F = ‖∆‖2 = ‖H‖−1
2 and det(I −H∆) = 0. Furthermore, if K = R then since H is real, ∆

is also real. This shows that µ
‖·‖
K (H) ≥ ‖H‖2.

Combining [HP05, Lemma 5.2.7] with Lemma 2.3 results in the following corollary. This may be
compared with [HP05, Corollary 5.2.8], which treats a more general class of structured perturbations,
but is restricted to operator norms.
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Corollary 2.4. Let ‖·‖ be either ‖·‖2 or ‖·‖F. Let s ∈ C\σ(A) and ‖D‖ < µ
‖·‖
K (G(s)) and define

ε(s) = min
{
‖∆‖ : ∆ ∈ Kp×m, s ∈ σ(M(∆))

}
.

Then,

ε(s) =
(
µ
‖·‖
K (G(s))

)−1

.

This leads to the following theorem which may be compared to [HP05, Theorem 5.2.9], which
again does not treat the Frobenius norm.

Theorem 2.5. Let ‖·‖ be either ‖·‖2 or ‖·‖F. Suppose ε > 0 and ε ‖D‖2 < 1. Then

σK,‖·‖
ε (A,B,C,D) = σ(A)

⋃ {
s ∈ C\σ(A) : µ

‖·‖
K (G(s)) ≥ ε−1

}
.

Proof. Suppose s ∈ σ(M(∆)) ∩ {s ∈ C\σ(A)}, ∆ ∈ Kp×m and ‖∆‖ ≤ ε. By [HP05, Lemma 5.2.7],

we have
(
µ
‖·‖
K (G(s))

)−1

≤ ‖∆‖ ≤ ε. Conversely, if s ∈ C\σ(A) and
(
µ
‖·‖
K (G(s))

)
≥ ε−1, then we

have µ
‖·‖
K (G(s)) > ‖D‖2 and by Corollary 2.4, there exists ∆ with ‖∆‖ =

(
µ
‖·‖
K (G(s))

)−1

= ε such

that s ∈ σ(M(∆)).

Note that even when A,B,C,D are real, the transfer function G(s) is normally complex for s 6∈ R
so it is not generally the case that µ

‖·‖
R (G(s)) = ‖G(s)‖2. For real spectral value sets defined by the

spectral norm, the optimal perturbation that appears in Definition 2.2 of the µ-value can in fact
always be chosen to have rank at most two [QBR+95, Section 2], leading to the formula

σR,‖·‖2
ε (A,B,C,D) =

⋃{
σ(M(∆)) : ∆ ∈ Rp×m, ‖∆‖2 ≤ ε and rank(∆) ≤ 2

}
.

We make the assumption in this paper that the same property holds for the Frobenius norm, but,
for brevity, we leave a detailed justification of this to future work.

2.2 The Stability Radius

Because we are focusing on the continuous-time dynamical system (1)–(2), the stability region of
interest is the open left half-plane C−. We say that A is stable if σ(A) ∈ C−, in which case, for

sufficiently small ε, the spectral value set σ
K,‖·‖
ε (A,B,C,D) is also in C−. The stability radius r

‖·‖
K

measures the size of the minimal perturbation that destabilizes the matrix or results in M(∆) being
undefined [HP05, Def. 5.3.1].

Definition 2.6. The stability radius r
‖·‖
K is defined with respect to the field K and the norm ‖·‖ as

r
‖·‖
K (A,B,C,D) = inf{‖∆‖ : ∆ ∈ Kp×m,det(I −D∆) = 0 or σ(M(∆)) 6⊂ C−}.

The characterization

r
‖·‖
K (A,B,C,D) = min

([
µ
‖·‖
K (D)

]−1

, inf
ω∈R

[
µ
‖·‖
K (G(iω))

]−1
)

(7)

is well known for operator norms [HP05, Theorem 5.3.3]. Corollary 2.4 and Lemma 2.3 extend
[HP05, Theorem 5.3.3] beyond operator norms to the Frobenius norm leading to a similar formula

r
‖·‖
K (A,B,C,D) = min

(
‖D‖−1

2 , inf
ω∈R

[
µ
‖·‖
K (G(iω))

]−1
)
. (8)

4



Remark 2.7. As the µ
‖·‖
R function is upper semi-continuous both for operator norms and the Frobe-

nius norm (see [Kar03, Lemma 1.7.1]), we have lim|ω|→∞G(iw) = D but

lim inf
|ω|→∞

[
µ
‖·‖
K (G(iω))

]−1

≥
[
µ
‖·‖
K (D)

]−1

= ‖D‖−1
2 (9)

with a possible strict inequality (see [HP05, Remark 5.3.17 (i)] and [HP05, Example 5.3.18] for an
example with p = 1). Therefore, when D 6= 0, we cannot eliminate the first term in (8). Either

r
‖·‖
K (A,B,C,D) = ‖D‖−1

2 or the infimum in (8) is strictly less than ‖D‖−1
2 in which case it has to

be attained at a finite ω; otherwise, we would obtain a contradiction as |ω| → ∞ by the inequality

(9). However, in the special case when D = 0, we can interpret
[
µ
‖·‖
K (D)

]−1

= ‖D‖−1
2 =∞ (see the

paragraph after Definition 2.2) and dispense with the first term in (8).

In the complex case K = C, the spectral norm and Frobenius norms define the same stability

radius r
‖·‖
C . In this case also we can eliminate the first term in (8), since (9) holds with equality, and

the second term is simply the reciprocal of the H∞ norm of the transfer matrix G on the boundary of
the stability region. The standard method to compute it is the Boyd-Balakrishnan-Bruinsma-Stein-
buch (BBBS) algorithm [BB90, BS90]. This algorithm is globally and quadratically convergent, but
is not practical when n is large due to its computational complexity: it requires repeated computation

of all eigenvalues of 2n× 2n Hamiltonian matrices. The first constructive formula to compute µ
‖·‖2
R

and hence r
‖·‖2
R , the real µ value and the real stability radius for the spectral norm, was given

in [QBR+95]; this led to a practical level-set algorithm [SVDT96]. However, this is significantly
more involved than the BBBS algorithm and hence is also impractical in the large-scale case. To

our knowledge, no efficient algorithm to compute r
‖·‖2
R is known when n is large. As noted in the

introduction, much less attention has been given to the Frobenius-norm case, though it is clearly of
interest in applications. As far as we know, no constructive method has been given to approximate

µ
‖·‖F
R or r

‖·‖F
R , even if n is small.

2.3 The Spectral Value Set Abscissa

The spectral value set abscissa measures how far the spectral value set extends rightwards into the
complex plane for a prescribed value of ε.

Definition 2.8. For ε ≥ 0, ε‖D‖2 < 1, the spectral value set abscissa (w.r.t. the norm ‖ · ‖ and
the field K) is

αK,‖·‖
ε (A,B,C,D) = max{Re λ : λ ∈ σK,‖·‖

ε (A,B,C,D)} (10)

with α
K,‖·‖
0 (A,B,C,D) = α(A), the spectral abscissa of A.

In the case K = R, α
R,‖·‖
ε (A,B,C,D) is called the real spectral value set abscissa.

Definition 2.9. A rightmost point of a set S ⊂ C is a point where the maximal value of the real
part of the points in S is attained. A locally rightmost point of a set S ⊂ C is a point λ which is a
rightmost point of S ∩N for some neighborhood Nδ = {s : |s− λ| < δ} of λ with δ > 0.

Remark 2.10. Since σ
K,‖·‖
ε (A,B,C,D) is compact, its rightmost points, that is the maximizers of

the optimization problem in (10) lie on its boundary. When K = C, there can only be a finite number
of these [GGO13, Remark 2.14]. However, when K = R, there can be an infinite number of points
on the boundary with the same real part, as shown by the following example.

Example 2.11. Let

A =

(
0 −1
1 0

)
, B =

(
0
1

)
, C =

(
1 0

)
, D = 0.

5



For ε ∈ (0, 1), σR
ε (A,B,C,D) consists of two line segments on the imaginary axis, which merge into

one line segment
[√

2
2 i,−

√
2

2 i
]

when ε = 1.

Remark 2.12. Since A,B,C,D are real, σ
K,‖·‖
ε (A,B,C,D) is symmetric with respect to the real

axis, so without loss of generality, when we refer to a rightmost λ in σ
K,‖·‖
ε , we imply that λ ∈

H+=, the closed upper half-plane, and when we say that the rightmost point λ is unique, we mean
considering only points in H+=. The same convention applies to the spectrum, so that a rightmost
eigenvalue is understood to be in H+=.

There is a key relationship between the spectral value set abscissa and the stability radius that
is a consequence of Theorem 2.5:

Corollary 2.13.

r
‖·‖
K (A,B,C,D) = inf

{
ε : ε‖D‖2 < 1 or αK,‖·‖

ε (A,B,C,D) ≥ 0
}

(11)

= min
(
‖D‖−1

2 , inf
{
ε : αK,‖·‖

ε (A,B,C,D) ≥ 0
})

. (12)

Proof. That the right-hand sides of (11) and (12) are the same is immediate. Hence, it suffices to
show that both of the infimum terms in (8) and (12) are attained and are equal when the upper bound

‖D‖−1
2 is not active. The infimum in (12) is attained because α

K,‖·‖
ε (A,B,C,D) is a monotonically

increasing continuous function of ε (see [Kar03, Chapter 2] for continuity properties of real spectral
value sets) and the infimum in (8) is attained at a finite point by Remark 2.7. Finally, the infimal
values are equal by Theorem 2.5.

The algorithm developed in this paper for approximating the real stability radius r
‖·‖F
R when n is

large depends on the fundamental characterization (12). This was also true of the recent algorithms

developed in [GGO13, BV14, MO16] for the complex stability radius r
‖·‖
C when n is large, for which

the equivalence (12) is more straightforward and well known.1

3 An Ordinary Differential Equation

This section extends the method of Guglielmi and Lubich [GL13, Sec. 2.1] for approximating the
real pseudospectral abscissa (the real spectral value set abscissa in the case B = C = I, D = 0) to

the spectral value set abscissa α
R,‖·‖F
ε for general A,B,C,D, using the Frobenius norm. As we shall

see, the extension is not straightforward as additional subtleties arise in the general case that are
not present in the pseudospectral case.

We consider ε > 0 to be fixed with ε ‖D‖2 < 1 throughout this section and the next section. We
start by considering the variational behavior of eigenvalues of the perturbed system matrix M(∆)
defined in (3). It is convenient to assume a smooth parametrization t 7→ ∆(t) mapping R to Rp×m,
with ‖∆(t)‖F = ε for all t. We will use ∆̇ to denote the derivative (d/dt)∆(t).

We need the following lemma.

Lemma 3.1. Given a smooth parametrization ∆(t) with ‖∆(t)‖F = 1, we have

d

dt

(
∆(t) (I −D∆(t))

−1

)
= (I −∆(t)D)

−1
∆̇(t) (I −D∆(t))

−1
. (13)

1For a different approach to approximating r
‖·‖
C when n is large, namely the “implicit determinant” method, see

[FSVD14].
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Proof. For conciseness, we omit the dependence on t, differentiate and regroup terms as

d

dt

(
∆ (I −D∆)

−1

)
= ∆̇ (I −D∆)

−1
+ ∆

d

dt
(I −D∆)

−1

= ∆̇ (I −D∆)
−1

+ ∆ (I −D∆)
−1
D∆̇ (I −D∆)

−1

=
(
I + ∆ (I −D∆)

−1
D
)

∆̇ (I −D∆)
−1
. (14)

We then observe that

I + ∆ (I −D∆)
−1
D = I + ∆

( ∞∑
k=0

(D∆)k
)
D = I +

∞∑
k=1

(∆D)k = (I −∆D)
−1
. (15)

Combining (14) and (15) yields the result.

The following definition from [GO11, MO16] is useful.

Definition 3.2. Let λ be a simple eigenvalue of a matrix M with associated right eigenvector x
satisfying Ax = λx and left eigenvector y satisfying y∗M = λy∗. We refer to (λ, x, y) as an
RP-compatible eigentriple of M if y∗x is real and positive and ‖x‖ = ‖y‖ = 1, and as a rightmost
eigentriple if λ is a rightmost eigenvalue of M in H+=.

Note that if (λ, x, y) is an RP-compatible eigentriple of M , so is (λ, eiθx ,eiθy) for any θ ∈ [0, 2π).
Then we have:

Lemma 3.3. Given a smooth parametrization ∆(t) with ‖∆(t)‖F = ε, let λ(t) be a continuously
varying simple eigenvalue of

M (∆(t)) = A+B∆(t) (I −D∆(t))
−1
C.

Then λ(t) is differentiable with

Re λ̇(t) =
1

y(t)∗x(t)
Re(u(t)∗∆̇(t)v(t))

where (λ(t), x(t), y(t)) is an RP-compatible eigentriple of M(∆(t)) and

u(t) = (I −∆(t)D)
−T

BTy(t), v(t) = (I −D∆(t))
−1
Cx(t).

Proof. Applying standard eigenvalue perturbation theory [HJ90, Theorem 6.3.12], together with
Lemma 3.1, we find that λ is differentiable with

λ̇ =
y∗Ṁ (∆)x

y∗x
and Ṁ (∆) = B (I −∆D)

−1
∆̇ (I −D∆)

−1
C (16)

where we omitted the dependence on t for conciseness. The result is then immediate.

In what follows next it is convenient to define E(t) = ∆(t)/ε, so that ‖E(t)‖F = 1 for all t.
Consequently, we have

Re λ̇(t) =
ε

y(t)∗x(t)
Re
(
u(t)∗Ė(t)v(t)

)
=

ε

y(t)∗x(t)

〈
Re (u(t)v(t)∗) , Ė(t)

〉
, (17)

where for R,S ∈ Rp×m,

〈R,S〉 = TrRTS =
∑
i,j

RijSij ,

7



the trace inner product on Rp×m associated with the Frobenius norm. The condition that ‖E(t)‖F
is constant is equivalent to

d

dt
‖E(t)‖2F = 2

〈
E(t), Ė(t)

〉
= 0 ∀t. (18)

Our aim, given t, is to choose Ė(t) to maximize (17) subject to the constraint (18), leading to an
optimization problem whose solution is given by the following lemma. The proof is a straightforward
application of first-order optimality conditions; see also [GL13, Lemma 2.4].

Lemma 3.4. Let E ∈ Rp×m have unit Frobenius norm, and let u ∈ Cp, v ∈ Cm be given complex
vectors such that Re (uv∗) 6= 0. A solution to the optimization problem

Z̃ = arg max
Z∈Ω

Re (u∗Zv) , Ω = {Z ∈ Rp×m, ‖Z‖F = 1, 〈E,Z〉 = 0} (19)

exists and it satisfies

τZ̃ =
(

Re (uv∗)− 〈E,Re (uv∗)〉E
)
, (20)

where τ is the Frobenius norm of the matrix on the right-hand side in (20).

This suggests consideration of the following ordinary differential equation (ODE) on the manifold
of real p×m matrices of unit Frobenius norm:

Ė(t) = Re (u(t)v(t)∗)− 〈E(t),Re (u(t)v(t)∗)〉E(t), (21)

with u(t) and v(t) defined by

u(t) = (I − εE(t)D)
−T

BTy(t), v(t) = (I − εDE(t))
−1
Cx(t) (22)

where (λ(t), x(t), y(t)) is a rightmost RP-compatible eigentriple for the matrix M(εE(t)) (see
Definition 3.2). Assume the initial condition E(0) = E0, a given matrix with unit Frobenius norm,
chosen so that M(εE0) has a unique rightmost eigenvalue (considering only eigenvalues in H+=),
and that this eigenvalue, λ(0), is simple.

3.1 Equilibrium Points of the ODE

We now focus on the properties of the ODE (21), in particular, characterizing equilibrium points.

Theorem 3.5. Let E(t) with unit Frobenius norm satisfy the differential equation (21) initialized
as described above. There exists tmax ∈ (0,∞] such that, for all t ∈ [0, tmax)

(1) The eigenvalue λ(t) is the unique rightmost eigenvalue of M(εE(t)) in H+= and this eigenvalue
is simple, so the ODE is well defined.

(2) ‖E(t)‖F = 1.

(3) Re λ̇(t) ≥ 0.

Furthermore, at a given value t ∈ [0, tmax), the following three conditions are equivalent:

(i) Re λ̇(t) = 0.

(ii) One of the following two mutually exclusive conditions holds:

Re (u(t)v(t)∗) = 0 or E(t) =
Re (u(t)v(t)∗)

‖Re (u(t)v(t)∗) ‖F
. (23)
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(iii) Ė(t) = 0.

Finally, if the second alternative in (23) holds at t0 ∈ [0, tmax], then there does not exist any locally
differentiable path F (t), with ‖F (t)‖F = 1 and F (0) = E(t0), for which the rightmost eigenvalue of
M(εF (t)), say κ(t), has Re κ̇(0) > 0.

Proof. (1) Because the rightmost eigenvalue is unique and simple for t = 0, the same property must
hold for sufficiently small positive t, establishing the existence of tmax > 0 such that the ODE is well
defined for all t ∈ [0, tmax]. (2) Taking the trace inner product of E(t) with the ODE (21) we find
that (18) holds for ‖E(t)‖F = 1, so the norm is preserved by the ODE. (3) Substituting the ODE
(21) into (17) we obtain from Cauchy-Schwartz that

Re λ̇(t) =
ε

y(t)∗x(t)

[
‖Re (u(t)v(t)∗) ‖2F − 〈Re (u(t)v(t)∗) , E(t)〉2

]
≥ 0, (24)

establishing (i). For (ii), equality holds in (24) at a given t if and only if one of the two alternatives
in (23) holds. That (iii) is an equivalent condition follows directly from the ODE (21). The final
statement follows from the optimality property of Lemma 3.4.

Thus, equilibria of the ODE come in two flavors. When the second alternative in (23) holds,

a first-order optimality condition for λ(t) to be a rightmost point of σ
K,‖·‖F
ε holds, implying in

particular that it is on the boundary of σ
K,‖·‖F
ε . However, when the first alternative holds, we

cannot make any such claim. In the special case of pseudospectra, that is with B = C = I and
D = 0, the outer product u(t)v(t)∗ reduces to y(t)x(t)∗, whose real part cannot be zero as was
shown in [GL13, Sec. 2.1.6]: in fact, the proof given there shows that Re (y(t)x(t)∗)) has rank one
when λ(t) is real and rank two when it is complex.

If Re (u(t)v(t)∗) = 0, we say that λ(t) is a static point. Note that this generalizes the notions
of uncontrollability and unobservability, because if λ(t) is unobservable, then BTy(t) = 0, implying
u(t) = 0, while if it is uncontrollable, then Cx(t) = 0, implying v(t) = 0. Example 2.11 given earlier
shows that it is possible that Re (u(t)v(t)∗) = 0 even if λ(t) is controllable and observable. In this
example, for all ε ∈ (0, 1), setting E0 = ±1, we find that u(0) and v(0) are both nonzero but that
Re (u(0)v(0)∗) = 0. However, we do not know whether it is possible for the solution of the ODE to
converge to a static point if it is not initialized there.

The next lemma explicitly states formulas for Re (u(t)v(t)∗) and bounds on its rank.

Lemma 3.6. Fix t < tmax and let u ∈ Cp, v ∈ Cm be defined by (22) for some vectors y(t) = y and
x(t) = x. If λ = λ(t) ∈ R, then we can choose y, x, u and v to be real, with Re(uv∗) = uvT having
rank 1. If λ 6∈ R, set X = (Re x, Im x) ∈ Rn×2, Y = (Re y, Im y) ∈ Rn×2, so Re(yx∗) = Y XT.
Then

Re(uv∗) = (I − εED)
−T

BTY XTCT (I − εDE)
−T

with
rank (Re (uv∗)) = rank

(
BTY XTCT

)
≤ 2.

Furthermore, if min(p,m) = 1, then rank (Re (uv∗)) ≤ 1.

Proof. The first statement follows from the definition (22), noting that E and D are real. The rank
results follow from submultiplicativity.

As already mentioned, the argument given in [GL13, Sec. 2.1.6] shows that when λ is not real,
the matrix Y XT has rank two, so when min(p,m) ≥ 2, we can expect that UV T will also have rank
two for generic B and C.

If the ODE is initialized so that for all t ≥ 0, the rightmost eigenvalue λ(t) of M(εE(t)) is unique
(considering only eigenvalues in H+=) and is simple, then we can take tmax = ∞ in Theorem 3.5.
If we further suppose that the number of equilibrium points of the ODE is finite, then since (21)
is a gradient system (with Lyapunov function Reλ(t)), we can apply Lasalle’s Theorem [LR14]
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allowing us to state that E(t) converges to an equilibrium point Ẽ and hence λ(t) converges to
some λ̃. Suppose that λ̃ is a unique rightmost eigenvalue of M(εẼ) and is simple, with associated
RP-compatible eigentriple (λ̃, x̃, ỹ), and define

ũ =
(
I − εẼD

)−T
BTỹ, ṽ =

(
I − εDẼ

)−1

Cx̃,

by analogy with (22). Then, if Re(ũṽ∗) 6= 0, we have, by taking limits in Theorem 3.5, that
Ẽ = Re(ũṽ∗)/‖Re(ũṽ∗)‖F, and that there does not exist any locally differentiable path F (t), with
‖F (t)‖F = 1 and F (0) = Ẽ, for which the rightmost eigenvalue of M(εF (t)), say κ(t), has Re κ̇(0) >
0.

To summarize this section, we have characterized equilibria of the ODE (21) as those which

have a first-order local optimality property with respect to rightmost points of σ
R,‖·‖F
ε (A,B,C,D),

with exceptions that are apparently nongeneric. A natural idea would be to attempt to approximate

α
R,‖·‖F
ε (A,B,C,D) by integrating the ODE (21) numerically to determine its equilibria, guaranteeing

monotonicity by step-size control. Such a method would generally find locally rightmost points of

σ
R,‖·‖F
ε (A,B,C,D), although it could not be guaranteed to find globally rightmost points. However,

a serious drawback of this approach is the fact that the solution E(t) (and hence most likely its
discretization) does not preserve the low rank-structure even if both the initial point E0 and the
limit of E(t) as t→∞ both have rank two. Although it is possible to consider an ODE defined on
the manifold of rank-two matrices, as done in [GL13] and [GM15] for the special case B = C = I,
D = 0, we instead develop an efficient discrete iteration that is nonetheless based on the ODE (21).

4 An Iterative Method to Approximate the Frobenius-norm
Real Spectral Value Set Abscissa

As in the previous section, assume ε is fixed with ε ‖D‖2 < 1. Following an idea briefly mentioned
in [GM15], we consider the following implicit-explicit Euler discretization of (21) with a variable
step-size hk:

Ek+1 = Ek + hk+1

(
Re(uk+1v

∗
k+1)−

〈
Ek+1,Re(uk+1v

∗
k+1)

〉
Ek

)
, (25)

where
uk+1 =

(
I − εEkD

)−T
BTyk, vk+1 =

(
I − εDEk

)−1
Cxk

and (λk, xk, yk) is a rightmost RP-compatible eigentriple of M(εEk). The method is clearly consis-
tent and converges with order 1 with respect to hk.

Lemma 4.1. Let u0, v0 be given complex vectors with Re (u0v
∗
0) 6= 0 and set E0 = Re (u0v

∗
0) /‖Re (u0v

∗
0) ‖F.

Let hk = 1/‖Re (ukv
∗
k) ‖F. Then the difference equation (25) has the solution

Ek+1 =
Re
(
uk+1v

∗
k+1

)
‖Re

(
uk+1v∗k+1

)
‖F

(26)

as long as the rightmost eigenvalue of M(εEk) is simple and unique (considering only those in H+=)
and as long as Re

(
uk+1v

∗
k+1

)
6= 0, for all k = 0, 1, . . ..

Proof. The result is easily verified by substituting (26) into (25). The assumptions ensure that the
difference equation is well defined.

Equivalently, let Ek = UkV
T
k be the current perturbation, with ‖UkV T

k ‖F = 1, and (λk, xk, yk)
be a rightmost eigenvalue of M(εUkV

T
k ). Then by setting

Xk = (Re xk, Im xk), Yk = (Re yk, Im yk)
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we can write (26) in the form

Ek+1 = Uk+1V
T
k+1 with ‖Uk+1V

T
k+1‖F = 1 (27)

where

Ûk+1 =
(
I − εUkV T

k D
)−T

BTYk, (28)

V̂k+1 =
(
I − εDUkV T

k

)−1
CXk, (29)

βk+1 = ‖Ûk+1V̂
T
k+1‖−1

F , (30)

Uk+1 =
√
βk+1 Ûk+1, (31)

Vk+1 =
√
βk+1 V̂k+1. (32)

Since Ek = UkV
T
k has rank at most two, we can simplify these expressions using the Sherman-

Morrison-Woodbury formula [GV83] as follows:(
I − εUkV T

k D
)−1

= I + εUk
(
I − εV T

k DUk
)−1

V T
k D, (33)(

I − εDUkV T
k

)−1
= I + εDUk

(
I − εV T

k DUk
)−1

V T
k . (34)

Note that I−εV T
k DUk ∈ R2×2 and is invertible since ε‖D‖2 < 1 by assumption. The second formula

(34) can be also used to simplify the definition of the perturbed system matrix in (3) as follows:

M(∆k) = M(εEk) = M(εUkV
T
k )

= A+ εBUkV
T
k (I − εDUkV T

k )−1C

= A+ εBUkV
T
k (I + εDUk

(
I − εV T

k DUk
)−1

V T
k )C

= A+ (εBUk)
[
I + ε

(
V T
k DUk

) (
I − εV T

k DUk
)−1
] (
V T
k C
)

(35)

The product UkV
T
k is never computed explicitly, but retained in factored form, so that the eigenvalues

of M(εkUkV
T
k ) with largest real part can be computed efficiently by an iterative method. The

Frobenius norm of the product can be obtained using the following equivalence:

‖UV T‖F =
[
Tr
(
V UTUV T

)] 1
2 =

[
Tr
((
UTU

) (
V TV

))] 1
2

which requires only inner products to compute the 2× 2 matrices UTU and V TV .
As with the spectral value set abscissa (SVSA) iteration for complex valued spectral values

sets given in [GGO13], there is no guarantee that the full update step for the real Frobenius-norm
bounded case will satisfy monotonicity, that is, Re(λk+1) > Re(λk) may or may not hold, where
λk is a rightmost eigenvalue of (35). However, the line search approach to make a monotonic
variant [GGO13, Sec. 3.5] does extend to the real rank-2 iteration described above, although, as the
derivation is quite lengthy [Mit14, Sec. 6.3.3], we only outline the essential components here. Let
the pair Uk and Vk define the current perturbation, with ‖UkV T

k ‖F = 1, and let the pair Uk+1 and
Vk+1 be the updated perturbation described above, with ‖Uk+1V

T
k+1‖F = 1. Consider the evolution

of a continuously varying simple rightmost eigenvalue λ(t) defined on t ∈ [0, 1] of the perturbed
system matrix. The interpolated perturbation is defined using UkV

T
k and Uk+1V

T
k+1 such that the

interpolated perturbation also has unit Frobenius norm, that is, λ(t) is an eigenvalue of

M(∆(t)) = A+B∆(t)(I −D∆(t))−1C, (36)

where

∆(t) =
εU(t)V (t)T

‖U(t)V (t)T‖
(37)
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and U(t) := tUk+1 + (1− t)Uk and V (t) := tVk+1 + (1− t)Vk. In [Mit14, Sec. 6.3.3] it is shown that
as long Re (λ′(0)) = 0 does not hold, then Re (λ′(0)) > 0 can be ensured, though it may requiring
flipping the signs of both Uk and Vk. This result allows a line search to be employed to find a
t ∈ (0, 1) such that Re(λk+1) > Re(λk) is guaranteed in an actual implementation of the iteration.

We now have all the essential pieces necessary to describe approximating α
R,‖·‖F
ε (A,B,C,D); these

are given in Algorithm SVSA-RF.

Algorithm SVSA-RF: (Spectral Value Set Abscissa: Real Frobenius-norm)

Purpose: to approximate α
R,‖·‖F
ε (A,B,C,D)

Input: ε ∈ (0, ‖D‖−1
2 ), U0 ∈ Rn×p and V0 ∈ Rn×m, such that ‖U0V

T
0 ‖F = 1, along with eigentriple

(λ0, x0, y0), with λ0 a rightmost eigenvalue of M(εU0V
T
0 )

Output: final iterates Uk, Vk with ‖UkV T
k ‖F = 1 along with λk, a rightmost eigenvalue of

M(εUkV
T
k ), certifying that Re (λk) ≤ αR,‖·‖F

ε (A,B,C,D)

1: for k = 0, 1, 2, . . . do
2: // Compute the new perturbation
3: Xk := (Re xk, Im xk)
4: Yk := (Re yk, Im yk)

5: Ûk+1 :=
(
I + εUk

(
I − εV T

k DUk
)−1

V T
k D

)T
BTYk

6: V̂k+1 :=
(
I + εDUk

(
I − εV T

k DUk
)−1

V T
k

)
CXk

7: // Normalize the new perturbation

8: βk+1 :=
[
Tr
((
ÛT
k+1Ûk+1

)(
V̂ T
k+1V̂k+1

))]− 1
2

9: Uk+1 :=
√
βk+1 Ûk+1

10: Vk+1 :=
√
βk+1 V̂k+1

11: // Attempt the full update step and, if necessary, do a line search
12: (λk+1, xk+1, yk+1) := a rightmost eigentriple of M(εUk+1V

T
k+1) using (35)

13: if Re (λk+1) ≤ Re (λk) then
14: Find new λk+1 via line search using (36) to ensure Re (λk+1) > Re (λk)
15: end if
16: end for

Note: The kth step of the iteration is well defined if UkV
T
k is nonzero and the rightmost eigenvalue of (35) in H+=

is unique and simple.

To summarize this section, we have proposed an efficient method, Algorithm SVSA-RF, to ap-

proximate α
R,‖·‖F
ε (A,B,C,D). Although it only guarantees finding a lower bound on α

R,‖·‖F
ε (A,B,C,D),

the ODE (21) on which it is based has equilibrium points that typically satisfy a first-order optimal-
ity condition (see Section 3). The kth step of the iteration is well defined as long as the condition
UkV

T
k 6= 0 holds and the rightmost eigenvalue of M(εUkV

T
k ) is unique and simple.

5 Approximating the Real Stability Radius by Hybrid Expansion-
Contraction

Recall the relationship between the stability radius r
‖·‖
K (A,B,C,D) and the spectral value set ab-

scissa α
K,‖·‖
ε (A,B,C,D) given in (12), which we write here for the real Frobenius-norm case:

r
‖·‖F
R (A,B,C,D) = min

(
‖D‖−1

2 , inf
{
ε : α

R,‖·‖F
ε (A,B,C,D) ≥ 0

})
. (38)
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The interesting case is when the second term is the lesser of these two terms, and for the re-

mainder of the paper we assume this is the case. It follows that r
‖·‖F
R (A,B,C,D) equals the infi-

mum in (38) and from Remark 2.7 that this infimum is attained. Hence α
R,‖·‖F
ε (A,B,C,D) = 0

for ε = r
‖·‖F
R (A,B,C,D). For brevity, we henceforth use ε? to denote the real stability radius

r
‖·‖F
R (A,B,C,D).

Let
g(ε) = α

R,‖·‖F
ε (A,B,C,D). (39)

We wish to find ε?, the root (zero) of the monotonically increasing continuous function g. However,
we do not have a reliable way to evaluate g: all we have is Algorithm SVSA-RF which is guaranteed
to return a lower bound on the true value. Consequently, if the value returned is negative we have
no assurance that its sign is correct. On the other hand, if the value returned is positive, we are
assured that the sign is correct. This observation underlies the hybrid expansion-contraction (HEC)
algorithm recently introduced in [MO16] for approximating the complex stability radius, which we
now extend to the real Frobenius-norm case.

5.1 Hybrid Expansion-Contraction

For any value of ε satisfying ε? < ε < ‖D‖−1
2 , there exists a real pertubation matrix E with ‖E‖F = 1

such that M(εE) has an eigenvalue in the right half-plane. We assume that E has rank at most
two (see the discussion at the end of Section 2.1). See Section 7.2 for how an initial destabilizing
perturbation εUV T can be found.

Let U ∈ Rp×2 and V ∈ Rm×2 be two matrices such that ‖UV T‖F = 1. Consider the following

matrix family where U and V are fixed and 0 < ε < ‖D‖−1
2 :

MUV (ε) := M(εUV T) = A+BεUV T(I −DεUV T)−1C

and define the function
gUV (ε) := α (MUV (ε)) , (40)

the spectral abscissa of MUV (ε). Unlike g, this function is relatively easy to evaluate at a given ε,
since all that is required is to compute the rightmost eigenvalue of the matrix MUV (ε), something
that we assume can be done efficiently by an iterative method such as Matlab’s eigs, exploiting
the equivalence (35). Now, as discussed above, suppose that εUB is known with MUV (εUB) having
an eigenvalue in the right half-plane. There exists εc ∈ (0, εUB) such that gUV (εc) = 0 because gUV
is continuous, gUV (εUB) > 0 and gUV (0) < 0 (as A is stable). The contraction phase of the hybrid
expansion-contraction algorithm finds such an εc by a simple Newton-bisection method, using the
derivative of gUV (ε) given in Section 5.2 below. Note that by definition of ε?, it must be the case
that ε? ≤ εc.

Once the contraction phase delivers εc with the rightmost eigenvalue ofMUV (εc) on the imaginary
axis, the expansion phase then “pushes” the rightmost eigenvalue of M(εUV T) back into the right
half-plane using Algorithm SVSA-RF, with ε = εc fixed and updating only the perturbation matrices
U and V . The algorithm repeats this expansion-contraction process in a loop until SVSA-RF can no
longer find a new perturbation that moves an eigenvalue off the imaginary axis into the right half-
plane. Following [MO16], the method is formally defined in Algorithm HEC-RF. For an illustration
of the main idea in the context of the complex stability radius, see [MO16, Fig. 4.1].

Convergence results for the original hybrid expansion-contraction algorithm developed for the
complex stability radius were given in [MO16, Theorem 4.3]. The basic convergence result that,
under suitable assumptions, the sequence {εk} converges to some ε̃ ≥ ε? and the sequence {Re (λk)}
converges to zero, can be extended to the real Frobenius-norm case without difficulty. However, the
part that characterizes limit points of the sequence {Re (λk)} as stationary points or local maxima
of the norm of the transfer function on the stability boundary does not immediately extend to the
real Frobenius-norm case, because instead of ‖G(iω)‖, we would have to consider the potentially

discontinuous function µ
‖·‖F
R (G(iω)).
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Algorithm HEC-RF: (Hybrid Expansion-Contraction: Real Frobenius-norm)

Purpose: to approximate r
‖·‖F
R (A,B,C,D).

Input: ε0 ∈ (0, ‖D‖−1
2 ) and matrices U ∈ Rp×2 and V ∈ Rm×2 with ‖UV T‖F = 1 and gUV (ε0) > 0,

along with λ0, a rightmost eigenvalue of MUV (ε0) in the right half-plane
Output: Final value of sequence {εk} such that λk is a rightmost eigenvalue of M(εkUV

T)
sufficiently close to the imaginary axis but in the closed right half-plane, certifying that

εk ≥ r
‖·‖F
R (A,B,C,D)

1: for k = 0, 1, 2, . . . do
2: Contraction: call a Newton-bisection zero-finding algorithm to compute εc ∈ (0, εk] so that

gUV (εc) = 0, along with λc, a rightmost eigenvalue of MUV (εc) on the imaginary axis.
3: Expansion: call Algorithm SVSA-RF with input εc, U , V to compute Ue, Ve with ‖UeV

T
e ‖F =

1 and λk+1, a rightmost eigenvalue of M(εUeV
T
e ), satisfying Re (λk+1) ≥ Re (λc) = 0.

4: Set εk+1 := εc, U := Ue, and V := Ve.
5: end for

Note: In practice, we pass eigentriples computed by the contraction phase into the expansion phase and vice
versa.

5.2 The Derivatives of gUV and g

The contraction phase of the algorithm needs the derivative of gUV defined in (39) to implement the
Newton-bisection method to find a root of gUV . As we shall see, it is also of interest to relate this
to the derivative of g defined in (40), although this is not actually used in the algorithm. The key

tool for obtaining both is Lemma 3.1, which presented the derivative of ∆(t) (I −D∆(t))
−1

with
respect to t. Here, the same matrix function depends on ε. We denote differentiation w.r.t. ε by ′.

Theorem 5.1. Let O ⊂ (0, ‖D‖−1
2 ) be open and suppose that, for all ε ∈ O, the rightmost eigenvalue

λUV (ε) of MUV (ε) in H+= is simple and unique. Then, for all ε ∈ O, gUV is differentiable at ε
with

g′UV (ε) =

Re

(
(yUV (ε)∗BU)

[
I + ε

(
V TDU

) (
I − εV TDU

)−1
]2 (

V TCxUV (ε)
))

yUV (ε)∗xUV (ε)
(41)

where (λUV (ε), xUV (ε), yUV (ε)) is a rightmost RP-compatible eigentriple of MUV (ε).

Proof. Since λUV (ε) is simple and unique, xUV (ε) and yUV (ε) are well defined (up to a unimodular
scalar). Applying Lemma 3.1 with ∆(ε) ≡ εUV T, and using (33) – (34) and Ξ := I − εV TDU , we
have

M ′UV (ε) = B(I − εUV TD)−1UV T(I − εDUV T)−1C (42)

= B(I + εUΞ−1V TD)UV T(I + εDUΞ−1V T)C

= BU(I + εΞ−1V TDU)(I + εV TDUΞ−1)V TC

= BU
[
I + ε

(
V TDU

) (
I − εV TDU

)−1
]2
V TC

noting that Ξ−1 and V TDU commute. Using standard eigenvalue perturbation theory, as in the
proof of Lemma 3.3, we have

g′UV (ε) = Re (λ′UV (ε)) =
Re (yUV (ε)∗M ′UV (ε)xUV (ε))

yUV (ε)∗xUV (ε)
(43)

from which the result follows.
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Now we obtain the derivative of the function g defined in (39).

Theorem 5.2. Let O ⊂ (0, ‖D‖−1
2 ) be open. Suppose that, for all ε ∈ O,

1. λ(ε) is the unique rightmost point of σ
R,‖·‖F
ε (A,B,C,D) (considering only those in H+=)

2. E(ε), with ‖E(ε)‖F = 1, is a smooth matrix function of ε such that λ(ε) is the unique rightmost
eigenvalue of M(εE(ε)) (again considering only those in H+=)

3. Re(u(ε)v(ε)∗) 6= 0 where

u(ε) = (I − εE(ε)D)−TBTy(ε), v(ε) = (I − εDE(ε))−1CTx(ε), (44)

and (λ(ε), x(ε), y(ε)) is an RP-compatible eigentriple of M(εE(ε)).

Then, for any ε ∈ O,

g′(ε) =
‖Re (u(ε)v(ε)∗)‖F

y(ε)∗x(ε)
. (45)

Proof. In this proof we again apply Lemma 3.1 but with ∆(ε) ≡ εE(ε), obtaining

M ′(ε) =B(I − εE(ε)D)−1(E(ε) + εE′(ε))(I − εDE(ε))−1C.

Again using standard eigenvalue perturbation theory, we have

g′(ε) = Re (λ′(ε)) =
Re (y(ε)∗M ′(ε)x(ε))

y(ε)∗x(ε)

=
Re (u(ε)∗E(ε)v(ε)) + εRe (u(ε)∗E′(ε)v(ε))

y(ε)∗x(ε)

=
〈E(ε),Reu(ε)v(ε)∗〉+ ε〈E′(ε),Reu(ε)v(ε)∗〉

y(ε)∗x(ε)
(46)

The solution of the differential equation (21) for t ≥ 0 with initial condition E(ε) results in Re λ̇(0) =
0 as λ(ε) is a rightmost point. Therefore, by Theorem 3.5, as the case Re(u(ε)v(ε)∗) = 0 is ruled
out by the assumptions, we have the identity

E(ε) =
Re (u(ε)v(ε)∗)

‖Re (u(ε)v(ε)∗)‖F
.

Plugging this identity into (46) and using the fact that 〈E′(ε), E(ε)〉 = 1
2
d‖E(ε)‖2F

dε = 0 we conclude
that (45) holds.

We now relate g′UV (ε) to g′(ε).

Theorem 5.3. Using the notation established above, suppose the assumptions of the two previous
theorems apply for the same open interval O and that for some specific ε ∈ O,

UV T = E(ε) =
Re (u(ε)v(ε)∗)

‖Re (u(ε)v(ε)∗)‖F
, (47)

so that the matrices MUV (ε) and M(εE(ε)) are the same and the eigentriples (λUV (ε), xUV (ε),
yUV (ε)) and (λ(ε), x(ε), y(ε)) coincide, with gUV (ε) = g(ε). Then

g′UV (ε) = g′(ε).
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Proof. Using (43), (42) and (47) we have

g′UV (ε) =
Re
(
y(ε)∗

(
B(I − εE(ε)TD)−1E(ε)(I − εDE(ε))−1C

)
x(ε)

)
y(ε)∗x(ε)

.

So, using (44) and (45), we obtain

g′UV (ε) =
Re (u(ε)∗E(ε)v(ε))

y(ε)∗x(ε)
=
‖Re (u(ε)v(ε)∗)‖F

y(ε)∗x(ε)
= g′(ε).

This result is important, because at the start of the contraction phase of Algorithm HEC-RF,

assuming that the expansion phase has returned a locally rightmost point of σ
R,‖·‖F
ε (A,B,C,D),

we have that (47) holds. Hence, the first Newton step of the contraction phase, namely a Newton
step for finding a zero of gUV , is equivalent to a Newton step for finding a zero of g, which is
the ultimate goal. For this reason, under a suitable regularity condition, Algorithm HEC-RF is
actually quadratically convergent. We omit the details here, but a convergence rate analysis similar
to that given in [MO16, Theorem 4.4] for the complex stability radius hybrid expansion-contraction
algorithm holds for Algorithm HEC-RF too.

6 Discrete-time systems

We now briefly summarize the changes to our results and algorithms that are needed to handle,
instead of (1)–(2), the discrete-time system

xk+1 = Axk +Buk

yk = Cxk +Duk

where k = 1, 2, . . .. The definitions of the transfer matrix function, spectral value sets and real-µ
functions in Section 2.1 remain unchanged. In Section 2.2, the stability region is the open unit disk
D− instead of the open left half-plane C−, and the definition of the stability radius must be adjusted
accordingly. In Section 2.3, instead of the spectral abscissa α and spectral value set abscissa αε, we

require the spectral radius ρ and spectral value set radius ρ
K,‖·‖
ε , which are defined by maximization

of |λ| instead of Re (λ) over the spectral value set.2 Now, instead of “rightmost” points, we search
for “outermost” points.

In Section 3, it is convenient to extend Definition 3.2 as follows: (λ, x, y) is an RP(z)-compatible
eigentriple of M if λ is a simple eigenvalue of M , x and y are corresponding normalized right and
left eigenvectors and y∗x is a real positive multiple of z. Then, instead of (3.3), we have, taking
(λ(t), x(t), y(t)) to be an RP(λ(t))-compatible eigentriple,

d

dt
|λ(t)| = Reλ(t)λ̇(t)

|λ(t)|
=

1

|y(t)∗x(t)|
Re(u(t)∗∆̇(t)v(t)).

The ODE (21) then remains unchanged, except that the eigentriple (λ(t), x(t), y(t)) is an outermost
RP(λ(t))-compatible eigentriple of M(εE(t)) instead of a rightmost RP-compatible eigentriple. The-
orem 3.5 also holds as before, with the same change. In Section 4, we replace Algorithm SVSA-RF by
Algorithm SVSR-RF (Spectral Value Set Radius: Real Frobenius-norm), whose purpose is to approx-

imate ρ
R,‖·‖F
ε (A,B,C,D). The only change that is needed is to replace rightmost RP-compatible

eigentriple (λk, xk, yk) by outermost RP(λk)-compatible eigentriple (λk, xk, yk). To ensure that

2Recall again the completely different usage of “radius” in these names, the stability radius referring to the data
space and the spectral radius to the complex plane.
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|λk+1| ≥ |λk|, a line search can again be used, as explained in [Mit14, Sec. 6.3.3]. The algorithm

produces λk certifying that |λk| ≤ ρ
R,‖·‖F
ε (A,B,C,D).

In Section 5, since the stability region is now the open unit disk D−, instead of (39) we have

g(ε) = ρ
R,‖·‖F
ε (A,B,C,D) − 1, and instead of (40) we have gUV (ε) := ρ (MUV (ε)) − 1. The

derivatives of gUV in (43) and g in (45) remain unchanged except for the RP-compatibility change
and the replacement of y∗x by |y∗x| in both denominators. Besides the RP-compatibility definition
change, Algorithm HEC-RF is changed as follows: rightmost, right half-plane and imaginary axis
are changed to outermost, C\D− and unit circle respectively.

7 Implementation and Experiments

We implemented Algorithm HEC-RF by extending the open-source Matlab code getStabRadBound
[MO16, Section 7], which is the implementation of the original HEC algorithm for approximating
the complex stability radius. Our new code supports approximating both the complex and the
real Frobenius-norm bound stability radius, for both continuous-time and discrete-time systems,
although for brevity, we continue to refer primarily only to the continuous-time case. We similarly
adapted the related fast upper bound algorithm [MO16, Section 4.4], which aims to quickly find
a destabilizing perturbation necessary for initializing Algorithm HEC-RF. This “greedy” strategy
aims to take steps as large as possible towards a destabilizing perturbation by alternating between
increasing ε and taking a single SVSA-RF update step of the perturbation matrices U and V . In the
course of this work, we also significantly improved the convergence criteria of getStabRadBound. As
these issues are crucial for implementing a practicable and reliable version of the HEC algorithm,
but the discussion does not specifically pertain to the real stability radius case, we defer the details
to Appendix A. Lastly, we also made several improvements to help accelerate the algorithm.

7.1 Acceleration features

First, we extended getStabRadBound’s feature for implicitly extrapolating the sequences of rank-1
perturbation matrices, produced in the expansion phases when approximating the complex stability
radius, to also handle the corresponding rank-2 sequences that may occur when approximating the
real stability radius. To be efficient, the procedure takes a history of Uk and Vk matrices from
Algorithm SVSA-RF and then forms four vector sequences corresponding to two selected rows and
two selected columns of the evolving UkV

T
k matrix. Vector extrapolation is then applied individually

to these four vector sequences to obtain two rows r1 and r2 and two columns c1 and c2 from the
extrapolation of the sequence {UkV T

k }, without ever explicitly forming these matrices. Using the
resulting four vector extrapolations, a new pair U? and V? are computed such that ‖U?V T

? ‖F = 1.
For more details, see [Mit14, Section 6.3.5].

Second, for SVSA-RF, we note that even if a full update step satisfies monotonicity, and thus
does not require a line search, it may happen that the line search could still sometimes produce
a better update anyway, particularly if getStabRadBound’s interpolating quadratic or cubic-based
line search option is enabled; see [Mit14, Section 4.3]. As such, even when a full SVSA-RF step
satisfies monotonicity, our implementation will check whether an interpolated step might be even
better, specifically, by considering the maximum of an interpolating quadratic line search model. If
this quadratic interpolation-derived step is predicted to be at least 1.5 times better than the already
computed full update step, the rightmost eigenvalue of the corresponding interpolated perturbation
is computed and if it satisfies monotonicity, with respect to the full step, then it is accepted in lieu
of the full step.

Finally, we modified the entire code to only compute left eigenvectors on demand, instead of
always computing eigentriples. If the resulting rightmost eigenvalue of M(∆) for some perturbation
∆ encountered by the algorithm does not satisfy monotonicity, then computing the corresponding
left eigenvector is unnecessary; left eigenvectors need only be computed at points accepted by the
algorithm, since it is only at such points that derivatives of eigenvalues are used. This optimization
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Small Dense Problems: Continuous-time

Iters # Eig Time (secs) RSR Approximation

Problem v1 v2 v1 v2 v1 v2 min{ε1, ε2} (ε1 − ε2)/ε1

CBM 3 3 122 79 8.646 5.577 4.46769464697× 100 −8.5× 10−12

CSE2 7 7 223 117 0.643 0.386 4.91783643704× 101 -
CM1 2 3 91 81 0.198 0.203 1.22474487041× 100 -
CM3 3 4 126 108 1.063 0.952 1.22290355805× 100 -
CM4 3 4 222 181 8.181 6.680 6.30978638860× 10−1 -
HE6 11 9 20852 9972 13.828 8.305 2.02865555290× 10−3 +1.5× 10−10

HE7 4 6 492 248 0.406 0.322 2.88575420548× 10−3 −3.2× 10−12

ROC1 2 3 93 78 0.127 0.150 9.11416570667× 10−1 +2.3× 10−12

ROC2 3 3 98 83 0.136 0.161 7.49812117968× 100 +1.0× 10−10

ROC3 4 4 204 117 0.211 0.209 7.68846259016× 10−5 −3.5× 10−11

ROC4 1 1 40 40 0.084 0.134 3.47486815789× 10−3 -
ROC5 5.5 11 263 426 0.226 0.390 1.02041223979× 102 −8.0× 10−9

ROC6 4 4 149 80 0.174 0.182 3.88148973329× 10−2 -
ROC7 3 3 142 107 0.165 0.163 8.96564880558× 10−1 -
ROC8 3 4 160 114 0.183 0.194 2.08497314619× 10−1 +4.7× 10−7

ROC9 5 8 235 173 0.223 0.297 4.20965764059× 10−1 -
ROC10 1 1 26 26 0.079 0.096 1.01878607021× 101 -

Table 1: The “Iters” columns show the number of HEC-RF iterations until termination for the “v1”
and “v2” configurations of getStabRadBound; note that these can be fractional since the method may
quit after either a contraction or expansion phase. The “# Eig” columns show the total number of
eigensolves (the sum of the number of right and left eigenvectors computed) incurred while the “Time
(secs)” columns show the elapsed wall-clock time in seconds per problem for both code variants.
The left column under the “RSR Approximation” heading shows the better (smaller) of the two real
stability radius approximations ε1 and ε2, respectively computed by “v1” and “v2” versions of the
code. The rightmost column show the relative difference between these two approximations, with
positive values indicating that the “v2” code produced a better approximation. Relative differences
below the 10−12 optimality tolerances used for the code are not shown.

essentially halves the cost of all incurred line searches in both Algorithm SVSA-RF and step 3
of the fast upper bound procedure, while it also halves the cost of computing extrapolation and
interpolation steps that end up being rejected.

7.2 Numerical evaluation of Algorithm HEC-RF

We tested our new version of getStabRadBound on the 34 small-scale and 14 large-scale linear
dynamical systems used in the numerical experiments of [GGO13] and [MO16], noting that the
system matrices (A,B,C,D) for these problems are all real-valued. We ran the code in two different
configurations for each problem: once in its “pure” HEC form, which we call “v1” and which should
converge quadratically, and a second time using an “accelerated” configuration, which we call “v2”.
This latter configuration enabled both of the interpolation and extrapolation features described
above as well as the code’s early contraction and expansion termination conditions, both of which
aim to encourage the code to accept inexact and cheaply-acquired solutions to the subproblems when
more accuracy is neither needed nor useful. The early expansion termination feature is described in
[MO16, Section 4.3] and often greatly lessens the overall computational cost, despite the fact that
it reduces the algorithm’s theoretical convergence rate from quadratic to superlinear. We used 0.01
as the relative tolerances for governing these early contraction/expansion features. The expansion
and contraction optimality tolerances were both set to 10−12; these two tolerances act together to
determine an overall tolerance for the HEC iteration. The “v2” configuration was set to attempt
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Small Dense Problems: Discrete-time

Iters # Eig Time (secs) RSR Approximation

Problem v1 v2 v1 v2 v1 v2 min{ε1, ε2} (ε1 − ε2)/ε1

AC5 3 4 244 197 0.250 0.234 2.01380141605× 10−2 +6.3× 10−12

AC12 2 2 35 51 0.098 0.131 9.33096040564× 10−2 -
AC15 5 6 143 94 0.178 0.179 4.22159665084× 10−2 -
AC16 4 5 119 78 0.157 0.181 7.75365184115× 10−2 -
AC17 5 5 222 150 0.201 0.219 3.35508111043× 10−6 +4.5× 10−10

REA1 2 2 77 66 0.116 0.167 1.37498793652× 10−3 -
AC1 4 5 325 230 0.267 0.253 7.99003318082× 100 -
AC2 3 4 61 57 0.111 0.171 3.36705685350× 100 -
AC3 4 4 427 297 0.305 0.329 7.43718998002× 10−2 -
AC6 5 9.5 253 366 0.215 0.356 2.32030683553× 10−8 +2.6× 10−1

AC11 5 3 198 113 0.213 0.167 5.21908412146× 10−8 −2.5× 10−8

ROC3 4 5 204 187 0.209 0.264 5.30806020326× 10−2 -
ROC5 6 5 280 176 0.246 0.306 2.85628817204× 10−4 −1.7× 10−10

ROC6 5 7 324 111 0.269 0.239 5.81391974240× 10−2 +1.8× 10−1

ROC7 4 4 68 55 0.115 0.161 9.01354011348× 10−1 -
ROC8 3 6 134 119 0.163 0.217 2.08192687301× 10−5 +1.6× 10−10

ROC9 3 4 137 101 0.160 0.177 4.07812890254× 10−2 -

Table 2: See caption of Table 1 for the description of the columns.

Large Sparse Problems: Continuous-time (top), Discrete-time (bottom)

Iters # Eig Time (secs) RSR Approximation

Problem v1 v2 v1 v2 v1 v2 min{ε1, ε2} (ε1 − ε2)/ε1

NN18 1 2 27 37 1.833 2.430 9.77424680376× 10−1 -
dwave 2 4 72 59 32.484 28.794 2.63019715625× 10−5 -
markov 2 3 61 56 12.581 10.479 1.61146532880× 10−4 -
pde 4 5 128 79 4.670 3.011 2.71186478815× 10−3 -
rdbrusselator 2 3 50 45 4.517 4.402 5.47132014748× 10−4 -
skewlap3d 2 2 103 78 115.004 90.605 4.59992022215× 10−3 -
sparserandom 2 2 90 74 3.056 2.655 7.04698184529× 10−6 −3.5× 10−10

dwave 2 4 34 33 14.776 14.397 2.56235064981× 10−5 -
markov 3 3 73 64 15.740 14.056 2.43146945130× 10−4 -
pde 2 2 46 35 1.713 1.450 2.77295935785× 10−4 -
rdbrusselator 3 5 76 60 5.926 5.041 2.56948942080× 10−4 -
skewlap3d 2 3 50 52 53.297 50.526 3.40623440406× 10−5 -
sparserandom 2 2 21 19 1.035 0.880 2.53298721605× 10−7 −3.5× 10−8

tolosa 3 3 98 53 10.097 6.251 2.14966549184× 10−7 −6.5× 10−12

Table 3: See caption of Table 1 for the description of the columns.
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extrapolation every fifth iteration, from the previous five iterates. For all other parameters, we used
getStabRadBound’s default user options. All experiments were performed using Matlab R2015a
running on a Macbook Pro with an Intel i7-5557U dual-core CPU and 16GB of RAM, running Mac
OS X v10.11.5.

Figure 1: Test problem ROC3. Selected iterates of Algorithm HEC-RF, namely the first and last
expansion phases (ε1 and ε4), are depicted as two sequences of x’s connected by line segments,
respectively in red and orange, in a close-up view (left) and in a wide view (right). The corresponding

sets σ
R,‖·‖F
ε (A,B,C,D) were realized by plotting points of σ(M(εUrV

T
r )), in green for ε = ε1 and

in blue for ε = ε4, using many rank-1 and rank-2 “sample” matrices UrV
T
r with ‖UrV T

r ‖F = 1.
Specifically, for each value of ε, we used 100,000 randomly generated matrices UrV

T
r (using randn()),

another 100,000 generated via quasi-random Sobol sequences, and 100,000 randomly perturbed
versions of the expansion phases’ sequences of matrices. The 200,000 random and quasi-random
samples were unable to capture the region near the locally rightmost point found by Algorithm
HEC-RF; the points from these samples only appear in the wider view on the right, in small regions
about the eigenvalues of A (represented by the black +’s). The sample points shown in the close-
up view on the left are all from the randomly perturbed versions of the expansion phases’ matrix
iterates, demonstrating Algorithm HEC-RF ability to efficiently find extremal rightmost values in
real-valued spectral value sets. The solid curves depict the boundaries of the corresponding sets

σ
C,‖·‖2
ε (A,B,C,D) and were computed by Matlab’s contour. As can be readily seen, the iterates

of Algorithm HEC-RF converged to a locally rightmost of σ
R,‖·‖F
ε (A,B,C,D), ε = ε4, close to the

imaginary axis (represented by the dashed vertical line) and in the interior of σ
C,‖·‖2
ε (A,B,C,D).

In order to assess whether Algorithm SVSA-RF converges to locally rightmost points, we have

relied upon plotting approximations of σ
R,‖·‖F
ε (A,B,C,D) in the complex plane using various random

sampling and perturbation techniques (in contrast to the case of the complex stability radius, where

the boundaries of σ
C,‖·‖2
ε (A,B,C,D) can be plotted easily). For each of the 34 small-scale problems,

we plotted the iterates of the expansion phases along with our σ
R,‖·‖F
ε (A,B,C,D) approximations for

the corresponding values of ε and examined them all by hand, observing that Algorithm SVSA-RF
indeed does converge to locally rightmost points as intended, at least to the precision that can be
assessed from such plots. See Figures 1 and 2 for two such plots.

As Algorithm HEC-RF is, to the best of our knowledge, the only available method to approxi-
mate the real Frobenius-norm bounded stability radius, we simply report the resulting upper bounds
produced by our method to 12 digits for each test problem, along with statistics on the computa-
tional cost, in Tables 1-3. We observe that both variants of the code tend to produce approximations
with high agreement, showing that there seems to be little to no numerical penalty for enabling the
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Figure 2: Test problem ROC9. Selected iterates of Algorithm HEC-RF, namely the first and last
expansion phases (ε1 and ε5), are depicted as two sequences of x’s connected by line segments,
respectively in red and orange, in a close-up view (left) and in a wide view (right). The corresponding

sets of point clouds for σ
R,‖·‖F
ε (A,B,C,D) and set boundaries of σ

C,‖·‖2
ε (A,B,C,D), in green for

ε = ε1 and in blue for ε = ε5, were plotted in a similar manner as described in Figure 1. The black
+ represents an eigenvalue of A. As can be seen, the iterates of Algorithm HEC-RF converged to a

locally rightmost point of σ
R,‖·‖F
ε (A,B,C,D), with ε = ε5, close to the imaginary axis (represented

by the dashed vertical line), though in this case, it is clear that this is not a globally rightmost

point. Interestingly, the corresponding sets σ
C,‖·‖2
ε (A,B,C,D) have no locally rightmost points

near the sequence of locally rightmost points of σ
R,‖·‖F
ε (A,B,C,D) found by Algorithm HEC-RF,

highlighting the striking difference between real-valued and complex-valued spectral value sets. In

fact, for ε = ε1, it is seen that σ
C,‖·‖2
ε (A,B,C,D) actually has a hole below and to the right of the

locally rightmost point of σ
R,‖·‖F
ε (A,B,C,D) found by Algorithm HEC-RF; the hole is depicted by

the small green ellipse in the right plot, a portion of which can be seen in the left plot.

acceleration features. In fact, on two examples (AC6 and ROC6, both discrete-time systems), we
see that the accelerated version of the code actually produced substantially better approximations,
with improvement to their respective second-most significant digits. Furthermore, the accelerated
“v2” configuration does appear to be effective in reducing the number of eigensolves incurred on
most problems, though there are two notable exceptions to this: ROC5 (continuous-time) and ROC6

(discrete-time). It is worth noting that many of the small-scale test problems have such tiny dimen-
sions that a reduction in eigensolves doesn’t always correspond with a speedup in terms of wall-clock
time (and can sometimes seemingly paradoxically have increased running times due to the inherent
variability in collecting timing data). However, on only moderate-sized problems, such as CBM, CSE2,
and CM4 (all continuous-time), we start to see the correspondence between number of eigensolves
and running time approaching a one-to-one relationship. This correspondence is readily apparent in
the large and sparse examples in Table 3.

Though it is difficult to tease out the effects of the different acceleration options, since they
interact with each other, we were able to determine that the early expansion termination feature
was usually the dominant factor in reducing the number of eigensolves. However, extrapolation was
crucial for the large gains observed on HE6 (continuous-time) and ROC6 (discrete-time). By com-
parison, in [MO16], when using HEC to approximate the complex stability radius, extrapolation
tended to be much more frequently beneficial while usually providing greater gains as well. Part
of this disparity may be because of the greatly increased number of eigensolves we observed when
running getStabRoundBound to approximate the complex stability radius as opposed to the real
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stability radius; on the 34 small-scale problems, the complex stability radius variant incurred 1226
more eigensolves per problem on average, with the median being 233 more. In our real stability
radius experiments, HE6 notwithstanding, Algorithm SVSA-RF simply did not seem to incur slow
convergence as often nor to the same severity as its rank-1 counterpart for complex-valued spec-
tral value sets. We note that our ODE-based approach for updating real rank-2 Frobenius-norm
bounded perturbations underlying Algorithm SVSA-RF also provides a new expansion iteration for
complex spectral value sets; in Appendix B, we evaluate the performance of this new variant when
approximating the complex stability radius.

7.3 New challenges for the real stability radius case

Over the test set, only a handful of examples triggered our new rank-2 extrapolation routine:
continuous-time problems ROC1 and ROC3 and discrete-time problems AC5, AC1, AC3, ROC3, and
ROC5. Of these seven, the code only produced a successful extrapolation for ROC1, which is seem-
ingly not a promising result for the rank-2 extrapolation procedure. However, perhaps none of
these problems ended up being particularly good candidates for evaluating the rank-2 extrapolation
procedure; their respective total number of perturbation updates to UkV

T
k , with all acceleration

features disabled, was at most 160 updates (AC3), with the average only being 70.7. Simply put,
these problems provided little opportunity for any extrapolation, yet alone need.

As an alternative to recovering the aforementioned normalized U? and V? matrices by the direct
procedure described in Section 7.1, we also considered specifying it as a constrained optimization
problem. For notational convenience, we assume that r1, r2 and c1, c2 are respectively the first and
second rows and columns of the implicitly extrapolated matrix of {UkV T

k }. To recover U? and V?
from the extrapolated rows r1, r2 and columns c1, c2, we instead solve the following constrained
optimization problem

min
‖UV T‖F =1

∥∥∥∥∥∥∥
[
c1 c2

]
− UV (1 : 2, :)T[

r1(3 : end)
r2(3 : end)

]
− U(1 : 2, :)V (3 : end, :)T

∥∥∥∥∥∥∥
2

. (48)

We derived the gradients of the above objective function and equality constraint and used them with
both Matlab’s fmincon and granso: GRadient-based Algorithm for Non-Smooth Optimization
[CMO17], to solve (48). We observed that the vectors obtained by our direct procedure frequently
made excellent starting points for solving (48), often greatly reducing the iteration numbers incurred
by fmincon and granso compared to initializing these codes from randomly generated starting
points. Regardless of the starting points employed, the optimization routines typically only found
solutions that reduced the objective function of (48) by at most an order of magnitude compared
to the solutions obtained by the direct procedure, and the resulting extrapolations were generally
no better in terms of acceptance rate than the ones produced by our direct procedure. This seems
to either confirm that these particular problems are poorly suited for evaluating extrapolation, as
suggested above, or indicate that it is perhaps the quality, or lack thereof, of the vector extrapolations
themselves, rows r1, r2 and columns c1, c2, that is causing the difficulties in producing good rank-2
extrapolations. We examined the vector sequences used to create r1, r2 and c1, c2 and did see
significant oscillation, which appears to be a property of the iterates of Algorithm SVSA-RF itself,
at least for these particular problems; this oscillation may be an additional difficulty to overcome
for improved rank-2 extrapolation performance, but we leave such investigation for future work.

Lastly, we noticed that the fast upper bound procedure had some difficulty before it was able to
find a destabilizing perturbation for problem CM4 (continuous-time). Generally, we have found that
the upper bound procedure can find a destabilizing perturbation within a handful of iterations, but

on CM4, it took 23 iterations. In Figure 3, we show plots of σ
R,‖·‖F
ε (A,B,C,D) for the largest value of

ε obtained in the upper bound procedure, along with selected iterates of the routine corresponding
to that value of ε. As is apparent from the plots, part of the difficulty in finding an upper bound
is due to the highly nonconvex “horseshoe” shapes that create locally rightmost points in the left
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Figure 3: Test problem CM4. Successively wider views (left-right, top-to-bottom) of

σ
R,‖·‖F
ε (A,B,C,D) (realized by the blue dot samples and generated in a similar manner as described

in Figure 1) showing selected iterates of the upper bound procedure (yellow x’s connected by line
segments) with ε near its limit of ‖D‖−1. The black +’s are eigenvalues of A while the black dashed
line is the imaginary axis. Top left: the expansion phase of the upper bound procedure has nearly
converged to a locally rightmost point that is just to the right of an eigenvalue of A but this region of

σ
R,‖·‖F
ε (A,B,C,D) is always contained in the left half-plane due to the limit ε < ‖D‖−1. Top right:

this highly nonconvex “horseshoe” structure is repeated in multiple places; on the next expansion

step, the routine was able to “jump” to a different region of σ
R,‖·‖F
ε (A,B,C,D) that is in the right

half-plane. Bottom left: on the next step after that, the expansion phase again jumps out of one
region to another, this time significantly farther to the right; though technically an upper bound had
already been found, the routine continued to iterate to better locate where a minimal destabilizing

perturbation may lie. Bottom right: zooming out further, we see that σ
R,‖·‖F
ε (A,B,C,D) is much

larger than was initially apparent.

half-plane for values of ε near its upper bound ‖D‖−1. The expansion routine had converged to
such a point and then iteratively increased epsilon to be near its upper bound in vain. However,
and surprisingly, on the 23rd iteration of the upper bound procedure, the expansion phase was
actually able to jump out of this region and land in the right half-plane to find a destabilizing
perturbation and thus an upper bound. Even though the routine had essentially already converged
to a perturbation corresponding to this locally rightmost point in the left half-plane, the routine
still produced another update step to try, but this update step was nearly identical to the current
perturbation, because further rightward continuous progress was not possible. The full update step
failed to satisfy monotonicity so the line search was invoked with an initial interpolation of t = 0.5

23



and as a result, the resulting unnormalized interpolation of the current perturbation and the full
update step perturbation nearly annihilated each other. When that interpolation was renormalized
back to have unit Frobenius norm, as is necessary, the resulting perturbation was very different
than the current perturbation (as well as the full update step), which thus allowed the algorithm to
jump to an entirely different disconnected region of the spectral value set. We note that Algorithm
SVSA-RF can also “jump” when a new perturbation just happens to result in a second eigenvalue
of A being taken farther to the right than the eigenvalue it had intended to push rightward.

8 Conclusion

We have presented an algorithm that, to our knowledge, is the first method available to approxi-
mate the real stability radius of a linear dynamical system with inputs and outputs defined using
Frobenius-norm bounded perturbations. It is efficient even in the large scale case, and since it gener-
ates destabilizing perturbations explicitly, it produces guaranteed upper bounds on the real stability
radius. The hybrid expansion-contraction method works by alternating between (a) iterating over a
sequence of destabilizing perturbations of fixed norm ε to push an eigenvalue of the corresponding
perturbed system matrix as far to the right in the complex plane as possible and (b) contracting ε
to bring the rightmost eigenvalue back to the imaginary axis. The final computed eigenvalue is very
close to the imaginary axis and is typically at least a locally rightmost point of the corresponding
ε-spectral value set. The method is supported by our theoretical results for the underlying ODE that
motivates the method, and our computational results are validated by extensive random sampling
techniques. The method has been implemented in our open-source Matlab code getStabRadBound.
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A Notes on implementing HEC

We use HEC here to refer to the original HEC algorithm [MO16] and Algorithm HEC-RF since the
issues outlined in this section apply equal to both methods. In theory, HEC converges once a locally
rightmost point λ with Re (λ) = 0 has been found. In practice however, it is not so straightforward.
Indeed, we have discovered that the HEC convergence criteria described in [MO16, Section 7.1],
using the expansion phase stopping condition proposed in [GGO13, Section 5], can sometimes be
inadequate. We briefly recap these conditions and then present improved criteria, which we have
used in our new version of getStabRadBound and all experiments in this paper.

To ensure that iterates always remain in the right half-plane (which is necessary for provable
convergence of HEC), the Newton-bisection based contraction phase is set to find a point on the line
x = τε/2, where τε > 0 is the contraction tolerance. The contraction is said to have converged if it
finds a point λc ∈ [0, τε). This shift permits either right or left-sided convergence; for the unshifted
problem, i.e. x = 0, convergence from the left would almost always fail to satisfy the requirement
that HEC points remain in the right half-plane. The expansion phase then pushes rightward from
λ0 := λc with iterates λk, where Re (λk+1) > Re (λk) holds for all k ≥ 0 (due to the line search
ensuring monotonicity). In [GGO13], it was proposed that the expansion phase should be halted
once Re (λk+1) − Re (λk) < τuv max(1,Re (λk)) is satisfied.3 In [MO16], HEC was then said to
have converged if either (a) the expansion phase returned a point λ such that Re (λ) < τε + τuv,
where τuv > 0 is the expansion tolerance, or (b) if the expansion and contraction phases failed
consecutively, in either order. We now discuss the inadequacies and propose improved conditions.

First, we make the change that HEC is said to have converged if Re (λ) ∈ [0, 2τε), where λ is
a locally rightmost point of the associated spectral value set encountered by HEC. Unfortunately,
detecting whether λ is locally rightmost is somewhat problematic due to the lack of an efficiently
computable optimality measure. Furthermore, the expansion phase stopping condition described
above may cause expansion to halt prematurely, which in turn can cause HEC to return an unneces-
sarily higher value of ε, that is, a worse approximation. Part of this is due to the fact that when the
expansion iterates have real part less than one, the condition only measures an absolute difference
between consecutive steps, which is often a rather poor optimality measure. Furthermore, by only
measuring the difference between the real parts, it fails to capture change in the imaginary parts,
which if present, would strongly indicate that a locally rightmost point has not yet been reached.
To address both concerns, we instead propose to measure the relative change in the complex plane

3Note that compared to [GGO13], we have dropped the absolute value signs here, since in the context of HEC, all
points lie in the right half-plane.
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Simplified list of expansion/contraction termination possibilities

Contraction Phase:
0: maxit reached though some contraction achieved

1: point with real part in [0, τε) attained

2: significant contraction achieved in right half-plane, halted early

3: desired point is bracketed by two consecutive floating point numbers

(no convergence criteria satisfied)

Expansion Phase:
0: maxit reached

1: relative difference, in C, between λk+1 and λk is less than τuv
2: step length Re (λk+1)− Re (λk) has significantly shortened, halted early

3: line search failed to produce a monotonic step

Table 4: For both phases, return code 1 is used to indicate that the respective desired convergence
has been achieved, while return code 2 indicates that the early termination features were invoked.
For the contraction phase, return code 3 indicates that the precision limits of the hardware precludes
satisfying the convergence criteria, i.e., it is a hard failure. For the expansion phase, return code 3
can be interpreted as a sign of convergence, as further rightward progress is apparently no longer
possible.

between consecutive iterates, that is, |λk+1 − λk|/|λk|, and to halt the expansion phase when this
value falls below τuv. Doing so however creates two additional wrinkles that must now be addressed.
The condition is not meaningful when either point is exactly zero. Therefore, we simply skip this
particular check if either is indeed zero, noting that it can, at most, only add two additional steps
to be taken (provided no other termination condition is triggered). Also, we must prevent “false”
oscillation in imaginary parts from being measured due to complex conjugacy; when matrices A, B,
C, and D are all real, we simply ensure that distance is measured between eigenvalues in the upper
half-plane only, by flipping signs of the imaginary parts as necessary.

Another major issue is that, in practice, both the contraction and expansion phases may termi-
nate in a multitude of ways without satisfying their respective convergence criteria, including our
improved expansion-halting condition above. In Table 4, we give a simplified list of these termination
possibilities. We now describe how to interpret the combination of these possibilities that can occur
and how their consequences should be handled and present a concise pseudocode for the resulting
practical implementation of HEC.

We have designed the contraction procedure so that reaching its maximum allowed iteration
count will only cause it to actually halt iterating if it has also achieved some amount of contraction,
that is, it has encountered at least one point λ̃ such that 0 ≤ Re (λ̃) ≤ λ, where λ is the initial point.
This seemingly unconventional behavior has the two benefits that the only case when it doesn’t
make any progress is when it is impossible to do so (i.e. when it exhausts the machine’s precision)
and a sufficiently large maximum iteration limit to find a first contraction step no longer needs to
be known a priori, which is generally not possible. If the contraction routine has made progress
(no matter the termination condition), then additional expansion is always potentially possible and
so the next expansion phase must be attempted. Furthermore, even if the contraction phase failed
to make any progress, but if the previous expansion did not converge, then the next expansion
phase should attempt to resume it since further expansion is apparently possible and may enable
the subsequent contraction phase to finally make progress. The only case remaining is when the
contraction phase failed to make any progress (by reaching the limits of the hardware) after having
had the preceding expansion phase converge (meaning it would not be able make further progress
if it were to be rerun with the same value of ε). In this situation, HEC can no longer make any
progress and must quit. However, even though the contraction phase failed to meet its convergence
criteria, Re (λc) ∈ [0, 2τε) may still hold, so HEC may sometimes terminate successfully in this
case. If not, HEC has stagnated, which is likely an indication that tolerances are too tight for the
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Pertinent pseudocode for a practical HEC implementation

Input: ε0 > 0, rightmost λ0 ∈ σ(M(ε0UV
∗)) such that Re (λ0) > 0 with ‖UV ∗‖ = 1 for the chosen

norm and U ∈ Cp, V ∈ Cm or U ∈ Rp×2, V ∈ Rm×2 for respectively approximating the complex
or real stability radius radius, initial contraction bracket given by εLB := 0 and εUB := ε0,
boolean variable expand converged := false, . . .

Output: Final value of sequence {εk}.

1: for k = 0, 1, 2, . . . do
2: [εc, λc, εLB, εUB, ret con] = contract(εLB, εUB, λk, . . .) // where:
3: // 0 < ε̂ ≤ ε is the possibly contracted value of ε
4: // 0 ≤ Re (λc) ≤ Re (λk) is the possibly contracted eigenvalue
5: // possibly updated εLB and εUB giving the tightest bracket encountered
6: // ret con is the contraction’s return code from Table 4
7: // Check if no contraction was possible (precision of hardware exhausted)
8: if ret con == 3 and expand converged then
9: if Re (λc) < 2 · τε then

10: return // HEC converged to tolerance
11: else
12: return // HEC stagnated
13: end if
14: end if
15: εk+1 := εc

16: [λk+1, ret exp] = expand(εk+1, λc, . . .) // where:
17: // Re (λk+1) ≥ Re (λc)
18: // ret exp is the expansion’s return code from Table 4
19: expand converged := (ret exp == 1 or ret exp == 3)
20: if expand converged and Re (λk+1) < 2 · τε then
21: return // HEC converged to tolerance
22: else if Re (λk+1 − λc) > 0 then
23: εLB := 0, εUB := εk+1 // Expansion made some progress; do new contraction
24: else if ret con == 3 then
25: return // HEC stagnated
26: end if // Else contraction will be resumed/restarted from where it last left off
27: end for

available precision of the hardware on the particular problem (or possibly that a subroutine has
failed in practice).

For each expansion phase, we consider it to have converged once it can no longer make any
meaningful rightward progress. Our new stopping criteria attempt to capture precisely that, and
do so more accurately than the previous scheme. Furthermore, if the line search fails to produce
a monotonic step, then the expansion routine is, by default, unable to make further progress. We
have observed that the line search failing is generally a good sign, often implying that a stationary
point has already been found. We thus consider the expansion phase to have converged if either our
new stopping condition is met or if the line search fails. Otherwise, further expansion is potentially
possible. After an expansion phase, HEC should first check if the expansion phase converged and
whether Re (λ) ∈ [0, 2τε) holds, as the two conditions together indicate HEC has converged and
can halt with success. However, if the expansion phase has made progress, then, since it has not
converged, HEC should continue by starting a new contraction phase. Otherwise, we know that
the expansion phase has not made any progress and is thus considered converged. If the previous
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contraction phase exhausted the precision of the machine, then the HEC iteration can no longer
continue and it has stagnated before meeting its convergence criteria for tolerances that are likely
too tight. The only remaining possibility is that the contraction phase achieved some amount of
contraction but did not yet converge. In this last case, the contraction phase should be restarted
from its most recent bracket to see if it can make further progress, which might enable a subsequent
expansion to succeed.

The above design also causes the respective maximum iteration limits of the expansion and
contraction phases to act as additional early termination features early within the HEC iteration,
without ever comprising the final numerical accuracy.

B A new iteration for the complex stability radius

Though we have developed Algorithm SVSA-RF specifically to iterate over real-valued perturbations
with rank at most two, it also permits a natural extension to a complex-valued rank-1 expansion
iteration as well, essentially by replacing Re (uv∗) with uv∗ in (26). In Tables 5-7, we compare
the original HEC algorithm with an alternative variant which employs this ODE-based expansion
iteration for approximating the complex stability radius. Overall there doesn’t seem to be a clear
answer as to which version performs better, as they perform roughly the same on many problems.
However, it is worth noting that ODE-based version had outstanding performance on continuous-
time problems ROC1 and ROC2, respectively requiring only 3.3% and 16.6% of the eigensolves as
compared to the unmodified HEC algorithm. Furthermore, on the latter example, the ODE-based
version also returns a significantly better approximation.

Small Dense Problems: Continuous-time

Iters # Eig Time (secs) CSR Approximation

Problem v1 v2 v1 v2 v1 v2 min{ε1, ε2} (ε1 − ε2)/ε1

CBM 4 4 169 242 29.136 39.991 3.80262077280× 100 −1.5× 10−11

CSE2 6 6 1298 1038 5.344 4.327 4.91778669279× 101 +3.0× 10−5

CM1 - - - - - - - -
CM3 4 3 224 173 3.602 2.794 1.21736892616× 100 −9.8× 10−3

CM4 4 4 379 500 27.367 36.763 6.29458676972× 10−1 +1.2× 10−12

HE6 11 11 20459 20981 12.524 12.637 2.02865555308× 10−3 −6.1× 10−11

HE7 4 4 610 478 0.462 0.389 2.88575420548× 10−3 -
ROC1 3 3 4139 136 2.521 0.204 8.21970266187× 10−1 -
ROC2 5 3 481 80 0.361 0.131 7.49812117958× 100 +9.1× 10−2

ROC3 6 4 270 193 0.253 0.197 5.80347782972× 10−5 −6.2× 10−11

ROC4 3 1 223 111 0.204 0.133 3.38236009391× 10−3 −2.7× 10−2

ROC5 10 15.5 546 669 0.356 0.422 1.02041169816× 102 +2.5× 10−7

ROC6 4 4 183 127 0.176 0.145 3.88148973329× 10−2 -
ROC7 5 5 4439 4541 2.183 2.323 8.91295691482× 10−1 -
ROC8 3 3 236 124 0.226 0.167 1.51539044957× 10−1 −9.9× 10−9

ROC9 6 6 705 674 0.509 0.479 3.03578083291× 10−1 -
ROC10 3 3 412 413 0.282 0.305 9.85411638072× 100 -

Table 5: The columns are the same as described in the caption of Table 1 except that here, we
compare the HEC algorithm for approximating the complex stability radius (CSR) using its original
expansion iteration, which we call “v1”, and an ODE-based variant, which we call “v2”. We tested
both versions without any acceleration features enabled. Note that the ODE-based approach failed
to find an upper bound for CM1 and thus no data is reported for this example.
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Small Dense Problems: Discrete-time

Iters # Eig Time (secs) CSR Approximation

Problem v1 v2 v1 v2 v1 v2 min{ε1, ε2} (ε1 − ε2)/ε1

AC5 3 3 177 173 0.165 0.163 1.31122274593× 10−2 -
AC12 3 3 1258 1290 0.789 0.768 9.24428279719× 10−2 -
AC15 5 5 143 143 0.156 0.142 4.22159665084× 10−2 -
AC16 4 4 940 931 0.553 0.537 5.46839166119× 10−2 -
AC17 4 7 237 313 0.198 0.268 3.33193351568× 10−6 +5.5× 10−10

REA1 3 3 766 772 0.488 0.546 1.34439972514× 10−3 -
AC1 4 4 4787 4771 2.471 2.591 6.65190471447× 100 -
AC2 4 4 511 570 0.357 0.393 3.27216087222× 100 -
AC3 4 4 938 917 0.541 0.548 5.25195687767× 10−2 -
AC6 11 13 875 911 0.552 0.621 1.88905032255× 10−8 −9.6× 10−9

AC11 7.5 6.5 286 347 0.245 0.268 4.57670218088× 10−8 +1.3× 10−8

ROC3 4 4 1510 1485 1.022 1.027 4.27872787193× 10−2 -
ROC5 6 8 358 432 0.292 0.329 2.55709313478× 10−4 +8.0× 10−11

ROC6 11 11 16832 16646 9.600 9.137 5.81391331473× 10−2 -
ROC7 4 4 3509 3480 1.855 1.928 9.01354009455× 10−1 -
ROC8 3 3 127 124 0.145 0.181 1.59160474017× 10−5 −1.2× 10−10

ROC9 4 4 286 272 0.272 0.249 3.49507190967× 10−2 -

Table 6: See caption of Table 5 for the description of the columns.

Large Sparse Problems: Continuous-time (top), Discrete-time (bottom)

Iters # Eig Time (secs) CSR Approximation

Problem v1 v2 v1 v2 v1 v2 min{ε1, ε2} (ε1 − ε2)/ε1

NN18 3 3 89 107 8.315 8.295 9.77172733234× 10−1 -
dwave 2 2 79 70 36.342 33.786 2.63019715625× 10−5 -
markov 2 2 57 65 12.179 13.279 1.61146532880× 10−4 -
pde 4 3 251 202 23.441 18.918 2.71186478815× 10−3 −4.4× 10−9

rdbrusselator 4 4 289 369 91.167 112.681 5.35246333569× 10−4 -
skewlap3d 2 2 118 91 136.307 141.747 4.59992022215× 10−3 -
sparserandom 2 2 74 65 3.106 2.618 7.04698184526× 10−6 -

dwave 2 2 42 33 21.303 14.683 2.56235064981× 10−5 -
markov 3 3 65 75 14.383 17.617 2.43146945130× 10−4 -
pde 5 3 2839 2091 184.350 133.007 2.68649594344× 10−4 −4.6× 10−4

rdbrusselator 3 3 51 69 5.081 6.892 2.56948942080× 10−4 -
skewlap3d 2 2 47 56 58.705 49.745 3.40623440406× 10−5 -
sparserandom 2 2 24 22 0.927 0.897 2.53298721307× 10−7 −8.2× 10−10

tolosa 4 4 2314 2315 598.283 547.306 1.76587075884× 10−7 -

Table 7: See caption of Table 5 for the description of the columns.
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