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Abstract. We consider the numerical solution of parameterized linear systems where the sys-
tem matrix, the solution, and the right-hand side are parameterized by a set of uncertain input
parameters. We explore spectral methods in which the solutions are approximated in a chosen finite-
dimensional subspace. It has been shown that the stochastic Galerkin projection technique fails to
minimize any measure of the solution error [20]. As a remedy for this, we propose a novel stochastic
least-squares Petrov–Galerkin (LSPG) method. The proposed method is optimal in the sense that
it produces the solution that minimizes a weighted `2-norm of the residual over all solutions in a
given finite-dimensional subspace. Moreover, the method can be adapted to minimize the solution
error in different weighted `2-norms by simply applying a weighting function within the least-squares
formulation. In addition, a goal-oriented semi-norm induced by an output quantity of interest can
be minimized by defining a weighting function as a linear functional of the solution. We establish
optimality and error bounds for the proposed method, and extensive numerical experiments show
that the weighted LSPG methods outperforms other spectral methods in minimizing corresponding
target weighted norms.
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1. Introduction. Forward uncertainty propagation for parameterized linear sys-
tems is important in a range of applications to characterize the effects of uncertainties
on the output of computational models. Such parameterized linear systems arise in
many important problems in science and engineering, including stochastic partial
differential equations (SPDEs) where uncertain input parameters are modeled as a
set of random variables (e.g., diffusion/ground water flow simulations where diffu-
sivity/permeability is modeled as a random field [15, 30]). It has been shown [11]
that intrusive methods (e.g., stochastic Galerkin [2, 10, 13, 19, 28]) for uncertainty
propagation can lead to smaller errors for a fixed basis dimension, compared with non-
intrusive methods [27] (e.g., sampling-based methods [3, 14, 17], stochastic collocation
[1, 21]).

The stochastic Galerkin method combined with generalized polynomial chaos
(gPC) expansions [29] seeks a polynomial approximation of the numerical solution
in the stochastic domain by enforcing a Galerkin orthogonality condition, i.e., the
residual of the parameterized linear system is forced to be orthogonal to the span of
the stochastic polynomial basis with respect to an inner product associated with an
underlying probability measure. The Galerkin projection scheme is popular for its
simplicity (i.e., the trial and test bases are the same) and its optimality in terms of

∗This work was supported by the U.S. Department of Energy Office of Advanced Scientific Com-
puting Research, Applied Mathematics program under award DEC-SC0009301 and by the U.S. Na-
tional Science Foundation under grant DMS1418754.
†Department of Computer Science, University of Maryland, College Park, MD 20742

(klee@cs.umd.edu).
‡Sandia National Laboratories, Livermore, CA 94550 (ktcarlb@sandia.gov). Sandia National

Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-94AL85000.
§Department of Computer Science and Institute for Advanced Computer Studies, University of

Maryland, College Park, MD 20742 (elman@cs.umd.edu).

1

ar
X

iv
:1

70
1.

01
49

2v
1 

 [
m

at
h.

N
A

] 
 5

 J
an

 2
01

7

mailto:klee@cs.umd.edu
mailto:ktcarlb@sandia.gov
mailto:elman@cs.umd.edu


2 K. LEE, K. CARLBERG, AND H. C. ELMAN

minimizing an energy norm of solution errors when the underlying PDE operator is
symmetric positive definite. In many applications, however, it has been shown that
the stochastic Galerkin method does not exhibit any optimality property [20]. That
is, it does not produce solutions that minimize any measure of the solution error.
In such cases, the stochastic Galerkin method can lead to poor approximations and
non-convergent behavior.

To address this issue, we propose a novel optimal projection technique, which we
refer to as the stochastic least-squares Petrov–Galerkin (LSPG) method. Inspired by
the successes of LSPG methods in nonlinear model reduction [8, 9, 7], finite element
methods [4, 5, 16], and iterative linear solvers (e.g., GMRES, GCR) [22], we propose,
as an alternative to enforcing the Galerkin orthogonality condition, to directly min-
imize the residual of a parameterized linear system over the stochastic domain in a
(weighted) `2-norm. The stochastic LSPG method produces an optimal solution for a
given stochastic subspace and guarantees that the `2-norm of the residual monoton-
ically decreases as the stochastic basis is enriched. In addition to producing mono-
tonically convergent approximations as measured in the chosen weighted `2-norm, the
method can also be adapted to target output quantities of interest (QoI); this can be
accomplished by employing a weighted `2-norm used for least-squares minimization
that coincides with the `2-(semi)norm of the error in the chosen QoI.

In addition to proposing the stochastic LSPG method, this study shows that
specific choices of weighting functions lead to equivalence between the stochastic LSPG
method and both the stochastic Galerkin method and the pseudo-spectral method
[26, 27]. We demonstrate the effectiveness of this method with extensive numerical
experiments on various SPDEs. The results show that the proposed LSPG technique
significantly outperforms the stochastic Galerkin when the solution error is measured
in different weighted `2-norms. We also show that the proposed method can effectively
minimize the error in target QoIs.

An outline of the paper is as follows. Section 2 formulates parameterized linear
algebraic systems and reviews conventional spectral approaches for computing nu-
merical solutions. Section 3 develops a residual minimization formulation based on
least-squares methods and its adaptation to the stochastic LSPG method. We also
provide proofs of optimality and monotonic convergence behavior of the proposed
method. Section 4 provides error analysis for stochastic LSPG methods. Section 5
demonstrates the efficiency and the effectiveness of the proposed methods by testing
them on various benchmark problems. Finally, Section 6 outlines some conclusions.

2. Spectral methods for parameterized linear systems. We begin by in-
troducing a mathematical formulation of parameterized linear systems and briefly
reviewing the stochastic Galerkin and the pseudo-spectral methods , which are spec-
tral methods for approximating the numerical solutions of such systems.

2.1. Problem formulation. Consider a parameterized linear system

(1) A(ξ)u(ξ) = b(ξ),

where A : Γ→ Rnx×nx , and u, b : Γ→ Rnx . The system is parameterized by a set of
stochastic input parameters ξ(ω) ≡ {ξ1(ω), . . . , ξnξ(ω)}. Here, ω ∈ Ω is an elementary
event in a probability space (Ω,F , P ) and the stochastic domain is denoted by Γ ≡∏nξ
i=1 Γi where ξi : Ω→ Γi. We are interested in computing a spectral approximation

of the numerical solution u(ξ) in an nψ-dimensional subspace Snψ spanned by a finite
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set of polynomials {ψi(ξ)}
nψ
i=1 such that Snψ ≡ span{ψi}

nψ
i=1 ⊆ L2(Γ), i.e.,

(2) u(ξ) ≈ ũ(ξ) =

nψ∑
i=1

ūiψi(ξ) = (ψT (ξ)⊗ Inx)ū,

where {ūi}
nψ
i=1 with ūi ∈ Rnx are unknown coefficient vectors, ū ≡ [ūT1 · · · ūTnψ ]T ∈

Rnxnψ is the vertical concatenation of these coefficient vectors, ψ ≡ [ψ1 · · · ψnψ ]T ∈
Rnψ is a concatenation of the polynomial basis, ⊗ denotes the Kronecker product,
and Inx denotes the identity matrix of dimension nx. Note that ũ ∈ (Snψ )nx .
Typically, the “stochastic” basis {ψi} consists of products of univariate polynomi-
als: ψi ≡ ψα(i) ≡

∏nξ
k=1 παk(i)(ξk) where {παk(i)}

nξ
k=1 are univariate polynomials,

α(i) = (α1(i), · · · , αnξ(i)) ∈ Nnξ0 is a multi-index and αk represents the degree of a
polynomial in ξk. The dimension of the stochastic subspace nψ depends on the num-
ber of random variables nξ, the maximum polynomial degree p, and a construction of
the polynomial space (e.g., a total-degree space that contains polynomials with total
degree up to p,

∑nξ
k=1 αk(i) ≤ p). By substituting u(ξ) with ũ(ξ) in (1), the residual

can be defined as

r(ū; ξ) := b(ξ)−A(ξ)

nψ∑
i=1

ūiψi(ξ) = b(ξ)− (ψT (ξ)⊗A(ξ))ū,(3)

where ψT (·)⊗A(·) : Γ→ Rnx×nψnx .
It follows from (2) and (3) that our goal now is to compute the unknown co-

efficients {ūi}
nψ
i=1 of the solution expansion. We briefly review two conventional

approaches for doing so: the stochastic Galerkin method and the pseudo-spectral
method. In the following, ρ ≡ ρ(ξ) denotes an underlying measure of the stochastic
space Γ and

〈g, h〉ρ ≡
∫

Γ

g(ξ)h(ξ)ρ(ξ)dξ,(4)

E[g] ≡
∫

Γ

g(ξ)ρ(ξ)dξ,(5)

define an inner product between scalar-valued functions g(ξ) and h(ξ) with respect
to ρ(ξ) and the expectation of g(ξ), respectively. The `2-norm of a vector-valued
function v(ξ) ∈ Rnx is defined as

‖v‖22 ≡
nx∑
i=1

∫
Γ

v2
i (ξ)ρ(ξ)dξ = E[vT v].(6)

Typically, the polynomial basis is constructed to be orthogonal in the 〈·, ·〉ρ inner
product, i.e., 〈ψi, ψj〉ρ =

∏nξ
k=1〈παk(i), παk(j)〉ρk = δij , where δij denotes the Kro-

necker delta.

2.2. Stochastic Galerkin method. The stochastic Galerkin method computes
the unknown coefficients {ūi}

nψ
i=1 of ũ(ξ) in (2) by imposing orthogonality of the

residual (3) with respect to the inner product 〈·, ·〉ρ in the subspace Snψ . This Galerkin
orthogonality condition can be expressed as follows: Find ūSG ∈ Rnxnψ such that

(7) 〈ri(ūSG), ψj〉ρ = E[ri(ū
SG)ψj ] = 0, i = 1, . . . , nx, j = 1, . . . , nψ,
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where r ≡ [r1 · · · rnx ]T . The condition (7) can be represented in matrix notation as

(8) E[ψ ⊗ r(ūSG)] = 0.

From the definition of the residual (3), this gives a system of linear equations

(9) E[ψψT ⊗A]ūSG = E[ψ ⊗ b],

of dimension nxnψ. This yields an algebraic expression for the stochastic-Galerkin
approximation

(10) ũSG(ξ) = (ψ(ξ)T ⊗ Inx)E[ψψT ⊗A]−1E[ψ ⊗Au].

If A(ξ) is symmetric positive definite, the solution of linear system (9) minimizes the
solution error e(x) ≡ u− x in the A(ξ)-induced energy norm ‖v‖2A ≡ E[vTAv], i.e.,

(11) ũSG(ξ) = arg min
x∈(Snψ )nx

‖e(x)‖2A.

In general, however, the stochastic-Galerkin approximation does not minimize any
measure of the solution error.

2.3. Pseudo-spectral method. The pseudo-spectral method directly approx-
imates the unknown coefficients {ūi}

nψ
i=1 of ũ(ξ) in (2) by exploiting orthogonality

of the polynomial basis {ψi(ξ)}
nψ
i=1. That is, the coefficients ūi can be obtained by

projecting the numerical solution u(ξ) onto the orthogonal polynomial basis as

(12) ūPS
i = E[uψi], i = 1, . . . , nψ,

which can be expressed as

(13) ūPS = E[ψ ⊗A−1b],

or equivalently

(14) ũPS(ξ) = (ψ(ξ)T ⊗ Inx)E[ψ ⊗ u].

The associated optimality property of the approximation, which can be derived from
optimality of orthogonal projection, is

(15) ũPS(ξ) = arg min
x∈(Snψ )nx

‖e(x)‖22.

In practice, the coefficients {ūPS
i }

nψ
i=1 are approximated via numerical quadrature as

ūPS
i = E[uψi] =

nq∑
k=1

u(ξ(k))ψi(ξ
(k))wk =

nq∑
k=1

(
A−1(ξ(k))f(ξ(k))

)
ψi(ξ

(k))wk,(16)

where {(ξ(k), wk)}nqk=1 are the quadrature points and weights.
While stochastic Galerkin leads to an optimal approximation (11) under certain

conditions and pseudo-spectral projection minimizes the `2-norm of the solution er-
ror (15), neither approach provides the flexibility to tailor the optimality properties
of the approximation. This may be important in applications where, for example,
minimizing the error in a quantity of interest is desired. To address this, we propose
a general optimization-based framework for spectral methods that enables the choice
of a targeted weighted `2-norm in which the solution error is minimized.
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3. Stochastic least-squares Petrov–Galerkin method. As a starting point,
we propose a residual-minimizing formulation that computes the coefficients ū by
directly minimizing the `2-norm of the residual, i.e.,

ũLSPG(ξ) = arg min
x∈(Snψ )nx

‖f −Ax‖22 = arg min
x∈(Snψ )nx

‖e(x)‖2ATA,(17)

where ‖v‖2ATA ≡ E[vTATAv]. Thus, the `2-norm of the residual is equivalent to a
weighted `2-norm of the solution error. Using (2) and (3), we have

(18) ūLSPG = arg min
x̄∈Rnxnψ

‖r(x̄)‖22.

The definition of the residual (3) allows the objective function in (18) to be written
in quadratic form as

‖r(x̄)‖22 = ‖f − (ψT ⊗A)x̄‖22 = x̄TE[ψψT ⊗ATA]x̄− 2E[ψ ⊗AT f ]T x̄+ E[fT f ].

(19)

Noting that the mapping x̄ 7→ ‖r(x̄)‖22 is convex, the (unique) solution ūLSPG to (18)
is a stationary point of ‖r(x̄)‖22 and thus satisfies

(20) E[ψψT ⊗ATA]ūLSPG = E[ψ ⊗AT f ],

which can be interpreted as the normal-equations form of the linear least-squares
problem (18).

Consider a generalization of this idea that minimizes the solution error in a tar-
geted weighted `2-norm by choosing a specific weighting function. Let us define a
weighting function M(ξ) ≡Mξ(ξ)⊗Mx(ξ), where Mξ : Γ→ R and Mx : Γ→ Rnx×nx .
Then, the stochastic LSPG method can be written as

ũLSPG(M)(ξ) = arg min
x∈(Snψ )nx

‖M(b−Ax)‖22 = arg min
x∈(Snψ )nx

‖e(x)‖2ATMTMA,(21)

with ‖v‖2ATMTMA ≡ E[vTATMTMAv] = E[(MT
ξ Mξ⊗(MxAv)TMxAv]. Algebraically,

this is equivalent to

ūLSPG(M) = arg min
x̄∈Rnxnψ

‖Mr(x̄)‖22 = arg min
x̄∈Rnxnψ

‖(Mξ ⊗Mx)(1⊗ b−
(
ψT ⊗A

)
x̄)‖22

= arg min
x̄∈Rnxnψ

‖Mξ ⊗ (Mxb)−
(
(Mξψ

T )⊗ (MxA)
)
x̄‖22.

(22)

We will restrict our attention to the case Mξ(ξ) = 1 and denote Mx(ξ) by M(ξ) for
simplicity. Now, the algebraic stochastic LSPG problem (22) simplifies to

ūLSPG(M) = arg min
x̄∈Rnxnψ

‖Mr(x̄)‖22 = arg min
x̄∈Rnxnψ

‖Mb− (ψT ⊗MA)x̄‖22.(23)

The objective function in (23) can be written in quadratic form as

‖Mr(x̄)‖22 =x̄TE[(ψψT ⊗MATMTMA)]x̄− 2(E[ψ ⊗ATMTMf ])T x̄+ E[bTMTMb].

(24)

As before, because the mapping x̄ 7→ ‖Mr(x̄)‖22 is convex, the unique solution ūLSPG(M)

of (23) corresponds to a stationary point of ‖Mr(x̄)‖22 and thus satisfies

(25) E[ψψT ⊗ATMTMA]ūLSPG(M) = E[ψ ⊗ATMTMf ],
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which is the normal-equations form of the linear least-squares problem (23). This
yields the following algebraic expression for the stochastic-LSPG approximation:

(26) ũLSPG(M)(ξ) = (ψ(ξ)T ⊗ Inx)E[ψψT ⊗ATMTMA]−1E[ψ ⊗ATMTMAu].

Petrov–Galerkin projection. Another way of interpreting the normal equa-
tions (25) is that the (weighted) residual M(ξ)r(ūLSPG(M); ξ) is enforced to be or-
thogonal to the subspace spanned by the optimal test basis {φi}

nψ
i=1 with φi(ξ) :=

ψi(ξ)⊗M(ξ)A(ξ) and span{φi}
nψ
i=1 ⊆ L2(Γ). That is, this projection is precisely the

(least-squares) Petrov–Galerkin projection,

(27) E[φT (b− (ψT ⊗MA)ūLSPG(M))] = 0,

where φ(ξ) ≡ [φ1(ξ) · · · φnψ (ξ)].
Monotonic Convergence. The stochastic least-squares Petrov-Galerkin is mono-

tonically convergent. That is, as the trial subspace Snψ is enriched (by adding polyno-

mials to the basis), the optimal value of the convex objective function ‖Mr(ūLSPG(M))‖22
monotonically decreases. This is apparent from the LSPG optimization problem (21):
Defining

ũLSPG′(M)(ξ) = arg min
x∈(Snψ+1)nx

‖M(b−Ax)‖22,(28)

we have ‖M(b−AũLSPG′(M))‖22 ≤ ‖M(b−AũLSPG(M))‖22 (and ‖u−uLSPG′(M)‖ATMTMA

≤ ‖u− uLSPG(M)‖ATMTMA) if Snψ ⊆ Snψ+1.
Weighting strategies. Different choices of weighting function M(ξ) allow LSPG

to minimize different measures of the error. We focus on four particular choices:
1. M(ξ) = C−1(ξ), where C(ξ) is a Cholesky factor of A(ξ), i.e., A(ξ) =
C(ξ)CT (ξ). This decomposition exists if and only if A is symmetric pos-
itive semidefinite. In this case, LSPG minimizes the energy norm of the
solution error ‖e(x)‖2A ≡ ‖C−1r(x̄)‖22 (= ‖e((ΨT ⊗ Inx)x̄)‖2A) and is mathe-
matically equivalent to the stochastic Galerkin method described in Section
2.2, i.e., ũLSPG(C−1) = ũSG. This can be seen by comparing (11) and (21)
with M = C−1, as ATMTMA = A in this case.

2. M(ξ) = Inx , where Inx is the identity matrix of dimension nx. In this case,
LSPG minimizes the `2-norm of the residual ‖e(x)‖ATA ≡ ‖r(x̄)‖22.

3. M(ξ) = A−1(ξ). In this case, LSPG minimizes the `2-norm of solution error
‖e(x)‖22 ≡ ‖A−1r(x̄)‖22. This is mathematically equivalent to the pseudo-

spectral method described in Section 2.3, i.e., ũLSPG(A−1) = ũPS, which can
be seen by comparing (15) and (21) with M = A−1.

4. M(ξ) = F (ξ)A−1(ξ) where F : Γ → Rno×nx is a linear functional of the
solution associated with a vector of output quantities of interest. In this
case, LSPG minimizes the `2-norm of the error in the output quantities of
interest ‖Fe(x)‖22 ≡ ‖FA−1r(x̄)‖22.

We again emphasize that two particular choices of the weighting function M(ξ) lead
to equivalence between LSPG and existing spectral-projection methods (stochastic
Galerkin and pseudo-spectral projection), i.e.,

(29) ũLSPG(C−1) = ũSG, ũLSPG(A−1) = ũPS,

where the first equality is valid (i.e., the Cholesky decomposition A(ξ) = C(ξ)CT (ξ)
can be computed) if and only if A is symmetric positive semidefinite. Table 1 sum-
marizes the target quantities to minimize (i.e., ‖e(x)‖2Θ ≡ E[e(x)TΘe(x)]), the corre-
sponding LSPG weighting functions, and the method names LSPG(Θ).
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Table 1
Different choices for the LSPG weighting function

Quantity minimized by LSPG
Weighting function Method name

Quantity Expression

Energy norm of error ‖e(x)‖2A M(ξ) = C−1(ξ) LSPG(A)/SG

`2-norm of residual ‖e(x)‖2
ATA

M(ξ) = Inx LSPG(ATA)

`2-norm of solution error ‖e(x)‖22 M(ξ) = A−1(ξ) LSPG(2)/PS

`2-norm of error in quantities of interest ‖Fe(x)‖22 M(ξ) = F (ξ)A−1(ξ) LSPG(FTF )

4. Error analysis. If an approximation satisfies an optimal-projection condition

(30) ũ = arg min
x∈(Snψ )nx

‖e(x)‖2Θ,

then

(31) ‖e(ũ)‖2Θ = min
x∈(Snψ )nx

‖e(x)‖2Θ.

Using norm equivalence

(32) ‖x‖2Θ′ ≤ C‖x‖2Θ,

we can characterize the solution error e(ũ) in any alternative norm Θ′ as

‖e(ũ)‖2Θ′ ≤ C min
x∈(Snψ )nx

‖e(x)‖2Θ.(33)

Thus, the error in an alternative norm Θ′ is controlled by the optimal objective-
function value minx∈(Snψ )nx ‖e(x)‖2Θ (which can be made small if the trial space ad-

mits accurate solutions) and the stability constant C.
Table 2 reports norm-equivalence constants for the norms considered in this work.

Here, we have defined

(34) σmin(M) ≡ inf
x∈(L2(Γ))nx

‖Mx‖2/‖x‖2, σmax(M) ≡ sup
x∈(L2(Γ))nx

‖Mx‖2/‖x‖2.

Table 2
Stability constant C in (32)

Θ′ = A Θ′ = ATA Θ′ = 2 Θ′ = FTF

Θ = A 1 σmax(A) 1
σmin(A)

σmax(F )2

σmin(A)

Θ = ATA 1
σmin(A)

1 1
σmin(A)2

σmax(F )2

σmin(A)2

Θ = 2 σmax(A) σmax(A)2 1 σmax(F )2

Θ = FTF
σmax(A)

σmin(F )2
σmax(A)2

σmin(F )2
1

σmin(F )2
1

This exposes several interesting conclusions. First, if no < nx, then the null space
of F is nontrivial and so σmin(F ) = 0. This implies that LSPG(FTF ), for which
Θ = FTF , will have an undefined value of C when the solution error is measured in
other norms, i.e., for Θ′ = A, Θ′ = ATA, and Θ′ = 2. It will have controlled errors
only for Θ′ = FTF , in which case C = 1. Second, note that for problems with small
σmin(A), the `2 norm in the quantities of interest may be large for the LSPG(A)/SG,
or LSPG(ATA), while it will remain well behaved for LSPG(2)/PS and LSPG(FTF ).
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5. Numerical experiments. This section explores the performance of the LSPG
methods for solving elliptic SPDEs parameterized by one random variable (i.e., nξ =
1). The maximum polynomial degree used in the stochastic space Snψ is p; thus,
the dimension of Snψ is nψ = p + 1. In physical space, the SPDE is defined over a
two-dimensional rectangular bounded domain D, and it is discretized using the finite
element method with bilinear (Q1) elements as implemented in the Incompressible
Flow and Iterative Solver Software (IFISS) package [24]. Sixteen elements are em-
ployed in each dimension, leading to nx = 225 = 152 degrees of freedom excluding
boundary nodes. All numerical experiments are performed on an Intel 3.1 GHz i7
CPU, 16 GB RAM using Matlab R2015a.

Measuring weighted `2-norms. For all LSPG methods, the weighted `2-norms
can be measured by evaluating the expectations in the quadratic form of the objective
function shown in (24). This requires evaluation of three expectations

(35) ‖Mr(x̄)‖22 := x̄TT1x̄− 2TT2 x̄+ T3,

with

T1 :=E[(ψψT ⊗ATMTMTA)] ∈ Rnxnψ×nxnψ ,(36)

T2 :=E[ψ ⊗ATMTMb] ∈ Rnxnψ ,(37)

T3 :=E[bTMTMb] ∈ R.(38)

Note that T3 does not depend on the stochastic-space dimension nψ. These quantities
can be evaluated by numerical quadrature or analytically if closed-form expressions
for those expectations exist. Unless otherwise specified, we compute these quantities
using the integral function in Matlab, which performs adaptive numerical quadra-
ture based on the 15-point Gauss–Kronrod quadrature formula [23].

Error measures. In the experiments, we assess the error in approximate solu-
tions computed using various spectral-projection techniques using four relative error
measures (see Table 1):

ηr(x) :=
‖e(x)‖2ATA
‖f‖22

, ηe(x) :=
‖e(x)‖22
‖u‖22

, ηA(x) :=
‖e(x)‖2A
‖u‖2A

, ηQ(x) :=
‖Fe(x)‖22
‖Fu‖22

.

(39)

5.1. Stochastic diffusion problems. Consider the steady-state stochastic dif-
fusion equation with homogeneous boundary conditions,

(40)

{
−∇ · (a(x, ξ)∇u(x, ξ)) = f(x, ξ) in D × Γ

u(x, ξ) = 0 on ∂D × Γ,

where the diffusivity a(x, ξ) is a random field and D = [0, 1]× [0, 1]. The random field
a(x, ξ) is specified as an exponential of a truncated Karhunen-Loève (KL) expansion

[18] with covariance kernel, C(x, y) ≡ σ2 exp
(
− |x1−y1|

c − |x2−y2|
c

)
, where c is the

correlation length, i.e.,

(41) a(x, ξ) ≡ exp(µ+ σa1(x)ξ),

where {µ, σ2} are the mean and variance of a and a1(x) is the first eigenfunction
in the KL expansion. After applying the spatial (finite-element) discretization, the
problem can be reformulated as a parameterized linear system of the form (1), where
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A(ξ) is a parameterized stiffness matrix obtained from the weak form of the problem
whose (i, j)-element is [A(ξ)]ij =

∫
D
∇a(x, ξ)ϕi(x)·ϕj(x)dx (with {ϕi} standard finite

element basis functions) and b(ξ) is a parameterized right-hand side whose ith element
is [b(ξ)]i =

∫
D
f(x, ξ)ϕi(x)dx. Note that A(ξ) is symmetric positive definite for this

problem; thus LSPG(A)/SG is a valid projection scheme (the Cholesky factorization
A(ξ) = C(ξ)C(ξ)T exists) and is equal to stochastic Galerkin projection.

Output quantities of interest. We consider no output quantities of interest
(F (ξ)u(ξ) ∈ Rno) that are random linear functionals of the solution and F (ξ) is of
dimension no × nx having the form:

(1) F1(ξ) := g(ξ)×G with G ∼ U(0, 1)no×nx : each entry of G is drawn uniformly
from [0, 1] and g(ξ) is a scalar-valued function of ξ. The resulting output QoI,
F1(ξ)u(ξ), is a vector-valued function of dimension no.

(2) F2(ξ) := b(ξ)T M̄ : M̄ is a mass matrix defined via [M̄ ]ij ≡
∫
D
ϕi(x)ϕj(x)dx.

The output QoI is a scalar-valued function F2(ξ)u(ξ) = b(ξ)T M̄u(ξ), which
approximates a spatial average 1

|D|
∫
D
f(x, ξ)u(x, ξ)dx.

5.1.1. Diffusion problem 1: Lognormal random coefficient and deter-
ministic forcing. In this example, we take ξ in (41) to follow a standard normal

distribution (i.e., ρ(ξ) = 1√
2π

exp
(
− ξ

2

2

)
and ξ ∈ (−∞,∞)) and f(x, ξ) = 1 is de-

terministic. Because ξ is normally distributed, normalized Hermite polynomials (or-
thogonal with respect to 〈·, ·〉ρ) are used as polynomial basis {ψi(ξ)}

nψ
i=1.

Figure 1 reports the relative errors (39) associated with solutions computed using
four LSPG methods (LSPG(A)/SG, LSPG(ATA), LSPG(2)/PS, and LSPG(FTF ))
for varying polynomial degree p. Here, we consider the random output QoI, i.e.,
F = F1, no = 100, and g(ξ) = ξ. This result shows that three methods (LSPG(A)/SG,
LSPG(ATA), and LSPG(2)/PS) monotonically converge in all four error measures,
whereas LSPG(FTF ) does not. This is an artifact of rank deficiency in F1, which
leads to σmin(F1) = 0; as a result, all stability constants C for which Θ = FTF in
Table 2 are unbounded, implying lack of error control. Figure 1 also shows that each
LSPG method minimizes its targeted error measure for a given stochastic-subspace
dimension (e.g., LSPG minimizes the `2-norm of the residual); this is also evident
from Table 2, as the stability constant realizes its minimum value (C = 1) for Θ = Θ′.
Table 3 shows actual values of the stability constant of this problem and well explains
the behaviors of all LSPG methods. For example, the first column of Table 3 shows
that the stability constant is increasing in the order (LSPG(A)/SG, LSPG(ATA),
LSPG(2)/PS, and LSPG(FTF )), which is represented in Figure 1a.

Table 3
Stability constant C of Diffusion problem 1

Θ′ = A Θ′ = ATA Θ′ = 2 Θ′ = FTF

Θ = A 1 26.43 2.06 11644.22

Θ = ATA 2.06 1 4.25 24013.48

Θ = 1 26.43 698.53 1 5646.32

Θ = FTF ∞ ∞ ∞ 1

The results in Figure 1 do not account for computational costs. This point is
addressed in Figure 2, which shows the relative errors as a function of CPU time. As
we would like to devise a method that minimizes both the error and computational
time, we examine a Pareto front (black dotted line) in each error measure. For a
fixed value of p, LSPG(2)/PS is the fastest method because it does not require so-



10 K. LEE, K. CARLBERG, AND H. C. ELMAN

LSPG(A)/SG

LSPG(AT
A)

LSPG(2)/PS

LSPG(F T
F )

polynomial degree p

E
n
er
gy

n
or
m

of
so
lu
ti
on

er
ro
r
(l
og

1
0
η
A
)

2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

(a) Relative energy norm of solution error ηA

LSPG(A)/SG

LSPG(AT
A)

LSPG(2)/PS

LSPG(F T
F )

polynomial degree p
R
es
id
u
al

(l
og

1
0
η
r
)

2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

(b) Relative `2-norm of residual ηr

LSPG(A)/SG

LSPG(AT
A)

LSPG(2)/PS

LSPG(F T
F )

polynomial degree p

S
ol
u
ti
on

er
ro
r
(l
og

1
0
η
e
)

2 4 6 8 10
−10

−8

−6

−4

−2

0

2

(c) Relative `2-norm of solution error ηe

LSPG(A)/SG

LSPG(AT
A)

LSPG(2)/PS

LSPG(F T
F )

polynomial degree p

E
rr
or

in
ou

tp
u
t
Q
oI

(l
og

1
0
η
Q
)

2 4 6 8 10
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

(d) Relative `2-norm of output QoI error ηQ with
F = F1, no = 100, and g(ξ) = ξ

Fig. 1. Relative error measures versus polynomial degree for diffusion problem 1: lognormal
random coefficient and deterministic forcing. Note that each LSPG method performs best in the
error measure it minimizes.

lution of a coupled system of linear equations of dimension nxnψ which is required
by the other three LSPG methods (LSPG(A)/SG, LSPG(ATA), and LSPG(FTF )).
As a result, pseudo-spectral projection (LSPG(2)/PS) generally yields the best over-
all performance in practice, even when it produces larger errors than other methods
for a fixed value of p. Also, for a fixed value of p, LSPG(A)/SG is faster than
LSPG(ATA) because the weighted stiffness matrix A(ξ) obtained from the finite ele-
ment discretization is sparser than AT (ξ)A(ξ). That is, the number of nonzero entries
to be evaluated for LSPG(A)/SG in numerical quadrature is smaller than the ones
for LSPG(ATA), and exploiting this sparsity structure in the numerical quadrature
causes LSPG(A)/SG to be faster than LSPG(ATA).
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(d) Relative `2-norm of output QoI error ηQ
with F = F1, no = 100, and g(ξ) = ξ

Fig. 2. Pareto front of relative error measures versus wall time for varying polynomial degree
p for diffusion problem 1: lognormal random coefficient and deterministic forcing.

5.1.2. Diffusion problem 2: Lognormal random coefficient and random
forcing. This example uses the same random field a(x, ξ) (41), but instead employs
a random forcing term1 f(x, ξ) = exp(ξ)|ξ − 1|. Again, ξ follows a standard normal
distribution and normalized Hermite polynomials are used as polynomial basis. We
consider the second output QoI, F = F2. As shown in Figure 3, the stochastic Galerkin
method fails to converge monotonically in three error measures as the stochastic
polynomial basis is enriched. In fact, it exhibits monotonic convergence only in the
error measure it minimizes (for which monotonic convergence is guaranteed).

Figure 4 shows that this trend applies to other methods as well when effectiveness
is viewed with respect to CPU time; each technique exhibits monotonic convergence

1In [20], it was shown that stochastic Galerkin solutions of an analytic problem a(ξ)u(ξ) = f(ξ)
with this type of forcing are divergent in the `2-norm of solution errors as p increases.
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Fig. 3. Relative errors versus polynomial degree for stochastic Galerkin (i.e., LSPG(A)/SG)
for diffusion problem 2: lognormal random coefficient and random forcing. Note that monotonic
convergence is observed only in the minimized error measure ηA.

in its tailored error measure only. Moreover, the Pareto fronts (black dotted lines) in
each subgraph of Figure 4 shows that the LSPG method tailored for a particular error
measure is Pareto optimal in terms of minimizing the error and computational wall
time. In the next experiments, we examine goal-oriented LSPG(FTF ) for varying
number of output quantities of interest no and its effect on the stability constant C.
Figure 5 reports three error measures computed using all four LSPG methods. For
LSPG(FTF ), the first linear function F = F1 is applied with g(ξ) = sin(ξ) and a
varying number of outputs no = {100, 150, 200, 225}. When no = 225, LSPG(FTF )
and LSPG(2)/PS behave similarly in all three weighted `2-norms. This is because
when n0 = 225 = nx, then σmin(F ) > 0, so the stability constants C for Θ =
FTF in Table 2 are bounded. Figure 6 reports relative errors in the quantity of
interest ηQ associated with linear functionals F = F1 for two different functions g(ξ),
g1(ξ) = sin(ξ) and g2(ξ) = ξ. Note that LSPG(A)/SG and LSPG(ATA) fail to
converge, whereas LSPG(2)/PS and LSPG(FTF ) converge, which can be explained
by the stability constant C in Table 2 where σmax(A) = 26.43 and σmin(A) = 0.48
for the linear operator A(ξ) of this problem. LSPG(FTF ) converges monotonically
and produces the smallest error (for a fixed polynomial degree p) of all the methods
as expected.

5.1.3. Diffusion problem 3: Gamma random coefficient and random
forcing. This section considers a stochastic diffusion problem parameterized by a
random variable that has a Gamma distribution, where a(x, ξ) ≡ exp(1+0.25a1(x)ξ+

0.01 sin(ξ)) with density ρ(ξ) ≡ ξα exp(−ξ)
Γ̄(α+1)

, Γ̄ is the Gamma function, ξ ∈ [0,∞), and

α = 0.5. Normalized Laguerre polynomials (which are orthogonal with respect to
〈·, ·〉ρ) are used as polynomial basis. We consider a random forcing term f(x, ξ) =
log10(ξ)|ξ − 1| and the second QoI F (ξ) = F2(ξ) = b(ξ)T M̄ . Note that numerical
quadrature is the only option for computing expectations arise in this problem.

Figure 7 shows the results of solving the problem with the four different LSPG
methods. Again, each version of LSPG monotonically decreases its corresponding
target weighted `2-norm as the stochastic basis is enriched. Further, each LSPG
method is Pareto optimal in terms of minimizing its targeted error measure and the
computational wall time.
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(d) Relative `2-norm of output QoI error ηQ
with F = F2

Fig. 4. Pareto front of relative error measures versus wall time for varying polynomial degree
p for diffusion problem 2: lognormal random coefficient and random forcing

5.2. Stochastic convection-diffusion problem: Lognormal random coef-
ficient and deterministic forcing. We now consider a non-self-adjoint example,
the steady-state convection-diffusion equation

(42)

{
−ε∇ · (a(x, ξ)∇u(x, ξ)) + ~w · ∇u(x, ξ) = f(x, ξ) in D × Γ,

u(x, ξ) = gD(x) on ∂D × Γ

where D = [−1, 1] × [−1, 1] , ε is the viscosity parameter, and u satisfies inhomoge-
neous Dirichlet boundary conditions

(43) gD(x) =

{
gD(x, 1) = 0 for [−1, y] ∪ [x, 1] ∪ [−1 ≤ x ≤ 0,−1],
gD(1, y) = 1 for [1, y] ∪ [0 ≤ x ≤ 1,−1].

The inflow boundary consists of the bottom and the right portions of ∂D, [x,−1]∪[1, y]
[12]. We consider a zero forcing term f(x, ξ) = 0 and a constant convection velocity
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(d) Legend for subplots (b)–(d)

Fig. 5. Relative error measures versus polynomial degree for a varying dimension no of the
output matrix F = F1 for diffusion problem 2: lognormal random coefficient and random forcing.
Note that LSPG(FTF ) has controlled errors only when no = nx, in which case σmin(F ) > 0.

~w ≡ (− sin π
6 , cos π6 ). We consider the convection-dominated case (i.e., ε = 1

200 ).
For the spatial discretization, we essentially use the same finite element as above

(bilinear Q1 elements) applied to the weak formulation of (42). In addition, we use
the streamline-diffusion method [6] to stabilize the discretization in elements with
large mesh Peclet number. (See [12], Ch. 8 for details.) Such spatial discretization
leads to a parameterized linear system of the form (1) with

(44) A(ξ) = εD(a(ξ); ξ) + C(ξ) + S(ξ),

where D(a(ξ); ξ), C(ξ) and S(ξ) are the diffusion term, the convection term, and
the streamline-diffusion term, respectively, and [b(ξ)]i =

∫
D
f(x, ξ)ϕi(x)dx. For this

numerical experiment, the number of degrees of freedom in spatial domain is nx = 225
(15 nodes in each spatial dimension) excluding boundary nodes. For LSPG(FTF ), the
first linear function F = F1 is applied with no = 100 outputs and g(ξ) = exp(ξ)|ξ−1|.
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with F = F1, no = 100, and g(ξ) = g2(ξ) = ξ

Fig. 6. Plots of the error norm of output QoI for diffusion problem 2: lognormal random
coefficient and random forcing when a linear functional is (a) F (ξ) ≡ sin(ξ)× [0, 1]100×nx and (b)
F (ξ) = ξ × [0, 1]100×nx for varying p and varying no.

Figure 8 shows the numerical results computed using the stochastic Galerkin
method and three LSPG methods (LSPG(ATA), LSPG(2)/PS, LSPG(FTF )). Note
that the operator A(ξ) is not symmetric positive-definite in this case; thus LSPG(A)
is not a valid projection scheme (the Cholesky factorization A(ξ) = C(ξ)C(ξ)T does
not exist and the energy norm of the solution error ‖e(x)‖2A cannot be defined) and
stochastic Galerkin does not minimize an any measure of the solution error. These
results show that pseudo-spectral projection is Pareto optimal for achieving relatively
larger error measures; this is because of its relatively low cost since, in contrast to the
other methods, it does not require the solution of a coupled linear system of dimension
nxnψ. In addition, the stochastic Galerkin projection is not Pareto optimal for any of
the examples; this is caused by the lack of optimality of stochastic Galekin in this case
and highlights the significant benefit of optimal spectral projection, which is offered
by the stochastic LSPG method. In addition, the residual ηr and solution error ηe
incurred by LSPG(FTF ) are uncontrolled, because no < nx and thus σmin(F ) = 0.
Finally, note that each LSPG method is Pareto optimal for small errors in its targeted
error measure.

5.3. Numerical experiment with analytic computations. For the results
presented above, expected values were computed using numerical quadrature (using
the Matlab function integral). This is a practical and general approach for nu-
merically computing the required integrals of (36)–(38), and is the only option when
analytic computations are not available (as in Section 5.1.3). In this section, we briefly
discuss how the costs change if analytic methods based on closed-form integration exist
and are used for these integrals. Note that in general, however, analytic computa-
tion are unavailable, for example, if the random variables have a finite support (e.g.,
truncated Gaussian random variables as shown in [25]).

Computing T1. Analytic computation of T1 is possible if either E[ATMMAψl]
or E[MAψl] can be evaluated analytically. For LSPG(A)/SG and LSPG(ATA), if
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with F = F2

Fig. 7. Pareto front of relative error measures versus wall time for varying polynomial degree
p for diffusion problem 3: Gamma random coefficient and random forcing. Note that each method
is Pareto optimal in terms of minimizing its targeted error measure and computational wall time.

E[Aψl] can be evaluated so that the following gPC expansion can be obtained ana-
lytically

(45) A(ξ) =

∞∑
l=1

Alψl(ξ), Al ≡ E[Aψl],

where Al ∈ Rnx×nx , then T1 can be computed analytically. Replacing A(ξ) with the
series of (45) for LSPG(A)/SG (M(ξ) = C−1(ξ)) and LSPG(ATA) (M(ξ) = Inx)
yields

T
LSPG(A)
1 =

na∑
l=1

E
[
ψψT ⊗ (Alψl)

]
=

na∑
l=1

E[ψψTψl ⊗Al],(46)



STOCHASTIC LEAST-SQUARES PETROV–GALERKIN METHOD 17

SG

LSPG(AT
A)

LSPG(2)/PS

LSPG(F T
F )

log
10

t (time in seconds)

R
es
id
u
al

(l
og

1
0
η
r
)

−0.5 0 0.5 1 1.5 2

−8

−6

−4

−2

0

2

4

(a) Relative `2-norm of residual ηr

SG

LSPG(AT
A)

LSPG(2)/PS

LSPG(F T
F )

log
10

t (time in seconds)
S
ol
u
ti
on

er
ro
r
(l
og

1
0
η
e
)

−0.5 0 0.5 1 1.5 2

−10

−8

−6

−4

−2

0

2

(b) Relative `2-norm of solution error ηe

SG

LSPG(AT
A)

LSPG(2)/PS

LSPG(F T
F )

log
10

t (time in seconds)

E
rr
or

in
ou

tp
u
t
Q
oI

(l
og

1
0
η
Q
)

−0.5 0 0.5 1 1.5 2
−7

−6

−5

−4

−3

−2

−1

(c) Relative `2-norm of output QoI error ηQ
with F = F1, no = 100, g(ξ) = exp(ξ)|ξ − 1|

Fig. 8. Pareto front of relative error measures versus wall time for varying polynomial degree p
for stochastic convection-diffusion problem: lognormal random coefficient and deterministic forcing
term.

and

T
LSPG(ATA)
1 = E[ψψT ⊗

na∑
k=1

na∑
l=1

(Akψk)
T

(Alψl)] =

na∑
k=1

na∑
l=1

E[ψψTψkψl ⊗ATkAl],

(47)

where the expectations of triple or quadruple products of the polynomial basis (i.e.,
E[ψiψjψk] and E[ψiψjψkψl]) can be computed analytically. For LSPG(2)/PS, an
analytic computation of T1 is straightfoward because M(ξ)A(ξ) = Inx and, thus,

T
LSPG(2)
1 = E[ψψT ⊗ Inx ] = Inxnψ .(48)

Similarly, analytic computation of T1 is possible for LSPG(FTF )if there exists a closed
formulation for E[Fψl] or E[FTFψl], which is again in general not available.
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Computing T2. Analytic computation of T2 can be performed in a similar way.
If the random function b(ξ) can be represented using a gPC expansion,

(49) b(ξ) =

nb∑
l=1

blψl(ξ), bl ≡ E[bψl],

then, for LSPG(A)/SG and LSPG(ATA), T2 can be evaluated analytically by com-
puting expectations of bi or triple products of the polynomial bases (i.e., E[ψiψj ] and
E[ψiψjψk]). For LSPG(2)/PS and LSPG(FTF ), however, an analytic computation
of T2 is typically unavailable because a closed-form expression for A−1(ξ) does not
exist.
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Fig. 9. Pareto front of relative error measures versus wall time for varying polynomial degree p
for diffusion problem 2: Lognormal random coefficient and random forcing. Analytic computations
are used as much as possible to evaluate expectations.

We examine the impact of these observations on the cost of solution of the problem
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studied in Section 5.1.2, a the steady-state stochastic diffusion equation (40) with
lognormal random field a(x, ξ) as in (41), and random forcing f(x, ξ) = exp(ξ)|ξ− 1|.

Figure 9 reports results for this problem for analytic computation of expecta-
tions. For LSPG(A)/SG, analytic computation of the expectations {Ti}3i=1 requires
fewer terms than for LSPG(ATA). In fact, comparing (46) and (47) shows that com-

puting T
LSPG(ATA)
1 requires computing and assembling n2

a terms, whereas computing

T
LSPG(A)
1 involves only na terms. Additionally the quantities {ATkAl}

na
k,l=1 appear-

ing in the terms of T
LSPG(ATA)
1 in (47) are typically denser than the counterparts

{Ak}nak=1 appearing in (46), as the sparsity pattern of {Ak}nak=1 is identical to that of
the finite element stiffness matrices. As a result, LSPG(A)/SG is Pareto optimal for
small computational wall times when any error metric is considered. When the poly-
omial degree p is small, LSPG(A)/SG is computationally faster than LSPG(2)/PS,
as LSPG(2)/PS requires the solution of A(ξ(k))u(ξ(k)) = f(ξ(k)) at each quadrature
point and cannot exploit analytic computation. As the stochastic basis is enriched,
however, each tailored LSPG method outperforms other LSPG methods in minimizing
its corresponding target error measure.

6. Conclusion. In this work, we have proposed a general framework for optimal
spectral projection wherein the solution error can be minimized in weighted `2-norms
of interest. In particular, we propose two new methods that minimize the `2-norm of
the residual and the `2-norm of the error in an output quantity of interest. Further,
we showed that when the linear operator is symmetric positive definite, stochastic
Galerkin is a particular instance of the proposed methodology for a specific choice
of weighted `2-norm. Similarly, pseudo-spectral projection is a particular case of the
method for a specific choice of weighted `2-norm.

Key results from the numerical experiments include:
• For a fixed stochastic subspace, each LSPG method minimizes its targeted

error measure (Figure 1).
• For a fixed computational cost, each LSPG method often minimizes its tar-

geted error measure (Figures 4, 7). However, this does not always hold, espe-
cially for smaller computational costs (and smaller stochastic-subspace dimen-
sions) when larger errors are acceptable. In particular pseudo-spectral pro-
jection (LSPG(2)/PS) is often significantly less expensive than other methods
for a fixed stochastic subspace, as it does not require solving a coupled lin-
ear system of dimension nxnψ (Figures 2, 8). Alternatively, when analytic
computations are possible, stochastic Galerkin (LSPG(A)/SG)) may be sig-
nificantly less expensive than other methods for a fixed stochastic subspace
(Figure 9).

• Goal-oriented LSPG(FTF ) can have uncontrolled errors in error measures
that deviate from the output-oriented error measure ηQ when the linear op-
erator F has more columns nx than rows no (Figure 5). This is because the
minimum singular value is zero in this case (i.e., σmin(F ) = 0)), which leads
to unbounded stability constants in other error measures (Table 2).

• Stochastic Galerkin often leads to divergence in different error measures (Fig-
ure 3). In this case, applying LSPG with the appropriate targeted error
measure can significantly improve accuracy (Figure 4).

Future work includes developing efficient sparse solvers for the stochastic LSPG meth-
ods and extending the methods to parameterized nonlinear systems.
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[2] I. Babuška, R. Tempone, and G. E. Zouraris, Galerkin finite element approximations of
stochastic elliptic partial differential equations, SIAM Journal on Numerical Analysis, 42
(2004), pp. 800–825.

[3] A. Barth, C. Schwab, and N. Zollinger, Multi-level Monte Carlo finite element method for
elliptic PDEs with stochastic coefficients, Numerische Mathematik, 119 (2011), pp. 123–
161.

[4] P. B. Bochev and M. D. Gunzburger, Finite element methods of least-squares type, SIAM
review, 40 (1998), pp. 789–837.

[5] P. B. Bochev and M. D. Gunzburger, Least-Squares Finite Element Methods, vol. 166,
Springer Science & Business Media, 2009.

[6] A. N. Brooks and T. J. Hughes, Streamline upwind/Petrov-Galerkin formulations for convec-
tion dominated flows with particular emphasis on the incompressible Navier-Stokes equa-
tions, Computer Methods in Applied Mechanics and Engineering, 32 (1982), pp. 199–259.

[7] K. Carlberg, M. Barone, and H. Antil, Galerkin v. least-squares Petrov–Galerkin projection
in nonlinear model reduction, Journal of Computational Physics, in press (2016).

[8] K. Carlberg, C. Farhat, and C. Bou-Mosleh, Efficient nonlinear model reduction via a
least-squares Petrov-Galerkin projection and compressive tensor approximations, Interna-
tional Journal for Numerical Methods in Engineering, 86 (2011), pp. 155–181.

[9] K. Carlberg, C. Farhat, J. Cortial, and D. Amsallem, The GNAT method for nonlinear
model reduction: effective implementation and application to computational fluid dynamics
and turbulent flows, Journal of Computational Physics, 242 (2013), pp. 623–647.
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