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DOUBLE BUNDLE METHOD FOR FINDING CLARKE
STATIONARY POINTS IN NONSMOOTH DC PROGRAMMING∗
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SONA TAHERI‡

Abstract. The aim of this paper is to introduce a new proximal double bundle method for
unconstrained nonsmooth optimization, where the objective function is presented as a difference of
two convex (DC) functions. The novelty in our method is a new escape procedure which enables
us to guarantee approximate Clarke stationarity for solutions by utilizing the DC components of
the objective function. This optimality condition is stronger than the criticality condition typically
used in DC programming. Moreover, if a candidate solution is not approximate Clarke stationary,
then the escape procedure returns a descent direction. With this escape procedure, we can avoid
some shortcomings encountered when criticality is used. The finite termination of the double bundle
method to an approximate Clarke stationary point is proved by assuming that the subdifferentials
of DC components are polytopes. Finally, some encouraging numerical results are presented.
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1. Introduction. A class of functions represented as a difference of convex (DC)
functions constitutes an important subclass of nonconvex functions. These functions
preserve, with some modifications, important properties of convex functions. Another
advantage is that the class of DC functions maintains the DC structure under simple
algebraic operations frequently used in optimization, like scalar multiplication and
lower and upper envelopes. In addition, this class is very broad. For example, every
continuous function, defined on a compact convex set, can be approximated by a DC
function with any desired precision [16, 37].

Optimization problems with DC objective and constraint functions are called DC
programming problems. Many practical problems can be modelled as a DC program-
ming problem where the explicit DC decompositions of the objective and/or constraint
functions are readily available. These problems include production-transportation
planning [15], location planning [31], engineering design [22], cluster analysis [4, 30],
clusterwise linear regression analysis [6], and supervised data classification [1], to
name a few. In general, the calculation of an explicit DC representation is a hard
task since these representations appear often in an implicit form. Note that DC de-
compositions are not unique and each DC function has an infinite number of different
DC representations.
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DOUBLE BUNDLE METHOD FOR NONSMOOTH DC PROGRAMMING 1893

To date, DC programming has been predominantly considered as a part of global
optimization, and several algorithms have been designed to solve it globally (see [16,
37] and references therein). However, global optimization techniques such as a cutting
plane method for DC programming and the branch and bound method are not efficient
for solving large-scale DC programming problems often encountered in real-world
applications [23]. The development of local search methods in DC programming
has attracted less attention. There exist several methods specifically designed for
nonsmooth DC programming problems using their explicit DC representations [2, 5,
17, 35]. In addition, a gradient splitting method introduced in [12] can be modified
for minimizing DC functions.

A stopping condition in most nonsmooth DC programming algorithms guaran-
tees only criticality of the solution point, and this condition is weaker than the Clarke
stationarity typically used in general nonconvex nonsmooth optimization. Unfortu-
nately, it may happen that these algorithms stop at a point which is neither a local
minimizer nor a saddle point. This undesirable feature is often a consequence of the
selected DC decomposition since it affects the criticality condition tested. However,
in general, there is no efficient way to detect the most suitable DC decomposition
among the infinite set of possible ones.

In this paper, we introduce a new proximal double bundle method (DBDC) for
unconstrained nonsmooth DC minimization problems. The main idea in the DBDC is
to combine the proximal bundle method (PBDC) [17] for nonsmooth DC programming
with a new escape procedure. With this combination, our aim is to guarantee a
stronger optimality condition than the one typically used in DC programming but, at
the same time, to preserve all good features obtained from the use of the DC structure
in the PBDC method.

In the DBDC method using DC decompositions, the nonconvex cutting plane
model is developed to capture both the convex and concave behaviour of a DC func-
tion. The escape procedure, in its turn, is able to generate a new search direction
whenever a candidate solution (typically a critical point) is not approximate Clarke
stationary. Moreover, this procedure is designed in such a way that the approximate
Clarke stationarity can be ensured by using only information about the DC compo-
nents. To prove the finite termination of the escape procedure, we assume that the
subdifferentials of DC components are polytopes.

The rest of the paper is organized as follows. In section 2, we present some basic
definitions and results from nonsmooth analysis and DC programming. In section 3,
we point out some drawbacks of critical points. The new escape procedure guarantee-
ing approximate Clarke stationarity is presented in section 4 and section 5 describes
the new minimization algorithm DBDC. Numerical results are reported in section 6
and, finally, in section 7 we give some concluding remarks.

2. Preliminaries. Consider a DC minimization problem of the form{
minimize f(x) = f1(x)− f2(x)

subject to x ∈ Rn,

where the objective function f : Rn → R is a difference of two convex functions f1 and
f2. Such a function f is called a DC function and f1 − f2 is the DC decomposition
of f . The convex functions f1 and f2 are called DC components of f . Note that
f is often nonconvex and it is not necessarily differentiable. In addition, when f is
nonsmooth, then at least one of its DC components is also nonsmooth.
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1894 JOKI, BAGIROV, KARMITSA, MÄKELÄ, AND TAHERI

Next, we present some results from nonsmooth analysis and DC programming.
For more details we refer the reader to [3, 7, 13, 22, 28, 32, 33]. In what follows, ‖ · ‖
is the norm in the n-dimensional real Euclidean space Rn, Bε(x) is the open ball with
a center x ∈ Rn and a radius ε > 0, and xTy is the usual inner product of vectors x
and y.

The subdifferential of a convex function f at a point x ∈ Rn is the set [33]

∂cf(x) =
{
ξ ∈ Rn | f(y) ≥ f(x) + ξT (y − x) for all y ∈ Rn

}
,

and each vector ξ ∈ ∂cf(x) is called a subgradient of f at x. In particular, if f is
both convex and differentiable, then ∂cf(x) = {∇f(x)}.

The generalized subdifferential of a locally Lipschitz continuous function (LLC) f
at a point x ∈ Rn is given by [7]

∂f(x) = conv
{

lim
i→∞

∇f(xi)
∣∣ xi → x and ∇f(xi) exists

}
,

where “conv” denotes the convex hull of a set. A point x∗ ∈ Rn is called Clarke
stationary if 0 ∈ ∂f(x∗), and this is a necessary condition for local optimality. It is
known that for a convex function f defined on Rn we have ∂f(x) = ∂cf(x) [7].

For ε ≥ 0, the Goldstein ε-subdifferential of an LLC function f at x ∈ Rn is [28]

∂Gε f(x) = cl conv {∂f(y) | y ∈ Bε(x)} .

It is obvious that ∂f(x) ⊂ ∂Gε f(x) for all ε ≥ 0. In practice, we consider solutions
fulfilling the condition 0 ∈ ∂Gε f(x) since the Goldstein ε-subdifferential approximates
∂f(x).

A general LLC function is not necessarily directionally differentiable. However,
our objective f is a finite-valued DC function and it is directionally differentiable
at any x ∈ Rn [3] meaning that the directional derivative of f at x exists in every
direction d ∈ Rn and is defined as

f ′(x;d) = lim
t↓0

f(x+ td)− f(x)

t
.

In addition, for a DC function f we have f ′(x;d) = f ′1(x;d)−f ′2(x;d). If f ′(x;d) < 0
for some d ∈ Rn, then d is a descent direction. This means that there exists ε > 0
such that f(x+ td) < f(x) for all t ∈ (0, ε] [3].

Next, we present necessary conditions for local optimality in DC programming.

Theorem 2.1 (see [22, 36]). Let f1 and f2 be convex functions. If x∗ ∈ Rn is a
local minimizer of f = f1 − f2, then

∂f2(x∗) ⊆ ∂f1(x∗).(1)

Points satisfying (1) are called inf-stationary. Furthermore, condition (1) guar-
antees local optimality if f2 is a polyhedral convex function of the form f2(x) =
maxi=1,...,m{aTi x− bi}, where ai ∈ Rn and bi ∈ R.

The inf-stationarity condition (1) is not easy to verify since in practice it is not
easy to calculate the whole subdifferentials of DC components f1 and f2. Therefore,
in numerical algorithms a relaxed form of condition (1) is often used requiring that
[14, 22, 36]

∂f1(x∗) ∩ ∂f2(x∗) 6= ∅.(2)
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DOUBLE BUNDLE METHOD FOR NONSMOOTH DC PROGRAMMING 1895

A point x∗ ∈ Rn satisfying (2) is called a critical point. Due to Theorem 2.1, condition
(2) is also a necessary condition for local optimality.

There exist some interesting relationships between inf-stationary, Clarke station-
ary, and critical points. First, inf-stationarity always implies Clarke stationarity. Sec-
ond, a Clarke stationary point is a critical point. However, for the other way around
these implications do not hold without some extra assumptions. One exception is the
case in which f2 is differentiable at a critical point x∗ ∈ Rn since then we have [7]

∂f2(x∗) = {∇f2(x∗)} ⊆ ∂f1(x∗) and 0 ∈ ∂f(x∗) = ∂f1(x∗)− ∂f2(x∗),

indicating also inf-stationarity and Clarke stationarity of the point x∗. If only the
first DC component f1 is differentiable at a critical point x∗ ∈ Rn, then we obtain
only Clarke stationarity. This is due to the fact that [7]

0 ∈ ∂f(x∗) = ∂f1(x∗)− ∂f2(x∗) = {∇f1(x∗)} − ∂f2(x∗),

and since ∂f2(x∗) may contain more than one element it cannot be a subset of
∂f1(x∗) = {∇f1(x∗)}. The relationships between different stationarities are shown
in Figure 1.

Inf-stationarity: ∂f2(x
∗) ⊆ ∂f1(x

∗)

Clarke stationarity: 0 ∈ ∂f(x∗)

Criticality: ∂f1(x
∗) ∩ ∂f2(x

∗) 6= ∅

f1 or f2 differentiable

f2 differentiable

Fig. 1. Relationships between different stationary points.

3. Drawbacks of the criticality condition. In this section, we present some
examples to demonstrate drawbacks of critical points. First, criticality is a weaker
condition than Clarke stationarity. This follows from the subdifferential calculus,
which only guarantees that for a DC function f we have [7]

∂f(x) ⊆ ∂f1(x)− ∂f2(x).(3)

Therefore, the difference of arbitrary subgradients of f1 and f2 does not need to belong
to ∂f(x). Nevertheless, there are some exceptions to this as we have already seen in
section 2. Second, it is possible that a critical point is neither a local optimum nor a
saddle point of the objective f . Thus, a critical point may fail to give us any useful
information about f . This means that, in practice, minimization algorithms may stop
in the middle of nowhere if criticality is used as a stopping condition.

Next, we present two simple examples illustrating the fact that a critical point
can be easily located in an unfavourable place. The first one shows the effect of the
“bad” selection of the DC decomposition for a linear function, which can happen in
a linear part of a more complex function. However, in the second example it is not
easy to see if the DC decomposition of f could be selected in such a way that the
undesirable behaviour could be avoided.
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1896 JOKI, BAGIROV, KARMITSA, MÄKELÄ, AND TAHERI

Example 3.1. Let us consider a linear function f(x) = x, where x ∈ R. A DC
decomposition of f is obtained when we select f1(x) = max{−x, 2x} and f2(x) =
max{−2x, x}. At a point x∗ = 0 the DC components f1 and f2 are not differentiable
and the subdifferentials are ∂f1(0) = [−1, 2] and ∂f2(0) = [−2, 1]. We obtain ∂f1(0)∩
∂f2(0) = [−1, 1] 6= ∅, and the point x∗ is a critical point. However, since the original
objective f is differentiable at x∗ = 0 and ∂f(0) = {1}, the point x∗ is not Clarke
stationary and provides no interesting feature for f .

Example 3.2. Let us consider a simple nonlinear problem, where the objective
function f : R → R has DC components defined as f1(x) = max{x2, x} and f2(x) =
max{0.5x2,−x}. Let us look closer the point x∗ = 0. Functions f1 and f2 are not
differentiable at x∗ and their subdifferentials are ∂f1(0) = [0, 1] and ∂f2(0) = [−1, 0].
Since ∂f1(0) ∩ ∂f2(0) = {0} 6= ∅ the point x∗ = 0 is a critical point of f . However, f
is differentiable at x∗ and ∂f(0) = {1}. Therefore, the critical point x∗ is not a local
minimizer or even a saddle point. Graphs of the DC components and the objective f
are illustrated in Figure 2.

-3 -2 -1 1 2 3

2

4

6

8

f H Lx1

-3 -2 -1 1 2 3

1

2

3

4

f H Lx2

-3 -2 -1 1 2 3

1

2

3

4

f H Lx

Fig. 2. The DC components f1(x) and f2(x) and the objective function f(x).

An undesirable behaviour in critical points is sometimes a result of the selected
DC decomposition. However, since a DC function has an infinite number of different
DC decompositions it is not easy to know which one of them should be selected, and
this problem is, in general, an open question in DC programming. One exception is
a polynomial case: in [9] a special algorithm is designed to find the best DC repre-
sentation of polynomials. In some easy cases, we can also see directly how a good
DC decomposition should be chosen (e.g., in Example 3.1 we could set f1(x) = x and
f2(x) = 0). However, in real-world applications the situation is rarely this simple and
it depends on the overall structure of the problem. Therefore, there is no efficient way
to avoid this poor feature of critical points.

4. Guaranteeing approximate Clarke stationarity. In this section, we de-
scribe the new escape procedure, which either guarantees approximate Clarke station-
arity for a point under consideration or generates a descent direction yielding a better
iteration point. The novelty in the procedure is its ability to ensure that the differ-
ence of subgradients of the DC components f1 and f2 belongs to the subdifferential
of f = f1 − f2. As seen in section 3, this does not hold in general. Later on, the
escape procedure is used in the main iteration of the DBDC method to detect the
cases in which a critical point or a promising candidate solution fulfils approximate
Clarke stationarity.

Next, we consider the convex DC components fi : Rn → R for i = 1, 2. The
support function of the subdifferential ∂fi(x) at x ∈ Rn is

σi(d) ≡ f ′i(x;d) = max
{
vTd | v ∈ ∂fi(x)

}
for i = 1, 2.
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DOUBLE BUNDLE METHOD FOR NONSMOOTH DC PROGRAMMING 1897

Taking any direction d ∈ Rn such that d 6= 0, we consider the following set:

Gi(x;d) =
{
ξ ∈ ∂fi(x) | ξTd = σi(d)

}
for i = 1, 2.

Since f1 and f2 are convex they are weakly semismooth [29, 34]. This implies that

(4) f ′i(x;d) = lim
k→∞

vTk d

for i = 1, 2 and any sequences {vk}, {tk} such that vk ∈ ∂fi(x + tkd) and tk ↓ 0 as
k →∞. Consider the set

Ui(x;d) = {ξ ∈ Rn | ∃{vk} and {tk}, vk ∈ ∂fi(x+tkd), vk → ξ and tk ↓ 0 as k→∞}

for i = 1, 2. It follows from (4) that

(5) Ui(x;d) ⊆ Gi(x;d) for i = 1, 2.

The definition of Ui(x;d) yields that for any ε > 0 there exists t0 > 0 such that

∂fi(x+ td) ⊂ Ui(x;d) +Bε(0) for i = 1, 2 and ∀t ∈ (0, t0).

This together with (5) implies that

(6) ∂fi(x+ td) ⊂ Gi(x;d) +Bε(0) for i = 1, 2 and ∀t ∈ (0, t0).

Since the support function σi is LLC [3] it is differentiable almost everywhere.
This means that at the point x ∈ Rn there exists a set Ti(x) ⊂ Rn of full measure
such that Gi(x;d) is a singleton for any d ∈ Ti(x). Let

TDC(x) = T1(x) ∩ T2(x) ⊆ Rn

be the set of full measure, where both G1(x;d) and G2(x;d) are singletons for any
d ∈ TDC(x) at the point x.

Theorem 4.1. Let f = f1 − f2 be a DC function, x ∈ Rn, d ∈ TDC(x),
G1(x;d) = {ξ1}, and G2(x;d) = {ξ2}. Then

ξ1 − ξ2 ∈ ∂f(x).

Proof. It follows from (6) that for any ε > 0 there exists t0 > 0 such that

∂f1(x+ td) ⊂ {ξ1}+Bε(0), ∂f2(x+ td) ⊂ {ξ2}+Bε(0) ∀t ∈ (0, t0).

This means that

(7) ‖v − ξ1‖ < ε, ‖w − ξ2‖ < ε

for all v ∈ ∂f1(x + td), w ∈ ∂f2(x + td), and t ∈ (0, t0). On the other hand, rule
(3) implies that ∂f(x + td) ⊆ ∂f1(x + td) − ∂f2(x + td) for t ≥ 0. Therefore, for
any ξt ∈ ∂f(x + td) there exist vt ∈ ∂f1(x + td) and wt ∈ ∂f2(x + td) such that
ξt = vt −wt, and taking into account (7) we obtain

‖ξt − (ξ1 − ξ2)‖ ≤ ‖vt − ξ1‖+ ‖wt − ξ2‖ < 2ε
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for all ξt ∈ ∂f(x+ td) and t ∈ (0, t0). This means that

(8) ξ1 − ξ2 ∈ ∂f(x+ td) +B2ε(0) ∀t ∈ (0, t0).

Furthermore, upper semicontinuity of ∂f(x) [7] implies that for any ε > 0 there exists
t1 > 0 such that

∂f(x+ td) ⊂ ∂f(x) +Bε(0) ∀t ∈ (0, t1).

Then from (8) we have
ξ1 − ξ2 ∈ ∂f(x) +B3ε(0).

Since ε > 0 is arbitrary we get that ξ1 − ξ2 ∈ ∂f(x). This completes the proof.

Corollary 4.2. Let x ∈ Rn, f = f1−f2 be a DC function, and TDC(x) ⊆ Rn be
a set of full measure such that G1(x;d) and G2(x;d) are singletons for d ∈ TDC(x).
Consider the set

∂TDC
f(x) = cl conv {ξ ∈ Rn | ∃d ∈ TDC(x), ξ = ξ1 − ξ2,

ξ1 ∈ G1(x;d), ξ2 ∈ G2(x;d)} .

Then ∂TDC
f(x) ⊆ ∂f(x).

These results show that in order to compute subgradients from the Clarke sub-
differential of a DC function utilizing only subgradients of DC components it is im-
portant to design an algorithm which allows us at a point x for any direction d ∈ Rn
to find a direction d̄ ∈ TDC(x) such that ‖d− d̄‖ < δ for any sufficiently small δ > 0.

Remark 4.3. In [8], directions d ∈ Rn whose sets Gi(x;d) are singletons are used
to define the so-called Demyanov difference of two convex compact sets in Rn.

4.1. Calculation of appropriate directions. Next, we show how the direction
d̄ ∈ TDC(x) for any d ∈ Rn can be found at a point x ∈ Rn. For this reason we
utilize the so-called R-sets [3] and assume the following.

Assumption A1. The subdifferentials ∂f1(x) and ∂f2(x) are polytopes at any
x ∈ Rn.

Remark 4.4. Assumption A1 is not very restrictive since in practical applications
the subdifferentials of DC components f1 and f2 are nearly always polytopes.

Let A ⊂ Rn be a polytope, that is, it can be represented as A = convA0, where
A0 = {a1, . . . ,am}, ai ∈ Rn, and m ≥ 1. Let

V = {g ∈ Rn | g = (g1, . . . , gn), |gi| = 1, i = 1, . . . , n} .

For a given g ∈ V , introduce the following sets:

R0(g) ≡ R0 = A0,

Rj(g) = arg max {vjgj | v ∈ Rj−1(g)} , j = 1, . . . , n.

It is clear that

Rj(g) 6= ∅ ∀j ∈ {0, . . . , n} and Rj(g) ⊆ Rj−1(g) ∀j ∈ {1, . . . , n}.

Moreover,

(9) vk = wk ∀v,w ∈ Rj(g), k = 1, . . . , j.
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Lemma 4.5. For any g ∈ V , the set Rn(g) is a singleton.

Proof. It follows from (9) that for any v,w ∈ Rn(g) we have v = w.

For g ∈ V and α > 0, we introduce the vector en(α) = (αg1, α
2g2, . . . , α

ngn).
Denote by σA the support function of the polytope A, i.e., σA(d) = max{vTd |v ∈ A},
and for the direction d ∈ Rn, d 6= 0, define the set

GA(d) =
{
a ∈ A | aTd = σA(d)

}
.

Since the set A is a polytope the set GA(d) is never empty and contains at least one
vertex of A. In addition, if GA(d) contains only one point, then this point is a vertex
of the set A.

Lemma 4.6. Let A be a polytope with a finite vertex set A0. For a given g ∈ V ,
there exists α0 ∈ (0, 1] such that GA(en(α)) is a singleton for all α ∈ (0, α0].

Proof. If the set A0 is a singleton, then the proof is obvious. Therefore, assume
that A0 is not a singleton. According to Lemma 4.5, the set Rn(g) is a singleton,
and without loss of generality we can assume that a ∈ A0 is the vertex such that
Rn(g) = {a}. Moreover, A0 \ {a} 6= ∅.

Next, we take any b ∈ A0 \ {a}. Then there exists r ∈ {1, . . . , n} such that
b ∈ Rp(g) for all p = 0, . . . , r−1 but b /∈ Rr(g). Therefore, argr > brgr and we define
d(b) = argr − brgr > 0. Since the set A0 is finite and d(b) > 0 for all b ∈ A0 \ {a} we
can determine the following number:

δ = min
b∈A0\{a}

{
d(b)

}
> 0.

From (9) we know that for any b ∈ A0 \ {a} we have at = bt for t = 1, . . . , r− 1 when
r ≥ 2. Thus,

aTen(α)− bTen(α) =

n∑
t=1

(at − bt)αtgt = αr

[
argr − brgr +

n∑
t=r+1

(at − bt)αt−rgt
]

≥ αr
[
δ +

n∑
t=r+1

(at − bt)αt−rgt
]
.

Let D = max{‖v‖ |v ∈ A0} <∞. Since α ∈ (0, 1] and g ∈ V we get∣∣∣∣∣
n∑

t=r+1

(at − bt)αt−rgt
∣∣∣∣∣ ≤ 2Dα(n− r) < 2Dαn

for any b ∈ A0 \ {a}. If we continue by choosing α0 = min{1, δ
4Dn}, then, for all

α ∈ (0, α0], ∣∣∣∣∣
n∑

t=r+1

(at − bt)αt−rgt
∣∣∣∣∣ < δ

2
.

This means that for b ∈ A0 \ {a} we have

aTen(α)− bTen(α) > αr
(
δ − δ

2

)
=
αrδ

2
> 0
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for all α ∈ (0, α0]. Therefore,

aTen(α)− bTen(α) > 0 ∀b ∈ A0 \ {a}(10)

and since the set A0 contains all the vertices of the polytope A inequality (10) holds
also for all b ∈ A \ {a}. This shows our claim.

Lemma 4.6 shows that for any polytope A ⊂ Rn and g ∈ V there exists α0 ∈ (0, 1]
such that the sets GA(en(α)) are singletons for any parameter α ∈ (0, α0] and the
value of α0 > 0 depends only on the polytope.

Lemma 4.7. Let A be a polytope with a finite vertex set A0 and let d ∈ Rn be any
direction such that d 6= 0. Then for a given g ∈ V there exists α0 ∈ (0, 1] such that
for the direction d̄(α) = d+ en(α) the set GA(d̄(α)) is a singleton for all α ∈ (0, α0].
In addition, GA(d̄(α)) ⊆ GA(d) for all α ∈ (0, α0].

Proof. Let us consider a polytope B(d) = convGA(d). If we calculate the set
GB(d)(e

n(α)) for a given v ∈ V , then each v0 ∈ GB(d)(e
n(α)) satisfies the inequality

vT0 e
n(α) ≥ vTen(α) + δ1 ∀v ∈ convGA(d) \GB(d)(e

n(α)),(11)

for some δ1 > 0. It follows from Lemma 4.6 that for the polytope B(d) there exists
α0 ∈ (0, 1] such that the set GB(d)(e

n(α)) is a singleton for a given g ∈ V and all
α ∈ (0, α0], that is, GB(d)(e

n(α)) = {v0}. Since GB(d)(e
n(α)) is a singleton and

B(d) is a polytope the only point, v0 ∈ GB(d)(e
n(α)), needs to be a vertex of the

set B(d). Moreover, this vertex has to belong to both sets GA(d) and A0, that is,
v0 ∈ GA(d) ∩A0. Thus,

vT0 e
n(α) ≥ vTen(α) + δ1 ∀v ∈ GA(d) \ {v0},(12)

for some δ1 > 0 since (11) also holds for the smaller set GA(d) ⊆ convGA(d). On the
other hand, from the definition of the set GA(d) we deduce that there exists δ2 > 0
such that

vTd ≥ wTd+ δ2 ∀v ∈ GA(d), w ∈ A0 \GA(d)

since A0 ⊂ A. By defining d̄(α) = d + en(α) we obtain ‖d̄(α) − d‖ ≤ nα for any
α ∈ (0, 1]. We also write D = max{‖a‖ |a ∈ A0} < ∞. For each v0,v ∈ GA(d) we
know that vT0 d = vTd. This together with (12) implies that

vT0 d̄(α) ≥ vT d̄(α) + δ1 ∀v ∈ GA(d) \ {v0}.(13)

Moreover, for any w ∈ A0 \GA(d) we have

vT d̄(α)−wT d̄(α) = (v −w)Td+ (v −w)Ten(α) ≥ δ2 − 2Dnα

for all v ∈ GA(d). By choosing α1 = min{1, δ2
4Dn}, we get that, for any α ∈ (0, α1],

vT d̄(α)−wT d̄(α) ≥ δ2/2 ∀v ∈ GA(d), w ∈ A0 \GA(d).

Combining this with (13) gives

vT0 d̄(α)−wT d̄(α) ≥ min{δ1, δ2/2} > 0 ∀w ∈ A0 \ {v0}

and since A is a polytope we have GA(d̄(α)) = {v0} ⊂ GA(d) for all α ∈ (0, α2),
where α2 = min{α0, α1}. This proves the lemma.
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Theorem 4.8. Let x ∈ Rn, let d ∈ Rn be any direction such that d 6= 0, and
assume that a DC function f = f1 − f2 satisfies Assumption A1. Then for a given
g ∈ V there exists α0 ∈ (0, 1] such that, for all α ∈ (0, α0],

(i) d̄(α) = d+ en(α) ∈ TDC(x),
(ii) G1(x; d̄(α)) ⊆ G1(x;d) and G2(x; d̄(α)) ⊆ G2(x;d),
(iii) f ′(x;d) = (ξ1 − ξ2)Td for ξ1 ∈ G1(x; d̄(α)) and ξ2 ∈ G2(x; d̄(α)),
(iv) ξ1 − ξ2 ∈ ∂f(x) for ξ1 ∈ G1(x; d̄(α)) and ξ2 ∈ G2(x; d̄(α)).

Proof. Properties (i) and (ii) follow immediately from Lemma 4.7. To prove
case (iii) notice that f ′1(x;d) = ξT1 d for ξ1 ∈ G1(x; d̄(α)), f ′2(x;d) = ξT2 d for ξ2 ∈
G1(x; d̄(α)), and f ′(x;d) = f ′1(x;d) − f ′2(x;d). Property (iv) is obtained directly
from Theorem 4.1 by taking into account (i).

4.2. Algorithm. In this subsection, we present our new algorithm, which can
escape from non-Clarke stationary points and also detect approximate Clarke sta-
tionarity. This verification process is designed for a DC function f = f1 − f2 and it
requires that Assumption A1 holds. This assumption is needed to show the termina-
tion of the method and also to guarantee that Step 1 in Algorithm 1 is well defined.
Moreover, whenever this escape procedure generates a new better iteration point, it
belongs to the set

Fx = {y ∈ Rn | f(y) ≤ f(x)} ,(14)

where x ∈ Rn is the starting point used in the escape procedure since the new algo-
rithm is a descent one. In Algorithm 1, the set Ck estimates ∂Gε f(x), which is also
an approximation of ∂f(x), and we have Ck ⊂ ∂Gε f(x) for all k ≥ 1. In addition, the
smaller the parameter ε > 0 is, the more accurate the approximation of ∂f(x) is. Let
S1 = {d ∈ Rn | ‖d‖ = 1} be a unit sphere in Rn. The final solution in the procedure
is denoted by x+ .

Remark 4.9. In Step 4 of Algorithm 1, the step length β∗ is determined from
formula (18). However, in practice we do not need to find the largest β∗ since any
β ≥ ε satisfying the required descent condition gives a strict descent in the objective
function. Therefore, we can first test if the step length β = 1 decreases the value of
the objective. If it does, then we can set β∗ = 1. Otherwise, we divide β by 2 and test
again if we obtain a descent in the objective. This backtracking procedure is stopped
immediately if we find a step length β ≥ ε yielding a descent. Otherwise, we continue
until β∗ fulfilling (18) is determined with sufficient accuracy.

We start by showing the following useful property needed to prove the finite
termination of the escape procedure.

Lemma 4.10. Let the set Fx be compact. If during iteration k the execution of
Algorithm 1 is not stopped at Step 4, then

f ′(x+ β∗dk+1;dk+1) > −m̂‖ūk‖ for all m̂ > m1.

Proof. First of all, the step-length determination formula (18) is well defined due
to the assumption that Fx is compact and thus β∗ <∞. Therefore, if the execution
of Algorithm 1 is continued at Step 4, we know that the step length satisfies β∗ < ε
and

f(x+ β∗dk+1)− f(x) ≤ −m1β
∗‖ūk‖.(19)
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Algorithm 1 Escape procedure.

Data: The point x ∈ Rn under consideration, the descent parameter m1 ∈ (0, 1), the
stopping tolerance δ ∈ (0, 1) and the proximity measure ε > 0.

Step 0. Initialization. Select a direction d1 ∈ S1. Set x̃ = x, C0 = ∅, and k = 1.
Step 1. New subgradient. Find d̄k(α) ∈ TDC(x̃) using dk. Compute subgradients

ξ1,k ∈ ∂f1(x̃) and ξ2,k ∈ ∂f2(x̃) such that ξ1,k ∈ G1(x̃; d̄k(α)) and
ξ2,k ∈ G2(x̃; d̄k(α)). Set ξk = ξ1,k − ξ2,k and Ck = conv{Ck−1 ∪ {ξk}}.

Step 2. Clarke stationarity. Find ūk as the solution to the following problem:

min
u∈Ck

1

2
‖u‖2.(15)

If

‖ūk‖ ≤ δ,(16)

then EXIT with x+ = x since approximate Clarke stationarity is ob-
tained.

Step 3. Search direction. Compute the search direction dk+1 = −ūk/‖ūk‖. If

f ′(x;dk+1) > −m1‖ūk‖,(17)

then set x̃ = x and k = k + 1 and go to Step 1.
Step 4. Step length. Calculate the step length β∗ > 0 from the formula

β∗ = arg max {β > 0 | f(x+ βdk+1)− f(x) ≤ −m1β‖ūk‖} .(18)

If β∗ ≥ ε, then set x+ = x+ β∗dk+1 and EXIT from the algorithm since
a better iteration point has been found. Otherwise, set x̃ = x + β∗dk+1

and k = k + 1 and go to Step 1.

Moreover, for any β > β∗ the inequality in (18) cannot hold, meaning that

f(x+ βdk+1)− f(x) > −m1β‖ūk‖.(20)

Next, we assume contrary to our claim that

f ′(x+ β∗dk+1;dk+1) ≤ −m̂‖ūk‖ for some m̂ > m1.

Using the definition of the directional derivative of f , we can rewrite the previous
inequality in the form

lim
t↓0

f(x+ (β∗ + t)dk+1)− f(x+ β∗dk+1)

t
≤ −m̂‖ūk‖.

This means that for each ρ > 0 there exists t∗ > 0 such that

f(x+ (β∗ + t∗)dk+1)− f(x+ β∗dk+1)

t∗
≤ −m̂‖ūk‖+ ρ.

Since m̂ > m1 we can select ρ = (m̂−m1)‖ūk‖ > 0. Then

f(x+ (β∗ + t∗)dk+1)− f(x+ β∗dk+1) ≤ −m1t
∗‖ūk‖

D
ow

nl
oa

de
d 

11
/1

1/
18

 to
 1

41
.1

32
.1

03
.6

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DOUBLE BUNDLE METHOD FOR NONSMOOTH DC PROGRAMMING 1903

and combining this inequality with (19) gives

f(x+ (β∗ + t∗)dk+1)− f(x) ≤ −m1(β∗ + t∗)‖ūk‖.

This shows that the inequality in (18) holds for β = β∗+t∗. However, this contradicts
(20) since β∗ + t∗ > β∗.

Theorem 4.11. Let Assumption A1 be valid and assume that the set Fx is com-
pact. Algorithm 1 is terminated after at most

Nmax =

 ln(δ2/L2)

ln
(

1− (1−m1)2δ2

8L2

)
+ 1

iterations, where d·e is the ceiling of a number, m1 ∈ (0, 1), and L > δ is the Lipschitz
constant of f at x ∈ Rn.

Proof. Algorithm 1 terminates if either stopping condition (16) is satisfied or a
new iteration point is found in Step 4. We prove that one of these alternatives will be
fulfilled after a finite number of steps. First, we show that if none of these stopping
options is satisfied during the iteration k, then the new subgradient ξk+1 computed
in Step 1 does not belong to the set Ck ⊂ ∂Gε f(x). Since ūk is the solution to
the quadratic programming problem (15) it follows from the necessary and sufficient
condition for a minimum that ūTk u ≥ ‖ūk‖2 for all u ∈ Ck, which implies that

(21) uTdk+1 ≤ −‖ūk‖ ∀u ∈ Ck.

In addition, we have two options for the next x̃, namely x or x+ β∗dk+1. If x̃ = x,
this means that condition (17) is satisfied and we obtain

f ′(x̃;dk+1) = f ′(x;dk+1) > −m1‖ūk‖ > −m̂‖ūk‖(22)

for m̂ ∈ (m1, 1). In the latter case, x̃ = x + β∗dk+1 for β∗ < ε and, therefore, a
subgradient calculated at x̃ belongs to the set ∂Gε f(x). Applying Lemma 4.10 we can
guarantee that

f ′(x̃;dk+1) = f ′(x+ β∗dk+1;dk+1) > −m̂‖ūk‖(23)

when m̂ ∈ (m1, 1). Properties (iii) and (iv) of Theorem 4.8 mean that ξ1,k+1 −
ξ2,k+1 ∈ ∂f(x̃) and f ′(x̃;dk+1) = ξTk+1dk+1 = (ξ1,k+1 − ξ2,k+1)Tdk+1 for ξ1,k+1 ∈
G1(x̃; d̄k+1(α)) and ξ2,k+1 ∈ G2(x̃; d̄k+1(α)). This together with (22) and (23) implies
that

ξTk+1dk+1 > −m̂‖ūk‖ for all m̂ ∈ (m1, 1).(24)

Since m̂ ∈ (m1, 1), inequalities (21) and (24) yield that ξk+1 /∈ Ck. This means that
if the algorithm does not stop during one iteration, then the new subgradient allows
us to significantly improve the approximation of the set ∂Gε f(x).

In order to show that Algorithm 1 is finite convergent, it is sufficient to prove
that (16) will be satisfied after a finite number of iterations if a new iteration point is
never found. It is obvious that tξk+1 + (1− t)ūk ∈ Ck+1 for any t ∈ (0, 1) and, thus,

‖ūk+1‖2 ≤ ‖tξk+1 + (1− t)ūk‖2 = ‖ūk + t(ξk+1 − ūk)‖2
= ‖ūk‖2 + 2tūTk (ξk+1 − ūk) + t2‖ξk+1 − ūk‖2.
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Since a DC function f is LLC at any point, the Goldstein ε-subdifferential ∂Gε f(x)
is bounded at x ∈ Rn with a Lipschitz constant [3]. Let L > 0 be the Lipschitz
constant of f at x, which is selected in such a way that L > δ. Then ‖ξ‖ ≤ L for
all ξ ∈ ∂Gε f(x), implying that ‖ξk+1 − ūk‖ ≤ 2L. Moreover, from (24) we obtain
ξTk+1ūk < m̂‖ūk‖2 since dk+1 = −ūk/‖ūk‖ and therefore

‖ūk+1‖2 ≤‖ūk‖2 + 2tūTk (ξk+1 − ūk) + 4t2L2 < ‖ūk‖2 − 2t(1− m̂)‖ūk‖2 + 4t2L2

for each m̂ ∈ (m1, 1). By selecting

t =
(1− m̂)‖ūk‖2

4L2

it is obvious that t ∈ (0, 1) and, thus, we have

‖ūk+1‖2 < ‖ūk‖2 −
(1− m̂)2‖ūk‖4

4L2
for all m̂ ∈ (m1, 1).

It is possible to select m̂ ∈ (m1, 1) in such a way that 2(1− m̂)2 > (1−m1)2. Using
this selection in the previous inequality we obtain

‖ūk+1‖2 < ‖ūk‖2 −
(1−m1)2‖ūk‖4

8L2
.

If stopping criterion (16) is never met, then ‖ūk‖ > δ for any k > 0, and we get

‖ūk+1‖2 < ‖ūk‖2
(

1− (1−m1)2‖ūk‖2
8L2

)
< ‖ūk‖2

(
1− (1−m1)2δ2

8L2

)
.

It follows from this and ‖ū1‖ ≤ L that

‖ūk‖2 < ‖ū1‖2
(

1− (1−m1)2δ2

8L2

)k−1
≤ L2

(
1− (1−m1)2δ2

8L2

)k−1
.

Hence, ‖ūk‖ ≤ δ is satisfied if

k ≥

 ln(δ2/L2)

ln
(

1− (1−m1)2δ2

8L2

)
+ 1.

This completes the proof.

5. Double bundle method for DC functions. In this section, we describe
the new proximal double bundle method DBDC for solving unconstrained DC min-
imization problems. The method DBDC is based on the combination of the PBDC
method [17] and the new escape procedure Algorithm 1. The method PBDC utilizes
the DC decomposition of the objective in the model construction and, due to this,
the cutting plane model well describes the actual behaviour of f . In addition, the
PBDC has fast convergence speed, but it guarantees only approximate criticality of
the solutions. Therefore, the stopping condition can lead to “arbitrary” points where
approximate Clarke stationarity is not satisfied. The aim of our hybridization is to
utilize the PBDC method to obtain a promising candidate solution and then to use
the escape procedure to guarantee approximate Clarke stationarity of the solution ob-
tained. In other words, our goal is to provide a more reliable method for nonsmooth
DC problems which preserves the good features of the PBDC but at the same time
improves the quality of the solutions. The use of approximate Clarke stationarity as
a stopping condition also enables us to escape from “arbitrary” solutions encountered
when criticality is used.
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5.1. Model for DC functions. We start by presenting the cutting plane model
for nonsmooth DC functions, which is used to determine a search direction in the
DBDC method. Since the main idea in the model construction is to utilize information
about both DC components separately we assume that the values of DC components
f1(x) and f2(x) as well as arbitrary subgradients ξ1 ∈ ∂f1(x) and ξ2 ∈ ∂f2(x) can
be evaluated at each x ∈ Rn.

In order to take into account both the convex and concave behavior of f , we
approximate the subdifferentials of both DC components f1 and f2. Therefore, we
collect subgradients of those components into a bundle. This means that for each DC
component we have its own bundle containing subgradient information gathered from
the previous iterations. Thus, we maintain two completely separate bundles, and the
bundle for fi at the current iteration point xk ∈ Rn is denoted by

Bki =
{(
yj , fi(yj), ξi,j

) ∣∣ j ∈ Jki } for i = 1, 2,

where Jki is a nonempty set of indices and ξi,j ∈ ∂fi(yj) is a subgradient calculated at
an auxiliary point yj ∈ Rn. Note that the index sets Jk1 and Jk2 need not be similar,
and only the current iteration point xk is always assumed to be included in both
bundles Bk1 and Bk2 with a suitable index.

Utilizing the convexity of the DC component, we can easily form a convex piece-
wise linear model to approximate it at the current iteration point xk. This model is the
classical cutting plane model used in convex bundle methods (see, e.g., [20, 26, 28, 34]).
For the DC component fi, i = 1, 2, it is constructed using

f̂ki (x) = max
j∈Jk

i

{
fi(xk) + (ξi,j)

T (x− xk)− αki,j
}

with the linearization error

αki,j = fi(xk)− fi(yj)− (ξi,j)
T (xk − yj) for all j ∈ Jki .

A nice feature of this model is that it supports the epigraph of a convex function from
below at every point, and linearization errors are nonnegative.

The approximation for f is obtained by combining the convex cutting plane mod-
els of f1 and f2. Thus, the nonconvex cutting plane model of f is defined by

f̂k(x) = f̂k1 (x)− f̂k2 (x).

This piecewise linear cutting plane model can be rewritten as

f̂k(xk + d) = f(xk) + ∆k
1(d) + ∆k

2(d),

where d = x− xk is the search direction at xk and

∆k
1(d) = max

j∈Jk
1

{
(ξ1,j)

Td− αk1,j
}

and ∆k
2(d) = min

j∈Jk
2

{
−(ξ2,j)

Td+ αk2,j
}

are the piecewise affine functions associated with f1 and f2. Note that this cut-
ting plane model is nonconvex and takes into account both the convex and concave
behavior of f . Thus, we avoid the somewhat arbitrary downward shifting of first
order expansions, and we need not use the so-called subgradient locality measures [19]
commonly used in nonconvex bundle methods.

One illustration of the cutting plane model for the objective f = f1− f2 with DC
components f1(x) = max{x2 − x− 1, x} and f2(x) = 0.5x2 + max{0,−x} is shown in
Figures 3 and 4. Linearizations of both DC components are constructed only at three
points: −2, 0.5, and 3.5.
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Fig. 3. The convex cutting plane models f̂k
1 (x) and f̂k

2 (x) of the DC components f1(x) and f2(x).
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Fig. 4. The nonconvex cutting plane model f̂k(x) of the objective function f(x).

5.2. Direction finding. The DBDC method uses the above presented noncon-
vex cutting plane model to compute the search direction. However, this model cannot
be directly applied since we cannot always guarantee the existence of the search direc-
tion. Thus, we need to add a quadratic stabilizing term into our model. The search
direction dkt is obtained by globally solving the nonconvex DC minimization problem{

minimize P k(d) = ∆k
1(d) + ∆k

2(d) + 1
2t‖d‖2

subject to d ∈ Rn,
(25)

where t > 0 is a proximity parameter used in most bundle methods. The quadratic
term keeps our approximation local enough [26] since usually the farther away we are
from xk the more unreliable the cutting plane model becomes.

The term ∆k
1(dkt ) + ∆k

2(dkt ) in problem (25) can be considered as a predicted
descent for the actual decrease f(xk+dkt )−f(xk) in the objective function value. The
following Lemma 5.1 supports this interpretation since it demonstrates that ∆k

1(dkt )+
∆k

2(dkt ) is always nonpositive and, thus, gives an estimate for a descent. Similarly,
the separate values ∆k

1(d) and ∆k
2(d) approximate the changes in the values of f1 and

−f2, respectively.

Lemma 5.1. The following properties hold:
(i) ∆k

1(d) ≤ f1(xk + d)− f1(xk) for d ∈ Rn;
(ii) ∆k

2(d) ≥ −f2(xk + d)− (−f2(xk)) for d ∈ Rn;
(iii) For any t > 0, we have ∆k

1(dkt ) + ∆k
2(dkt ) ≤ − 1

2t‖dkt ‖2 ≤ 0.

Proof. Properties (i) and (ii) follow directly from the features of the convex cut-
ting plane model. For case (iii) see [17].

In the next lemma, we establish a bound for the norm ‖dkt ‖.
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Lemma 5.2. For any proximity parameter t > 0, it holds that

‖dkt ‖ ≤ 2t (‖ξ1(xk)‖+ ‖ξ2,max‖) ,

where ξ1(xk) ∈ ∂f1(xk) and ‖ξ2,max‖ = maxj∈Jk
2
{‖ξ2,j‖}.

Proof. See the proof of Lemma 2 in [17].

The challenge in problem (25) is to find the global solution since even though
the problem is quadratic it is still a nonconvex nonsmooth DC minimization problem
with DC components ∆k

1(d) + 1
2t‖d‖2 and −∆k

2(d). However, since in P k the DC
component −∆k

2(d) is polyhedral convex the global solution can be easily obtained
by utilizing a specific approach [21, 22, 32]. The main idea in the approach is based
on the observation that the objective function P k can be reformulated as

P k(d) = min
i∈Jk

2

{
P ki (d) = ∆k

1(d)− (ξ2,i)
Td+ αk2,i +

1

2t
‖d‖2

}
,

and then problem (25) can be rewritten in the form

min
d∈Rn

min
i∈Jk

2

{
P ki (d)

}
= min
i∈Jk

2

min
d∈Rn

{
P ki (d)

}
.

Thus, we are allowed to change the order of the minimizations and for each i ∈ Jk2
separately solve the convex nonsmooth subproblem{

minimize P ki (d) = ∆k
1(d)− (ξ2,i)

Td+ αk2,i + 1
2t‖d‖2

subject to d ∈ Rn,
(26)

whose solution is denoted by dkt (i). After we have solved all |Jk2 | convex subproblems
the global solution dkt of the original nonconvex problem (25) is obtained from

dkt = dkt (i∗), where i∗ = arg min
i∈Jk

2

{
P ki
(
dkt (i)

)}
.

This means that we select the best solution among all subproblem minimizers. More-
over, for each i ∈ Jk2 subproblem (26) can be reformulated as a convex quadratic
programming problem:

minimize v + 1
2t‖d‖2

subject to (ξ1,j − ξ2,i)Td− (αk1,j − αk2,i) ≤ v for all j ∈ Jk1 ,
v ∈ R, d ∈ Rn.

(27)

Alternatively, instead of (27) it is possible to solve its quadratic dual problem [28].

5.3. Algorithm. We now describe the proximal double bundle algorithm DBDC
for unconstrained DC minimization. This method combines the new escape proce-
dure (Algorithm 1) with the proximal bundle method PBDC [17]. The following
assumption is required to prove the convergence of the DBDC.

Assumption A2. The set F0 = {x ∈ Rn | f(x) ≤ f(x0)} is compact for a starting
point x0 ∈ Rn.
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This assumption is often made in bundle methods and it is not restrictive. More-
over, this assumption guarantees that set (14) is always compact whenever Algo-
rithm 1 is executed during the DBDC method.

To make the presentation clear we divide our method into two parts. The first
part, Algorithm 2, illustrates mainly the outline of the DBDC while a more significant
role is provided by Algorithm 3, which presents the main iteration. Algorithm 3
consists of a sequence of steps where the current iteration point xk remains unchanged.
However, whenever we exit from this algorithm we have either confirmed approximate
Clarke stationarity or found a new iteration point decreasing the value of the objective.
To guarantee approximate Clarke stationarity, the main iteration utilizes Algorithm 1
whenever a promising candidate solution is found. If in this verification process xk
satisfies the required stopping conditions, then the DBDC method terminates with
xk as the final solution.

Algorithm 2 Double bundle method for unconstrained DC optimization (DBDC).

Data: The starting point x0 ∈ Rn, the stopping tolerance δ ∈ (0, 1), the proximity
measure ε > 0, the enlargement parameter ε1 > 0, the decrease parameters r ∈ (0, 1)
and c ∈ (0, 1), the increase parameter R > 1, and the descent parameters m1 ∈ (0, 1)
and m2 ∈ (0, 1).

Step 0. Initialization. Compute f1(x0) and f2(x0). Set y1 = x0 and k = 0.
Calculate ξ1,1 = ξ1(x0) ∈ ∂f1(y1), ξ2,1 = ξ2(x0) ∈ ∂f2(y1), and set
αk1,1 = αk2,1 = 0. Initialize Bk1 = {(ξ1,1, αk1,1)} and Bk2 = {(ξ2,1, αk2,1)}.

Step 1. Main iteration. Execute Algorithm 3 to find xk+1. If xk+1 = xk, then
approximate Clarke stationarity is achieved and STOP with x∗ = xk as
the final solution.

Step 2. Bundle update. Compute fi(xk+1) and ξi(xk+1) ∈ ∂fi(xk+1) for i = 1, 2.
Select Bk+1

1 ⊆ Bk1 and Bk+1
2 ⊆ Bk2 and update

αk+1
i,j = αki,j + fi(xk+1)− fi(xk)− (ξi,j)

T (xk+1 − xk)(28)

for all i = 1, 2 and j ∈ Jk+1
i . Insert the element (ξ1(xk+1), 0) into Bk+1

1

and (ξ2(xk+1), 0) into Bk+1
2 . Set k = k + 1 and go to Step 1.

Remark 5.3. In the bundles Bk1 and Bk2 , it suffices to store only subgradients
ξi,j ∈ ∂fi(yj) and linearization errors αki,j . This is due to the fact that the linearization
errors can be updated by using formula (28) in Algorithm 2 and, therefore, the new
values for the next iteration are easily obtained whenever a new iteration point xk+1

is found. Thus, we do not need to store the points yj or the values fi(yj).

Remark 5.4. In Step 2 of Algorithm 2, the bundles Bk+1
1 and Bk+1

2 can be chosen
separately and without any restrictions. Thus, every element stored can also be
deleted at this point. Regardless of this, Bk+1

1 and Bk+1
2 always contain at least the

element corresponding to the new iteration point xk+1 since it is inserted into both
bundles at the end of Step 2. This ensures that the bundles are never empty when
we start a new main iteration.

Next, we discuss Algorithm 3 being the core of the DBDC method. To simplify
notation, we have omitted the index k except for in xk ∈ Rn since the current iteration
point xk does not change during the execution. In addition, ξ1(xk) ∈ ∂f1(xk) and
ξ2(xk) ∈ ∂f2(xk).
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Algorithm 3 Main iteration.

Data: The stopping tolerance δ ∈ (0, 1), the enlargement parameter ε1 > 0, the
decrease parameters r ∈ (0, 1) and c ∈ (0, 1), the increase parameter R > 1, and the
descent parameter m2 ∈ (0, 1).

Step 0. Criticality. If ‖ξ1(xk)− ξ2(xk)‖ < δ, then go to Step 3.
Step 1. Initialization. Calculate j∗ = arg maxj∈J2{‖ξ2,j‖}, set ξ2,max = ξ2,j∗ ,

and initialize the parameters

tmin = r · ε1

2
(
‖ξ1(xk)‖+ ‖ξ2,max‖

)(29)

and tmax = R tmin. Choose the value t ∈ [tmin, tmax].
Step 2. Search direction. Compute the search direction dt by solving problem

(25). If ‖dt‖ < δ, then go to Step 3, else go to Step 4.
Step 3. Clarke stationarity. Execute Algorithm 1 for the point xk. Set xk+1 = x+

and EXIT.
Step 4. Descent test. Set y = xk + dt. If

f(y)− f(xk) ≤ m2

(
∆1(dt) + ∆2(dt)

)
,(30)

then choose xk+1 = y and EXIT.
Step 5. Bundle update.

(a) If f(y)− f(x0) > 0 and ‖dt‖ > ε1, then set t = t− r(t− tmin) and
go to Step 2.

(b) Otherwise, if

f(y)− f(xk) ≥ −m2

(
∆1(dt) + ∆2(dt)

)
,(31)

then set t = t− c(t− tmin). Compute ξ1 ∈ ∂f1(y), ξ2 ∈ ∂f2(y), and
set α1 = f1(xk) − f1(y) + ξT1 dt and α2 = f2(xk) − f2(y) + ξT2 dt.
Insert the element (ξ1, α1) into B1 and, if ∆2(dt) ≥ 0, then insert
the element (ξ2, α2) into B2.

Step 6. Parameter update. If ‖ξ2‖ > ‖ξ2,max‖, then set ξ2,max = ξ2 and update
tmin using formula (29). Go to Step 2.

The search direction problem in Step 2 of Algorithm 3 is the most time-consuming
part since during each iteration we need to solve |J2| convex subproblems. However,
after solving all subproblems the global solution of the original nonconvex problem can
be easily obtained by choosing the best solution among the subproblem minimizers.
In addition, the user can control the number of solved subproblems since the size of
the bundle B2 can be always limited with the maximum number of stored subgradients
Jmax ≥ 1. The only restriction is that the element (ξ(xk), 0) corresponding to the
current iteration point xk cannot be deleted or substituted during the execution of
Algorithm 3. Moreover, it is possible to omit the update requirement used in Step
5(b) for the bundle B2 and always include the new element in B2.

Remark 5.5. In Step 5(b) of Algorithm 3, condition (31) is similar to (30) but
now instead of the descent we test if the increase in the objective function is signifi-
cant. This way we can detect the cases where the model of the objective function is
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inconsistent and fails to describe the actual behaviour of f . In this case, we decrease
the proximity parameter t to get a more accurate model.

Remark 5.6. The purpose of Step 5(a) of Algorithm 3 is to guarantee that the
points used to constitute the elements inserted into the bundles are on the set Fε1 =
{x ∈ Rn | d(x,F0) ≤ ε1}, where ε1 > 0 is selected and

d(x,F0) = inf{‖x− z‖ |z ∈ F0}.

Moreover, all iteration points xk are on Fε1 since each new iteration point decreases
the value of the objective. In addition, the DC components f1 and f2 are locally
Lipschitz continuous, and let L1 > 0 and L2 > 0 be the Lipschitz constants of f1 and
f2 on Fε1 , respectively. This implies that

‖ξ1‖ ≤ L1 for each element on B1 and ‖ξ2‖ ≤ L2 for each element on B2 .(32)

From this we can deduce that the parameters t and tmin are bounded away from
zero since t ≥ tmin ≥ t̄min = rε1/(2L1 + 2L2) > 0. In addition, the parameter tmax is
bounded from above since

‖ξ1(xk)‖+ ‖ξ2,max‖ ≥ ‖ξ1(xk)‖+ ‖ξ2(xk)‖ ≥ ‖ξ1(xk)− ξ2(xk)‖ ≥ δ

whenever the condition in Step 0 does not hold, and thus

tmax ≤ t̄max = Rrε1/2δ <∞.(33)

5.4. Convergence. In this section, we prove the convergence of the DBDC
method. We especially show that the method terminates after a finite number of
steps and the solution obtained is approximate Clarke stationary.

In Theorem 4.11, we have already proved the finite termination of Algorithm 1,
and this result holds under Assumptions A1 and A2 during the execution of the
DBDC. Next, we show that Algorithm 3 stops after a finite number of iterations.
After that, we are ready to present the convergence result for DBDC Algorithm 2.

We begin by stating the following auxiliary lemma.

Lemma 5.7. If condition (30) at Step 4 of Algorithm 3 is not satisfied, then

ξT1 dt − α1 > m2∆1(dt) + (m2 − 1)∆2(dt),

where y = xk + dt, ξ1 ∈ ∂f1(y) and α1 = f1(xk)− f1(y) + ξT1 dt.

Proof. The proof is similar to the proof of Lemma 3 in [17].

Now we prove the termination for Algorithm 3. The proof follows the guidelines
of [17].

Theorem 5.8. Let Assumption A2 be valid. For any δ ∈ (0, 1), Algorithm 3
cannot pass infinitely many times through the sequence of Steps from 4 to 6.

Proof. Assume the contrary, that is, the sequence of Steps from 4 to 6 is executed
infinitely many times, and index by i ∈ I all the quantities referred to the ith passage.
This means that Step 3 is never executed since it would stop the current main iteration

and, therefore, for each i ∈ I we have ‖d(i)t ‖ ≥ δ.
First, we notice that Step 5(a) cannot occur infinitely many times. Otherwise, the

parameter t would be decreased infinitely many times and converge to tmin since tmin is
both bounded and monotonically decreasing. Moreover, tmin is selected to be smaller
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than the threshold ε1/2(‖ξ1(xk)‖ + ‖ξ(i)2,max‖) implying that after a finite number of
steps t also falls below this threshold. However, when this happens Step 5(a) cannot
be executed anymore since ‖d(i)t ‖ ≤ ε1 according to Lemma 5.2. Therefore, there
exists an index ı̂ ∈ I after which Step 5(b) is always entered.

Second, we can guarantee that the sequence {d(i)t }i∈I is bounded in norm when
we combine Lemma 5.2, property (32) and the rule t ∈ [tmin, tmax]. Therefore, there

exists a subsequence {d(i)t }i∈I′⊆I converging to a limit d̂. From Remark 5.6 we also
know that all the points yj and xk belong to the set Fε1 . Moreover, Assumption A2
implies that Fε1 is compact and, thus, there exists K > 0 such that ‖xk − yj‖ ≤ K
for all yj on B1. This together with (32) yields

|α1,j | ≤ |f1(xk)− f1(yj)|+ ‖ξ1,j‖‖xk − yj‖ ≤ L1‖xk − yj‖+ L1K ≤ 2L1K

for all points yj on B1 since we always have ‖ξ1,j‖ ≤ L1. Similar results can be shown
for yj on B2 and, thus, all subgradients and linearization errors are bounded.

From the boundedness results we know that the corresponding subsequences

{∆1(d
(i)
t )}i∈I′⊆I and {∆2(d

(i)
t )}i∈I′⊆I

are also bounded. Therefore, they both admit a convergent subsequence for i ∈ I ′′ ⊆
I ′, and the limits are denoted by ∆̂1 and ∆̂2, respectively. As a consequence of
property (iii) of Lemma 5.1, we have

∆1

(
d
(i)
t

)
+ ∆2

(
d
(i)
t

)
≤ − 1

2ti

∥∥d(i)t ∥∥2 ≤ − δ22ti
< 0 for all i ∈ I(34)

since ‖d(i)t ‖ ≥ δ, and thus

∆̂1 + ∆̂2 ≤ −
δ2

2t̂
< 0,

where t̂ = limi→∞ ti and t̂ > 0. Remark 5.6 guarantees that t̂ is strictly positive since
the sequence {ti} is bounded from below with a positive lower bound. Moreover, the
sequence ti is nonincreasing and, therefore, a strictly positive limit t̂ exists.

To complete the proof, let r and s be two successive indices in I ′′ and

α1,r = f1(xk)− f1(xk + d
(r)
t ) + (ξ1,r)

Td
(r)
t with ξ1,r ∈ ∂f1(xk + d

(r)
t ).

From Lemma 5.7 and the definition of ∆1(d) we obtain

(ξ1,r)
Td

(r)
t − α1,r > m2∆1

(
d
(r)
t

)
+ (m2 − 1)∆2

(
d
(r)
t

)
(35)

and

∆1

(
d
(s)
t

)
≥ (ξ1,r)

Td
(s)
t − α1,r.(36)

Finally, combining (35) and (36) gives

∆1

(
d
(s)
t

)
−m2∆1

(
d
(r)
t

)
+ (1−m2)∆2

(
d
(r)
t

)
> (ξ1,r)

T
(
d
(s)
t − d(r)t

)
and passing to the limit yields

(1−m2)
(

∆̂1 + ∆̂2

)
≥ 0.

This is a contradiction since m2 ∈ (0, 1) and, thus, ∆̂1 + ∆̂2 < 0 cannot hold.
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Finally, we are ready to show the finite termination for the bundle algorithm
DBDC. The proof of this result reveals similar trends to Theorem 6 in [17]. In
addition, the DBDC is globally convergent if Assumption A2 holds for any starting
point x0 ∈ Rn. This means that the convergence result does not depend on x0 and the
method always generates an approximate Clarke stationary point as a final solution
x∗ regardless of the starting point used.

Theorem 5.9. Let Assumptions A1 and A2 be valid. For any δ ∈ (0, 1) and
ε > 0, the execution of Algorithm 2 stops after a finite number of main iterations at
a point x∗ satisfying the approximate Clarke stationarity condition

‖ξ∗‖ ≤ δ with ξ∗ ∈ ∂fGε (x∗).

Proof. The termination of the DBDC can happen only if the stopping condition
tested at Step 2 of Algorithm 1 is satisfied proving the approximate Clarke stationarity.
Next, we prove that if the stopping condition is never reached, then the objective
function f is not bounded from below. This leads to a contradiction since f is bounded
from below as a consequence of Lipschitz continuity and Assumption A2.

We start by supposing that the main iteration is entered infinitely many times
and index by k ∈ K all the quantities obtained from the kth passage. First of all,
Theorems 4.11 and 5.8 guarantee that in the main iteration we always find a new
iteration point xk+1 after a finite number of steps. This point is obtained either from
Step 3 or Step 4. If Step 3 provides us with xk+1, then from Algorithm 1 we know
that the direction of a sufficient descent has been found and the step size β∗ ≥ ε.
Thus,

f(xk)− f(xk−1) ≤ −m1εδ < 0.

In the other case, the stopping condition (30) is fulfilled providing

f(xk)− f(xk−1) ≤ m2

(
∆1

(
d
(k)
t

)
+ ∆2

(
d
(k)
t

) )
.

From (34) and (33), we notice that

f(xk)− f(xk−1) ≤ −m2δ
2

2t̄max
< 0.

Therefore, after each round of Algorithm 2 we can guarantee that

f(xk)− f(xk−1) ≤ −σ < 0 for all k ∈ K,

where σ = min{m1εδ,m2δ
2/(2t̄max)} > 0 and summing up the first k of the above

inequalities gives

f(xk)− f(x0) ≤ −kσ.

Letting k →∞ we have

lim
k→∞

f(xk)− f(x0) ≤ −∞,

which means that f is not bounded below. This is a contradiction.
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6. Numerical results. To verify the practical efficiency of the DBDC method,
we have applied it to some academic test problems with nonsmooth DC objectives.
In order to compare the results, we use two proximal bundle algorithms PBDC [17]
and MPBNGC [28] for nonsmooth optimization. The PBDC is the predecessor of the
DBDC and it also utilizes the DC decomposition of the objective. The MPBNGC is
designed for a general nonsmooth nonconvex problem and does not exploit any specific
structure of the objective. This method is also used very often as a benchmark in
tests. In [17], the PBDC is also compared to DCA [22, 24], the truncated codifferential
method [5], and two other bundle methods [10, 11]. Since the methods PBDC and
MPBNGC performed better than other methods in most of the cases, we include only
the PBDC and MPBNGC in our comparisons.

The algorithm DBDC requires an unbounded storage for the bundle B1, but this
is not possible in practice. Thus, the implementation of the DBDC slightly differs
from Algorithm 2 since we use a subgradient aggregation strategy from [17] into the
bundle B1. This allows us to store some information from the previous iterations,
even though the size of B1 is bounded.

The execution of Algorithm 1 is continued if in Step 4 the step size satisfies β∗ < ε.
However, in practice, it might lead to numerical difficulties since the parameter ε is
typically selected to be very small. Therefore, in the implementation of the DBDC,
the execution of Algorithm 1 is stopped with x∗ = x as the final solution if β∗ < ε.

DBDC is implemented in double precision Fortran 95 and it uses the subroutine
PLQDF1 [25] to solve the quadratic programming problems (15) and (27). The code of
PBDC is also implemented in double precision Fortran 95 and the implementation of
MPBNGC is done with double precision Fortran 77. Both PBDC and MPBNGC also use the
subroutine PLQDF1 [25] to solve the quadratic direction-finding problems. All codes
are compiled using f95, the Fortran 95 compiler, and tests are performed under the
Linux Ubuntu system. Fortran source codes of all methods can be downloaded from
http://napsu.karmitsa.fi/nsosoftware/.

The codes have been tested on a set of 16 academic test problems. Problems
1–10 are from [17] whereas Problems 11–16 are introduced in [18]. In addition, each
problem is nonconvex and its DC decomposition is given. The input parameters of
DBDC have been chosen as follows: the stopping tolerance

δ =

{
10−5 if n ≤ 200,

10−4 if n > 200;

the proximity measure

ε =

{
10−6 if n ≤ 50,

10−5 if n > 50;

the enlargement parameter ε1 = 0.00005; the decrease parameters c = 0.1 and

r =


0.75 if n < 10,

the first two decimals of n/(n+ 5) if 10 ≤ n < 300,

0.99 if n ≥ 300;

the increase parameter R = 107; and the descent parameters m1 = 0.01 and m2 = 0.2.
The size of B1 is set to min{n+ 5, 1000} and the size of B2 is 3. The maximum size of
the set Ck in Algorithm 1 is restricted to 2n. In PBDC, we use the default settings [17].
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Furthermore, in MPBNGC we use mostly the default values [27], but the maximum size
of the bundle is selected to be min{n+ 3, 1000} and the final accuracy is set to 10−10

to get approximately the same accuracy in solutions.
Before presenting the numerical results we consider a simple example showing the

most fundamental difference between the methods DBDC and PBDC. We will see
how the criticality condition used in the PBDC can cause serious difficulties which,
however, can be avoided in the DBDC when the escape procedure is utilized.

Example 6.1. Consider the function f presented in Example 3.2. If x0 ∈ R is se-
lected from A = {x ∈ R |x < −2 or x > 1}, then the subgradients of DC components
are ξ1(x0) = 2x0 and ξ2(x0) = x0. Thus, B01 = {(ξ1(x0), 0)} and B02 = {(ξ2(x0), 0)}
in both DBDC and PBDC. In addition, both solvers use the same direction-finding
problem (25), which during the first iteration is

min
d∈R

{
P 0(d) = ξ1(x0)d− ξ2(x0)d+

1

2t
‖d‖2 = x0d+

1

2t
‖d‖2

}
.

The solution to this problem is dt = −tx0, and with the selection t = 1 we obtain a
new point y = x0 + dt = x0 − x0 = 0. Moreover, in both solvers we use the same
descent test (30) and, if m2 ∈ (0, 1/2), then the objective function decreases enough,
that is,

f(y)− f(x0) = −0.5x20 ≤ −m2x
2
0 = m2(∆1(dt) + ∆2(dt)).

Thus, we obtain a new iteration point x1 = 0. However, when we continue the
execution of the algorithms it is possible that the new subgradients of f1 and f2 at
x1 are ξ1(x1) = ξ2(x1) = 0. In PBDC, this leads to the fulfillment of criticality and
the algorithm is terminated with the final solution x∗ = 0. As we have already seen,
this solution gives nothing interesting for f . In the DBDC, the selection ξ1(x1) =
ξ2(x1) = 0 leads to Algorithm 1, where we first calculate, utilizing DC components,
a subgradient ξ for f using either a direction d1 = 1 or d1 = −1. Regardless of this
selection, we obtain ξ = 1 and d2 = −1. In addition, condition (17) is satisfied since

f ′(x1; d2) = f ′(0;−1) = −1 ≤ −m1 = −m1‖ξ‖

and m1 ∈ (0, 1). This proves that d2 is a descent direction yielding a better iteration
point. Thus, the DBDC method bypasses x1 and does not stop at the problematic
critical point.

The results of our numerical experiments are presented in Tables 1 and 2 where
we use the following notation:

• “Prob.” is the number of the problem,
• n is the number of variables,
• nf is the number of function evaluations for the objective function f ,
• nξ is the number of subgradient evaluations for the objective function f ,
• nξi is the number of subgradient evaluations for the DC component fi,
• “Time” is the CPU time in seconds,
• f is the best value of the objective function obtained by the algorithm.

In addition, we have nf = nξ in MPBNGC. Moreover, in DBDC we separately give the
function and subgradient evaluations used in Algorithm 1 guaranteeing approximate
Clarke stationarity and for this algorithm nξ1 = nξ2 . In the solvers DBDC and PBDC,
we report the subgradient evaluations separately for DC components. Therefore, to
obtain comparable results with MPBNGC we calculate combined values nξ1 + nξ2 and
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use them in the comparison, even though nξ1 + nξ2 overestimates the computational
effort when compared to nξ.

All the solvers tested are only local methods and, therefore, we are satisfied with
any local minimizer. Nevertheless, from Tables 1 and 2 we first notice that we often
find the global minimizer. DBDC is the most successful solver to solve the problems
globally and it fails to find a global minimizer in only 5 cases out of 53. These five
cases seem to be quite difficult ones since the other solvers also mostly find a local
minimizer among them. In addition, both PBDC and MPBNGC are quite reliable for
finding global minimizers: PBDC provides a local solution in only 9 cases and MPBNGC

in 10 cases out of 53. However, Problem 12 seems to be extremely difficult for PBDC

whereas Problems 7–10 are challenging for MPBNGC.
The results in Tables 1 and 2 show that DBDC uses the least evaluations in Problems

12 and 14, and the difference with the other solvers is significant. In Problems 2, 4–6,
11, and 16, the solvers DBDC and PBDC need almost the same amount of evaluations,
and they are more efficient than MPBNGC. However, in Problems 4–6 DBDC often needs
slightly more computational effort due to a stronger stopping condition verification
procedure but this only affects CPU time in Problem 4 (n = 250 and n = 500). In
the rest of the tests (Problems 1, 7–10, 13, and 15), MPBNGC uses the least evaluations,
while the difference between DBDC and PBDC is rather small except for in Problems 13
and 15. Moreover, in most of Problems 7–10 MPBNGC converged to a local minimizer
making it hard to say if MPBNGC is really the most efficient solver in those cases.

In terms of CPU time, none of the solvers stands out from the others since for
each solver we can detect both easy and hard problems. For example, in Problems
1–11 and 16 all solvers are equally fast if we leave out of consideration Problem 4
(n = 250), where MPBNGC is faster than the other methods and Problem 4 (n = 500),
where PBDC is the fastest. Moreover, DBDC is fastest for Problem 14, whereas the CPU
times of PBDC and MPBNGC have completely different magnitudes when we increase
the dimension of this problem. However, MPBNGC outperforms the other solvers in
Problems 12 (n = 100) and 15 (n = 100).

All in all, the numerical results confirm that DBDC is efficient in solving nonsmooth
DC minimization problems. Compared to PBDC the solver DBDC sometimes needs more
function and subgradient evaluations, but at the same time it guarantees approximate
Clarke stationarity, which is a stronger stopping condition than the criticality used in
PBDC. Thus, slightly more computational effort cannot be seen as a real disadvantage
for DBDC. In addition, in some problems DBDC is clearly more efficient than PBDC.
Moreover, DBDC has the best ability to find a global minimizer among the methods
tested.

7. Conclusions. In this paper, we have presented a new proximal double bundle
algorithm (DBDC) for unconstrained nonsmooth DC optimization explicitly utilizing
the DC decomposition of the objective. The novelty of the DBDC is a new escape
procedure guaranteeing approximate Clarke stationarity using only the information
about the DC components of the objective. This way the DBDC method can ex-
ploit the DC structure through the algorithm and avoid the problematic features of
criticality, which is the stopping condition typically used in DC optimization algo-
rithms. In addition, the finite termination of the DBDC method is proved under mild
assumptions requiring that the subdifferentials of DC components are polytopes.

The numerical results reported confirm that the DBDC is efficient in solving
nonsmooth DC programming problems. Moreover, although the DBDC method is
only a local solution method, it nearly always found the global minimizers of the
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tested problems. Therefore, we can conclude that the DBDC is a good alternative for
existing nonconvex bundle methods when the DC representation of the objective can
be formulated.
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