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BOUNDS FOR ENTRIES OF γ-VECTORS OF FLAG HOMOLOGY SPHERES

JEAN-PHILIPPE LABBÉ1 AND ERAN NEVO2

Abstract. We present some enumerative and structural results for flag homology spheres. For
a flag homology sphere ∆, we show that its γ-vector γ∆ = (1, γ1, γ2, . . .) satisfies:

γj = 0, for all j > γ1, γ2 ≤
(γ1

2

)

, γγ1 ∈ {0, 1}, and γγ1−1 ∈ {0, 1, 2, γ1},

supporting a conjecture of Nevo and Petersen. Further we characterize the possible structures
for ∆ in extremal cases. As an application, the techniques used produce infinitely many f -
vectors of flag balanced simplicial complexes that are not γ-vectors of flag homology spheres (of
any dimension); these are the first examples of this kind.

In addition, we prove a flag analog of Perles’ 1970 theorem on k-skeleta of polytopes with
“few” vertices, specifically: the number of combinatorial types of k-skeleta of flag homology
spheres with γ1 ≤ b, of any given dimension, is bounded independently of the dimension.

1. Introduction

Facial enumeration of polytopes and simplicial spheres are of great interest since antiquity, and
research on this topic revealed fascinating mathematics, notably in the celebrated g-theorem which
characterizes the face numbers of simplicial d-polytopes [BL80, Sta80, Sta96].

In relation to the Charney–Davis conjecture, a subfamily of great importance is that of flag
simplicial polytopes or more generally flag homology spheres. These objects have the property
that their faces are exactly the cliques of their graphs, equivalently all their minimal non-faces have
two elements. In the flag case the right analog of the g-vector (from the simplicial case) seems
to be Gal’s γ-vector. Gal conjectured that flag homology spheres have nonnegative γ-vectors
[Gal05] which, by the same token, would validate the Charney–Davis conjecture. Later Nevo and
Petersen strengthened Gal’s conjecture by proposing the following combinatorial interpretation of
the γ-vector.

Conjecture A. [NP11] Let ∆ be a flag homology sphere. The γ-vector of ∆ is the f -vector of a
flag simplicial complex.

Partial results toward this conjecture include [Gal05, NP11, NPT11, Ais12, Vol10, MN12, Zhe15,
AH16]. The recent upper bound results of Adamaszek–Hladký and of Zheng [AH16, Zhe15] on
the entries of the γ-vector require γ1 >> dim(∆), or dim(∆) ∈ {3, 5} respectively. Conjecture A
implies the following upper and lower bounds for the entries γi of the γ-vector in terms of γ1 alone.

Conjecture B. Let ∆ be a flag homology sphere with γ1 = ℓ. For i ≥ 2, the entries of the γ-vector
of ∆ satisfy

0 ≤ γi ≤

(
ℓ

i

)
.

Our first main result is a proof of parts of this conjecture.

Theorem C. Let ∆ be a flag homology sphere with γ1 = ℓ. The entries of the γ-vector of ∆
satisfy the following properties:

i) γ2 ≤
(
ℓ
2

)
,

ii) γj = 0 for all j > ℓ,
iii) γℓ ∈ {0, 1},
iv) γℓ−1 ∈ {0, 1, 2, ℓ}.

1With the support of a FQRNT post-doctoral fellowship and a post-doctoral ISF-805/11 grant.
2Partially supported by Israel Science Foundation grants ISF-805/11 and ISF-1695/15.
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Further, we characterize the structure of extremal cases in the above theorem, omitted in the
introduction for brevity. It is important to notice that the property in Theorem C ii) contrasts
with g-vectors of simplicial polytopes: fixing any b ≥ 1 there exists, for any integer i > 1, a
polytope Pi with g1(Pi) ≤ b and gi(Pi) > 0.

A basic ingredient in the proof of Theorem C ii) to C iv) is to show that if the dimension of ∆
is large enough compared with γ1 then ∆ is a suspension over a lower dimensional flag homology
sphere. Similarly to Perles’ [Kal94, Theorem 1.1], we obtain the following analog as a corollary of
the suspension result.

Theorem D. Let Fb,k(d) denote the number of combinatorial types of k-skeleta of flag homology
(d− 1)-spheres with at most 2d+ b vertices. Given b and k, the set {Fb,k(i)}i≥1 is bounded, hence
finite.

Does the converse of Conjecture A hold? Namely, is it true that for any flag simplicial complex Γ,
there exists a flag homology sphere ∆, of any dimension, such that γ∆ equals the f -vector of Γ?
We provide the first counterexamples.

Theorem E. Let k ≥ 3 and Γk be the flag balanced simplicial complex consisting of the disjoint
union of a (k − 1)-simplex and an isolated vertex. The f -vector of Γk is not the γ-vector of any
flag homology sphere of any dimension.

Currently, a guess characterization of γ-vectors of flag homology spheres or flag simplicial
polytopes seems to lack. In relation with the g-conjecture for homology spheres this poses the
following problem.

Problem 1. Does there exist a vector which is the γ-vector of a flag homology sphere but not the
γ-vector of a flag simplicial polytope?

Answering “No” to this question but “Yes” for the corresponding problem on f -vectors may be
possible, as in Problem 1 we do not insist that the homology sphere and the polytope boundary
have the same dimension. Given a flag homology sphere, the range of relevant dimensions for the
flag polytopes is bounded though, due to the suspension result mentioned above; see Lemmas 2.3 i)
and 4.1. We remark that in the non-simplicial case, and for the finer flag f -vector invariant,
Brinkmann and Ziegler recently found a flag f -vector of a polyhedral 3-sphere which is not the
flag f -vector of any 4-polytope [BZ16].

Outline. In Section 2 we set notation and give background facts on flag homology spheres.
In Section 3 we prove the upper bound on γ2 and determine the extremal cases (Theorems C i)).
In Section 4 we prove the upper bound on γγ1

, determine the extremal cases and prove a flag
analog of Perles’ theorem (Theorems C ii), C iii) and D). In Section 5 we prove the upper bound
on γγ1−1, determine the extremal cases, and use it to give examples of f -vectors of flag complexes
which are not the γ-vector of any flag homology sphere (Theorems C iv) and E).

Acknowledgements. The authors are thankful to the referees and Marc Masdeu for helpful
suggestions and corrections to the manuscript.

2. Background and definitions

2.1. Simplicial complexes. Let n ∈ {1, 2, . . .}, a simplicial complex ∆ is a collection of subsets,
called faces, of [n] := {1, . . . , n} closed under containment. A face f of cardinality |f | = k is said
to have dimension k − 1. Faces of dimension 0 (respectively of dimension 1) are called vertices
(resp. edges). We denote the set of vertices of ∆ as V(∆) and the set of edges as E(∆). The
degree deg(v) of a vertex v of ∆ is the number of edges of ∆ containing v.

The empty complex is the simplicial complex containing only the empty set as a face. A
subcomplex ∆′ ⊆ ∆ is called induced if for each face f ∈ ∆ such that f ⊆ V(∆′) then f ∈ ∆′.
The inclusion maximal faces are called facets. For a finite set f we denote by < f > the simplicial
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complex with the unique facet f . Given a face f ∈ ∆, the star, deletion, and link of f in ∆ are
the following subcomplexes of ∆, where ⊔ denotes the disjoint union:

st∆(f) := {f ′ ∈ ∆ : f ∪ f ′ ∈ ∆},

del∆(f) := {f ′ ∈ ∆ : f 6⊆ f ′},

lk∆(f) := {f ′ ∈ ∆ : f ⊔ f ′ ∈ ∆}.

It is important to notice that the deletion of a face f does not remove the faces properly contained
in f . We extend the definition of deletion to any subcomplex Γ of ∆, by deleting all vertices of Γ,
namely del∆(Γ) :=

⋂
v∈V(Γ) del∆(v) = {f ∈ ∆ : f ⊆ [n] \V(Γ)}.

A simplicial complex ∆ is pure if all facets of ∆ have the same cardinality d, in which case we
say that ∆ has dimension d− 1. We say that a pure (d− 1)-dimensional simplicial complex ∆ is
a pseudomanifold if every face of size (d − 1) is contained in either 1 or 2 facets. To each face of
dimension k− 1 of a simplicial complex, we can associate a geometric simplex of dimension k− 1.
The geometric realization ||∆|| of ∆ is the unique topological space, up to homeomorphism, ob-
tained by gluing the geometric simplices corresponding to faces of ∆ along their intersections. If
the geometric realization ||∆|| is homeomorphic to a sphere, we say that ∆ is a simplicial sphere.
Moreover, given a pure (d− 1)-dimensional simplicial complex ∆ and a field K, we say that ∆ is
a homology sphere (over K) if for all faces f ∈ ∆ we have

H̃i(lk∆(f),K) =

{
0 if i < d− 1− |f |,

K if i = d− 1− |f |,

where H̃∗(Γ,K) denotes the reduced singular homology of ||Γ|| with coefficients in K. A pure
(d−1)-dimensional simplicial complex B is a homology ball over the field K if (i) for all faces f ∈ ∆
the link lk∆(f) is either a (d − 1 − |f |)-dimensional homology sphere over K or is homologically
K-acyclic, and (ii) the faces of B with acyclic link form a subcomplex which is a (d−2)-dimensional
homology sphere over K. Given a homology sphere ∆, an induced codimension-1 homology sphere
Γ ⊆ ∆ is called an equator of ∆. By Jordan–Alexander theorem, deleting an equator Γ from a flag
homology sphere ∆, we obtain two disjoint acyclic complexes by del∆(Γ)

+ and del∆(Γ)
−. Then,

deleting each part from ∆ respectively, we get two homology balls ∆+
Γ and ∆−

Γ , called hemispheres,

intersecting in Γ, and ∆ decomposes as ∆ = ∆+
Γ ∪Γ ∆−

Γ .
Here are some essential operations on simplicial spheres. The join of two simplicial complexes ∆1

and ∆2 is the simplicial complex

∆1 ∗∆2 := {f1 ⊔ f2 : f1 ∈ ∆1, f2 ∈ ∆2}.

We denote the k-fold join of a fixed simplicial complex ∆ by ∗k ∆, i.e. ∗0 ∆ is the empty complex
and ∗1 ∆ = ∆. The suspension Σ∆ of a simplicial complex ∆ is the join of ∆ with a 0-dimensional
sphere S0, i.e. the simplicial complex with two disjoint vertices,

Σ∆ := S0 ∗∆.

We denote the k-fold suspension Σ · · ·Σ︸ ︷︷ ︸
k times

∆ by Σk ∆. The k-fold suspension of the empty complex

is the (k− 1)-dimensional simplicial complex isomorphic to the boundary complex of the so-called
cross-polytope of dimension k, also called octahedral sphere. Given an edge e = {a, b} of a simplicial
complex ∆, define the function κe : [n] → [n] sending i 7→ i if i /∈ {a, b} and i 7→ a otherwise. The
contraction of e in ∆ is the simplicial complex

∆↓e := {κe(f) : f ∈ ∆}.

A non-face of a simplicial complex ∆ is a set of vertices of ∆ which is not a face of ∆. A
missing face (also called minimal non-face) of ∆ is a non-face g such that each proper subset of g
is a face of ∆. In this article, we always assume that all vertices are faces, that is, missing faces of
simplicial complexes have dimension at least 1. When all missing faces of ∆ have dimension 1, the
simplicial complex ∆ is called flag. We denote by Ck the 1-dimensional simplicial sphere with k
vertices, i.e. the k-cycle graph.

The following lemma gathers known facts on flag homology spheres.



4 J.-P. LABBÉ AND E. NEVO

Lemma 2.1. Let ∆ be a (d − 1)-dimensional flag homology sphere, f ∈ ∆, e ∈ E(∆), and Γ be
an equator of ∆.

i) The link lk∆(f) is a flag induced homology sphere.
ii) The contraction ∆↓e is a flag homology sphere if and only if e is not contained in an

induced 4-cycle.
iii) If d ≥ 3 and the link of every vertex of ∆ is an octahedral sphere, then ∆ is an octahedral

sphere.
iv) The deletion del∆(Γ) is homologically equivalent to a 0-dimensional sphere, i.e.

H̃∗(del∆(Γ),K) ∼= H̃∗(S
0,K),

separated in ∆ by Γ.

Proof. i) Let L := lk∆(f) and g ∈ ∆ such that g ⊆ V(L). Since every vertex of g joined with f is
a face of ∆ then the 1-skeleton of < g > ∗ < f > is in ∆. As the 1-skeleton of < g > ∗ < f > is a
clique, g ∪ f is a face of ∆ by flagness. Therefore, g is also a face of L, thus L is induced and its
flagness follows.

ii) The “only if” direction is trivial. For the other direction, assume e is not contained in any
induced 4-cycle. Nevo and Novinsky proved that for any homology sphere ∆, its edge contraction
is again a homology sphere if the link of the contracted edge e is the intersection of the links of
its two vertices [NN11, Proposition 2.3]. Since this is true for flag complexes, ∆↓e is a homology
sphere. Finally, the fact that flagness is preserved was proved by Lutz and Nevo, in the proof of
[LN16, Corollary 6.2].

iii) See [NP11, Lemma 5.3] for a proof.
iv) Since ∆ is a flag pseudomanifold without boundary, each facet of Γ is contained in exactly

two facets of ∆, and neither of them have all their vertices in Γ. Hence del∆(Γ) contains at least
two vertices, which are not connected by an edge since ∆ is flag and Γ is an equator of ∆. By
Alexander duality on ∆ and Γ, the result follows. �

For general homology spheres, given a vertex v of a homology sphere ∆, the vertex split of v
in ∆ along an equator J of lk∆(v) is the simplicial complex

∆v∨J := del∆(v) ∪
(
< {v+, v−} > ∗J

)
∪
(
< {v+} > ∗ lk∆(v)

+
J

)
∪
(
< {v−} > ∗ lk∆(v)

−
J

)
,

where v+, v− are distinct vertices not in ∆. A special case of vertex split is when the equator J
is the link of an edge e containing v, in which case it is the stellar subdivision ∆↑e of that edge.

Note that for an edge uv = e ∈ ∆, we have (∆↑e)↓v
+v−

= ∆.

2.2. f- and h-vectors. We introduce here basic notions on facial enumeration of simplicial com-
plexes, see [Sta96] for more details.

Given a pure simplicial complex ∆ of dimension d− 1, the f -vector (f0, f1, . . . , fd) records the
number fi of faces of cardinality i, for 0 ≤ i ≤ d, where f0 = 1. One may inscribe the f -vector in
a polynomial

f∆(z) :=
d∑

i=0

fiz
i.

The shift z → z − 1 of the reciprocal polynomial of f∆(z) is called the h-vector of ∆:

h∆(z) := (z − 1)df∆((z − 1)−1) =

d∑

i=0

hiz
i,

whose coefficients are the linear combinations

hk =

k∑

i=0

(−1)k−i

(
d− i

d− k

)
fi,

for 0 ≤ k ≤ d.
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When ∆ is a homology sphere, the generalized Dehn-Sommerville relations [Kle64] imply that
the h-polynomial is self-reciprocal, that is

h∆(z) = zdh∆(z−1),

and the sequence of coefficients of h∆(z) forms a palindromic sequence. Once the h-vector is
defined and seen to be palindromic, it is usual to rewrite the h-vector as the g-vector recording
the difference of the consecutive entries in the first half of the h-vector: g0 = 1, gi = hi − hi−1 for
1 ≤ i ≤ ⌊d/2⌋. It turns out that expressing upper and lower bounds on the number of faces can be
expressed easily in terms of the entries of the g-vector and further other important combinatorial
and geometric properties are cast into the g-vector. See [Sta96, Zie95, MN13] for more details on
the extremal values of g and h-vectors.

2.3. γ-vector of flag homology spheres. In the particular case of flag homology spheres, an-
other vector is conjectured to play a similar role as the g-vector. Consider the h-polynomial of a
flag homology sphere ∆ of dimension d − 1. By the Dehn-Sommerville relations, we can express
h∆(z) in the basis

iג := zi(1 + z)d−2i,

for 0 ≤ i ≤ ⌊d
2⌋, and write it as

h∆(z) =

⌊ d

2
⌋∑

i=0

γ∆
i .iג

Gal’s γ-polynomial is then

γ∆(t) :=

⌊ d

2
⌋∑

i=0

γ∆
i ti.

Let us emphasize that we switched the variable from z to t; making it clear that a monomial ti

in the γ-vector gives a shifted binomial power zi(1 + z)d−2i in the polynomial ring Z[z]. When
the simplicial complex is clear from the context, we abuse language and simply write γi. Gal
conjectured that when ∆ is a flag homology sphere, the coefficients γi are nonnegative [Gal05,
Conjecture 2.1.7]. Lately, this conjecture attracted a lot of attention. It implies the Charney–Davis
conjectures [CD95]. For a recent survey concerning this topic, see [Pet15, Chapter 8-10].

The following basic lemma, proved by a direct computation, expresses the first entries of the
γ-vector in terms of the f -vector.

Lemma 2.2. Let ∆ be a (d− 1)-dimensional homology sphere with f1 vertices and f2 edges. The
entries of the γ-vector γ∆(t) satisfy

γ0 = 1, γ1 = f1 − 2d, γ2 = f2 − (2d− 3)f1 + 2d(d− 2).

Further,

α+ γ2 =
γ1(γ1 + 5)

2
+ d,

where α is the number of missing edges of ∆.

As a consequence, proving that γ2 is non-negative is equivalent to proving that α ≤ γ1(γ1+5)
2 +d.

Here are lemmas containing known facts on γ-vectors used later, see [Nev07, Section 5.2], [Ais12,
Lemma 2.3], [NP11, Section 5], [Vol10, Corollary 1].

Lemma 2.3. Let ∆ be a (d− 1)-dimensional flag homology sphere and ∆↓e be the contraction of
an edge e of ∆ not contained in an induced 4-cycle.

i) The γ-polynomials γ∆(t) and γΣ∆(t) are equal.
ii) The γ-polynomials of ∆ and ∆↓e satisfy

γ∆(t) = γ∆↓e

(t) + tγlk∆(e)(t).

Lemma 2.4 ([Gal05, Lemma 2.1.14],[Mes03]). Let ∆ be a (d − 1)-dimensional flag homology
sphere. The γ-vector of ∆ is γ∆(t) = 1 if and only if ∆ is an octahedral sphere.
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3. Antipode number, polar size and upper bound for γ2

3.1. Definitions. In this section, we formalize the notions of antipode number and polar size of
flag homology spheres and give some elementary properties related to their γ-vectors. This notion
was used previously, for instance in [NP11, Section 5].

Definition 3.1. Let ∆ be a flag homology sphere and v ∈ V(∆). An antipode of v is a vertex
w ∈ V(∆) such that {v, w} is a missing edge of ∆. The antipode number ι(v) is the number of
antipodes of v. The polar size π∆ of ∆ is the minimal antipode number π∆ := minv∈V(∆) ι(v)
among vertices of ∆.

The sum of the antipode numbers of a flag homology sphere divided by 2 is its number of
missing edges, i.e. (

f1
2

)
= f2 +

1

2

∑

v∈V(∆)

ι(v).

Therefore, studying flag homology spheres via their antipode numbers seems to be a natural way
to understand their facial enumeration. The following lemma gives information about the possible
polar sizes for flag homology spheres.

Lemma 3.2. Let ∆ be a (d− 1)-dimensional flag homology sphere on 2d+ ℓ vertices.

i) γ
lk∆(v)
1 = ℓ− ι(v) + 1, for all v ∈ V(∆),

ii) π∆ ∈ {1, . . . , ℓ+ 1},
iii) π∆ = 1 if and only if ∆ is a suspension of a (d− 2)-dimensional flag homology sphere,
iv) if d ≥ 3, then π∆ = ℓ+ 1 if and only if ℓ = 0, i.e., ∆ is an octahedral sphere.

Proof. i) The number of vertices in lk∆(v) is (2d+ℓ)−(ι(v)+1) and the dimension of the homology
sphere lk∆(v) is d− 2. By Lemma 2.2 we get the desired value.

ii) By Lemma 2.1 iv), π∆ ≥ 1. Besides, as the links of vertices of ∆ have to be flag homology
spheres of dimension d− 2 and need at least 2(d− 1) vertices, the polar size π∆ is bounded above
by ℓ+ 1.

iii) This is straightforward, using Alexander duality.
iv) If π∆ = ℓ+1, then the links of all vertices of ∆ are octahedral spheres by i) and Lemma 2.4.

Then by Lemma 2.1 iii), ∆ is an octahedral sphere, which implies that ℓ = 0. The reverse direction
is straightforward from the definitions. �

3.2. Polar size and γ-vectors. We state and give a short proof of a result generalized in Theo-
rem 3.7.

Lemma 3.3 ([NP11, Proposition 5.4]). Let ∆ be a (d − 1)-dimensional flag homology sphere. If
γ∆
1 = 1, then γ∆(t) = 1 + t and ∆ = Σd−2 ∗C5.

Proof. Assume that γ∆
1 = 1. The statement is relevant only when d > 1. If d = 2, then

1 = γ∆
1 = f∆

1 − 2d, and ∆ ∼= C5 and γ∆(t) = 1 + t. For d > 2, by Lemma 3.2 ii), π∆ ∈ {1, 2}. By
Lemma 3.2 iv), π∆ = 2 if and only if ∆ is an octahedral sphere which is impossible. Hence π∆ = 1
and by Lemma 2.3 i) and 3.2 iii), ∆ is the suspension of a lower dimensional flag homology sphere
with the same γ-vector and this finishes the proof by induction. �

Lemma 3.4. Let ∆ be a (d−1)-dimensional flag homology sphere on 2d+ℓ vertices and v ∈ V(∆)
such that ι(v) = 2. Then,

i) The two antipodes x and y of v form an edge not contained in an induced 4-cycle, and
ii) γ∆(t) = γL(t) + tγJ(t),

where L := lk∆(v) and J := lk∆({x, y}).

Proof. i) By Lemma 2.1 iv), the antipodes x and y have to be connected by an edge. Assume that
the edge {x, y} is contained in a 4-cycle (x, y, s, t), where s ∈ lk∆(y) and t ∈ lk∆(x). The link
J of the edge {x, y} in ∆ is an equator of L. By the Jordan–Alexander theorem, the homology
sphere L decomposes into two hemispheres intersecting in J , L = L+

J ∪J L−
J . Further, L

+
J and L−

J

are the only hemispheres contained in L with boundary J . On the other hand, the hemispheres
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dellk∆(y)(x) and dellk∆(x)(y) are different homology balls, both contained in L with boundary J ,

so w.l.o.g. the former is L+
J and the latter is L−

J ; thus s ∈ L+
J and t ∈ L−

J .
Because v is not connected to x nor to y, s and t have to be vertices in L and since links are

induced complexes by Lemma 2.1 i), the edge between s and t belongs to L. As J separates L+
J

from L−
J , one of s, t must belong to J . Thus, the 4-cycle (x, y, s, t) is not induced.

ii) By Lemma 2.1 ii), ∆↓e is a flag homology sphere and by Lemma 2.3 ii), where e = {x, y},
we get

γ∆(t) = γ∆↓e

(t) + tγJ(t)

Observe that ∆↓e ∼= ΣL, so by Lemma 2.3 i) the assertion follows. �

Theorem 3.5. Let ∆ be a (d− 1)-dimensional flag homology sphere with polar size π∆ > 1, and
v0 ∈ V(∆) with ι(v0) = π∆.

i) If lk∆(v0) ∼= ΣΓ, where Γ is a (d − 3)-dimensional flag homology sphere, then ∆ ∼=
Γ ∗Cπ∆+3. Further, π∆ − 1 divides the highest degree coefficient of γ∆(t).

ii) If d ≥ 4 and π∆ = γ∆
1 , then ∆ = C5 ∗Cπ∆+3 (and d = 4).

Proof. i) Let lk∆(v0) be the suspension of Γ over the two vertices u,w, and denote by {w1, . . . , wπ∆
}

the antipodes of v0. As {u,w} is not an edge of ∆ and u is connected to v0 and to all vertices
of Γ, u requires at least π∆ − 1 antipodes in {w1, . . . , wπ∆

}. However, u is contained in a facet
containing an antipode of v0, so w.l.o.g. uw1 is an edge of ∆. Further, the complex Γ = lk∆(uv0)
is an induced subcomplex of lk∆(u), thus, by Lemma 2.1 iv), lk∆(u) is the suspension of Γ by v0
and w1. The same argument can be applied sequentially with w1 to get lk∆(w1) = {u,w2} ∗Γ and
so on, to finally get that ∆ contains the (d − 1)-homology sphere Γ ∗(v0, u, w1, w2, . . . , wi, w), for
some i. Hence, by Alexander duality, i = π∆ and thus ∆ ∼= Γ ∗(v0, u, w1, . . . , wπ∆

, w) ∼= Γ ∗Cπ∆+3.
Then γ∆(t) = γΓ(t)γCπ∆+3(t) = γΓ(t)(1+(π∆−1)t), so π∆−1 divides the top coefficient of γ∆(t).

ii) Let L := lk∆(v0). By Lemma 3.2 i), γL
1 = γ∆

1 − π∆ + 1 = 1, consequently by Lemma 3.3
L = Σk ∗C5, for some k ≥ 0. Since d ≥ 4, k is at least 1, i.e. L is a suspension. By part i),
∆ = Σk−1 ∗C5 ∗Cγ∆

1 +3, and as π∆ > 1 we conclude k = 1. �

The following corollary extends Lemma 2.1 iii).

Corollary 3.6. Let d ≥ 3, ∆ be a (d − 1)-dimensional flag homology sphere, and Γ a simplicial
complex such that lk∆(v) ∼= ΣΓ for all v ∈ V (∆). If Γ is not an octahedral sphere, then there exist
integers ℓ ≥ 2 and k ≥ 5 such that d = 2ℓ, ∆ ∼= ∗ℓ Ck, and Γ ∼= ∗ℓ−1 Ck.

Proof. The complex ∆ has no suspension vertex; else every vertex would be a suspension vertex,
forcing ∆ be octahedral, and thus Γ be octahedral as well, giving a contradiction. Thus, π∆ > 1.

By Theorem 3.5 i), ∆ ∼= Γ ∗Cπ∆+3. Let k = π∆ + 3 ≥ 5. As all vertex links in ∆ are
isomorphic, Γ must factors as Γ ∼= Ck ∗Λ for some Λ. By repeating this argument, ∆ factors as
∆ ∼= ∗ℓ Ck for some ℓ ≥ 2. Thus d = 2ℓ and Γ ∼= ∗ℓ−1 Ck. �

3.3. Upper bound on γ2. The following theorem generalizes Lemma 3.3 of Nevo and Petersen,
which treated the case ℓ = 1.

Theorem 3.7. Let ℓ ≥ 0. If ∆ is a (d− 1)-dimensional flag homology sphere on 2d+ ℓ vertices,

then γ2 ≤
(
ℓ
2

)
. Furthermore, the equality γ2 =

(
ℓ
2

)
holds if and only if

∆ = Σm ∗ℓ C5,

for some m ≥ 0.

We present two lemmas, which may be of independent interest, to be used in the proof. Asser-
tion i) of Lemma 3.8 is known [Mes03, Gal05].

Lemma 3.8. Let S be a flag homology sphere.

i) If T1 ∈ S is a facet, then exists another facet T2 ∈ S disjoint from T1.
ii) If S is not a suspension, and s ∈ S is a vertex, then there exist two disjoint facets T1, T2 ∈ S

not containing s.
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Proof. Proceed by induction on the dimension t of S, where for t = 1 the claims are clear. Let
t > 1.

i) Let T1 be a facet of S and s′ ∈ T1 a vertex. By hypothesis, for T ′
1 := T1 − {s′} there exists

another facet T ′
2 of S′ := lkS(s

′) disjoint from T ′
1. By the Jordan–Alexander theorem there exists

a facet T2 ∈ S such that T2 = T ′
2 ⊔ {y} where y is in the connected component of S − S′ not

containing s′. This proves i).
ii) Let s ∈ S and s′ be an antipode of s. As S is not a suspension, there exists a facet T ′

2 of
S′ := lkS(s

′) such that {s}∪ T ′
2 is not a face of S. By i), there is a facet T ′

1 of S′ disjoint from T ′
2.

As in part i), there are disjoint facets T1 = T ′
1 ∪ {s′} and T2 = T ′

2 ∪ {y} where y is not s′, and by
the choice of T ′

2, y is not s. This proves ii). �

Lemma 3.9. Let ℓ ≥ 0. If ∆ is a (d − 1)-dimensional flag homology sphere on 2d + ℓ vertices

with π∆ ≥ 3, then γ2 <
(
ℓ
2

)
.

Proof. The proof is done by sharpening a naive upper bound.
From Lemma 2.2, we have

(*) γ2 = f2 − (2d− 3)f1 + 2d(d− 2).

Therefore γ∆
2 <

(
ℓ
2

)
if and only if

(**) f2 ≤

(
f1
2

)
− 3f1 + 5d− 1 =: C.

Let v0 ∈ ∆ such that ι(v0) = π∆ := a+1 and let L := lk∆(v0). Then γL
1 = ℓ−a and by induction,

γL
2 ≤

(
ℓ−a
2

)
.

Case 1) L is a suspension. Say L = ΣΓ. By Theorem 3.5, ∆ ∼= Γ ∗C3+π∆
. Then γ∆

2 =

a(ℓ− a) + γ2(Γ) ≤ a(ℓ− a) +
(
ℓ−a
2

)
. As a = π∆ − 1 ≥ 2, we conclude γ∆

2 <
(
ℓ
2

)
as desired.

Case 2) L is not a suspension. By (*),

fL
2 ≤

(
ℓ− a

2

)
+ (2d− 5)(2d+ ℓ− a− 2)− 2(d− 1)(d− 3) =: N1.

Let I := del∆(st∆(v0)) and decompose the set of edges E(∆) as

E(∆) = E(L) ⊔ {{v0, u} : u ∈ V(L)} ⊔ E(I) ⊔ {{u,w} ∈ ∆ : u ∈ V(L), w ∈ V(I)} .

From this decomposition, we get a naive upper bound for the number of edges in E(∆):

|E(∆)| ≤ N1 + (2d+ ℓ− a− 2) +

(
a+ 1

2

)
+ (a+ 1)(2d+ ℓ− a− 2) =: B.

Comparing this B with the right-hand side C of (**), a direct computation shows that B =
C + 2a + 1. To complete the proof, it suffices to improve the estimate on the cardinality of
E(L, I) := {{u,w} ∈ ∆ : u ∈ V(L), w ∈ V(I)} by showing

|E(L, I)| ≤ |V(L)||V(I)| − 2a− 1.

As |V(I)| > 1, clearly there exists a missing edge uw of ∆ with u ∈ L and w ∈ I. By Lemma 3.8,
there are 2 disjoint facets F1 and F2 in L neither of which contains u. Since ∆ is a pseudomanifold,
F1 (respectively F2) is contained in a unique facet involving a vertex uF1

(resp. uF2
, these vertices

may coincide) in I. For each x ∈ V(I) \ {uF1
}, there exists a missing edge between x and a vertex

of F1. The same argument can be applied to uF2
and F2 to save 2a edges, none of which contains

u, thus |E(L, I)| ≤ |V(L)||V(I)| − 2a− 1, completing the proof. �

Proof of Theorem 3.7. We prove the theorem by induction on ℓ. By Lemma 2.4, if ℓ = 0, then ∆
is an octahedral sphere and γi = 0 for all i ≥ 2. By Lemma 3.3, ℓ = 1 if and only if ∆ is a repeated
suspension over a pentagon, and γ2 =

(
1
2

)
= 0 holds.

Hence assume ℓ > 1 and that the result holds for all ∆ with γ∆
1 < ℓ. By Lemma 2.3 i), we can

remove pairs of suspension vertices leaving the γ-vector unchanged. So, assume that ∆ has no
pair of suspension vertices, so that the polar size of ∆ satisfies π∆ ≥ 2. We distinguish two cases:
π∆ = 2 or π∆ > 2.
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Case π∆ = 2. Let v0 ∈ ∆ be such that ι(v0) = 2, and denote the antipodes of v0 by x and y. By
Lemma 2.1 iv) the edge e := {x, y} exists. Let J := lk∆(e) and L := lk∆(v0). By Lemma 3.4 ii),
we get

γ∆(t) = γL(t) + tγJ(t).

By Lemma 3.2 i), γL
1 = ℓ− 1. The dimension of J is 2 less than of ∆, and the number of vertices

decreases by at least 5 from ∆: we remove v0, the two antipodes of v0 and at least two vertices
from L. Therefore γJ

1 ≤ ℓ − 1, using Lemma 2.2. By the induction hypothesis on L, γL
2 ≤

(
ℓ−1
2

)
.

We thus get γ∆
2 = γL

2 + γJ
1 ≤

(
ℓ−1
2

)
+ (ℓ− 1) =

(
ℓ
2

)
.

We now prove the equality case. Assume that γ∆
2 =

(
ℓ
2

)
. By the above discussion, we have

γ∆↓e

2 =
(
ℓ−1
2

)
and γJ

1 = ℓ − 1. By induction on ℓ, ∆↓e ∼= Σk ∗ℓ−1 C5, with k ≥ 1, as ∆↓e is the

suspension ΣL. Since γL
1 = γJ

1 = ℓ− 1 and J is (d− 3)-dimensional, the number of vertices of J is
exactly 5 less than of ∆ and forces L = ΣJ . Whence ∆↓e ∼= Σ2J and consequently, J ∼= Σm∗ℓ−1C5,
for some m ≥ 0. By Theorem 3.5 i) applied on the link L = ΣJ , ∆ ∼= J ∗C5

∼= Σm ∗ℓ C5.

Case π∆ > 2. By Lemma 3.9 γ∆
2 <

(
ℓ
2

)
which implies the equality part as well since the polar

size of Σm ∗ℓ C5 is at most 2. �

4. Bounds on γ∆
γ1

and a flag analog of Perles’ theorem

In this section, we present an analog of Perles’ result on the boundedness of combinatorial types
of k-skeleta of polytopes with fixed toric g1. This theorem is studied in detail in the survey article
[Kal94].

Perles proved that for fixed k and b, if d is large enough then any d-polytope with toric g1 = b
has the same k-skeleton as some other d-polytope which is a pyramid over a lower dimensional
polytope. In the flag case, the role of a pyramid is played by suspension, as the following (stronger)
assertion shows.

Lemma 4.1. Let ∆ be a (d− 1)-dimensional flag homology sphere on 2d+ ℓ vertices, with ℓ ≥ 0.
If d ≥ 2ℓ+ 1, then ∆ ∼= ΣΓ, where Γ is a (d− 2)-dimensional flag homology sphere.

Proof. The proof is by induction on ℓ. If ℓ = 0, by Lemma 2.4, ∆ is an octahedral sphere and the
result follows. Assume that the result holds for all flag homology spheres such that γ1 < ℓ. We
prove the contraposition: if ∆ 6∼= ΣΓ, then d < 2ℓ + 1. The polar size of ∆ satisfies π∆ ≥ 2 by
Lemma 3.2 iii). Let v0 be a vertex of ∆ such that ι(v0) = π∆ and L := lk∆(v0). By Lemma 3.2 i),
γL
1 = ℓ− π∆ + 1 ≤ ℓ− 1.
If L is not a suspension, by the induction hypothesis d − 1 < 2γL

1 + 1, or equivalently d <
2(γL

1 + 1) ≤ 2ℓ. Otherwise L is a suspension, by Theorem 3.5 i), ∆ ∼= J ∗Cπ∆+3, where J is
a (d − 3)-dimensional flag homology sphere and γJ

1 ≤ ℓ − 1. Since ∆ is assumed not to be a
suspension, J is also not a suspension. By the induction hypothesis on J , d − 2 < 2γJ

1 + 1 or
equivalently d < 2γJ

1 + 3 = 2(γJ
1 + 1) + 1 ≤ 2ℓ+ 1. �

Theorem 4.2. Let ℓ ≥ 0 and d ≥ 2. If ∆ is a (d− 1)-dimensional flag homology sphere on 2d+ ℓ
vertices, then 0 ≤ γℓ ≤ 1, and γj = 0 for all j > ℓ. Further, γℓ = 1 if and only if ∆ ∼= Σm ∗ℓ C5,
for a certain m ≥ 0.

Proof. By Lemma 4.1, if d − 1 ≥ 2ℓ, we remove the suspension vertices until we get down to a
homology sphere of dimension at most 2ℓ − 1. Therefore, γj = 0 for all j > ℓ. The proof for γℓ
is by induction on ℓ. If ℓ = 0, by Lemma 2.4, ∆ is an octahedral sphere Σm ∗0 C5, γ0 = 1, and
γi = 0 for all i ≥ 1. So assume that the result holds for all flag homology spheres with γ1 < ℓ.

If the dimension of ∆ satisfies d− 1 ≤ 2ℓ− 2 = 2(ℓ− 1), by the above γℓ = 0. Additionally, the
sphere ∆ can not be isomorphic to Σm ∗ℓ C5 since the latter has dimension 2ℓ+m− 1 ≥ 2ℓ− 1 >
2ℓ − 2 ≥ d − 1. Otherwise, d = 2ℓ. As ∆ does not have suspension vertices, let v0 be a vertex
of ∆ with ι(v0) = π∆ ≥ 2 and denote L := lk∆(v0). The conditions of Lemma 4.1 apply on L, so
that L is a suspension ΣJ , where J is a (2ℓ−3)-dimensional flag homology sphere with γJ

1 ≤ ℓ−1.
By Theorem 3.5 i), ∆ ∼= J ∗Cπ∆+3. Therefore, γ∆(t) = (1 + (π∆ − 1)t)γJ(t) and γ∆

ℓ is equal to
(π∆ − 1)γJ

ℓ−1.
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If γJ
1 < ℓ − 1, then γJ

j = 0 for all j ≥ ℓ − 1 by the above. Therefore γ∆
ℓ = 0. Otherwise

γJ
1 = ℓ − 1 which implies that π∆ = 2 and ∆ ∼= J ∗C5. Thus γ∆

ℓ = γJ
ℓ−1. As γJ

1 = ℓ − 1, by

induction on ℓ, 0 ≤ γJ
ℓ−1 ≤ 1, and γJ

ℓ−1 = 1 if and only if J ∼= Σm ∗ℓ−1C5, for some m ≥ 0. Thus

∆ ∼= Σm ∗ℓ C5 completing the proof. �

Along similar lines to those of Lemma 3.9, the following corollary gives another relation between
polar sizes π∆ ≥ 3 and entries of the γ-vector.

Corollary 4.3. If ∆ is a (d−1)-dimensional flag homology sphere on 2d+ ℓ vertices with π∆ ≥ 3,
and d ≥ 3, then γ∆

j = 0, for all j ≥ ℓ− π∆ +2. Further, if d ≥ 2(ℓ− π∆ +2), then π∆ − 1 divides

the highest degree coefficient of γ∆(t).

Proof. Having π∆ ≥ 3 and d ≥ 3 implies that ℓ ≥ 3 by Lemma 3.2 ii) and 3.2 iv). If d <
2(ℓ− π∆ + 2) then γ∆

j = 0, for all j ≥ ℓ− π∆ + 2. Therefore, assume that d ≥ 2(ℓ− π∆ + 2). Let
v0 ∈ ∆ be such that ι(v0) = π∆, and denote L := lk∆(v0). The conditions of Lemma 4.1 apply
on L since π∆ ≥ 3, so that L = ΣJ , where J is a (d − 3)-dimensional flag homology sphere. By
Theorem 3.5 i), ∆ ∼= J ∗Cπ∆+3 and π∆ − 1 divides the highest degree coefficient of γ∆(t). Since
γJ
1 = ℓ− π∆ + 1, the degree of γJ(t) is at most ℓ− π∆ (it can not be ℓ− π∆ + 1 by Theorem 4.2

and π∆ ≥ 3), whence the degree of γ∆(t) is at most ℓ− π∆ + 1. �

The following result gives a “flag” analog to Perles’ theorem [Kal94, Theorem 1.1].

Theorem 4.4. Let d, k ≥ 1, b ≥ 0 and fb,k(d) be the number of combinatorial types of k-skeleta
of flag homology spheres of dimension d − 1 with γ1 = b. Given b and k, there exists a constant
cb,k such that fb,k(d) ≤ cb,k.

Proof. If d ≥ 2b + 1, following Lemma 4.1, by removing suspension vertices, every combinatorial
type of k-skeleta of flag homology spheres of dimension d − 1 corresponds to a unique one of
dimension 2b − 1. Indeed, the result is unique since suspension pairs are uniquely determined
by their two vertices and these (unordered) pairs are pairwise disjoint, thus the order of removal
of suspension vertices is not important. Therefore fb,k(d) ≤ fb,k(2b) := cb,k. Otherwise, d ≤ 2b
and for each combinatorial type of k-skeleta of flag homology spheres of dimension d− 1, one can
create a combinatorial type of k-skeleta of flag homology spheres of dimension 2b − 1 by taking
suspensions and each will be combinatorially different. Thus, fb,k(d) ≤ fb.k(2b) := cb,k. �

Theorem D follows seeing that Fb,k(d) =
∑b

i=0 fi,k(d) ≤ (b+ 1)cb,k.

5. Bounds on γγ1−1 and forbidden γ-vectors

We start with an observation on the structure of equators in the maximizers of γγ1
(= 1), which

plays a role in the characterization of extremal examples of maximizers of γγ1−1 provided γγ1
= 0,

given in the next theorem.

Lemma 5.1. Let m, k ≥ 0 such that m + k ≥ 1. All equators of Σm ∗k C5 are of the form
Σm−1 ∗k C5 or Σm+1 ∗k−1 C5, and every equator is the link of a vertex.

Proof. Let Γ be an equator of Z := Σm ∗k C5. For an induced subcomplex of Z not to be acyclic,
from each pair of suspension vertices either both or none are in Γ, and from each C5 either
all vertices, none, or exactly two non-adjacent ones are in Γ. Combined with the fact that the
dimension of Γ is 1 less than of Z, either Γ ∼= Σm−1 ∗k C5 or Γ ∼= Σm+1 ∗k−1 C5. In the former
case Γ is the link of a suspension vertex, and in the latter case Γ is the link of a vertex in some
induced C5. �

Theorem 5.2. Let ℓ ≥ 2. If ∆ is a (d− 1)-dimensional flag homology sphere on 2d+ ℓ vertices,
then γℓ−1 ∈ {0, 1, 2, ℓ}. Furthermore, if γℓ = 0, then 0 ≤ γℓ−1 ≤ 2 and the case γℓ−1 = 2 holds if
and only if

∆ = Σm ∗ℓ−2 C5 ∗ C6 =: Υ1,
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for some m ≥ 0, called “first type”, or ∆ is obtained by an edge-subdivision of

Σm ∗ℓ−1 C5,

at an edge adjacent to a suspension vertex, called “second type” and denoted by Υ2.

Proof. We prove the theorem by induction on ℓ. If γ1 = ℓ = 2, the first statement trivially holds.
It remains to prove that if γ2 = 0 then ∆ is the corresponding Υ1 or Υ2. The other direction
is obtained by direct computation. Essentially, the proof of [NP11, Proposition 5.5] gives this
structural result; however, we elaborate here for completeness. By Lemma 2.3 i), we can assume
that ∆ has no pair of suspension vertices, i.e., π∆ ≥ 2. By Lemma 3.2 ii), π∆ ∈ {2, 3}. Assume
π∆ = 2 = ℓ. If d ≥ 4, by Theorem 3.5 ii), ∆ ∼= C5 ∗C5, so that γ∆

2 = 1 which contradicts the
assumption. Therefore d ≤ 3. If d = 2, only the 6-gon has γ1 = 2 and this concludes this case.
So, assume d = 3 and let v0 ∈ ∆ be such that ι(v0) = 2, and denote the antipodes of v0 by x and
y. Let e := {x, y} ∈ ∆, J := lk∆(e) and L := lk∆(v0). By Lemma 3.4 ii), we get

γ∆(t) = γL(t) + tγJ(t).

By Lemma 3.2 i), γL
1 = 1 and by Lemma 3.3 (or directly) L is a pentagon. Furthermore, from

the above information (note that J consists of 2 nonadjacent vertices) one sees that the 8-vertices
flag 2-sphere ∆ is obtained by taking a suspension over L (v0 is in the suspension pair) followed
by a vertex split in the other suspension vertex, which in this case is in fact an edge-subdivision
with respect to an edge adjacent to the other suspension vertex (not v0), i.e., Υ2. Assume now
that π∆ = 3 = ℓ + 1. If d ≥ 3, by Lemma 3.2 iv), ∆ is an octahedral sphere, contradicting our
assumption. If d = 2, again only the 6-gon has γ1 = 2 and this concludes the base case.

Let ℓ > 2 and assume the result to be true for all homology spheres such that γ1 < ℓ and γ∆
ℓ = 0.

Indeed, by Theorem 4.2, if γ∆
ℓ = 1, then ∆ is isomorphic to Σm ∗ℓC5 for some m ≥ 0 and γ∆

ℓ−1 = ℓ
and the result follows. If d < 2ℓ−2 then γℓ−1 = 0 and the dimension is too small to be isomorphic
to the two candidates, finishing this case. Since we assume that ∆ does not contain suspension
vertices, by Lemma 4.1, d < 2ℓ+ 1. It remains to consider the case d ∈ {2ℓ− 2, 2ℓ− 1, 2ℓ}.

Assume that π∆ = 2, let v0 ∈ ∆ be such that ι(v0) = π∆, denote L := lk∆(v0), the two
antipodes of v0 by x and y and the link of {x, y} by J . We have γL

1 = ℓ − 1 and γJ
1 ≤ ℓ − 1 and

by Lemma 3.4 ii), γ∆
ℓ−1 = γL

ℓ−1 + γJ
ℓ−2. By Theorem 4.2, γL

ℓ−1 ∈ {0, 1}.

Case γL
ℓ−1 = 1. Then L ∼= Σm ∗ℓ−1C5, for some m ≥ 0 and by Lemma 5.1, J is isomorphic

to either Σm−1 ∗ℓ−1 C5 or Σm+1 ∗ℓ−2C5. Therefore, γ
∆
ℓ−1 ∈ {2, ℓ}. In the case γ∆

ℓ−1 = 2, it means

that J is isomorphic to Σm+1 ∗ℓ−2 C5. Further, ∆ is obtained by taking a suspension over L, by
vertices v0 and say v1, followed by a vertex splitting of v1 where the equator of the splitting is J .
By Lemma 5.1 this equator is the link of a vertex v2 of an induced C5 in L, which in turn makes J
the link of the edge e′ = v1v2 in ΣL. Hence, the vertex-split is the same as the edge-subdivision
at e′, making ∆ a sphere of the second type.

Case γL
ℓ−1 = 0. Then γ∆

ℓ−1 = γJ
ℓ−2 ≤ ℓ− 1 by the induction hypothesis on J . By Theorem 4.2

for ∆, γ∆
ℓ = 0. We now show that γ∆

ℓ−1 ∈ {0, 1, 2} in this case.

Subcase γJ
1 = ℓ−1. Also γL

1 = ℓ−1, and J is an equator in L, thus L = ΣJ , and by Theorem 3.5
∆ = J ∗C5. As γL

ℓ−1 = 0 also γJ
ℓ−1 = 0, and by the induction hypothesis γJ

ℓ−2 ∈ {0, 1, 2}, and

equals 2 if and only if J is of the first or second type. Consequently, γ∆
ℓ−1 ∈ {0, 1, 2}, and equals

2 if and only if ∆ is of the first or second type.
Subcase γJ

1 < ℓ− 1. By Theorem 4.2, 0 ≤ γJ
ℓ−2 ≤ 1, and thus 0 ≤ γ∆

ℓ−1 ≤ 1.
Finally assume that π∆ ≥ 3. Since d ≥ 3, Corollary 4.3 states that γj = 0, for all j ≥ ℓ − 1 ≥

ℓ−π∆ +2. The complex ∆ can not be either types since γΥ1(t) and γΥ2(t) have degree ℓ− 1. �

A closer look on the proof of Theorem 5.2 gives the following technical result, which restrict
the possibilities of having γℓ−1 = 1 in Theorem 5.2. It will be used to give infinitely many
counterexamples to the converse of Nevo–Petersen’s Conjecture A.

Theorem 5.3. Let k ≥ 3, qk(t) = (1 + t)k, and r(t) be a polynomial in Z[t] of degree at most
k− 2 with constant term 1 which is not divisible by (1 + t). The polynomial p(t) = qk(t) + tr(t) is
not the γ-polynomial of any flag homology sphere.
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Proof. Assume to the contrary, that it is the case. Let ∆ be a flag homology sphere such that
γ∆(t) = p(t) =

∑
i≥0 pit

i of smallest dimension d−1. As γ∆
1 =

(
k
1

)
+1 = k+1 and γ∆

k =
(
k
k

)
+0 = 1,

the dimension is bounded by 2k ≤ d < 2k + 3 by Lemma 4.1. Let v0 be a vertex of ∆ with
ι(v0) = π∆ and denote L := lk∆(v0). By the minimality of d, ι(v0) ≥ 2. The dimension of L is
d− 2 and γL

1 = k − ι(v0) + 2 ≤ k.
If π∆ = 2, as usual denote the antipodes of v0 by x and y, let e := {x, y} ∈ ∆ and J := lk∆(e),

and by Lemma 3.4 ii) conclude

γ∆(t) = γL(t) + tγJ(t).

By Lemma 3.2 i), γL
1 = k. By Theorem 4.2, γL

j = 0 for all j > k. Since pj = 0 for all j > k,

therefore γJ
j = 0 for all j > k − 1.

Knowing that pk = γ∆
k = 1 = γL

k + γJ
k−1 and that γL

1 = k, by Theorem 4.2, there are two

possibilities: either γL
k = 1 and γJ

k−1 = 0, or γL
k = 0 and γJ

k−1 = 1.

Case γL
k = 1. By Theorem 4.2, L ∼= Σm ∗k C5, for a certain m ≥ 0. Hence γL(t) = qk(t) and

γJ(t) = r(t). Since J is the link of an edge of ∆, it is an equator of L. By Lemma 5.1, J is either
Σm−1 ∗k C5 or Σm+1 ∗k−1 C5. Hence (1+ t)2 divides γJ(t), as k ≥ 3. Since (1+ t) does not divide
γJ(t) = r(t) this is not possible.

Case γL
k = 0 and γJ

k−1 = 1. By Theorem 4.2 and as γJ
1 ≤ γL

1 = k, it follows that γJ
1 ∈ {k−1, k}.

Subcase γJ
1 = k − 1. Then J ∼= Σm ∗k−1 C5, for a certain m ≥ 0. Using the values for γJ

1

and γL
1 , there are exactly 3 vertices in delL(J), forming an edge and isolated vertex. Denote by

w0 the isolated vertex of V(L) \V(J), so ιL(w0) = 2. We have γL(t) = γJ(t) + tγM (t), where M
is the link of the edge of antipodes of w0 in L, by Lemma 3.4 ii). Therefore

γ∆(t) = qk(t) + tr(t) = γL(t) + tγJ(t) = (1 + t)γJ(t) + tγM (t) = (1 + t)k + tγM (t).

Hence r(t) = γM (t). But M is an equator of J ∼= Σm ∗k−1 C5, hence M ∼= Σm−1 ∗k−1 C5 or
M ∼= Σm+1 ∗k−2 C5. Since k ≥ 3, (1 + t) divides r(t) and this contradicts the assumption.

Subcase γJ
1 = k. Then L = ΣJ and by Theorem 3.5 i), ∆ ∼= J ∗C5. Hence p(t) = γ∆(t) =

(1 + t)γJ(t) = qk(t) + tr(t) = (1 + t)k + tr(t). Equivalently, (1 + t)
(
γJ(t)− (1 + t)k−1

)
= tr(t),

and (1 + t) has to divide r(t), which is impossible by assumption.
Finally, assume π∆ ≥ 3. Since k ≥ 3, the dimension of ∆ satisfies d ≥ 6. Because of the latter

bound on the dimension, we can apply Corollary 4.3, so that π∆−1 ≥ 2 divides the highest degree
coefficient of γ∆(t), i.e., γ∆

k = 1, which is a contradiction. �

Corollary 5.4. Let k ≥ 3 and Λ be the simplicial complex consisting of a (k − 1)-simplex and a
disconnected vertex. The f -vector of Λ is not the γ-vector of any flag homology sphere, despite
being the f -vector of a balanced flag complex Λ.

Proof. The f -polynomial of Λ is f(t) = qk(t) + t, so that r(t) = 1 in Theorem 5.3. �
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[LN16] Frank H. Lutz and Eran Nevo. Stellar theory for flag complexes. Math. Scand., 118(1):70–82, 2016.
[Mes03] Roy Meshulam. Domination numbers and homology. J. Combin. Theory Ser. A, 102(2):321–330, 2003.



BOUNDS FOR ENTRIES OF γ-VECTORS OF FLAG HOMOLOGY SPHERES 13

[MN12] Satoshi Murai and Eran Nevo. On the cd-index and γ-vector of S∗-shellable CW-spheres. Math. Z., 271(3-
4):1309–1319, 2012.

[MN13] Satoshi Murai and Eran Nevo. On the generalized lower bound conjecture for polytopes and spheres. Acta
Math., 210(1):185–202, 2013.

[Nev07] Eran Nevo. Higher minors and Van Kampen’s obstruction. Math. Scand., 101(2):161–176, 2007.
[NN11] Eran Nevo and Eyal Novinsky. A characterization of simplicial polytopes with g2 = 1. J. Combin. Theory

Ser. A, 118(2):387–395, 2011.
[NP11] Eran Nevo and T. Kyle Petersen. On γ-vectors satisfying the Kruskal-Katona inequalities. Discrete Com-

put. Geom., 45(3):503–521, 2011.
[NPT11] Eran Nevo, T. Kyle Petersen, and Bridget Eileen Tenner. The γ-vector of a barycentric subdivision. J.

Combin. Theory Ser. A, 118(4):1364–1380, 2011.
[Pet15] T. Kyle Petersen. Eulerian Numbers. Birkhäuser Advanced Texts: Basler Lehrbücher.
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