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The efficacy of robust optimization spans a variety of settings with uncertainties bounded in predetermined

sets. In many applications, uncertainties are affected by decisions and cannot be modeled with current frame-

works. This paper takes a step towards generalizing robust linear optimization to problems with decision-

dependent uncertainties. In general settings, we show these problems to be NP-complete. To alleviate the

computational inefficiencies, we introduce a class of uncertainty sets whose size depends on binary decisions.

We propose reformulations that improve upon alternative standard linearization techniques. To illustrate

the advantages of this framework, a shortest path problem is discussed, where the uncertain arc lengths are

affected by decisions. Beyond the modeling and performance advantages, the proposed notion of proactive

uncertainty control also mitigates over conservatism of current robust optimization approaches.
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1. Introduction

The two well-established approaches of optimization under uncertainty are stochastic and robust

optimization. Stochastic optimization (SO) can be used when the distribution of the uncertainty

is available (Shapiro et al. 2009). When uncertainties can be regarded as residing in sets, robust

optimization (RO) is a computationally attractive alternative (Ben-Tal et al. 2009, Bertsimas

et al. 2011). The method of RO has been extended considerably and applied to problems ranging

from portfolio management (Ghaoui et al. 2003), to healthcare (Chu et al. 2005), to electricity

systems (Lorca et al. 2016), and to engineering design (Bertsimas et al. 2010).

RO employs uncertainty sets that are predetermined and, hence, exogenous. For instance,

temporal changes to the uncertainty can be explicitly modeled via time-dependent uncertainty

sets (Nohadani and Roy 2017). In many real-world problems, however, the uncertainty can be

affected by decisions. In such decision-dependent cases, the uncertainty set is endogenous. Despite

the wide prevalence of such uncertainties in real-world settings, these problems have not received

much attention in the past, largely due to computational intractabilities. In this paper, we take a

first step towards robust linear optimization problems with endogenous uncertainties and provide
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a class of uncertainty sets, whose reformulations improve over standard techniques. Specifically, we

study a single-stage RO problem with decision-dependent uncertainty sets

min
x,y

c>x + f>y

s.t. a>i x + ξ>i y≤ bi ∀ξi ∈ Ui(x)⊆ Rn ∀i= 1, . . . ,m,
(RO-DDU)

where x ∈ Rn and y ∈ Rn represent decision variables, which need to satisfy each constraint

i= 1, . . . ,m for every realization from the set Ui(x) that bounds the uncertain parameter ξi.

Further, the parameters defining Ui(x) depend on decisions x. We first study the complexity

of (RO-DDU) for polyhedral Ui(x). We then assume x is binary and provide reformulations for

special classes of polyhedral and conic uncertainty sets and conclude with numerical experiments.

To show the range of applicability of this model, we illustrate two examples.

Example 1: Uncertainty Reduction. In facility location or inventory management problems with

uncertain demand, the uncertainty can be reduced by spending resources to acquire information.

Similarly, in healthcare problems, additional medical tests can improve the diagnosis. This type of

uncertainty reduction is characteristic of many real-world problems. In order to improve solutions,

decisions on uncertainty reduction have to be included into the optimization problem, making the

uncertainty a function of decisions on acquiring additional information.

Example 2: Shortest Path on a Network. Consider the graph in Figure 1 with the arcset A and

let the uncertain length for any arc e be de = d̄e(1 + 0.5ξe), where d̄e denotes the nominal value.

The uncertain vector ξ lies in the uncertainty set U(x) =
{
ξ | 0≤ ξe ≤ 1− 0.8xe ∀e,

∑
e∈A ξe ≤ 1

}
.

The binary decision xe determines whether to reduce the maximum possible uncertainty ξe to 0.2

(xe = 1) or leave it at 1 (xe = 0). For simplicity, we assume the reduction to be possible for at most

one of the arcs.
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Similarly, in healthcare problems, additional medical tests can improve the diagnosis. This type of

uncertainty reduction is characteristic for many real-world problems. In order to improve solutions,

decisions on uncertainty reduction have to be included into the optimization problem. In this new

setting, the uncertainty set is a function of decisions on acquiring additional information.

Example 2: Shortest Path on a Network. This example is intended to provide intuition for

decision-dependent RO problems. Consider the graph in Figure 1 with the arcset A and let the

uncertain length for arc e be de = d̄e(1 + 0.5⇠e), where d̄e denotes the nominal value. The uncer-

tain component ⇠e lies in U(x) =
�
⇠ | 0 ⇠e  1� 0.8xe,

P
e2A ⇠e  1

 
. When xe = 0, the maximum

possible ⇠e is 1, whereas when xe = 1, the maximum possible ⇠e reduces to 0.2. For simplicity, we

assume the reduction to be possible for at most one of the arcs.

A BC

E

F

G

H

15
.3

23

20
.6 25.5

13

31 64

16

Shortest Path Path Nominal Worstcase

Nominal A�C�B 95 31+ 1.5⇥ 64 =

127

Robust A�E�F�G�H�B 97.4 15.3+ 23+ 20.6+

1.5⇥ 25.5+ 13

= 110.15

Endogenous A�E�C�B 95.3 15.3+ 1.4⇥ 16+

Robust 1.1⇥ 64 = 108.1

Figure 1 Shortest path problem on a network. Nominal arc lengths are labeled. Worst-case and reduced-case

lengths are displayed with dashed and dotted lines. The table shows the lengths in di↵erent settings.

Figure 1 displays a network with source node A and destination B. The nominally shortest

path A�C�B lengthens in the worst-case to 127 units. Standard RO optimizes against this case,

resulting in A�E�F�G�H�B with an increased nominal length (price of robustness) but reduced

worst-case of 110.15. If strengthening an arc is permitted, it is possible to reduce its uncertainty.

When xC�B = 1, the robust optimal path becomes A�E�C�B, reducing the worst-case cost to

108.5. This example demonstrates that decision-dependent sets can be leveraged to model decisions

which mitigate the worst-case scenario.

Shortest Path Path Nominal Worstcase
Nominal A−C−B 95 31 + 1.5× 64 =

127
Robust A−E−F−G−H−B 97.4 15.3 + 23 + 20.6+

1.5× 25.5 + 13
= 110.15

Endogenous A−E−C−B 95.3 15.3 + 1.4× 16+
Robust 1.1× 64 = 108.1

Figure 1 Shortest path on a network. Nominal lengths are labeled. Worst-case and reduced-case lengths are

displayed with dashed and dotted lines. The table shows the lengths in different settings.

Figure 1 displays a network with source node A and destination B. In the worst-case, the nom-

inally shortest path lengthens to 127 units. RO optimizes against this case, improving the worst-

case length. If it is permitted to reduce the uncertainty of an arc, then A−E−C−B is selected
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with xC−B = 1 and the worst-case path becomes 108.5. This example demonstrates that decision-

dependent sets can be leveraged to model decisions that mitigate the worst-case scenario.

The contributions of this paper can be summarized as follows:

1. We study robust linear optimization problems with a polyhedral decisiondependent set for the

uncertain parameters. We prove such problems to be NP-complete. We also show that when

decisions that influence the uncertainties are binary, the problem can be reformulated as a

mixed integer optimization problem.

2. For binary x, we provide a class of uncertainty sets for which a more efficient reformulation of

the decision-dependent RO problem is possible. The set structure and the nature of decision

dependence are leveraged to provide reformulations with fewer constraints.

3. We provide an improvement to Big-M linearization for bilinear terms which can reduce the

number of constraints.

This work also showcases the advantages that can be gained in both stochastic and robust opti-

mization by proactively controlling uncertainties.

We also emphasize what this paper fails to address. Reformulations for continuous decisions

influencing the uncertainty are not provided. Furthermore, the primary problem in this paper is a

static optimization problem, i.e., the decisions do not adapt to uncertainty realizations. In fact, it

is the uncertainty set and the corresponding worst-case realization that are affected by decisions.

Section 3 discusses the complexity of the decision-dependent robust linear optimization problem.

Section 4 introduces a class of uncertainty sets which allow improved reformulations. Section 5 pro-

vides a comparison to the corresponding Big-M formulation. It also provides methods to improve

these standard techniques. A numerical experiment is discussed in Section 6 to illustrate the advan-

tages of the decision-dependent setting and to computationally compare the three formulations.

Notation. Throughout this paper, we use bold lower and uppercase letters to denote vectors

and matrices. Scalars are marked in regular font. All vectors are column vectors and the vector

of ones is denoted by e. Furthermore, diag(•) denotes a diagonal matrix with • on the diagonal

and zeros elsewhere. For any given matrix A, the ith row is denoted by Ai,• and the jth column

is denoted by A•,j. The problems have m constraints indexed by i. LHS denotes left-hand-side

and RHS denotes right-hand-side. We use the phrases “decision-dependent” and “endogenous”

interchangeably. Similarly, we refer to variables affecting an uncertainty set as influence variables.

2. Background

In the following, we first review endogenous settings in SO before discussing RO approaches.

The notion of endogenous uncertainty in SO generally corresponds to scenario trees, where

decisions determine the probabilities. For example, Jonsbr̊aten et al. (1998) consider the cost of an



Nohadani and Sharma: Optimization under Decision-Dependent Uncertainty
4

item to remain uncertain until it is produced. The probability distribution depends upon which

item is to be produced and when. Goel and Grossmann (2004) address the problem of offshore

oil and gas planning, with the objective of maximizing revenues and investments over a period of

time, when the recovery and size of oil fields are not known in advance. They provide a disjunctive

formulation that is solved by a decomposition algorithm. This approach is extended to a multistage

SO problem for optimal production scheduling, that minimizes cost while satisfying the demand

for different goods (Goel and Grossmann 2006). For package sorting centers, Novoa et al. (2016)

seek to balance the flow across working stations. Capacities are modeled via budgeted uncertainties

where the budget is a function of workstation allocation. These and other approaches address

endogenous uncertainties probabilistically.

In RO, the endogenous nature of uncertainty is imposed directly on the uncertainty set itself.

For example, Spacey et al. (2012) address a software partitioning problem, where code segments

are assigned to different computing nodes to reduce runtime with uncertain execution order and

for unknown frequency of segment calls. They employ tailored decision-dependent uncertainty sets.

Such sets also occur as a result of reformulations. For example, Hanasusanto et al. (2015) use

a finite adaptability approximation to adjustable robust optimization (ARO), as introduced by

Bertsimas and Caramanis (2010), and consider optimization problems with binary recourse deci-

sions. For problems with uncertain objective and constraints, they provide a formulation with

decision-dependent uncertainty sets before finally reformulating it as a MILP. Poss (2013, 2014)

considers combinatorial optimization problems with budgeted uncertainty sets. This extends the

work of Bertsimas and Sim (2004) to decision-dependent budgets. These works focus on budget

uncertainty sets with limited discussion on general sets. On the other hand, for a dynamic pric-

ing problem with learning, Bertsimas and Vayanos (2015) consider 1 or ∞-norm uncertainty sets

for price-dependent demand. Specifically, the uncertain demand curve is driven by past realiza-

tions of price-demand pairs. Since the price is a decision variable, this leads to decision-dependent

uncertainty sets. In the context of robust scheduling problems, Vujanic et al. (2016) consider a

decision-dependent uncertainty set which is a vector sum of a collection of sets. The sets in the

vector combination are selected by a decision which is a part of the original problem. They probe

the performance of an affine policy for the problem. More recently, decision-dependent sets were

studied in the context of control problems with primitive uncertainty sets Zhang et al. (2017).

Note that in all approaches to date, the decision dependence is modeled in a specific context, often

driven by an application.

The journey of RO has also included measures to reduce conservatism. The original RO formu-

lation by Soyster (1973) produced over conservative solutions for many applications due to the use

of box uncertainties. Later, Ben-Tal and Nemirovski (1999) provided less conservative solutions
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by using general polyhedral and ellipsoid uncertainty sets. ARO models Ben-Tal et al. (2004) and

decision rule approximations took another step in this direction by allowing decisions to depend on

the realizations (Iancu 2010, Georghiou et al. 2015). In this vein, decision-dependent uncertainty

sets offer a new avenue to reduce the level of conservatism. For example, Poss (2013) decreases

it for cardinality constrained sets. This work also motivates the notion of proactive uncertainty

control by using decision-dependent sets to enable deliberate uncertainty reduction.

3. General Decision Dependence

Robust linear optimization problems encompass a wide variety of applications, in portfolio opti-

mization, healthcare, inventory management, and routing, amongst others. The tractability of

robust linear programs provides a suitable starting point to analyze the complexity of RO problems

with decision-dependent uncertainty. Here, we investigate a robust linear optimization problem as

in (RO-DDU). The underlying uncertainty set is endogenous and defined as follows.

Definition 1. The set with constraint matrix D, constant vector d, and decision coefficient matrix

∆ given by

UP (x) = {ξ |Dξ≤ d + ∆x}

is a polyhedral uncertainty set with affine decision dependence.

Note that ∆ determines the influence of x on the set and can be estimated from the data or from

the context of an application. In Section 6, we quantify it for a specific application.

The following theorem shows that RO problems with decision-dependent sets cannot be refor-

mulated in a tractable fashion, a departure from standard RO problems. This occurs despite the

fact that linear programs with polyhedral uncertainty sets have tractable robust counterparts.

Theorem 1. The robust linear problem (RO-DDU) with uncertainty set UP is NP-complete.

T he proof follows the following steps:

1. Consider an instance of the 3-Satisfiability problem (3-SAT) for a set of literals N =

{1,2, . . . , n} and m clauses, which seeks to find a solution x∈ {0,1}n that satisfies

xi1 +xi2 + (1−xi3)≥ 1 for m clauses and i1, i2, i3 ∈ {1, . . . , n}.

2. Consider the following special case of (RO-DDU) with x∈ Rn y ∈ Rm , z ∈ R

min
x,y,z≥0

{
−z | z− ξ>y≤ 0, ∀ξ ∈ U(x), x,y≤ e, −y≤−e

}
, (RO-SAT)

where U(x) = {(ξ1, . . . , ξm) | ξi ≥ xi1 , ξi ≥ xi2 , ξi ≥ 1−xi3 , ξi ≤ 1}.
Note that the 3-SAT problem is embedded in this set.
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3. By Lemma 1 (provided after these steps), the optimal value of (RO-SAT) is −m, if and only

if the 3-SAT problem has a solution.

4. Problem (RO-SAT) is a special case of (RO-DDU) with polyhedral set U(x).

5. Since the 3-SAT problem is NP-complete (Cook 1971), problem (RO-DDU) is also NP-

complete.

Lemma 1. The 3-SAT problem has a feasible solution x, if and only if problem (RO-SAT) has an

optimal value of at most −m.

( =⇒ ) Suppose the 3-SAT problem has a feasible solution x. This means, x has to satisfy

xi1 +xi2 + (1−xi3)≥ 1 ∀i= 1, . . . ,m.

Since x ∈ {0,1}n, for each i at least one of xi1 , xi2 , or 1− xi3 must be equal to 1. Now, consider

the uncertainty set

U(x) = {(ξ1, . . . ξm) | ξi ≥ xi1 , ξi ≥ xi2 , ξi ≥ 1−xi3 , ξi ≤ 1 ∀i= 1, . . . ,m} .

Since at least one of xi1 , xi2 , or 1−xi3 equals 1, ξi satsifies ξi ≥ 1. This implies that ξi = 1 ∀i is the

only point in U(x). For this uncertainty set, the feasible solution is x,y = 1, z =m. This leads to

the optimal solution −z ≤−m or z ≥m.

(⇐= ) Suppose (RO-SAT) has an optimal solution (x∗,y∗) with the objective value of −z∗ ≤−m.

We first show that strict inequality is not possible. Assume−z∗ <−m. The constraints in (RO-SAT)

imply z∗ − ξ>y∗ ≤ 0, i.e., ξ>y∗ ≥ z∗ >m ∀ξ ∈ U(x∗). The constraints also imply y∗i = 1 ∀i. This

means that
∑m

i=1 ξi >m ∀ξ ∈ U(x∗). However, the construction of the uncertainty set yields ξi ≤ 1.

This leads to a contradiction, because
∑m

i=1 ξi 6>m, and hence −z∗ =−m. Thus, ξ>y∗ =m ∀ξ ∈
U(x∗). Therefore, we can write

∑m

i=1 ξi = m ∀ξ ∈ U(x∗), which implies minξ∈U(x∗)
∑m

i=1 ξi = m.

However, since the uncertainty set implies ξi ≤ 1 ∀i, we can conclude that the sum can only be

equal to m, if ξi = 1 ∀i.
We now show that this result implies for each i at least one of x∗i1 or x∗i2 or (1−x∗i3) is equal to 1.

Suppose this is not true. This implies ∃i for which x∗i1 < 1 , x∗i2 < 1 and (1− x∗i3)< 1. That means

that we can construct ξ′i = max{x∗i1 , x∗i2 , (1− x∗i3)} which is an element of the uncertainty set and

ξ′i < 1. However, this contradicts the result of ξi = 1 ∀i. Therefore, if z∗ =m, then we can find a

feasible solution for the 3-SAT problem.

Although problem (RO-DDU) is NP-complete, it can be reformulated as a bilinear or biconvex

program, which may be solved by global optimization techniques (e.g., Kolodziej et al. 2013). For

binary decision variables x influencing U(x), the problem (RO-DDU) can be reformulated as an

MILP, using the Big-M method (see Section 5). However, they suffer from weak relaxations.
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4. Structured Uncertainty Sets

The weak numerical performance of Big-M linearization can be overcome, if the decision x plays

a decisive role in governing the elements of the uncertainty set. Specifically, if the effect of x on

the uncertainty set constraints can be modeled by penalizing the objective coefficients, then the

number of constraints in the robust counterpart can be reduced. Here, we discuss the setting where

x controls the upper bounds of the uncertain variables. This mechanism can be expressed in the

set:

Π-Uncertainty: UΠ(x) = {ξ |Dξ≤ d, ξ≤ v + W(e−x), ξ≥ 0} .

Here, D∈ Rm×n is a coefficient matrix, d∈ Rm is the RHS vector, v ∈ Rn+ are the minimum upper

bounds, and W = diag(w) ∈ Rn×n+ (a diagonal matrix) are the incremental upper bounds, which

apply when reduction is not applied. For UΠ, the influence variable is x ∈ {0,1}n. The decision

dependence in UΠ affects the upper bounds on each uncertain component ξi. This means, if the

problem allows influencing uncertainties, this set can model proactive uncertainty reduction. One

possible example is disaster planning, where a decision to reduce the fragility of certain roads yields

an improved worst-case outcome. Another example is measurement applications, where a decision

for additional expenditure leads to increased accuracy. We employed such a set in Example 2 and

discuss it further in the numerical application.

We now discuss how this structure can be leveraged to reformulate the original prob-

lem (RO-DDU). Note that the objective function remains unaffected by the definition of the uncer-

tainty set, as does the first term of the constraint. Therefore, we focus our discussion on the parts

of the constraint in problem (RO-DDU), that are affected by uncertainty.

4.1. Π-Uncertainty

For succinctness, this section provides a reformulation of the following linear constraint

y>ξ≤ b ∀ξ ∈ UΠ(x). (LC)

To satisfy this constraint for all ξ ∈ UΠ(x), the uncertain LHS needs to be replaced by its maximum

over the set. For this, consider the following two problems:

h(x,y) =

max
ξ

y>ξ

s.t. Dξ≤ d

ξ≤ v + W(e−x) :π(x,y)

ξ≥ 0,

(P)

h̄(x,y) =

max
ξ,ζ

(y−Πx)>ξ+ y>ζ

s.t. Dξ+ Dζ ≤ d

ξ≤We

ζ ≤ v

ξ,ζ ≥ 0,

(P’)

where in problem (P), π(x,y) denotes the corresponding dual variable. Problem (P) maximizes
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the LHS directly over UΠ(x). However, the standard reformulation of this problem leads to

bilinear terms. To avoid them, we can leverage the structure of the uncertainty set and formulate

problem (P) as problem (P’). Such a problem pair was also suggested in the context of stochastic

network interdiction Cormican et al. (1998). Proposition 1 uses the duals of (P) and (P’) to prove

that they have the same objective value at optimality. Formulating problem (P’) requires the use

of matrix Π = diag(π). Here, π is a component-wise upper bound of the optimal value of the

dual variable π(x,y) for all x,y. Note that the matrix Π is similar to M of the Big-M method in

that it estimates an upper bound to the dual variables. We provide a method to estimate π in

Proposition 2. The dual problems of (P) and (P’) are given by:

g(x,y) =

min
π,q

q>d +π>v +π>W(e−x)

s.t. π>+ q>D≥ y>

π,q≥ 0,

(D)

ḡ(x,y) =

min
r,s,t

t>d + r>We + s>v

s.t. s>+ t>D≥ y>

r>+ t>D≥ y>−x>Π

r, s, t≥ 0.

(D’)

Proposition 1. Given a binary x, if the set UΠ(x) is nonempty and v,W≥ 0, then for all y:

h(x,y) = h̄(x,y).

S trong duality warrants the equalities g(x,y) = h(x,y) and ḡ(x,y) = h̄(x,y). In the following,

we also refer to the optimal objective values of the dual problems as h(x,y) and h̄(x,y). Let (π,q)

be an optimal solution to (D). Furthermore, let (r =π−Πx, s =π, t = q) with Π = diag(π) be a

potential feasible solution to (D’). For these solutions, it follows that s>+ t>D =π>+ q>D≥ y>,

and r>+ t>D =π>−x>Π + q>D≥ y>−x>Π≥ y>−x>Π. Since π,q≥ 0, and x is binary, we

obtain r, s, t≥ 0. This means (r, s, t) is a feasible solution to problem (D’). This yields

h̄(x,y) ≤ q>d +π>v + (π−Πx)>We

= h(x,y).

For the converse, let (r, s, t) be an optimal solution to (D’). Consider (π= s,q = t) to be a solution

to (D). The feasibility of (r, s, t) leads π>+ q>D = s>+ t>D≥ y>, and π= s≥ 0,q = t≥ 0. Hence,

(π,q) is a feasible solution to (D), resulting in

h(x,y) ≤ t>d + s>v + s>W(e−x)

= h̄(x,y) + (s− r)>We− s>Wx.

In order to prove h(x,y) ≤ h̄(x,y), it is required to prove (s − r)>We − s>Wx ≤ 0.

This can be expressed as
∑

iwi(si − ri − sixi) ≤ 0. For all i with xi = 1, it holds that

wi(si− ri− sixi) =−wiri ≤ 0.
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Consider now the set of all i with xi = 0, denoted by X0. Problem (D’) can be rewritten as two

nested minimization problems, where the outer problem is over t and rj, sj with j /∈X0 and the

inner problem over ri, si with i∈X0:

h̄(x,y) = min
t,rj ,sj ,j /∈X0

t>d +
∑

j /∈X0

rjwj +
∑

j /∈X0

sjvj + l(t)

s.t. sj + t>D•,j ≥ yj
rj + t>D•,j ≥ yj −πj
rj, sj ≥ 0




∀j /∈X0.

The inner minimization is captured by the function l(t), which is given by

l(t) = min
ri,si, i∈X0

∑

i∈X0

riwi +
∑

i∈X0

sivi

s.t. si + t>D•,i ≥ yi
ri + t>D•,i ≥ yi
ri, si ≥ 0




∀ i∈X0.

Note that in this inner minimization problem, the same constraints act on si and ri. Since wi and vi

are nonnegative, there exist optimal solutions si and ri that are equal and set to their lower bounds

si = ri = max{yi− t>D•,i,0}. Therefore,
∑

i∈X0
siwi− riwi = 0, which means h(x,y)≤ h̄(x,y).

Using Proposition 1 and problem (D’), the constraint (LC) can be reformulated as

t>d + r>We + s>v≤ b

s>+ t>D≥ y>

r>+ t>D≥ y>−x>Π

r, s, t≥ 0.

Note that this reformulation does not contain any bilinear terms and includes fewer constraints

than the standard Big-M formulations. Additionally, Proposition 1 allows us to replace h(x,y)

with h̄(x,y). This is important because h̄(x,y) is convex in (x,y). Therefore, cut generation algo-

rithms can be used to solve this problem which is not possible for the original problem with the

constraint (LC). In the following, we discuss the matrix Π.

Estimation of Π The following proposition sheds light on how to estimate Π.

Proposition 2. If D and y are element-wise nonnegative, then πi(x,y)≤ yi ∀(x,y) for con-

straint (LC) under the uncertainty set UΠ.
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C onsider the following problem for some index i

F (θ) = max
ξ

y>ξ

s.t. Dξ≤ d : q

ξ≤ v + W(e−x) + θei :π

ξ≥ 0.

(1)

Let ξ0 be the optimal solution at θ = 0 and the corresponding optimal dual variables are q0 and

π0. Let the optimal basis of the above problem be given by some matrix B. Since ξ0 is the optimal

solution, the vector of basic variables is given by ξB0 = B−1b, where b denotes the RHS vector

of problem (1), i.e., b = [d>,v>+ (e−x)
>
W]

>
. Assume that the solution is non-degenerate. This

means B−1b> 0. Then for a small enough change in b, the optimal basis does not change. If it is

degenerate, then b can be perturbed by a small ε to obtain a non-degenerate solution, which only

marginally changes the objective (see, e.g., Bertsimas and Tsitsiklis 1997).

When θ > 0 is small enough, the basis matrix does not change. This means that both solutions

(corresponding to θ= 0 and θ > 0) have the same dual variables because the dual variables do not

depend on the RHS vector. This means

F (θ)−F (0) = π>0 v +π>0 W(e−x) + θπ>0 ei + q>0 d−π>0 v−π>0 W(e−x)−q>0 d

= θπ>0 ei,

which represents the change in the objective value. Let ξ0 be the optimal solution of the problem

with θ= 0 and ξθ be the optimal solution of problem with θ > 0. Then the change in the objective

value is

θπ>0 ei = y>ξθ−y>ξ0.

Using Lemma 2, we can state that

θπ>0 ei = y>ξθ−y>ξ0

≤ y>ξ0 + θy>ei−y>ξ0

= θy>ei.

This implies that π0,i ≤ yi ∀i.

Corollary 1. Proposition 2 allows the estimation of Π by

πi = max
y

y>ei

s.t. (x,y)∈ Y

xi ∈ {0,1},

(2)

where set Y denotes the remaining constraints of the original full problem.
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Lemma 2. If the matrix D is element-wise greater than 0, then ξθ ≤ ξ0 + θei.

S uppose this is not true, i.e., there exists at least one index k such that ξθ,k > ξ0,k + θei,k. In

addition, it holds that for θ≥ 0, y>ξθ > y>ξ0.

If k 6= i, then ξθ ≤ v + W(e−x), which suggests ξθ to be feasible for the problem with θ= 0. This

would contradict the optimality of ξ0.

If k= i, then ξθ,i > ξ0,i+θ. However this results in ξ0 < ξθ−θei ≤ v+W(e−x). Since D(ξθ−θei) =

Dξθ−θDei ≤ d−θDei ≤ d, ξθ−θei is a feasible solution to the problem with θ= 0. However, this

indicates that y>(ξθ − θei)> y>ξ0 which also contradicts the optimality of ξ0. Therefore, we can

conclude that ξθ ≤ ξ0 + θei.

This proposition allows us to estimate πi by setting it equal to the maximum value that yi can

take in the overall problem. In some cases, such as shortest path or facility location problems,

this is straightforwardly estimated from the underlying model. With this, all components of the

decision-dependent problem with the polyhedral uncertainty set UΠ can be computed efficiently

for practical size problems. We now extend Proposition 1 to more general uncertainty sets.

4.2. Extension to conic sets

Given a cone K, the decision-dependent uncertainty set UΠ(x) can be extended to

UK(x) = {ξ | d−Dξ ∈K, ξ≤ v + W(e−x),ξ≥ 0} .

Here d and D are coefficients and v and W = diag(w) denote upper bounds to the uncertain

component ξ. The objective is to reformulate the constraint y>ξ ≤ b, ∀ξ ∈ UK(x). In order to

satisfy this constraint for all ξ ∈ UK(x), its LHS can be expressed with the following two problems:

h(x,y) =

max
ξ

y>ξ

s.t. d−Dξ ∈K
ξ≤ v + W(e−x) : π(x,y)

ξ≥ 0,

(KP)

h̄(x,y) =

max
ξ,ζ

(y−Πx)>ξ+ y>ζ

s.t. d−Dξ ∈K
ξ≤We

ζ ≤ v

ξ, ζ ≥ 0.

(KP’)

Here, π(x,y) denotes the dual variable for the corresponding constraint. Let Π be an element-wise

upper bound on the dual variables π(x,y). The following proposition shows that the problems (KP)

and (KP’) have the same optimal objective value.

Proposition 3. If ∀x∈ {0,1}n there exists a point in the relative interior of UK(x) (Slater point)

and v,W≥ 0, then for all x,y:

h(x,y) = h̄(x,y).
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The proof of this proposition proceeds similar to that of Proposition 1. It uses strong duality which

holds due to Slater’s condition. The proof proceeds parallel to the polyhedral uncertainty set.

Using Proposition 3 and the dual problem of (KP’), the constraint (LC) can be reformulated as

t>d + r>We + s>v≤ b

s>+ t>D≥ y>

r>+ t>D≥ y>−x>Π

t∈K∗, r, s≥ 0,

with the dual cone K∗. Note that this reformulation has only linear terms and, as we will see in

Section 5, fewer constraints than the standard Big-M formulation, hence it is more suitable for

larger sized problems. The proof of this formulation proceeds parallel to that of Proposition 1.

In summary, these results allow the modeling of uncertainty sets with reducible upper bounds.

Such bounds motivate the notion of proactive uncertainty control. It mitigates conservatism and

better actualizes the tradeoff between cost of control and disadvantage of uncertainty, both of

which are instrumental parts of many real-world applications. Until now, we discussed the special

polyhedral set UΠ. The following section provides a reformulation of problem (RO-DDU) under

general polyhedral uncertainty sets.

5. Extensions to General Polyhedral Sets

The previous section leveraged the specific structure of the uncertainty set to obtain smaller refor-

mulations. The Big-M reformulation, however, has the advantage of not requiring any special set

structure. For completeness and a comparison of formulation sizes, the following proposition refor-

mulates problem (RO-DDU) for the general polyhedral set UP (x).

Proposition 4. If the uncertainty set Ui(x) is a polyhedron as in UP (x) with Di ∈ Rmi×p, di ∈
Rmi, and ∆i ∈ Rmi×n and if x is binary, then the robust counterpart of problem (RO-DDU) is

min
x,y,w,π

c>x + f>y

s.t. a>i x +π>i di +

mi∑

j=1

n∑

k=1

∆ijkwijk ≤ bi

π>i Di = y>




∀i

wijk ≤Mxk, wijk ≤ πij
wijk ≥ πij −M(1−xk)

πij ≥ 0, wijk ≥ 0




∀i, j, k

x∈ {0,1}n,

where M is a sufficiently large number.
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W e consider two cases, namely: Case 1: There exists a feasible solution (x,y) to (RO-DDU).

Therefore, x and y must satisfy all constraints a>i x+ξ>i y≤ bi ∀ξi ∈ Ui(x) for all i. This is equivalent

to

a>i x + max
ξi∈Ui(x)

ξ>i y≤ bi ∀i. (3)

If this problem is feasible and has a finite optimal solution, then by strong duality, the corresponding

dual problem has the same objective value. Problem (3) can now be expressed as

a>i x +π>i (di + ∆ix)≤ bi
π>i Di = y>

πi ≥ 0




∀i, (4)

where πi ∈ Rmi is the dual variable for constraints corresponding to the uncertainty set Ui(x). Here

mi refers to the number of constraints in the set Ui(x). Since the primal problem is feasible and

finitely valued, there exists a πi, for which the constraints (4) are satisfied. Therefore, the original

problem (RO-DDU) can be written as

min
πi,x,y

c>x + f>y

s.t. a>i x +π>i di +π>i ∆ix≤ bi
π>i Di = y>

πi ≥ 0




∀i.

Note the bilinear term in the first constraint. By expanding the variable space, the ith constraint

can be rewritten as

a>i x +

mi∑

j=1

πijdij +

mi∑

j=1

n∑

k=1

∆ijkwijk ≤ bi, with wijk = πijxk.

In the bilinear term, wijk = πijxk, xk is binary, allowing to rewrite the term as

wijk ≤ πij, 0≤wijk ≤Mxk, wijk ≥ πij −M(1−xk),

where M is a sufficiently large constant. Consequently, the problem (RO-DDU) can be reformulated

as
min
x,y

c>x + f>y

s.t. a>i x +π>i di +

mi∑

j=1

n∑

k=1

∆ijkwijk ≤ bi

π>i Di = y>




∀i

wijk ≤Mxk, wijk ≤ πij
wijk ≥ πij −M(1−xk)

πi ≥ 0, wijk ≥ 0




∀i, j, k

x∈ {0,1}n.

(5)
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Case 2: Problem (RO-DDU) is infeasible. Then the reformulation in (5) is infeasible. To show

this, consider the original problem (RO-DDU).

Suppose this problem is infeasible under the assumptions of Proposition 4. This means that

∀x : ∃ξ ∈ U(x) such that a>i x + ξ>i y> bi. Consequently, the constraint a>i x + maxξi∈Ui(x) ξ
>
i y> bi

holds for at least one i. Using the dual of the inner problem, the constraints can be written ∀πi as

a>i x +π>i (di + ∆ix)> bi

π>i Di = y>

πi ≥ 0.

(6)

Now, assume that the reformulation in (5) is feasible. Given its constraints, there exists a

binary vector x and a vector w such that wijk = πijxk. However, this implies a variable πi =

(πi1, πi2, . . . , πik, . . . , πimi
) that satisfies π>i Di = y>, πi ≥ 0 and

a>i x +

mi∑

j=1

πijdij +

mi∑

j=1

n∑

k=1

∆ijkπijxk ≤ bi.

This contradicts the earlier assertion in (6) that there exist no such πi.

This proposition allows us to reformulate the original decision-dependent RO problem as a mixed

integer linear program which can be solved for many realistic size problems using off-the-shelf

algorithms. Such mixed integer reformulations can also be provided for general convex uncertainty

sets (Ben-Tal et al. 2015), which includes conic and budgeted structures. Their proofs (not shown)

proceed parallel to that of Proposition 4.

Note that problem (RO-DDU) has n binary and p continuous variables, along with m constraints.

The ith uncertain ξi lies in an uncertainty set with mi constraints. Table 1 presents the size of the

reformulation under two settings: (i) x is binary as in Proposition 4 and (ii) xi can take s possible

values. For the sake of clarity, we assume that mi =K ∀i, where K is some constant. Table 1 shows

that for (ii), the size of the reformulation increases rapidly with growing s. In certain cases, it

is possible to improve the Big-M reformulation by imposing mild assumptions, as we will discuss

next.

Nature of x Binary var. Continuous var. Affine constr. Sign constr.
Binary n p+mK +nK m+mp+ 3nK mK(n+ 1)
Finite valued (n+ 1)s p+mK m+mp+ 2n mK(ns+ 1)

+nmK(s+ 1) +nmK(3s+ 1)
Table 1 Size of Big-M formulation of (RO-DDU) for Ui(x) with respect to (i) x∈ {0,1}n and (ii) x∈ Rn with

xi taking s possible values: dim(y) = p, K constraints in Ui(x), and m constraints in the complete problem.
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5.1. Modified Big-M Reformulation

Consider the uncertainty set UP(x) to be expressed as

UP(x) =

{
ξ |D>i• ξ≤ di +

n∑

j=1

∆ijxj, ∀i= 1, . . . ,m

}
.

To overcome the poor numerical performance of standard Big-M reformulation due to its weak

relaxations, we impose the mild assumption that all elements of the coefficient matrix ∆ are non-

negative. Proposition 5 reformulates constraint (LC) for UP(x) under this assumption.

Proposition 5. If ∆ij ≥ 0 ∀i, j, then the constraint (LC) with the uncertainty set UP(x) and a

large constant M can be reformulated as

m∑

i=1

πidi +
m∑

i=1

n∑

j=1

tij ≤ b

m∑

i=1

πiDij = yj, ∀j

tij ≥ πi∆ij −M(1−xj)

πi ≥ 0, tij ≥ 0

}
∀i, j.

The LHS maximization problem for the constraint (LC) can be written as

max
ξ

y>ξ

s.t. D>i• ξ≤ di +
n∑

j=1

∆ijxj ∀i.

Using the dual of this problem, the original constraint y>ξ≤ b ∀ξ ∈ UP(x) can be written as

m∑

i=1

πi(di +
n∑

j=1

∆ijxj)≤ b

m∑

i=1

πiDij = yj ∀j

π≥ 0.

(7)

The constraints in (7) can be rewritten by expanding the variable space as

m∑

i=1

πidi +
m∑

i=1

n∑

j=1

tij ≤ b

πi∆ijxj ≤ tij ∀i, j
m∑

i=1

πiDij = yj ∀j

π≥ 0.

(8)
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If there is a variable π feasible for the set of equations given by (7), then we can find a feasible

variable for (8) by tij = πi∆ijxj. On the other hand, if there exists a feasible solution to (8), then it

is also feasible for (7). If xj = 0, then tij ≥ 0 and if xj = 1, then tij ≥ πi∆ij. This can be expressed

as the following set of constraints

0≤ tj ≥ πi∆ij −M(1−xj).

which completes the proof.

The Proposition 5 leverages the fact that the variable tij remains at its lower bound, making the

upper bounding constraints from the Big-M linearization redundant. However, if tij can be negative,

the two lower bounding constraints are not sufficient. In some cases, it is possible to reformulate the

Formulations Problem
Variables

Constraints

Π

t>d + r>We + s>v≤ b
s>+ t>D≥ y>

r>+ t>D≥ y>−x>Π
r, s, t≥ 0.

C: m+ 2n

A: 1 + 2n
S: m+ 2n

Big-M

t>d + s>v + s>We−
∑

i

ri ≤ b
s>+ t>D≥ y>

wisi−M(1−xi)≤ ri ≤Mxi
ri ≤wisi
r, s, t≥ 0.

C: m+ 2n

A: 1 + 4n
S: m+ 2n

Modified
Big-M

t>d + s>v + r>e≤ b
s>+ t>D≥ y>

ri ≥wisi−Mxi
r, s, t≥ 0.

C: m+ 2n

A: 1 + 2n
S: m+ 2n

Table 2 Comparison of (LC) reformulations for the set UΠ(x) (C: Continuous, A: Affine, S: Sign).

problem even if the RHS coefficients are negative. Consider the shortest path example presented in

the introduction, which has constraints of the form ξe ≤ 1− γexe. Here, the coefficient ∆e =−γe is

negative. However, we can rewrite the constraint as ξe ≤ (1− γe) + γe(1−xe) and apply the Big-M

linearization on the variable (1 − xe) instead of on xe. This substitution allows the use of the

modified Big-M reformulation in more general settings. We report the numerical performance of

this approach in comparison with the earlier reformulations in Section 6. For a comparison, we

reformulate the constraint (LC) over the uncertainty set UΠ(x) using all three presented techniques,

namely (i) Π, (ii) Big-M, and (iii) Modified Big-M. Table 2 presents this comparison along with

the corresponding problem sizes. The sign constraints correspond to (• ≥ 0), which are presented

separately since they can be solved more efficiently. It displays that the primary difference between
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the Big-M and the other two reformulations is the larger number of affine (linear) constraints.

To gain intuition and provide computational comparison between the different formulations, we

extend the introductory example of Section 1 to a more detailed numerical experiment.

6. Numerical Experiments

Shortest path problems on networks constitute a general class of models, describing the most

efficient connection between a source and target. Deterministic shortest routing problems can be

solved with polynomial time algorithms (Dijkstra 1959). However, this does not hold for uncertain

arc lengths. Past research on robust shortest path problems focused on scenario-based (Yu and

Yang 1998), cardinality (Bertsimas and Sim 2003), and interval uncertainty (Averbakh and Lebedev

2004, Zieliński 2004). Despite a large body of literature, to the best of our knowledge, there is no

work in the context of uncertainties that depend on decisions. To this end, our goals are:

1. Comparing the numerical performance of different robust formulations,

2. Measuring the benefit of proactive reduction as a function of size, budget, or cost of reduction,

3. Measuring the number of arcs in the shortest path as a function of size, budget, or cost,

4. Evaluating the price of robustness and the benefit of interacting with uncertainties, and

5. Comparing the average and worst-case cost of decision dependence for RO and SO.

Here, we aim to model challenges that arise, e.g., in scenario planning of natural disasters.

When sections of a transportation network are damaged, the actual travel times along arcs become

uncertain. To plan for such a scenario, a decision-dependent RO solution can determine the arcs

which should be strengthened (by reducing uncertainty) in order to improve the performance in

an actual disaster. This strengthening incurs a fee. This means that it is possible to mitigate the

impact of a disaster by managing the damage of a few particular arcs. Similarly, for transportation

problems (e.g., air, ground), travel time can be improved by acquiring additional traffic or weather

information on segments of the network.

To illustrate this setting, we discuss a problem on a graph G= (V,A, d(•)) for the set of nodes V,

arcs A, and the distance function d(•). The objective is to find the shortest path from the source

to the target node (s→ t) when the actual realized distances from node i to j are uncertain and

a function dij(ξ) =
(
1 + 1

2
ξij
)
d̄ij of ξ. The variable xij decides whether to reduce the maximum

uncertainty in dij. This inquiry comes at a cost cij, which can be motivated as an investment

in road improvement and is imposed on travelers via taxes or tolls. The parameter ξ resides in

a cardinality constrained uncertainty set with reducible upper bounds. The complete problem is

given by
min
x,y

max
ξ∈USP (x)

∑

(i,j)∈A
cijxij +

∑

(i,j)∈A
dij(ξ)yij

s.t. x∈X ⊆ {0,1}|A|, y ∈ Y,
(SP)
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where yij decides whether the arc (i, j) lies in the shortest path. X denotes any constraints on x

and Y the set of routing constraints. The uncertainty set is given by

USP (x) =



ξ |

∑

(i,j)∈A
ξij ≤ Γ, ξij ≤ 1− γijxij, ξij ≥ 0 ∀(i, j)∈A



 .

We solve problem (SP) using the three different formulations: (i) Π−formulation from Proposi-

tion 1, (ii) standard Big-M formulation, and (iii) Modified Big-M formulation from Proposition 5.

In Table 3, X × Y denote the collection of both the shortest path and decision constraints. Fur-

Form. Problem
Variables

Constraints

Π

min
x,y

q,r,p

f(x,y)+pΓ+
∑

(i,j)∈A
qij(1−γij)+

∑

(i,j)∈A
rijγij

s.t. p+ qij ≥
yijdij −πijdijxij

2
p+ rij ≥

yijdij
2

p, qij, rij ≥ 0, x,y ∈X ×Y.

B: 2|A|
C: 2|A|+1

A: |V|+2|A|
S: 2|A|+ 1

Big-M

min
x,y

q,r,p

f(x,y) + pΓ +
∑

(i,j)∈A
qij −

∑

(i,j)∈A
γijrij

s.t. p+ qij ≥
dijyij

2
0≤ rij ≤Mxij
qij −M(1−xij)≤ rij ≤ qij
p, qij, rij ≥ 0, x,y ∈X ×Y.

B: 2|A|
C: 2|A|+1

A: |V|+ 4|A|
S: 2|A|+ 1

Modified
Big-M

min
x,y

q,r,p

f(x,y) + pΓ +
∑

(i,j)∈A
rij+

∑

(i,j)∈A
qij(1− γij)

s.t. p+ qij ≥
dijyij

2
rij ≥ γij −Mxij
p, qij, rij ≥ 0, x,y ∈X ×Y.

B: 2|A|
C: 2|A|+1

A: |V|+ 2|A|
S: 2|A|+1

Table 3 Shortest path formulations for the set USP (x) (B: Binary, C: Continuous, A: Affine, S: Sign).

thermore, f(x,y) =
∑

(i,j)∈A cijxij +
∑

(i,j)∈A d̄ijyij denotes the total cost of reduction and nominal

length. Table 3 shows that the difference between the Big-M formulation and the other two formu-

lations lies in the number of affine (linear) constraints, as in Table 2. We now discuss the numerical

experiments.

Experiment 1: Performance Comparison The numerical setup is as follows. We randomly

generate points on a 100×100 area and connect them to create a complete graph. The two furthest

nodes constitute the source and destination. The final graph is selected after removing 60% of

the longest arcs in order to avoid direct connections between the source and destination. The

uncertainty budget Γ is set to 2. The cost of reduction cij = c and the fraction of uncertainty
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reduced γij = γ are 1.0 and 0.2, respectively. For each size |V| = {50,75, . . . ,300}, 100 random

graphs are generated. These values serve as an illustration of the qualitative comparison of the

formulations. In practical applications, they need to be estimated from the economical value of

travel time (dij) relative to the per-trip tax burden for road investments (cij).
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Graph Size

0
50

100
150
200
250
300
350
400
450
500
550

Ti
m

e 
[s

ec
]

Π
Big-M
Mod-Big-M

Figure 2 Comparison of median solution times of reformulations from Propositions 1, 5, and the standard Big-M.

To solve these problems, we used the Gurobi 7.0 solver on a commercially available computing

unit with Intel Core i7 at 3.6 GHz. The median computation times for different approaches and

varying sizes are reported in Figure 2. Note that all three methods lead to the same solution. The

observations from Figure 2 can be summarized as follows.

• The time increases with growing |V| for all formulations. However, the increase is less steep

for the Π and the Modified Big-M formulation than for the Big-M formulation.

• The difference between the Big-M and the proposed formulations increases with growing |V|.
This highlights the advantage of the Π and Modified Big-M formulation for larger graphs.

• The median time of the Modified Big-M formulation is less than that of the Π-formulation.

Figure 2 highlights the benefits of using the proposed formulations to solve such decision-dependent

optimization problems. While the performance of the Modified Big-M and Π formulations are

comparable over a broad range of network sizes, the subproblem in the Π reformulation is convex,

which can be exploited by cut-generating methods, which may be computationally advantageous.

We also solved the Π formulation using a cut generation approach (not shown). However, for this

application, it converged slowly and required a sizable number of cuts.

We now focus on analyzing how the solution changes as the parameters of the uncertainty set

are varied. For this purpose, we introduce additional notation for observable quantities.

Notation for Observables. The number of arcs in the shortest path is n∗, which is a function of

the budget Γ and the level of uncertainty reduction γ. These parameters create three scenarios:

(i) nominal case, where no uncertainty is present, n∗(Γ = 0, γ = 0);
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(ii) standard robust case with no decision dependence, n∗(Γ> 0, γ = 0); and

(iii) decision-dependent robust case with uncertainty reduction n∗(Γ> 0, γ > 0), in which case ñ is

the number of arcs whose uncertainty was reduced.

We also follow this notation for the optimal objective value z∗. Consequently, the difference
(
z∗(Γ>

0, γ = 0) − z∗(Γ = 0, γ = 0)
)

constitutes the price of robustness, whereas the difference
(
z∗(Γ >

0, γ = 0)− z∗(Γ> 0, γ > 0)
)

constitutes the benefit of interaction.

There are four parameters that govern the effect of interactions with uncertainty: γ, |V|, c, and

Γ. To evaluate their role and to infer the underlying mechanism, we devise four experiments by

tuning across their range. Specifically, by adjusting one parameter while keeping the other three

fixed, we explore four orthogonal settings.

In these experiments, the problem (SP) is implemented on randomly generated graphs of [20−50]

nodes. This size is comparable to moderately sized transportation networks (Montemanni and

Gambardella 2005). For each size, 2000 graphs are generated in a manner similar to the previous

experiment. We maintain these parameter values throughout the following experiments, except in

those where their change is probed. In the following, we discuss the four experiments.

Experiment 2: Uncertainty Reduction. We compare z∗, when reduction is permitted (γ > 0) or

not (γ = 0). Figure 3a shows that γ > 0 reduces z∗ (shorter paths), which is independent of |V|. The

inset of Figure 3a is a magnification, displaying marginal fluctuations that stem from the random

nature of graphs.

Experiment 3: Graph Size. We observe that not all arcs in the shortest path experience uncer-

tainty reduction (ñ < n∗(Γ > 0, γ > 0)), independent of |V|. This is attributed to the non-zero c.

We also observe that z∗ is independent of |V|, which can be explained by the fact that |V| only

increases from 20− 50 and n∗(Γ> 0, γ > 0) does not change sizably over this range as such the

effect on z∗ is undetectable. We expect n∗ and z∗ to increase measurably when |V| varies by a

few orders of magnitude. Larger experiments come at a significant computational burden and are

outside the scope of this study.

Figure 3b illustrates the average n∗(Γ > 0, γ > 0) and the average ñ for varying |V|. We also

observe a slight downward trend of n∗(Γ> 0, γ > 0) with increasing |V|. This is because the con-

nectivity within a graph increases with |V| as the number of arcs grows faster than the number of

nodes, because in the experimental setup, only a fixed fraction of arcs are removed.

Experiment 4: Cost of Uncertainty Reduction. The reduction cost c determines the trade-off

between accepting the uncertainty level and its reduction. It can be expected that an increasing c

marginalizes the benefits of reducing uncertainty. This means that for a sufficiently low c, uncer-

tainty can be reduced in every arc in the shortest path. On the other hand, for high c, the opposite

is true. Figure 4a (|V| = 30 and Γ = 12) shows that for c ≤ 4, the average z can be decreased.
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Figure 3 Dependence on graph size |V| for: a) average objective function and b) average number of arcs. The

inset is a magnification.
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Figure 4 Average objective value as a function of: a) cost of uncertainty reduction c and b) maximum uncertainty

Γ. The graph consists of |V| = 30 nodes.

However for large c, the high cost of reduction makes it disadvantageous to reduce uncertainty.

The price of robustness (difference between the dotted line in Figure 4a and z∗(Γ = 0, γ = 0) in

Figure 4b) is constant w.r.t. γ but changes with Γ. On the other hand, the benefit of interaction

decreases with increase in c, as can be observed in Figure 5a. Note that the maximum benefit of

interaction is calculated by assuming uncertainty is reduced on all the arcs in the shortest path,

at zero cost (c= 0).

Experiment 5: Uncertainty Budget. Γ governs the number of arcs that can be affected by uncer-

tainty. Figure 4b shows that z∗ increases gradually with Γ until it reaches the level of the corre-

sponding shortest path length affected by the relative uncertainty (1 + 1
2
) and plateaus thereafter.

This is because increasing Γ beyond a certain point does not have any effect on n∗, since all the

arcs in the path are already uncertain and additional budget remains untapped. Consequently, the

price of robustness increases with Γ and plateaus beyond a certain Γ (not shown). An analogous
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Figure 5 Average relative benefit of interaction as a function of: a) cost of uncertainty reduction c and b) maxi-

mum uncertainty Γ. The graph consists of |V| = 30 nodes.

behavior can be observed for the benefit of interaction, as shown in Figure 5b. The maximum

benefit is achieved at c= 0.

Figure 6a displays how the average n∗ changes with Γ for the different settings. Note that the

values of uncertainty are relative to the nominal arc length. This provides an upper bound on the

maximum objective value, i.e., when every arc in the shortest path (contributing to n∗) is affected

by the uncertainty. At Γ = 0, we observe n∗(Γ = 0, γ = 0), and ñ = 0. As Γ increases, it turns

beneficial to choose more but shorter arcs, hence, the average n∗(Γ> 0, γ = 0) initially increases

and reaches a maximum at Γ ≈ n∗(Γ = 0, γ = 0). As Γ grows even further, the standard robust

solution n∗(Γ> 0, γ = 0) decreases and plateaus at the same level as n∗(Γ = 0, γ = 0). When γ > 0,

we observe that an increasing Γ≥ 0 permits more uncertain arc lengths to be reduced (ñ≥ 0) to a

maximum of ñ≤ n∗(Γ = 0, γ = 0). Since some of the arc uncertainty can be reduced, the peak of

n∗(Γ> 0, γ > 0) occurs at a lower budget than when no reduction is allowed, as seen in Figure 6a.

Note that for small Γ, in order to cope with uncertainty, the optimal solution minimizes the length

of each individual arc so that the impact of the uncertainty is minimized.

To further support this observation, Figure 6b displays the distribution of the number of arcs

using different percentiles of n∗(Γ> 0, γ > 0) (corresponding to Figure 6a). Here, we observe that

as Γ increases, the distribution of n∗(Γ> 0, γ > 0) skews towards larger number of arcs (the gaps

between the percentiles increase). This means that the optimal solution becomes more diversified.

Specifically, the model selects a path consisting of some certain and some uncertain arcs, with a

subset of the latter experiencing uncertainty reduction. This continues until the saturation point

(here Γ≈ 4) because beyond a certain budget, diversification of paths becomes redundant. At this

point, the shortest path is chosen exclusively amongst uncertain arcs, almost all of which experience

uncertainty reduction (since Γ>n∗(Γ = 0, γ = 0)).
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Figure 6 The dependence on budget of uncertainty Γ for: a) average number of arcs and b) their distribution.

The graph consists of |V| = 30 nodes and uncertainty reduction is permitted.

Experiment 6: Comparison to SO. This experiment evaluates the average and worst case per-

formance of the robust DDU solutions and compares them to a similar SO problem. The SO

formulation is given by

min
x

∑

(i,j)∈A
cijxij + EP(x)


 ∑

(i,j)∈A
dij(ξ)yij




s.t. y ∈ Y

x∈ {0,1}|A|,

with the uncertainty set

ξ ∈ USSP (x) =×i,j∈A[0,1− γxij].

The distribution P(x) is the uniform distribution over the support USSP (x). The average perfor-

mance is evaluated by randomly generating the uncertain component ξij (from [0,1] for unreduced

arcs and [0,1− γxij] for reduced arcs) and implementing the existing robust and stochastic solu-

tions for these randomly generated arc costs. The following solutions are evaluated: (i) RO: Robust

solution for γ = 0. (ii) RO-DDU: Robust solution for γ > 0. (iii) SO: Stochastic solution for γ = 0.

(iv) SO-DDU: Stochastic solution for γ > 0. The suffix of the average performances is “-A” and of

the worst case performances “-W.”

Figure 7a shows that the average objective of SO is less than the average RO objective. This

is because RO optimizes the worst-case instead of the average performance as in SO. However,

analogously in Figure 7b, RO-W is significantly less than SO-W. The same applies to the decision-

dependent counterparts for both cases. As can be expected, the objective values increase with c

until it is no longer beneficial to reduce the uncertainty, i.e., the objective value of the RO-DDU
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Figure 7 Comparison of RO and SO formulations: a) average and b) worst-case objective value.

solution increases until it matches that of the RO solution. The same holds true for the SO-DDU

and SO solutions.

In summary, the Π-formulation and the Modified Big-M formulation perform considerably better

than the standard Big-M formulation and their benefits increase with graph size. The worst-case

cost for the shortest path can be improved by proactively reducing the uncertainty on a subset

of arcs. As the budget of uncertainty grows, these benefits improve but plateau beyond a certain

level. At the same time, the cost of reduction curbs these benefits. The RO-DDU problem performs

better than SO-DDU for the worst-case scenario. As expected, this benefit comes at the price of the

average cost. This numerical study provides an overview of the impact of different formulations,

probes various model parameters, and highlights the power of the proactive uncertainty control for

both the worst-case and average performance.

7. Concluding Remarks

In this paper, we present a novel optimization approach for solving problems with decision-

dependent uncertainties. We show that for general polyhedral sets, such problems are, even in basic

cases, NP-complete. To alleviate this, we introduce a class of uncertainty sets whose upper bounds

are affected by decisions. They enable more realistic modeling of a broad range of applications

and extend RO beyond the currently used exogenous sets. We provide reformulations that have

considerably fewer constraints compared to standard linearization techniques, allowing for faster

computations. Our approach should be viewed as one option among many to model decision depen-

dence while maintaining computational advantages. The induced convexity of the sub-problem in

the proposed reformulation reveals a path forward to use advanced cut generating algorithms. We

believe that finding new and appropriate conditions on sets will further improve the quality of the

reformulations.
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In addition, this work provides an alternative way of addressing one of the criticisms of RO

approaches, namely overly conservative solutions. The description via decision-dependent sets

enables mitigation of this issue by exercising proactive control on uncertainties. This setting offers

an immediate way to manage the tradeoff between conservatism and optimality. Finally, novel

cutting plane methods have instrumentally enhanced solution times and we envision decision-

dependent sets to solidify the tradeoff between computation and optimality by inducing beneficial

cuts.
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