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APPROXIMATE SOLUTIONS OF INVERSE PROBLEMS FOR
NONLINEAR SPACE FRACTIONAL DIFFUSION EQUATIONS WITH
RANDOMLY PERTURBED DATA

ERKAN NANE AND NGUYEN HUY TUAN

ABSTRACT. This paper is concerned with backward problem for nonlinear space fractional
diffusion with additive noise on the right-hand side and the final value. To regularize the
instable solution, we develop some new regularized method for solving the problem. In the case
of constant coefficients, we use the truncation methods. In the case of perturbed time dependent
coefficients, we apply a new quasi-reversibility method. We also show the convergence rate
between the regularized solution and the sought solution under some a priori assumption on
the sought solution.

Keywords: Inverse problem for fractional heat equation, truncation method, approximate solu-
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1. INTRODUCTION

In this paper we focus on the problem of finding the initial function u(x,0) = wug(z) such
that u(x,t), t > 0 satisfies the following final value problem for the nonlinear equation with
fractional Laplacian

ug + a(t)(=A)Pu = F(u) + g(z,t), (x,t) € Q x (0,7),
ug(z,t) =0, x € 012, (1)
u(z,T) = urp(x), x €,

where 5 > % is a given constant, see equation (B2]) for this restriction on . The domain
2 = (0,7) is 1-D domain. The function F' and g are called the source functions which will be
defined later. a(t) is a given time dependent coefficient. The function up is called the final
value data. (—A)? is the fractional Laplacian that will be explained in Section 2. The space
and time fractional diffusion has been studied recently in [6]. In this paper, we only consider
the problem with fractional order of space variable defined by spectral theory. Our fractional
Laplacian in this paper differs from the fractional Laplacian defined in [6].

The problem (IJ) with 5 = a(t) = 1 is the backward problem for classical parabolic equation.
These problems are applied in fields such as the heat conduction theory [I], material science [16],
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hydrology [2, [15], groundwater contamination [I7], digital remove blurred noiseless image [4] and
also in many other practical applications of mathematical physics and engineering. It is well—
known that the backward parabolic problem is severely ill-posed (see [I1]). The solutions do not
always exist, and in the case of existence, the solutions do not depend continuously on the given
initial data. In fact, from small noise contaminated physical measurements, the corresponding
solutions will have large errors.  Therefore, some regularized methods are required to find
approximate solution. If 8 = 1, the deterministic case for Problem () has been studied by
(14, 21, 22].

The analysis of regularization methods for the stable solution of Problem (II) depends on the
mathematical model for the noise term on the source function g and the final value data wurp.
We suppose that the measurements are described by functions

¢°™ = g+ "noise”, U = up + "noise”. (2)

If the noise is considered as a deterministic quantity, it is natural to study the worst-case
error. In the literature a number of efficient methods for the solution of (Il) have been developed:
see, for example, [3, 8], and the references therein.

If the errors are generated from uncontrollable sources such as wind, rain, humidity, etc,
then the model is random. If the noise is modeled as a random quantity, the convergence of
estimators u(x, 0) of u(x,0) should be studied in statistical terms. More details on ill-posedness
of the problem (I]) in the case of F' = 0, 5 = 1 with random noise can be found in [I3]. Methods
for the deterministic cases cannot apply directly to this case. Our main purpose in the random
noise case is finding suitable estimators u(z,0) of u(z,0) and consider the expected square error
E||w(z,0) — u(z,0)||, also called the mean integrated square error (MISE).

There exist a considerable amount of literature on regularization methods for linear backward
problem with random noise. In Cavalier [5], the author gave some theoretical examples about
inverse problems with random noise. Mair and Ruymgaart [12] considered theoretical formulae
for statistical inverse estimation in Hilbert spaces and applied the method to some examples.
Recently, Hohage et al. [9] applied spectral cut-off (truncation method) and Tikhonov-type
methods for solving linear statistical inverse problems including backward heat equation (See
p. 2625, [9]). In the linear inhomogenous case of (), i.e, 8 = 1 and F' = 0, the Problem ()
has been recently studied in [I3] in two space dimensions.

To the best of the authors’ knowledge, the backward problem for nonlinear parabolic equation
with random noise was not investigated in the literature. This is one of the motivations of our
present paper. Next we discuss the difficulty of investigating the nonlinear problem. A well-
known fact is the following: if F'(u) = 0 then the problem (Il) and (2] can be transformed into
a linear operator with random case

ur = Cup + "noise”. (3)

Where C'is a linear bounded operator with an unbounded inverse. There are many well-known
methods developed by Cavalier [5], Hohage et al [9], Siltanen [10], Trong et al [I§] as above, for
solving the latter linear model. However, when F' depends on u, we can not transform Problem
() into a linear one, this makes the nonlinear problem more difficult to study. Therefore, we
have to develop some new methods to solve the nonlinear problem.

In this paper, using a similar random model given in [I3], we consider the nonlinear problem
as follows

/ET(xk) = uT(xk) + o€k, gk(t) = g(l'k,t) + 0§k(t)7 for k= 17n7 (4)
k—1

where z, =7 and € are unknown independent random errors. Moreover, e ~ N (0, 1),

and oy are unknown positive constants which are bounded by a positive constant V4., i.e.,

0 < ok < Vipax for all k = 1,--- ,n. &(t)’s are Brownian motions. The noises e, & (t) are

mutually independent. A similar model with noise in equation (@) without the g part has been
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recently considered by Tuan and Nane [19].

Next we give some details about our methods for the following two cases

The first case: a(t) = 1. First, we transform the problem (IJ) into a nonlinear integral equation,
then we apply the Fourier truncation method(using the eigenfunctions cos(pz), p = 0,1,2--- of
the Laplacian in the interval (0,7) with Neumann boundary conditions) associated with some
techniques in nonparametric regression to establish a first regularized solution U ys,, »(z,t) which
satisfies ([B3)). To obtain the estimate between Uy, ,, and u, we need some stronger assumptions
on u, such as ([27) and (29). The main result is Theorem However, as pointed out
in Remark 5] the assumptions (7)) and (29) are difficult to come up in practice. Motivated
by this, when g = 0 we develop a second regularized solution (//\'an defined by (69) to obtain
the estimate for u € C([0,7]; H(R2)) (see Remark 2.5 for more details). The main result for
the second type of regularization is given in Theorem [Z.8. It is important to realize
that the second regularized solution is a modification of the first regularized solution. Our
methods in this paper can be applied to solve many ill-posed problems of nonlinear PDEs such
as Cauchy problem for nonlinear elliptic, nonlinear ultraparabolic, nonlinear strongly damped
wave equations, and many others.

The second case: a(t) depend on t and is perturbed. Note that if the coefficient a in the
main equation of ([I]) is not noisy then the Fourier truncation method in [2I] can be applied to
Problem (). However, the difficulty occurs for (86) when the time dependent coefficient a(t) is
noisy. Indeed, we assume that a(t) is noisy by observed random data a(t) which satisfy that

a(t) = a(t) + €&(t) (5)

where £(t) is Brownian motion. If we have used a Fourier truncation solution for (), then the

regularized solution would contain some terms such as exp (pw ftT fts E(T)des), which would
lead to some complex computations. Hence, we don’t follow the truncation method as in [21],
instead we develop a new method to find a regularized solution. We will apply a new quasi-
reversibility method for solving the problem. Further details of this method can be found in
Tuan [21]. In this case our main results are Theorems and 3.7

In this paper, we only study the upper bound of the convergence rate. In a future work, we
will study the minimax rate of convergence for finding the optimal rate. The problem of finding
minimax rate is a very difficult and interesting problem.

2. REGULARIZED SOLUTIONS FOR BACKWARD PROBLEM FOR NONLINEAR FRACTIONAL
SPACE DIFFUSION

2.1. Some Notation. We first introduce notation, and then state the first set of our main
results in this paper. We define fractional powers of the Neummann-Laplacian.

Af = —Af. (6)

Since A is a linear densely defined self-adjoint and positive definite elliptic operator on the
connected bounded domain €2 with Neumann boundary condition, the eigenvalues of A satisfy

AM=0< A <A<l <2 <
with A, = p? — 0o as p — oo; see [7]. The corresponding eigenfunctions are denoted respectively

by ¢p(z) = \/gcos(px). Thus the eigenpairs (\,, ¢p), p =0,1,2, ..., satisfy

App(z) = =Nppp(x), x€Q
Opp(x) =0, x € oS



The functions ¢, are normalized so that {¢;};2 is an orthonormal basis of L2(9).
Defining

HY(Q) = {v € L*(Q ZA2’Y| 2 < —|—oo}

where (-, -) is the inner product in L?(2), then H?(Q) is a Hilbert space equipped with norm

Wl = [ DA (v
p=1

Next we define the fractional Laplacian operator using the spectral theory.

1/2

Definition 2.1. Let f € L*(Q). For each 8 > 0, we define fractional Laplacian using the
spectral theorem as follows

A= (=01 =30 (1 )yl (7)
p=1

where ¢p,(z) = \/g cos(pz). More details on this fractional Laplacian can be found in [§].

In this section we assume that a(t) =1 and 5 > 1/2.

2.2. The solution of the problem (IJ).

Lemma 2.2. If the problem (0l) has solution u then it is given by
- T—t)p g t g t)p?8
=3 [er0 uray) - | e g — [ B @i, @)

where gp(t) = < (-, 1), q§p> and Fp(u)(t) = <F((u(-7t)))7¢p>

Proof. Suppose the Problem (1) has the solution u which given by Fourier series
o0
) =D up(B)ép(x), where up(t) = (u(-t),p ). (9)
p=1

Multiplying both sides of the equation u; + (=A)’u = F(u(z,t)) + g(z,t) by ¢p(z) and inte-
grating over (2 leads to

D (0)+ 0 uy(0) = Fy(ult)) + gp(0). (10)

Here we have used Definition (2.1]). Multiplying both sides of ([I0]) by epwt, and by taking the
integral from ¢ to T we get

/t (7 (o)) (5)ds = / "o g (s)ds + / " e B (u(s)ds )

The latter equality can be transformed into
T T
)28 )28
up(t) = eT=0p < ,qﬁp> / els=tp gp(s)ds — / els=tp F,(u)(s)ds (12)
t t

where we note that u,(T) = <uT, ¢p>. This completes the proof of Lemma. O

First, we state following Lemmas that will be used in this paper
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Lemma 2.3. [Lemma 2.4 in [19]] Let p,n € N such that 0 < p < n — 1. Assume that ur is
piecewise C* on [0,7] . Then

1 -
- > oh—iur(z) — Gno, p=0,
<uT7 ¢p> - (13)
% Sy ur(@k) by (@) — Gop, 1<p<n-1
where
2
_ \/szO;(—l)l@T’ P2in) p=0,
Chp = ! (14)
S (=D (ur, dprom) + (ur, d—proim)], 1<p<n-1.

Applying Lemma we obtain the next result.

Lemma 2.4. Let p,n € N such that 0 < p < n — 1. Assume that x — g(x,t) is piecewise C*
on [0,7] . Then

LS ook, t) — Haol), p=0,
(9 (1), dp) = _ ) (15)
2=t 9k, (@) — Hup(t), 1<p<n-1.
where
\/%Zfol(—l)l@ (1) s Patn), p=0,
H,(t) = (16)

Z?il(_l)l [(g ('7t) 7¢p+2ln> + <g ('7t) 7¢p+21n>] ) 1< p<n-— 1.

We use the following representation of u in the next lemma to find an estimator of u(z,t).

Lemma 2.5. Suppose that problem ([Il) has solution wu, then u can be represented as follows

u(x,t) = @an(uT)(x,t) - (SMn,n(g)(xvt)

My, os ~ My, T os ~
- Z e=tp Grpdp(T) + Z / els—tP an(s)ds] Pp(z)
0 p=0

_ t

t

My, T o ]
—Z[ e By s)ds 6,

+ Z [e(Tt)pwup(T)—/Te(st)pwgp(s)ds—/T e(s*t)prp(u)(s)ds op(z). (17)
t t

p:Mn+1

Here M, is the parameter depending on n such that 0 < M, <n. The terms ﬁl, G are defined
in Lemma[24. ®,® are defined for all f € L*(2) as follows

n M, n
Bt () 1) = = flag 1) + 3 TP [g >, t)%(m)] o) (18)
k=1 p=1 k=1

and

- 1 & M T s [T —

Opgn(F)(@,t) = = flagt)+ / els=p (— f(wk,t)%(wk)) d8]¢p(w)- (19)
= p=1 |71 =




Proof. By Lemma 2.2, we get

u(z,t) = i _G(T_t)pwup(T) n /T e(s_t)pwgp(s)ds_ /T oo Fp(u)(s)ds | gp(x)
o L t t J
My T T T ]
=3 T (1) — [0 g (s)ds = [ e ) s)ds | 9y (a)
oL t t J
=Aq
T 5 T 2
n Z [ (T—t)p up(T) _/ ols—00p ng(s)ds _/ els—tp BFp(u)(s)ds] op(z). (20)
p=Mp+1 ¢ !

By using Lemma 23] and [Z4] we obtain

By a simple computation, the term A; is equal to

My,

Ay = @y, o (ur) (2, t) — ‘SMn,n(g) (z,1) — Z e(T=0p* énp(bp + Z / (s=0p*? np(s)d3] Pp(z)
p=0

—Z [/ e By () (s )dS] Pp()- (22)

Combining ([20) and ([22) gives the proof of the Lemma.

O

2.3. Fourier method and regularization. We make use of the following assumptions on the
functions F, g

(i) F € L>*(R) and F'is a Lipschitz function, i.e. there exists a positive constant K such that
[F(&1) — F(&)| < K[61 — &f, V6,6 R (23)

(ii) There exists positive constant v > 1 such that

sup [ZM )0p) | < Ba (24)

0<t<T
(iii) The regularized parameter M,, satisfies

M 1 2T M2?
lim ( nt )e

n—-+4o0o n

bounded. (25)

Theorem 2.6. Suppose B > 1/2 and a(t) = 1 in equation [{l). We construct a reqularized

approzimate solution of equation (Il) denoted by Uan that is defined by the following nonlinear
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integral equation

/T (s—tp* Ey(Ung, ) (s)ds | dp(x).

My,
Uan(x,t) = (I)Mn,n(aT)(x’t) - 5an(§)(:c,t) - Z [ ]

p=0
(26)
The terms ®p, n(ur)(z,t) and %an(ﬁ)(x,t) are defined above in equations ([I8) and (I9)
respectively. Assume that problem () has unique solution u € C([0,T]; L%()).
If there exists Py such that

[ee]
sup > e <l t), ¢, > 2 < Py (27)
0<t<T o=
Then we have
_ 2 M. 4 1)e2TMa
EHUMn n(7t) o u(,t)‘ < 6672M,215t [Cg( n+ )6 + Pl] eGK(T*t). (28)
’ L2(Q) n
If there exists a > 0 and P, such that
[ee]
sup > pPPe | < (1), ¢, > [ < Py (29)
0<t<T =

Then we have

+ M, 2P Py | SKT=D - (30)

— ony28 M, +1 ezTM’QLB
BT a4, 1) — 1) g < G2t [0 Wt D

Remark 2.1. In the previous Theorem, with the estimate in [28), we could get the error
estimate for t > 0 but the error estimate for t = 0 is not useful. Hence, we need to assume
Q) to obtain the error estimate for t = 0. It is easy to see that for t = 0, the error is of order

oM 2P .
max <7(M"+1)e - , My, 2B .

n

Remark 2.2. Let us choose M, as follows

MY — o 0<o <1 (31)
Then we have )
o 1

M, = <ﬁ log(n)) 7 (32)

If 1) holds then the error E|Unz, n(-,t)
If 29) holds then the error E|Unz, n(-,t)

- u(-,t)H%Q(Q) is of order n~T .
- u(-,t)H%g(Q) is of order

(o8 (7 g ).

Hence if 29) holds and t = 0 then the error E||U p, n(+,0) — u(-,O)H%Q(Q) is of order

1

= log(n))?? /o —a
max (—(2T iy ) , (ﬁ log(n)) >
Proof of Theorem We divide the proof into two parts.

Part 1. The existence and uniqueness of the solution to the nonlinear intergral equation (26]).
Let us put

_ ot
n~ T max T
n —0

Mn
G (w(z,t) = ‘I)an(aT)(.%',t) - E)an(g)(m,t) - Z [

p=0

T
/e(st)prp(w)(s)ds]¢p(x). (33)

t
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for w € C([0,T]; L3(Q)). We claim that for every v,w € C([0,T]; L%())

K2T 2T M C

&) - & @) < y LT~ will (31)
where ||.]|| is the sup norm in C([0, T]; L?(Q2)). For m = 1, using Hélder’s inequality we have
T [T 28 ’
IG@)(+1) = Gw) (- Dl 2@y = 5 D /t =0 (Fy(v)(s) = Fyl(w)(s) ) ds
p=0 L
- My [ 25 T 2
<z / 2s=0P% g / <Fp(v)(s) - Fp(w)(s)) ds
2 t t
p=0 L
ren | 24 T 2
<33 |emr o [ (B - Bw)e) d
p=0 L ¢
2T M;° - g 2
=03 | [ (RO - Aw)) s
p=0
25
< TV (T )| F(0)(,) — F(w)( 1) 22 . (33)
Using the fact that F' is globally Lipschitz, we get
I (0)(t) = F(w) (1) |72y < K2 [o(t) = w(.,)l|2L2 () < CK|[Jv —wl]|. (36)

Combining (35]) and ([B0), we conclude that (34]) holds for m = 1. By a similar method as above,
we can show that ([34)) holds for m = j for j € N. It is obvious that

K2T 2T M C

lim — = 0. (37)
m—r+00 m!

It implies that there exists a positive integer number myg, such that G™° is a contraction. It
follows that the equation G™v = v has unique solution Uy, , € C([0,T]; L*(2)). We claim
that G (U, n) = U, n- In fact, we have

G (G™ (Unnn)) =G (Untym) (38)
Hence
G (G (Uhyn)) = G (Untyn) (39)

The latter equality leads to G (UMn,n) is a fixed point of G"°. By the uniqueness of the fixed
point of G™0 | we can conclude that G (Uan) = Upy, n- Part 1is completely proved.

Part 2. The error estimate between the regularized solution Uy, ,, and the exact solution
u.
8



From Lemma we get

Uan(CU,t) —u(z,t)
= @, 0 (@) (@, 1) = Pas 0 (ur) (@, ) + Pa, () (2,1) = Par, ) (1)

Bi,v,n () Bo vin ()
My, s ~ My, T 28 ~
+ el an¢p<x>—z[ / elemor an<s>ds] bp(2)
p=0 p=0 t
B3 vin () By, vin ()
M, T i o
-y [ / =0 (B (T ) —Fp<u><s>)ds] e
p=0 L7?
B5’1\/1":L(:B,t)
S (T—t)p*? ’ (s—t)p?? ’ (s—t)p*P
- > e u,(T) — | e gp(s)ds — [ e E,(u)(s)ds | ¢p(x) (40)
p=Mp+1 t t

/

Be, My, 0 (w5t)
This implies that
U1, (, ) = w720y < 61 Brasnll 20y + 6l B2asnll72 ) + 61 Bsarnllz (g
+ 6HB4,MWHL2(Q) + 6] Bs, vl 720 + 6l Bo vl 720 (41)

Step 1. Estimate E||Bl,Mn7n||%2(Q).
Using the fact that up(xg) = up(zk) + orex, we get

o n(ur) (@, ) — g, n(ur) (2, 1)

1 ~
= {UT(%)(%) - UT(xk)]
k=1
My, i n
£y el [a 3 (u(an) — ur(en)) ¢p<xk>] e
p=1 k=1
1 n My, e n
== Z oRer + Z e(T—t)p [E Z o'kekgbp(xk)] op(z). (42)
k=1 p=1 k=1
The Parseval’s identity implies that
HBl,Mn,nH%2(9) = H(I)M,n(ﬂ:r( t) — ®prn(ur)( H
1 n 9 Mp, n 2
0
k=1 p=1 k=1

Since the noises ¢ are mutually independent, we obtain E(e;ex) = 0. Hence

1 n My, 7T2 n

2 29 2 2(T—t)p2P 29 2

E|Bi M nll20) = ﬁZ%Eeiﬂ'Z@ (T=dp EZ%E%
= k=1

n 2(T—t)pP
Zp 06( )

n

V2
< max max ZeQ(T t)p < 22

max

(44)

9



Step 2. Estimate EHBQ,anH%Q(Q).
From equations (), (I8), (I9), we deduce that

®rtn (@) (1) = Patn(9)( )
1 n M,
==Y G+ / els=tp ( Zﬂsk ¢pxk>>ds]¢p<x>- (45)
k=1 p=1 /1

The Parseval’s identity implies that

L2(Q n2 [Zﬁgk
+Z/t ele=0p <Zﬁsk ¢pmk>>

From the properties of Brownian motion, we know that E[&;(¢)&(¢)] = 0 for k # i and EEZ(t) =
t. By the Holder’s inequality, we obtain

[®36,0@) 1)~ Fag ) 1)

2
(46)

0t L 4 2 28 Tl g 2 ¢2 2
E| Ba,u, nll72(0) < —+ [/ 25—t ds/ ﬁzﬁ Eﬁk(s)%(wk)ds]
p=1 7t t k=1
92T Z " e2(T—t)p*F Z n J2(T—t)p??

e
<~ 49273 < (T + T%) == . (47)
n n n

Step 3. Estimate HBgan,nH%Q(Q).
First, we have the following inequality
[Fp(u(®)| < 1F(u(-, )l r20) < [1F(0)]r2(q) + Kllull2(9)
< [[F(0)l[L2(0) + max(K,1) sup |lu(.,?)llr2@),  (48)
0<t<T

/

=F
and [u(.,0)||g2(q) < E. This implies that for all p € N,p > 1
—Tp?s ’ (s—T)p**
‘<u(-,T), ¢p>‘ = up(0) + ; e F,(u)(s)ds
1— e T E E _E

_Tp2B 1
< e P ful, 0)lp2 () + ——55—IF ()= < 75 55 < 8
29 T2 T 52 =

where El = % + FE.
Now, we estimate the term G, for p > 0. From equations (I6) and ([@9)), we have the bound

for énO
Gno < \/72! (ur, pan)| < \/72 225125n2ﬁ (50)

and the bound for énp

[e.e]
Grp < <uT, ¢p+21n> + <uT, ¢_p+21n>
=1
o 00 — .
E 1 2F 1y 1
=k (p + 2In)28 o S B ( —> —=. 51
> ; (p + 2[7’1,)25 + £ (_p+ 21n)26 = 48 ; 128 ) 2B ( )

10



[e.9]
Since g > % by assumption, we know that the series z 75 converges. Let us denote

C\(6. By - 2/ 22 Z s 62)

Then combining (B0) and (BI)) gives

~ _Ci(BE
Grp < 1(#/31) forall p>0. (53)
n
This leads to the following estimate
M, My, _2(T—t)p?P
2P| & > _p—0 €
1B, a2y = Y €27 an\ < C}(B,En) vT: - (54)
p=0
Step 4. Estimate HB47Mn,7lH%2(Q)'
Using the assumption (24]), we have
_ Es
(90:100) =277 < (1), 6 >< 2 (55)

for v > 1. From equation (B3]), we estimate HnO as follows

\/72’ ) s Pain)| < \/72 P = (Z;EQ). (56)

Forp>1
_ [ee]
an(t) < Z <g (" t) a¢p+2ln> + <g (', t) ,¢—p+21n>
=1
0 0 - 0 -
~ 2E2 1 1 CQ(")/, EQ)
< E < < —) —_ < == 57
= ; (p+ 2In)7 + p= (=p+2n)7| = 27 ;Z’Y nY = (57)
where B
~ 2 By = 1
Ca(y, B2) = 2\/;27 ; ik
This leads to the following estimation
M, T vy ~ 2 N ZM:L S2AT—1)p*
HB47Mn7nH%2(Q) — Z% [/t o(s—t)p H,p(s)ds| < T?C3(y, Ey) == 5 (58)
p:
Step 5. Estimate E||Bs as, /|22 @ Using Holder’s inequality and Lipschitz property of F', we
have
My, T 0 o 2
1Bs A 1720y = D [ / els=tp <Fp(UMn7n) —Fp(u)(s))ds]
p=0 L/t

My, T ) . 9
<y / 2e0p? (prMn,n) ~ Fylu)(s)) ds
p=0"1

<K /t eZ(s—t)Mr?BHUMM(.,s) =l 8)l2a 5. (59)



This implies that
T 28 __
EHB57Mn,nH%2(Q) = K/t A E[[Un (- 8) = U(-ﬁ)”%%mds- (60)
Step 6. Estimate HBﬁvanH%Q(Q).

o If ([27) holds then we get

o0

[ee]
2 o oh, o8 2
1Boaroaliomy = > (uCa000) = D e (u(,1),6)
p=Mp+1 p=Mn+1
< e MM (61)
e If ([29) holds then we get
> 2
1Boanalto = D (ul-0).6,)
p=Mp+1
- 243 26 2 28, ~
_ Z p a2 2p tp2ﬁa<u("t)’¢p> SMn—Zﬁae—ZMn tp,. (62)
p=Mp+1

We divide proof of the theorem in two cases:
Case 1: When equation (27) holds.
Combining six steps above, we get
BT 11, () — w20
< GOE||Bi,u, nll* + 6Bl Bz,ar, ull® + 61| Bs a1, I

+ 6l Biat,nll? + 6E|Bs,at,,0l1” + 6] Beas, ol

M o 2A(T—t)p*”
_n€
< 6(7T2V1121ax +9%(T + T3)> 2p=0
n
_ Z]\/iner(Tft)pw _ z]\/inoe2(Tft)p26
+ 6CH(B,E)=E 5 +6T2C3 (v, Ba) =L —

oMt g 2(s—t) M’ |77 2
+  6e P+ 6K e " EHUan(-,S) _u('as)H ds.
¢
This leads to
EUn,n(t) = ul- )72

<7r2V2

max

- = (g, + 1)e2T-0M
FOT 4T + CHB, ) + T3, By | Lt D

<6
- min(n, n*?, n?7)

T
+ e 2Mtp GK/ 2 OMP R T (. 8) —ul., )72 ds-
t

2M32B¢

Multiplying the latter inequality with e , we obtain

(M + 1)e2TM”

6P
min(n, n4%,n27) o

28 —
MR [T pg (1) — ul-, )22y < 6C3

T
+6K/t eZSMwEHUan(.,s)—u(.,s)Hig(Q)ds. (63)

12



: (M41)e2TM . - . .
Since 66’3m does not depend on t, using Gronwall’s inequality, we obtain

(M, + 1)62TM35

2B — = —
MBI T pg, () =l 1)[32(q) < 6Cs + 6P [OF T (6

Case 2: When equation (29) holds.
By similar method as in the previous case, we get

(M, + 1)e2T M2

eQM’%BtEHUMn,n(Ht) _ U('J)H%%Q) < [603 + 6Mn—26a§2} SE(T—t) (65)

when ([29) holds. O

Remark 2.3. In a future work, we will study the random case for final value problem for the
time and space fractional diffusion equation in the sense of Chen et al. [6].

Remark 2.4. In theorem [2.8] we assumed that the source function F is globally Lispchitz. In
some applications of our model, the extension to locally Lipschitz source functions is required.
Suppose that the source function F': R — R satisfies that

|F(u) — F(v)] < Kr(Q) Ju— v, (66)
for each Q > 0 and for any u, v with |ul|, |v| < Q, where

F(u) - F(v)

u—"v

Kr(Q) = sup{‘

:!u\,!vlscz,u7év}<+oo-

Suppose that Kp(Q) is increasing and lim Kp(Q) = +o0. In this case, as used by Tuan [20]

Q—+o0

we approximate F by FQn defined by

o F(Qn)a u(m,t) > Qn,
FQn (u(x’t)) = F(u(m,t)), _Qn < u(m,t) < Qm
F(—Qn), u(z,t) < —Qn.

where the sequence @, — +00 as n — +o0o. Using equation ([28)), we introduce the following
reqularized solution

UMQOn(.%',t) = (I)an(a’]“)(l',t) - ¢Mnyn(§)(x7t) - § [/ 6(57t)p26Fanp(UMnanyn)(s)ds (bp(x)
t

p=0
(67)

Using a similar method as in the proof of Theorem [2.8, we can get the error estimate of u by
U, Qnn- We omit the details of the proof here.

Remark 2.5. In Theorem[2.4, to obtain the error estimate, we require the strong assumptions
@7) and @9) about u. This is a limitation of Theorem 1. There are not many functions u
that satisfies these conditions. Especially in practice, these conditions are more difficult to be
satisfied and checked. To remove this limitation, we introduce a new reqularization solution and
introduce a new technique to estimate the error in Theorem[2.0. In fact, in the next theorem we
only need a weaker assumption for w. We assume that w € C([0,T]; HY(0,7)) for any v > 0.
This condition is more natural.

We have the following Lemma which gives a new representation of the solution when g = 0
in equation ().

13



Lemma 2.7. Suppose that g = 0 and that the problem () has solution u then it is represented
as follows

My

u(e,1) = Parur)(@,t) = Y e Gy (@)
p=0
oo t
_ Z [/ 0P B ) (s )d,s] NOEEDY [/ e(st)prp(u)(S)dS] 40 2)

p:Mn+1 0

+ Z e~ 1y (0)gp (). (68)
p=Mn+1

Proof. The proof is a simple adaptation of Lemma and we omit it here. O

Theorem 2.8. Let g = 0. Assume that 5KT < 1 (where K is the Lipschitz constant of F in
equation [23) and the problem () has unique solution u such that w € C([0,T]; H"(2)). We
construct another regularized solution Uy, n which is defined by the following nonlinear integral

~ M, T ) R
Uty () = g, (i) (,8) = D [ / els=tp BFP(UMn,n)(S)d‘S] Pp(z)
p=0 ¢
+ Z [/ =08 By (Unt, ) (5)ds | (). (69)
p=Mp+1

Moreover, we have the following estimate

52V 2

~ Mp+1 QTJ\J%B —9
_ ) gy (BT Vi + CR(B, By) ) S 502 [u(0)]2
Bl| 0t n (1) = u(-, )22y < €720

1 —5kT

).
(70)

Proof. Part A. The integral equation (69) has unique solution in C([0, T]; L?(2)). Let us define
on C([0,T]; H) the following Bielecki norm

Ifllr = sup ™| f(¢)]], for all f € C([0,T];L*(Q)).
0<t<T

It is easy to show that |[.||; is a norm of C ([0, T]; L?(£2)). For w € C([0,T]; L?(2)), we consider
the following functional

t

My,
T (w)(t) = @,y 0 (ur)(z,t) — Z [

p=0

> [ [ eor "Fp<w><s>ds]¢p<x>, ()

p=Mp+1

T 28
e Fp<w><s>ds] e

where F,(w)(s) = (F(s,w(s)), ¢p). We shall prove that, for every wy,ws € C([0,T]; L*(12)),

1T (w1) — T (we)|l1 < KT|lwi — wall1. (72)
14



First, by using Holder’s inequality and Lipschitz condition of F', we have the following estimates
for all ¢t € [0, 7]

My,

Z </tT ols—tip*” {Fp(wl)(s) — Fp(’l,UQ)(S)i|ds)

p=0

2

<(T-1) fj / ' =7 [ By (w1)(s) = Fp(wa)(s)] | ds
p=0""

2
ds

Fp(w1)(s) = Fp(w2)(s)

M, T 25
S (T _ t) Z/ 62(S—t)Mn
p=0"t

T
< KX(T —t) / 20N oy () — ws(s)]*ds
t
5 B
< e MP K27 )2 sup XM ||wy (s) — wa(s)]?
0<s<T
— 26
— 2 KT )2y — w2, (73)
and

o0

¢ 2
Z </0 ols—t)M2’ [Fp(w1)(s) —Fp(wg)(s)} ds)

p:Mn+1

<t i /ot ‘e(s_t)MZB [Fp(wl)(s) — Fp(wg)(s)] ‘st

p=Mpn+1

o Z /Ot 62(sft)M¢2LB ‘Fp(wl)(s) B Fp(wg)(s)‘QdS

p:Mn+1
2, [ a(s—tym?? 2
<K t/ 2EOMaT 0 (5) — wa(s)]2ds
0
8 8
< e MR sup @Ml (s) — wa(s)
0<s<T
_ 2p
= e 2Mi” K242 |y — w3 (74)
From the definition of 7 in ([{1]), we have

My,

T 28
T(wi)(t) = T (w2)(t) = ( - / M (1) (5) = Fp(w2) (5)| ds) dp()
p=0 ¢

o0

+ ) ( /0 e(s_t)Mzﬁ[Fp(wl)(s)—Fp(wg)(s)]d8>¢p(x). (75)

p=Mn+1

Combining (Z3), (), ([H) and using the inequality (a + b)* < (1 + 6)a® + (14 3) b? for any
real numbers a,b and 6 > 0, we get the following estimate for all ¢t € (0,7")

1T (1) 1) = T(w2)(,1)[[2 < e 207 K21+ )1 [y — s}

1
+672tM’2LﬁK2 <1+ 5) (T — t)?||wy — w3 (76)
By choosing 6 = %, we obtain
28
M T (wr) (t) — T (wa) (8)||* < K2T?|Jwy — wa|)3, for all ¢ € (0,7). (77)
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On other hand, letting ¢ = T in (74]), we deduce

M| T (wn)(T) = T (wa) ()| < K2T2|wy — wo . (78)
By letting ¢ = 0 in ([73]), we have
17 (w1)(0) = T (w2)(0)|* < K*T?|Jwy — wol|7. (79)

Combining (7)), (78) and (79), we obtain
26
M| T (wi)(t) = T (wa) ()| < KT |wy —welly, 0<¢ < T,

which leads to (2). Since KT < 1, we can conclude that J is a contraction; by the Banach
fixed point theorem, it follows that the equation J(w) = w has a unique solution Uy, , €

C([0,77]; L*())- .

Part B. Estimate EHﬁan(-,t) - u(-,t)][%2(ﬂ). We have

M,
Uty (,8) — w(z,t) = g, (i) (2, 8) = Py (ur) (@,8) + ) TP Gy ()
B1,M;,rn($7t) p=0
B3 vin ()
M, T o R
-> [/ el =t (Fp(UMn,n) - Fp(U)(S))CLS] Pp(z)
p=0 Lt
Bn]ul(:l),t)
.- ' (s—t)p*? 77
+ 3| [ (B (Orgn) — Fyp(w)(s) ) ds | ()
p=Mn+1 0
Bg, My, n (1)
— 3 P (0)g,(2). (80)
p=Mn+1

By a1y, n(2,t)

This implies that
E||[Tat, (1) = ul B)l[72() < SEBratyn(B)l[72() + 51Bs atn (- )17 0
+ 5Bl Br,a1,n (Ol 2 () + SEl Bs a1 720
+ 5/ By, a1, (-5 1) 172 (81)

Using Holder’s inequality and Lipschitz condition of F', we have

My, T 2
HB7yMn7n(.7t)H%2(Q) = Z [/t e(s=0P* <Fp(UMn7n) - Fp(u)(s))ds]
p=0

M, T R 9
< Z/ o2(s=0)p*? (Fp(Uan) — Fp(u)(s)> ds
p=0"1
g 2(s—t) M2 |73 2
<K [N T 5) = a8 (52)
The term E| Bz, (-, t)H%Q(Q) is bounded by

T 23 ~
Ewmmmm@@gK[e%“mEWMMﬁ%wuﬂ@@m (83)
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By a similar way as above, we estimate E| Bg , (-, t)]/% (@) 88 follows

t _ 28 ~
E”B&an("t)H%Q(Q) < K/o Al M E[|Unt,n(.,5) — U(wS)H%%Q)dS- (84)

Finally, we bound HBQ,Mn,n(Ht)H%?(Q) by

o0

2B _ 2
1Boatunl ey = Y. 07 (5up(0))
p:Mn+1

o

253 2
< MM N (i (0))
p=Mp+1

98y —2M2P
< M ?Pe M u(0) 1 () - (85)

We estimate the bounds for the other terms as in the proof of Theorem 2.6, hence we can
conclude that

(M, + 1)eXT-OM"
n

El| U0+ 8) = )32y < (572Vis + CH(8, E))

28y M2
+5M,, e M w(0) |3 (o

T 28~
LK /0 ML BTy, .y 8) — (., 8)|2 s,

where we combined ([80), (&), (82),83), 84), [B5). Multiplying the latter inequality with

oM2B¢

e , we obtain

(Mn + 1)62TM3LB
n

283 2 L
M B Org (-1 8) = ul DFaey < (572 Vi + CH(B, Bv))
+ 5My 25 [w(0) |7 (g

T 28 -
LK /0 M BN Orgy (e 5) — ul., 8)[22)ds.

Since (//\'an, u € C([0,T); L?(2)) we obtain that the function eZM'QLEtEH(//\'an(-, t)—u(, t)H%Q(Q)
is continuous on [0, T']. Therefore, there exists a positive

~ 28 ~
A= sup e2Mn tEHUMn,n(‘,t) - u(',t)H%Q(Q)‘
0<t<T

This implies that

+5M P u(-, 0) |3 0y + BRTA.

- N (M, +1 2T M3P
A< (57220 + 038, By)) M T

Hence
MR Dage (1) — ul-, )12
€ H an(? ) u(? )HL2(Q)
5m2V2

max n

~ M, +1 e2T]M,,%B 9
| + 3B, Br) ) U 50 fu(, 03
<A< .
=0 1—5kT
17



3. SPACE FRACTIONAL DIFFUSION EQUATION WITH RANDOMLY PERTURBED TIME
DEPENDENT COEFFICIENTS

3.1. Problem setting and regularization method. In this section, we consider the inverse
problem for space fractional diffusion equation with perturbed time dependent coefficients

ug + a(t)(=A)Pu = F(u(x,t)) + g(z,t), (z,t) € Q x (0,7),
Uy (2, t) =0, x € 08, (86)
u(z,T) = up(z), x € €,

where 0 < a(t) < ag for some positive number ag. Here, the source function F': R — R a locally
Lipschitz function that satisfies: for each @ > 0 and for any u, v satisfying |u|, |[v| < @, there
holds

|F(u) = F(v)| < Kr(Q) |u—v], (87)
where
F(u) — F(v)

u —

-

s ul vl SQ,u;«év} < +o0.

We note that the function @@ — K(Q) is increasing and lim K(Q) = +oo. Next, for the ease

Q—+o0
of the reader, we describe our regularized method and analysis.

First, we approximate u(z,T) and g(x,t) by

%

Wi, () = % > () + % > ﬂT(ﬂﬁk)%(ﬁﬂk)] bp(). (88)
=1

p=1 k=1
and
1 n My, T n
Gatn(@t) = = 3Gt + Y | =D Gl oplan)| ép(a), (89)
k=1 p=1 k=1

respectively. Second, we approximate F' by F¢ defined by

- FQ.  ult)>Q
Fo((e,t) = { Flu(,t),  —@Q < uln,t) < @,
for all @ > 0. Since K is increasing function in [0, +00), we choose a sequence {Q,} satisfying

Qn — 400 as n — +oo. Using Lemma 1.1 of the paper [20], we also have the Lipschitz
continuity of the function F'g from the following lemma

Lemma 3.1 ([20]). For v1.v2 € L*(Q), we have

IF Q. (v1) = Fq, (v2)llr2 (o) < 2K(Qn)llvr — vall2(0)- (90)

Next, since a(t) is noised by @(t), using the fractional Laplacian defined by the spectral
theorem we have

a(t)(=A)°f = a(t) Y p*" < f,dp > ¢p(x), | € LX(Q).

p=0

We approximate the operator a(t)(—A)? by regularized operator @(t)(—A)? — @R, 5. By
the observations and steps above, we present the following new regularized problem using the
quasi-reversibility method.
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Assume that a(t) < ag for all ¢ € [0,7]. We study the following regularized problem with
Neumann boundary condition

Wnon —
A (A) Was, i — a0Re5(Wa, )
= FQ, (W, (%, 1)) + G, (2, 1), (2,8) € Q% (0,T), (1)

OWar, n(x,t

2 M 7 (z,t) =0, x € 08,

ox
\ Wi, n(x,T) =Wp,, n(x), x €€,
where R,, 5 is defined by
ﬁn,g(v) = Z p2ﬁ<v’ ¢p>L2(Q)¢p(x)’ (92)
p=>Mnpay %

for any function v € L?(€).

In the remainder of this section we give two results on convergence rate of Wjy, », to u.
The first result in the next section concerns the error estimate in L?(€2). The second result in
subsection concern the error estimate in the higher Sobolev space H”(Q).

3.2. Error estimate in L%(Q).
Theorem 3.2. Suppose that M, satisfies
(M, + 1)62TM35

nll)rilm - bounded, (93)
and € satisfies that
lii% M ¢ pounded. (94)
Choose @, such that
lim 2TK@u)e=2 _ g g <4 <T. (95)

n—-+o00

Then the problem (@) has unique solution Wy, », € C([0,T); L*(12)).
Furthermore, assume that g,u € L*> <[O,T];‘N/(Q)>, where V() is defined in (ITTZ). Then

we have )
EHWMn,n(a t) - U(', t) H%Q () S e(QK(Qn)+4)Tei2tMn (b(na u, g, 57 6)7 (96)

where

+|C(8,u)|” + 72T%9* + T|D(6

max

62TM3LB

n

®(n,u,g,0,€) = ( 2y2

TMn
+ 6262 T2H HLOO oT} H%’(Q) (HUTHV(Q + THgHLoo( OT} V(Q)) + Ta%||u”2oo([07T};‘7(Q))>‘

Remark 3.1. Let us choose M, as follows

ATMY o 0 <o < 1. (97)
Then we have )
M, = <% log(n)) 7 (98)
_ [ _
Choose € < 0 < ne, and 0 < 0 < Los(,) Then n°e* < 0. Moreover, it is easy to check that M,

logn *
satisfies the condition of Theorem[3A. We can choose Q,, such that 2K Q)T =T bounded as
n — 00. In particular we can choose )y, such that

1
K(Qn) < 5 log (log(n) ). (99)
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We note that the term log (log(n)) — +00 as n — 0o. The choice of Q, as in[99 is suitable
since we recall that the function @ — K(Q) is increasing and Qlim K(Q) = +oo.
—+00

Under the assumptions above we can deduce that the error E|Way, n(-,t) — u(-,t)||%2(ﬂ) is of
order log(n)n_% fort e (0,T].

Remark 3.2. The error in inequality is not useful for t = 0. To get an approximation of
u(x,0), we give another Lemma below.

Lemma 3.3. Assume that M, satisfies

1 1
MP > = log(). (100)
Then there exists unique t,, € (0,T) such that
et My (101)
Assume that u satisfies that % € L>(0,T; L?(52)). Choose Q,, such that
e2TK(Qn)
lim ————— = 0. (102)

n—-+400 ME

Then we have the following estimate

du(-,1) H2
ot llLe(jo,1];L2(2))
(103)

1 1
. (. 2 QCK(Qn)+4)T _~ e
E[Whg, (1 tn) = u(,0)[[72(q) < 2®(n,u, 9,0, €)e ? +2 EH

Remark 3.3. Suppose that Q, satisfies (I02), then the error E||[Wy, »(-,tn) — u(-,O)H%Q(Q) is

2TK(Qn)
of order Ve

n

We give a proof of Lemma by using the estimates in Theorem

Proof of Lemma 3.3 First, consider the function ¢(z) = e~ Ml — 4 for » € (0,T). Note
that ¢ is decreasing function and ¢(0) = 1. And

o(T) = T _ 7 < ¢ (104)

by the assumption (I00). This implies that the equation ¢(z) = 0 has unique solution zy €
(0,T). Since zo depends on n, we can denote it by ¢,. Using the inequality e™ > m for m > 0,
we deduce that

1
= =M > g M
tn
Hence
1
t, < —3 (105)
M,

Now, we will consider the error E||Wy, n (-, tn) —u(-,0)||3, (- First, using the triangle inequality
and the inequality (ag + a1)? < 2(1% + 2a? for any positive ag, aj, we have

2
HWMn,n(xvtn) - u(xv 0)”%2 Q) = HWan('?tn) - u('vtn)HLQ(Q) + Hu(7tn) - u('? O)HLQ(Q)
(@)
< 2| W, in (-5 tn) — U(‘Jn)“%?(g) +2l[u(, tn) — u("O)H%Q(Q)'
(106)
Since (@) holds for any ¢ > 0, we obtain
EHWan(,tn) - u(?tn)H%Q(Q) < e(ZK(Qn)+4)T6_2tnng)(nauaga 55 6)' (107)
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From the Newton-Leibniz formula, we get

Julesta) = - O3 = | / "o

8u

au("s)
0s

2
ds
L2(Q)

ou(, t)H2
8t Loo([0,T);L2(R))

tn

v,
Lo ([0,T]L2(9))

Combining (I06]),([I07), (I08), we get
B Waty s tn) — )22 gy < 262K @07 20005 g, 5, ) + 262

(108)

< 28 (n,u, g, 6, €)ePK@QuFNT__ ! +2 ‘

M Lo ([0,T];L2(2)
(109)
since we have used to e*t"ME =t, <, /Lﬂ. O
M,

To prove Theorem B.2] first we need some Lemmas.
Lemma 3.4. The problem (@) has unique solution Wy, , € C([0,T]; L?()).

Proof. Let b(t) = ag — a(t) and b(t) = ag — a(t). The equation (@I)) can be transformed to the
following equation

Wtn = _ _ )
Set /Wan(x, t) = Wi, n(x,T —t) then we get
Wit

o U2 War, = aoRa sWarn = FQu (Wit n(2,1) = a2 8), (1)
and the initial condition .
Wit n(,0) = W, n (). (112)
For any function v € L2(f2), set
H(v) = agRy v — F, (v(2,1) = Gas, n (@, 1).

It is easy to check that H is globally Lipschitz function. In fact, for vy, vy € L%(9), we obtain
using Lemma 3]

[H (v1) — H(va)||12() < a0l Rn,pv1 — R gvallr20) + [F @, (v1) = Fq, (v2)ll 20
< MP|vr = Vallrao) + 2K (Qn) o1 — v2ll120)- (113)
By taking the inner product of (II0) with ¢,(z), we get

Tt 0. 69) + 500 (Watn0).6,) = (HWrgyn(o0).6). (114)

By multiplying both sides of the latter equality with exp <p25 fg E(S)ds), and then taking the

integral from 0 and ¢, we transform the above differential equation into the following nonlinear
integral equation

WM,“ x,t) Zexp( / b(s)ds) [<EMn,n,¢p>}¢p(x)

+ /O o (2 [ 5€a) [(H Wil 0 )as|gplo). (115

S
Here Wan is the mild solution of (III)-([II2). The existence of mild solution of nonlinear
integral equation (II3]) is proved similarly as in the proof of part 1 of Theorem O
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Lemma 3.5. Recall the definition of Ry, g in equation (@2) and define Py, g
?n,ﬁ(v) = ap Z p25<v, ¢p>L2(Q)¢p(x)’ (116)

1
p<Mnay 28

for any function v € L?(). Define the following space of functions

V(Q) = {9 e L2(Q Zp4/3 26000, 6 3 2(cy < —i—oo}. (117)
p=1
Then we have
Pogvll2@) < MPP|vll2),  for any v € L*(Q), (118)
and
53 —TMm2P e
ao|| R, vl 12(q) < age™ ||v||‘~/(ﬂ) for any v e V(Q). (119)

Proof. We obtain
- 2
Pavllizey <af D "0 0p) 12
1
p<Mnpa 28

[e.e]

<MY (v, ¢p>i2(9)
1;;<Mnagﬁ

< MpP|[v)1 7 (120)
and

0o
o 2
G%HRNUH%Q () < a% Z exXp < - 2Ta0p26>p4ﬁ exp <2Ta0p25) <U7 ¢p>L2(Q)

p>Mpa,

)
_ 28 2
< age 2T My, § p46 exp (2Taop26> <Uv ¢p>L2(Q)
p=1

< ade M o I (121)

gk

U
Lemma 3.6. Assume that up = u(.,T) € V(Q) and g € L°([0,T); V(Q)). Then the following
estimates hold

_ — N M, +1 B 28
E|[@at,n = urlfaa) < (Vidax + [CO.0[") = + e ur 2 0 (122)
and
_ = o\ Mp+1  _opp28
El[Gas, (1) = 90D 2) < (77207 + D0, ) == + e 2™ g1l e 07170
(123)
where
_ =1
C(d,u) = max (45, \/—25) (ZZ; l_5> |url s @)
and
_ =1
D(é,g) = max (45, \/—25) <ZZ; l_5> 91l oo (0,77 15 (€2)) -
for any 6 > 1.
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Proof. In this proof, we will find the estimate between up = wu(.,7) and the approximate
function wyy,, ,, defined in (B8]). By the formula of up in Lemma 23] we get

ur(@) = Y (ur.8,)op(z)

p=0

n M,
= % uT(mk) - éno + Z ( ZUT Tk (bp(xk) np) ¢p()

p=1 k=1

S (ur, 6y )9p(@). (124)

p=Mn+1

This together with (88]) and the fact that up(zy) = up(xg) + orex gives
1 _ 9 My, T n _
[@rtn — |72y < [ﬁ > ower — GnO] + Z - Z Okerdp(Th) —
k=1 = =

+ Z <uT,¢p>. (125)

p=Mn+1
This implies that
1 — 2 2 M B Un o2
E|@as,n — urZ2(g) < 3 > oiEe; + ‘Gno + |3 orEedp(xr) + > |Gnp
k=1 p=1 k=1 p=1
> 2
+ > (urdy) - (126)
p=Mp+1
Further, by the formula
lurls o) = Zp ur.6y) (127)
we obtain that for all p € N,p > 1
lur | s o
‘<UT,¢p>‘ < T()- (128)

Now, we estimate the term énp for p > 0. By inequality (I28]), we have the bound for Gno

[2 [2 = lurllas @)
Gpo < Z! ur, Gan)| < Z 20100 (129)
and the bound for énp

" o0
Grp <>
=1

<uT, ¢p+21n> + <UT7 ¢fp+21n>

[eS) 1 0 1
- o b
< lur |l s LZ; (1 2n) + ZZ; (—p + 2ln)5]
20lul D)llgs @) o= 1Y 1
<7 Z)w e

=1
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o0
Since 0 > 1, we know that the series ) l% converges. Let us denote
=1

0t = max (5,255 (3 )l
=1
By (29) and (I30]), we get

énp < C((Sz;u)’ forall p>0. (131)
n
It follows from (I26]) that
E|®@a,n — ur|2()
V2 (M, +1) (M, +1)|C(0,u) = 2
= . n ) nl‘S ‘ + Z <uT’¢p>
p=Mn+1

V2 (@M, +1) (M, +1)|C6u)|> o 2
< (m )+( Tzlé( )‘ +e 2T M23 Z esz26<uT’¢p>

n
p:Mn+1

= 2\ Mp+1  _opp2e
+ (O, u)[*) == 4+ e 2 fur | . (132)
Assume that g € L>([0,T]; H°(2)) and let us define
_ 2 V2 1
D(4, g) = max (4—57 W) <; l_5> 91l o= (0,77 11 (€2)) -

In a similar way, we show that

max

< 2172

Hop(t) < E(?;s, 9D forall p>0.te0,T] (133)
and
1 2 MUn [, ~ ?
[Fas (1) = 9 1)]* < [52 0&(t) = Huo()] + 3 | = D 06ty (n) — Huplt
k=1 p=1 k=1
Y (o0.6,)" (134)
p=Mn+1

From the properties of Brownian motion, we known that E[&;(¢)¢x(t)] = 0 for k& # i and
E¢Z(t) = t. By the Holder inequality, we obtain

M,
E[[Gaz, (1) — g(, 0)]* < ni ZﬁQE&c + Z ZﬁQE&c ()¢ (1) + Z | Hy, (t)|2
p= 1" =0

k=1
(o]
_ B 23
+e 2T M, Z 62Tp <g(',t),¢p>
p=Mp+1

T792(7T2Mn+1) (M, +1)[D(3,g ‘ —2T M2 12
< TP DIDOIL | i)

(e o) e o

> ([0,7];V (%))

IN

(135)
O

Proof of Theorem We now return the proof of Theorem. The main equation in (80
can be rewritten as follows

% Fa(t)(—A)Pu = Flu(z,t)) + g(z,t) + <a(t) - a(t)) (—A)Pu. (136)
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For p, > 0, we put Yy, n(2,t) = ern(t=T) [WMn’n(x,t) - u(m,t)]. Then, from the last two

equalities, a simple computation gives

oY M,m
ot

=) (=AY p 0 = 0 Y My
= —em (D agP, 5 Y s, 0 + e DagR,, gu — P 1) (E(t) - a(t)) (=A)u

+ D [T, (Wit ale.1)) — F(u(a, )]

+ ePn(t=T) [?an(:l:,t)) — g(x,t)}, (z,t) € Q x (0,7), (137)
and
OY 1 n B
#‘aﬂ =0, Yr,n(z,T) =W, n(x) — ur(z).

Here, we note that

(487) = (5 <> ) (S50 <> i)

= szﬁ <v,¢p >= HUH%]B(Q)- (138)
p=0

By taking the inner product of the two sides of the latter equality with Yz, , one deduces that

th\l Yoz, (02 @) = OOINY az,n (O 0 0 = Pull Yaz,n ()72

= < — epn(t—T)aoﬁn’BYan, YMn7n>L2(Q) + <ep"(t—T)a0ﬁnﬁu, YMn,n>

12(0)
R o
n < — ePn(t=T) (a(t) - a(t)) (—A) 4, YM”’”>L2(Q)
G
n <epn(t—T) [FQu (Wt n (1)) = F(u(-,1))] ’YM"’n>L2(Q)
=Jan
+ <e”“(t D [Gagy (1) — g 1)] 7YM"’">L2<Q> ' 1

::\75,n
First, thanks to Lemma B3 we bound jl,n using the Cauchy-Schwartz inequality as follows
‘«%,n| < ||PnYMn,n||L2(Q)||YMn,n(‘,t)HL2(Q) < MT2Lﬁ||YMn7n('?t)H%2(Q)' (140)

Using Lemma [B.3] and Cauchy-Schwartz inequality, the term «72,n can be estimated by

~ 1 _ 28 1
|J2,n| < = e2onlt T)age TM; Hu||200 . +_HYMM(.’75)||%2 0
2 (0.11V(R) T 2 (@)
L oo —orm2®) 2 1 2
< 20’06 HU’H oo([07T};‘”/(Q)) + §HYMn,n('7t)HL2(Q)7 (141)
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From the inequality 2(a1,az2)r2(q) < Ha1||%2(9) + ||a2\|%2(ﬂ) for any a; € L?(Q), (i = 1,2), we
infer

[Fan = ‘< =D (@) - a(t) ) (~8)u, Yar, )

L*(Q)

1 o, ooy /= 2 2 1
< = pn(t=T) _ _ B _ . 2
< 50 (@) — o) [ (=80, o +51¥ a2y
Loy o (= 2 1
< 5@ (@) ~ ) Nulw o ryasay + 5V Mun(DlFay  (142)

Finally, since limy, ;1 oo @n = +00, for a sufficiently large n > 0 such that Q, > [[ul| Lo (j0,77:12(02))-
Moreover, we have Fg, (u(z,t)) = F(u(z,t)). Using the global Lipschitz property of Fg,, one
similarly has for ‘j4,n‘ the fact that

{‘74771‘ - ‘<epn(t—T) [FQn(Wan('vt)) - F(u(7t))] 7YMn7n>

=

L2(Q) ‘

e’ [Fo, (Wit m (1) — Faq, (u(z,t))] ‘ L2(Q)

< 2K (Qu) Y gy (5 B)[72(0- (143)

1Y 01, 22(02)

The term |j5n| can be bounded by

| Tom| = ‘<ep"(t7T) [Tt (1) = g(-5 )] ’YM"’n>L2(Q)‘

1 - — 2 1
< §€2pn(t ) HgMn,n('at)) - g("t)HL2(Q) + §HYMn,n||%2(Q) (144)

Combining ([), (), (121), (122) and () gives

1d
== 1Y 2t (01320 = Pnl Y atn (5 D)l 720
5 7 @ @

L oo —orm2e
>~ MYty (1) 22 — e 2

1 o 2
- §HYMn,n('at)||%2(Q) — (=) (a(t) - a(t)) el 70 (0,79:2728 )
Y a2 — 2K @Y () 220y

1 T 11— 2 1
=5 @ag (2 0) = 9D ) — Y alliae) (145)
5 @ 2 @

> (10,7);7 (%))

By taking the integral from ¢ to T" and by a simple calculation yields
Y g D202 = Y M (5 ) 720
(o a2y 2 — 22
+ /t (“Oe Nl oy + (@) — als) ”“”Lw[o,ﬂ;mﬁ(m)) ds
T
[ g a5)) = 52 oy

T
> [ (200 = 202~ 4K(Qu) — ) ¥t ). (146)
t
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Let us choose p, = M2 This leads to

D[ W) = u( D)2

_ _ B
<N atn () = Oy + Tade ™ ull2 . 0 11000

T 2
2 2 _
+Toiltl£THgM”" (1) =902 +HU’HL°°([0,T];H2’8(Q))/O <a(3) —a(3)> ds

T
+ <4K(Qn) +4) / DN Wag, (- 8) = ul-, 9)|I72 () ds-
t
Hence, we obtain

DB Wag, (1) — ul-, 1) 220

— _ B
< EHan,n() - uT()H%Q(Q) + Ta(z)e 2T ||uH2c>o([07T};‘7(Q))

T
+/t eQPn(S—T)E HgMn,n(, S)) — g HLQ(Q dS + €2||uHL°°( OT} -H28 Q) / E‘g

T
+ (4K Q) +4) [ DRIWag0e5) = ) oy (147)

_ 2
In the above we have used the fact that a(t) — a(t) = €£(t) and E‘§ t) ‘ = t. Using the second

inequality of Lemma B8] and noting that e?»(5=7) < 1 for 0 < s < T, we have the following
estimate

/T 2pn(s—T EHﬁMn,n(',s)) —9(',5)”;(9) ds
|
</ |

(WQTW + (D, g)|2> L"; L | o

_ M, +1
2o (s 2T2192+|D(5,g)\2) —"j 4 e 2TM ds

191l oo go,17; vm»]

2T2192 +[D(6, g)| ) Myt 1| —orrf
n

191l 2o (o777 0 >)]d$

HgHLoo ([0,7];V(2)) (T_t)

— M, +1
< (W2T3v92 +1|D(s, g)\2> oty el
n

19120 o.1752)- (148)

From the observations above and by using the first inequality in Lemma [B.6] we conclude that

DB Wi, (-, 8) =l )] F2(q

- 2 - 2 Mn +1
< 2VanaX + ‘C (6, u { + w2392 +T‘D(5, g)\ ) o + €2T2HUH%oo([o,T];Hw(Q))
—2TM 2 2 2
M (ur )+ TU9E o 2y * @RI 0 100
T
+ (4K (Qu) +4) [ DRIWag5) = . 5) oy (149)
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Multiplying both sides by 2TMF , we obtain
2t M2P 2
B[ Wag, n (1) = ul, 1) 1720

2T M7"
< (FV e + [CGw[* + 7210 1 T|D(o,g)|*) T DT agariie

(Il + TU9IE o 1972y + TR 0 0
(4K @) 1) [ MBIt 5) ) ey
Applying Gronwallfs inequality, we get
M B[ Wt (1) = ul-, 1) Ry < €FO@IITD(n 0, g,8,€),

where

(M, + 1)62TM3LB

O(n,u,9,8,6) = (TViy + [CO.u)[* + 7 T*9% + T|D(,9)|°)

n
TMn 2 2
+€262 T2HUHL°° [0T];H25(Q)) (HUTHV(Q +THgH2oo [OT] V(Q) +Ta0HuH oo([oﬂ"hf/(ﬂ)))'
(150)
Hence
B

E|(|Wa, n(-,t) — u(-,t)H%g(Q) < WK@QuFNT o =2Mu g (1 4y, g, 6, €).

O

3.3. Error estimate in H%(Q). In this subsection, we give error estimate between the regu-
larized solution and the sought solution in higher Sobolev spaces.

Theorem 3.7. Suppose that M, satisfies

26
- (M36+1 +M36)62Mn T
n—-+o0o n

bounded, (151)

and e satisfies the condition in equation ([@4)). Let us choose @, such that

. _opN2B
lim e 2Mn't
n—-+o0o

;Kz(Qn)T> =0, t € (0,7 (152)
0

Assume that g,u € L™ ([O,T]; V(Q)), where V() is defined in Lemma[33. Then we have

o

_op28
EHWan('?t) - u(?ﬂH?’—[ﬁ(Q) <e M texp ( (Qn)( ))H(nauaga 57 6)' (153)
Where
— 8 ] M2BHL | 20y 2Mi°T
I(n,u,g,0,¢) = (T2V2, + 1C(, u)‘2 + — 27392 + —T|D(5, g)|2 ( + Je
bo bo n
42T 22 8T, 8TaZ,
A we— [l o0 0,77 1728 02) +HUTHV(Q HgH ~or:v@) T g Ul o ([0,T157/()

(154)

Remark 3.4. 1. It is easy to see that when t > 0 then the error E[[Wy, n(-,t) — u(-,1)[|35 ¢
is of order

_on28 8
e Mt o <%K2(Qn)T). (155)

One example for M, and Qy for Theorem [3.7 can be found in Remark [31. The estimate at
t =0 is showed by similar argument as in Lemmal3.3, so, we omit it here.
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2. In Theorems and [37 the upper bounds of the approzimations are very complex. The
reason is that the models in Section [3 are more complex than the ones in Section [2 Indeed,
in section[3, the time dependent coefficient a(t) is noisy by random coefficients and the source
term F' is locally Lipschitz continuous. The estimates in this case are not simple.

Proof of Theorem 3.7l Assume that b(t) > by > 0. By taking the inner product of the two
sides of equality (I37) with (—A)’Y s, », one deduces that

th” M () 0y = B[ (=) Y a0 oy~ Pt sy
—( _ePn(t=T), P _ pn(t=T) R —_A)B
_< e aOPn,BYMn,na( A) YMn7n>L2(Q)+<6 aoRn,ﬁu,( A) YMn’n>L2(Q)
=:To,n ::§7,n
— oPn(t=T) (G(4) — AV (—A)B
—|—< e (a(t) a(t))( A)Pu, (—A) YM"’">L2(Q)
:558,77,
=T TFo (War, n( 1) = F(u(-,t))], = (=AY
(e [Fo, (Wag,al8) = F(ule0)] (-8 T,
::\:79,71
Pn(t*T) a . — . — B
+ <€ [gMn,n( 7t)) g( 7t)] 7( A) YM”’n>L2(Q) :
::jlo,n
For ‘767,“ we have
‘%ﬂ’ = ‘< — ep"(tiT)aoﬁn,ﬁYan, (_A)ﬁYMn7n>L2(Q)‘
_ epn-T)g, /Q (X P <Y tp > 6p@) (0% < Yo 6y > 6pl0) ) da
p<Mna0% =
= ep”(t*T)ao Z p < YMn,m (bp >2
L
p<Mna0 26
< M° Z P <Y p >2< MgﬁHYMnJLH?{ﬁ(Q)
L
p<Mna0 26
We bound j’?,n by
‘j7n < i62’)"(t_T)(z(2)Hﬁn5YvM H Y M, i
= b : ot L2(Q L2 @)
4 o My 2 2
< 2o abe ™l ) 2 A Yt g
The term jgm is bounded by
- . 2 2 2
A i o
o] < 5o (att) — a(t)) " [|(~2)%u CI I 2T
4 200 (t—T) (= ?
< %e pn (t )<a(t) —af(t )> HuHLOO(OT H25(0) H Y, n @)
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The term jg n 1s estimated as follows

2 2
= 2onlt= THF (W ) — F(u(-t H 2| =ary
[Fon| < 5 @ Watn0)) = F(al,0) |+ (A Yasa| , o
< LR2Qu) Yt Dl 30y + 2 (-~ 2
— bO n Mp,n L? Q) M?’Lyn LQ(Q)
< dg Y .
< K@Yt sy + -2 Yt -
where in the latter inequality, we have noted that for all v € H?(Q) then
”UH%HB(Q) = szﬁ < v, ¢p >*> Z <v,¢p >= HUH%Q(Q) (156)
p=0 p=0
The term |i0,n‘ can be bounded by
[Froal = |(& T Fagn-1) = 960). (8P Vs |
4 5 n(t=T) ||= 2 bo B 2
< %e & Hngn(',t)) - 9('at)HL2(Q) + ZH(_A) Yar,,n L2(9) (157)
From the above observations, we obtain
2
>th—A5Y ., Y (25 — Yo
> 5(0) | (-2 Yt g + Vb1 Ol .
dag _rag2e o 2
~ T Nl ) — | A Yt
4 2pn(e-1) A
BT COREC )) ) H U s
- K@Y bt Oy — 2 (<8 Yt .
4 2p (t=T) 2 OH B8
- n t)—g(-,t — 2(=A)Y )
bO HgMn, ( ) g(a )HLQ(Q) 4 ( ) Mny, 12(Q)
_ 2 4 2
— _ _ B _ 2 2o (T (5 — 2
= (B(t) ~ o) [[ (=20 Vs, o = 5o (@0) = a(0)) 0l e o s
4 o2on (t=T) 2 40(2) —~TM2B 2
- bo P HgMn, (1) —g(-t HL2 - b—0€ ] > ([0,T);V(9))
4
+ (= M = - KQ)) ¥ st DBy (158)
_ _ 2
By the fact that b(t) > by, we know that the term (b(t) — by) H(‘A)BYMML @ is non-
negative. It follows from (I58]) that
8a2 28
2 0, —TM?2 2
Y30 By + 5o ™ Nl 1y
8 2pn(t-T) (= 22
+ e (@) al0) 0l o 10200
8 20n(t-T) || 2
+ %6 pn( ) HgMn,n('at) - g('at)HL2(Q)
4
>2 (0= ME — K@) ) Yoty (159
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By taking the integral from ¢ to T', we obtain that

1Y At D)5y = 1Y 0 Ol

T 8a2 _ 23 8 . 2
+/t (b—ooe T el e (0 ) +%(“(3)_“(3)) ”“”iwqo,ﬂ;ﬂw(n») ds

=J1
+ Ter"(S_T)E H_ (,8)) —g(- s)”2 ds
ngn ) gt L2(Q)
t bo
=J12
T
8
> [ (200 =22 = K@) Y9 By s (160)

Let us choose p, = M , we have that

8 T
Y at Ol < 5 E2(@0) / 1Y 5t )2y + 1Y atn . T B

+Ju + Jio. (161)

Next we give upper bounds for the terms Ji; and Ji of (I6I).
For Ji1, by equation (Bl), we have

J %(T_t)e—ZTMELBHuHQ B _{_é”uHQ T€2|E(S)|2d8 (162)
=" = (0,117(@) T o L (0TI Q) |, :

Since E|£(s)|? = s, we have the following estimation

8Taf _oras2é) 12 8 9 T
EJll < bo € HUH OO([O,T];V(Q)) + %HU’HL“’([O,T];Hma(Q))/t € E’f(s)’ ds
8Tag _ora2s ) 12 42T%
< bo e HUH w([O,T];V(Q)) + THUHLO"([O,T];HQrB(Q))‘ (163)

For Jy2, by equation ([I23]), we get

T
BJi2 < 50 [ B a5 = 9005) a0y ds

8 M, +1
< Mt 1y emoran? (T—1).  (164)
0

<712T2192 +[D(s, g)F)

191l oo (o.77,7 52
Now, we continue to estimate HYan(-,T)H%{ﬁ(Q) of (I60). From (I27]), we obtain

‘|YMn7n("T)‘|?—[ﬁ(Q) = ||@Mn,n - UTH?{B(Q)
1 n _ 9 M, T n _
2
< [ﬁ ;; Okek — GnO} + le 7 [E kzl orerdp(Trk) — Gnp
= p= —

b Y s,

2

p=Mpn+1
1 n _ 9 M, T n _ 2
S oG] 1S [5 3" pertn(a) — G
k=1 p=1 k=1
© 2
+ > p25<uT,¢p>. (165)
p=Mn+1
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Using the similar techniques as in the proof of Theorem 3.1, we get

M2+ 4 2
n

o
_ s 2
Te 2T M2 Z pZﬁ o2TP? <uT’ ¢p>

p:Mn+1

EIIY 3t (s )33 ) < (72Vidax + [0 0)]%)

. M25+1 M26 P
< (Pt [0, u)?) M o 2

Combining equations (I61]), (I63]), (I64]), (I6A]), we derive that

2B
MR Wy, n (-5 t) — u, t)H?{ﬁ(Q)

(166)

( Mgﬁﬂ I Mﬁﬁ) eQM?fT

< 22 4 [C6 )|+ ST + ST, g)|2>
bo bo

n
462M3LBT62T2 )
A e L A EADEE0)

8Ta3

2
[Jul] oo([o,T};f/(Q)))

8 T e
+ 2RQ) / M SE||Wag (- 5) — (-, 8)|| 28 ) 5

+ (lhurll? g + -l ¥
T @) T Ty 19 (o1 7(2)

Let us denote

II(n,u,g,d,¢)
B . 8 Mgﬁu Mgﬁ aM2PT
= (V2 OG0+ S0+ Sapis g |?) R+ Mae
bo bO n
28
n MHUHQ 2o + llurl3
bo Lo0[0,T];H28(2)) V()
8Ta?
+_H9HL00(0T] (Q))+ bo [ > ([0,7};V(2))

then we have
26
62Mn tEHWMnJL(" t) - u(" t)H?’{ﬁ(Q) < H(’I’L, u, g, 5’ E)
8 -2 T o2 2
Q) [ B W 19) = )y
Using Gronwall’s inequality, we obtain
26 8
M B Wy, n(1 1) — u(-,t)Hzﬁ(Q) < exp <%K2(Qn)(T - t))H(n,u,g, J,€).
This implies that
2 —2M2Pt 8 2
EHWan(" t) - u(" 7f)HHB(Q) <e " T exp (%K (Qn)(T - t))H(n’ u, g, 6’ 6)'
O
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