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Abstract. Solutions of partial differential equations (PDEs) on manifolds have provided impor-
tant applications in different fields in science and engineering. Existing methods are majorly based
on discretization of manifolds as implicit functions, triangle meshes, or point clouds, where the man-
ifold structure is approximated by either zero level set of an implicit function or a set of points. In
many applications, manifolds might be only provided as an inter-point distance matrix with possible
missing values. This paper discusses a framework to discretize PDEs on manifolds represented as in-
complete inter-point distance information. Without conducting a time-consuming global coordinates
reconstruction, we propose a more efficient strategy by discretizing differential operators only based
on point-wisely local reconstruction. Our local reconstruction model is based on the recent advances
of low-rank matrix completion theory, where only a very small random portion of distance infor-
mation is required. This method enables us to conduct analyses of incomplete distance data using
solutions of special designed PDEs such as the Laplace-Beltrami (LB) eigen-system. As an applica-
tion, we demonstrate a new way of manifold reconstruction from an incomplete distance by stitching
patches using the spectrum of the LB operator. Intensive numerical experiments demonstrate the
effectiveness of the proposed methods.

Key words. Manifolds, Laplace-Beltrami eigenproblem, Eikonal equation, Low-rank matrix
completion.
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1. Introduction. With the rapid development of advanced data acquisition
technology, processing and analyzing data sampled on 3D shapes or even higher di-
mensional geometric objects becomes ubiquitous tasks such as those used in a 3D
camera, medical imaging, protein structuring, social network analysis and many oth-
ers [21, 2, 58, 50, 17, 6, 44, 22, 9]. PDE and variational PDE based methods have
made great success to handle problems in signal and image processing which can be
viewed as data on Euclidean domains. It is natural to consider PDE based methods
to analyze and process signals on a general manifold and to understand geometric
structures hidden in the data. Besides the classical implicit methods [38, 8, 7], finite
difference methods [39, 52, 36, 62], finite element methods [41, 27, 20] and parame-
terization methods [49, 48, 57, 35] for solving differential equations on surfaces in R3,
there has been increasing interests of solving PDEs on general d-dimensional mani-
fold in Rp and their applications to data analysis. For instance, a diffusion geometry
framework is developed to investigate the geometric structure of data based on solving
Laplace-Beltrami (LB) eigenproblem using integral kernel methods [3, 4, 16]. More
recently, a moving least square method and a local mesh method are considered to in-
trinsically solve different types of PDEs on manifolds represented as point clouds and
its applications to the geometric understanding of point cloud data [29, 33, 34, 31].

All the aforementioned methods of solving PDEs on a general manifold M⊂ Rp
are commonly considered M is sampled as a set of points {xi ∈ Rp}ni=1, referred as
a point cloud, and discretization of differential operators or approximation of integral
equations are relied on available coordinates information of {xi}ni=1. However, there
are many applications whose input information has no point coordinates but only
an incomplete inter-point distance (d(xi,xj)). Examples include incomplete distance
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information from sensor network localization [22, 9], protein structuring from NMR
spectroscopy [17, 6] and global position from local distance configuration of cities [47].
A well-known distance geometry problem [17, 37] is to find the global configuration
of data based on the incomplete distance information. The objective in this paper
is different from the canonical distance geometry problem. We would like to develop
numerical methods for solving PDEs on manifolds represented as incomplete inter-
point distance. One natural way to approach this problem is first to apply a global
reconstruction algorithm to obtain a point cloud representation of the input manifold,
then established numerical methods for PDEs on point clouds can be directly applied.
However, the global coordinate reconstruction might be very time consuming as it
involves with semi-positive definite programming whose size depends on the number
of points and could be very large in practice [9].

In this paper, we propose a different strategy to solve PDEs on manifolds rep-
resented as incomplete inter-point distance without conducting global coordinates
reconstruction. Our idea is based on two intrinsic properties of differential operators
on manifolds. Namely, the definition of a differential operator is only point-wisely de-
pending on local information of the manifold and is invariant under different choices
of local coordinates. This motivates us to only consider to conduct point-wisely local
coordinate reconstruction for the associated local neighborhood, then we can point-
wisely approximate differential operators based on the reconstructed local coordinates.
After that, numerical solver for differential equations can be constructed.

Inspired by the classical multi-dimensional scaling [26], the full distance matrix is
one-to-one corresponding to the Gram matrix which can be further used to determine
coordinates by its eigen-decomposition. More importantly, the Gram matrix can be
essentially viewed as an inner product matrix after certain coordinates shift. As long
as the matrix size, namely the size of a given local neighborhood, is larger than the
embedding dimension of the local neighborhood, then the corresponding Gram matrix
has to be a low-rank matrix. This suggests us to use low rank as a prior knowledge to
reconstruct the Gram matrix based on constraints of available distance information.
Adapted from the recent advances of the low-rank matrix completion theory [13], we
consider a nuclear norm regularized convex optimization problem to reconstruct local
coordinates based on available distance information. Once local coordinates can be
obtained, we apply the intrinsic methods of approximating differential operators on
point clouds developed in [29, 33, 34] to discretize the desired differential equation.
These intrinsic methods can be used to discretize different types of PDEs including
parabolic, elliptic and hyperbolic PDEs. Our method can be viewed as natural exten-
sions of these two methods to a new data structure where no coordinate information
but only partial inter-point distance information of point clouds is provided. The
outline of our strategy can be as summarized as follows:
Step 0 For the i-th point, chose its K-nearest neighborhood (KNN) N(i) based on

the given incomplete distance or from the prior information if its available.
Step 1 Applying the matrix completion method discussed in Section 2 to reconstruct

local coordinates for KNN of the i-th point.
Step 2 Applying the MLS method or the local mesh method in [29, 33, 34] to ap-

proximate the desired differential operators at the i-th point. This provides
the i-th row of the discretized matrix representation of the desired differential
equation.

An immediate advantage of this approach is to save computation time by avoid-
ing the global coordinate reconstruction, which can reduce the complexity quadrat-
ically to linearly scaling with the total number of points. More details about this
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method will be discussed in Section 3 and will be verified in our numerical experi-
ments. Furthermore, this approach enables us to conduct geometric understanding
of data without global coordinates reconstruction. Examples include global pattern
extraction, comparison and classification as many existing methods conducted using
results of differential equations [46, 30, 31]. As a byproduct of global information
from PDEs, we also propose a new method for reconstructing manifolds by stitching
its local patches. This new method is much more efficient than the way of direct global
reconstruction using matrix completion method. Moreover, it can also overcome pos-
sible reconstruction failure using global matrix completion due to the coherent missing
information.

The rest of this paper is organized as follows. In section 2, we propose a low-rank
matrix completion model to reconstruct local coordinates and design an algorithm
to solve the proposed convex optimization problem based on operator splitting and
the alternating direction method. After that, section 3 is devoted to discuss point-
wisely approximating differential operators based on the intrinsic methods proposed
in [29, 33, 34]. We also discuss our two model PDEs, the Laplace-Beltrami (LB)
eigenvalue problem and the Eiknoal equation for solve geodesic distance on manifolds.
As an application of global information using solutions of LB eigenvalue problem, we
propose a new method for reconstructing manifolds by stitching local patches in the
LB frequency space in section 4. All numerical experiments about the effectiveness
of our local coordinates reconstruction model, the accuracy and robustness of the
PDEs solvers, and demonstration of manifold reconstruction are discussed in section 5.
Finally, we conclude our work in section 6.

2. Local coordinates reconstruction via matrix completion. In this sec-
tion, we first review the concept of the classical multidimensional scaling (MDS).
Inspired by the classical MDS, we propose a method of reconstructing local coordi-
nates from the given incomplete inter-point distance matrix using the low-rank matrix
completion [13]. A numerical algorithm based on the augmented Lagrangian is also
designed to solve the proposed convex optimization problem. As we described be-
fore, our strategy is to conduct local coordinates reconstruction for the KNN N(i) of
the i-th point. For convenience, we write {x1,x2, . . .x`} as ` points for N(i) as the
following model does not rely on a typical choice of N(i).

2.1. Classical multidimensional scaling. The classical MDS is to find a con-
figuration of a set of points {x1,x2, . . .x`} in Rp from the given distance matrix
D = (d2

ij)`×`
1 such that the Euclidean distance matrix

(
‖xi − xj‖22

)
ij

among these

points is as close as possible to the given distance matrix D [26, 10].

Definition 1. A distance matrix D = (Dij)`×` is called Euclidean if there exist
some points x1,x2, . . . ,x` ∈ Rp such that Dij = (xi − xj)>(xi − xj). Let’s write
X = (x1,x2, . . .x`)

> as an ` × p matrix and denote the centering matrix by H =

Il −
1

l
11>. A Gram matrix B = (Bij) is defined as B = − 1

2HDH, equivalently,

Dij = Bii +Bjj −Bij −Bji.
Note that the Euclidean distance matrix is translation invariant, thus, the matrix

H essentially translates the point set centering at the origin. It is well-known that D
is Euclidean if and only if the Gram matrix B is positive semidefinite. Furthermore,
since B = HXX>H, it is clear that rank(B) = rank(XX>) = rank(X) = p. In our
case, we consider the number of points is much larger the dimension of points. This

1For convenience, each entry of D is specified by the square of distance.
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suggests the low-rank property of B as its prior knowledge. If D is Euclidean, and
thus B is positive semidefinite, then the eigen-decomposition of B = UΛU> provides

the coordinate reconstruction X = UpΛ
1/2
p , where Λp is a diagonal matrix formed by

the largest p eigenvalues of X and Up are the corresponding eigenfunctions.

2.2. Local coordinates reconstruction via positive-semidefinite matrix
completion. Different from the MDS described as the above, one of the major chal-
lenges in our assumption is that only a small portion of D is available. Generally
speaking, it is impossible to recover the whole matrix only from its small portion of
information. We here assume the information D is randomly missing. Different mod-
els of semi-definite programming have been considered [1, 9] in this scenario. Here,
we consider a different model inspired by the low-rank prior information of the Gram
matrix and the recent advances from the low-rank matrix completion theory [13]. In
other words, we are seeking for a symmetric positive-semidefinite low-rank matrix
B satisfying Bii + Bjj − Bij − Bji = Dij for (i, j) in the available portion. Math-
ematically, let’s write Ω ⊂ {(i, j) | 1 ≤ j < i < `} as the available index set and
write S = {B = (bij) ∈ R`×` | B = BT }. We further write the available part
of D as a vector DΩ ∈ R|Ω| and define a restriction operator RΩ : S → R|Ω| by
RΩ(B)ij = Bii + Bjj − Bij − Bji with (i, j) ∈ Ω. Our problem becomes to find
a positive semidefinite matrix B ∈ S satisfying RΩ(B) = DΩ. It is clear that this
problem is underdetermined and there are infinitely many solutions, most of which
are far from the ground truth of B and thus not applicable. Regularization method is
a common way to handle this type of situation. Based on the prior knowledge of B is
a low rank matrix without knowing the exact rank p, we here consider the following
optimization problem.

(1) min
B∈S

Rank(B), s.t. B � 0 & RΩ(B) = DΩ

Inspired by the matrix completion theory [13], we relax the above NP-hard problem by
replacing Rank(B) as the nuclear norm ‖B‖∗. In addition, the input distance matrix
is invariant under translation of the reconstructed coordinates {xi}. This translation
ambiguity can be fixed by requiring

∑
i xi = 0. This condition is equivalent to row

sum of B is zero, which can also be obtained from the definition of the Gram matrix
B. Therefore, we propose the following matrix completion model:

(2) min
B∈S
‖B‖∗, s.t. B � 0, RΩ(B) = DΩ & B1 = 0

where 1 denotes a column vector with all elements constant 1. Once the above Gram
matrix is obtained, coordinates can be reconstructed by the eigen-decomposition of
B as the method used in the classical MDS described in section 2.1. Simultaneously,
the eigen-decomposition of the reconstructed B clearly shows the exact dimension
p by counting the cardinality of non-zero singular value. We would like to remark
that the constraints and the restriction operator are different from the setting in [13]
and it is highly nontrivial to check the restricted isometry property [40], therefore,
theoretical analysis conducted in [13, 40] can not be directly applied in our problem.
By considering a dual basis method, we can also theoretically show the exact com-
pletion can be achieved under certain coherence condition. More details about the
theoretical analysis of the model will appear in our ongoing work [28]. Additionally,
in a related work [59], the authors propose a semidefinite embedding (SDE) model as
a kernel learning method for nonlinear dimension reduction, where no random miss-
ing but only KNN information of D is considered, and the rank minimization is not
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considered but maximization of Trace(B) is proposed for maximizing the variance in
feature space.

2.3. Numerical Algorithm. For a convenience of designing a numerical algo-
rithm of model (2), we first introduce some notations. Note that the set of sym-
metric matrix S can be viewed as R`(`+1)/2 due to a natural isomorphism ζ : S →
R`(`+1)/2, B 7→ B̂ = (b11, · · · , b`1, b22, · · · , b`2, · · · , b``)T . We denote ι = ζ−1 and
further merge the two linear constraints by defining the following linear operator:

(3) A : Rl(l+1)/2 → RΩ × R`, B̂ 7→
(
RΩ ◦ ι(B̂), ι(B̂)1

)
and extend the vector DΩ as D̃Ω = (DΩ,~0). Note that ‖B‖∗ is the same as Trace(B)
as B is positive semi-definite. Therefore, the proposed model (2) can be written as

(4) min
B̂∈Rk(k+1)/2

Trace(ι(B̂)), s.t. AB̂ = D̃Ω, ι(B̂) � 0

The model (4) is a semi-definite programming (SDP) problem. It is well-known that
the SDP problem can be solved by interior-points method [53, 56] as a canonical
choice. However, when the number of constraint is with the order O(`2) as in (4),
the computational time can be with the complexity O(`6) [60]. Thus, we use the
alternating direction method [60] to save both the time and memory consumption.
We first introduce an auxiliary variable Ĉ = B̂ and write (4) as:

(5) min
B̂,Ĉ∈Rn(n+1)/2

Trace(ι(B̂)), s.t. AB̂ = D̃Ω, ι(Ĉ) � 0, B̂ = Ĉ

Then we introduce an augmented Lagrangian of model (5) as follows:

(6) Lµ1,µ2(B̂, Ĉ;H1, H2) = Trace(ι(B̂))+
µ1

2
‖AB̂− D̃Ω +H1‖22 +

µ2

2
‖B̂− Ĉ+H2‖22.

where H1 and H2 are two dual variables. The variable splitting enables us to alterna-
tively optimize B̂ and Ĉ. As (5) is convex, the saddle point of Lµ1,µ2(B̂, Ĉ;H1, H2)
is the solution which can be obtained by the following iterative procedure:

(7)



B̂k+1 = arg min
B̂

Trace(ι(B̂)) +
µ1

2
‖AB̂ − D̃Ω +H1‖22 +

µ2

2
‖B̂ − Ĉ +H2‖22

Ĉk+1 = arg min
Ĉ

µ2

2
‖B̂k+1 − Ĉ +Hk

2 ‖2, ι(Ĉ) � 0,

Hk+1
1 = Hk

1 + (AB̂ − D̃Ω),

Hk+1
2 = Hk

2 + B̂ − Ĉ,

Note that the model (5) is convex, therefore convergence of the above method can be
guaranteed [54, 60].

The first subproblem is convex and differentiable. From its first order optimality
condition, B̂k+1 solves the following linear system:

(8) (µ1A∗A+ µ2)B̂k+1 = µ1A∗(D̃Ω −Hk
1 ) + µ2(Ĉk −Hk

2 )− ζ(In).

where A∗ is the adjoint operator of A defined as follows. It is clear that for any
given Ũ = (UΩ, ~q) ∈ RΩ × R` with UΩ = {uij}(i,j)∈Ω, the conjugate of A is given by

A∗Ũ = ζ(U) + ζ(Q). Here we define symmetric matrices U and Q by:

(9) Uij =


∑

(i,k)∈Ω

uik +
∑

(k,i)∈Ω

uki, if i = j

−2uij , if i > j

and Qij =

{
qi, if i = j

qi + qj , if i > j
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and Uij = 0 for any (i, j) /∈ Ω. As µ1A∗A+ µ2I` is a symmetric and positive definite
matrix, there are numerous numerical solvers to approach the solution of the above
problem. Here, we typically chose the conjugate gradient method to solve (8).

The second subproblem of (7) is to find the nearest point of B̂k+1+Hk
2 in the pos-

itive semi-definite cone. Its closed-form solution can be simply realized by truncating
all the information in the negative eigenvalue part. More precisely, for a symmet-
ric matrix X with eigen-decomposition X = V ΛV >, we define an eigenvalue hard
thresholding (EVHT) operator as follows:

(10) TE(X) = V Λ+V
>, Λ+ = diag(max{Λ(i, i), 0}ni=1).

With this definition, the second step of (7) can be calculated as follows:

(11) Ĉk+1 = ζ ◦ TE ◦ ι(B̂k+1 +Hk
2 ).

We summarize the above iterative method in Algorithm 1. After finding B̂ by
Algorithm 1, eigen-decomposition of ι(B̂) can ultimately reconstruct the coordinates
of points {x1,x2, . . .x`} from the incomplete distance DΩ.

Algorithm 1 Augumented Lagrangian method to solve (4)

Initialization. Set C0 = 0, H0
1 = 0, H0

2 = 0, E(0) = 2e + 10, E(1) = 1e + 10, ε =
1e− 6. Set µ1 = 10, µ2 = 5.
while ( |E(k)− E(k − 1)|/E(k) ≥ ε) do

1. Solve (µ1A∗A+ µ2)B̂k+1 = µ1A∗(D̃Ω −Hk
1 ) + µ2(Ĉk −Hk

2 )− ζ(In).
2. Ĉk+1 = ζ ◦ TE ◦ ι(B̂k+1 +Hk

2 ).
3. Hk+1

1 = Hk
1 +AB̂k+1 − D̃Ω.

4. Hk+1
2 = Hk

2 + B̂k+1 − Ĉk+1.

5. Let E(k + 1) = Trace(ι(B̂k+1)) +
µ1

2
‖AB̂k+1 − D̃Ω‖22 +

µ2

2
‖B̂k+1 − Ĉk+1‖22.

end while

Remark 1. In Algorithm 1, Step 2 is usually time consuming as the full eigen-
decomposition has time complexity O(`3). Because ultimately the solution of B and C
should be low rank, it is safe to only carry out the largest m eigenfunctions by setting
m is relatively big enough comparing with the rank of B but also small in terms of
the matrix size. For instance, in our later numerical experiments for 3D point clouds,
we use the MATLAB function ”eigs” to find the largest 20 eigenvalues and truncate
all the other parts. In this way, the time consumption of Step 2 can be apparently
decreased, and numerical results suggest no difference between this simplification and
calculating full eigen-decomposition.

Remark 2. In addition, we would like to remark that the distance matrix is also
a low rank matrix provided by Rank(D) ≤ Rank(B)+2 due to the relationship between
B and D satisfying D = −2B+diag(B)1>+1diag(B)>, where diag : R`×` → R`×1 is
the linear operator to project diagonal component of B to a column vector. Therefore,
we can also directly reconstruct D based on its available information. This leads to a
low rank minimization model as follows:

(12) min
D̃∈S
‖D̃‖∗ s.t. D̃ij = Dij , (i, j) ∈ Ω

The above model is exactly the same as the general matrix completion theory discussed
in [13], which also indicates that the minimum desired information of D for successful
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reconstruction is proportion to the matrix rank. Note that the rank of D is higher than
the rank of matrix B. Plus, the less flexibility of B due to the positive semi-definite
condition can also help to reduce the requirement of valid distance information for
successful reconstruction. Therefore, we would expect that model (12) requires a higher
rate of valid distance than the proposed model (2). In fact, our numerical experiments
in Section 5 also verify this observation.

3. Solving PDEs on Manifolds from Incomplete Distance. In this section,
after a brief review of the moving least square (MLS) method [33, 34] and the local
mesh (LM) method [29] for solving PDEs on manifolds represented as point clouds,
we demonstrate our proposed methods of solving an elliptic eigenvalue problem and
a nonlinear hyperbolic equation on manifolds represented as incomplete inter-point
distance information.

3.1. Approximating differential operators from reconstructed local co-
ordinates. For traditional implicit or triangle mesh representation of surfaces in R3,
implicit methods, parameterization methods, finite difference methods and finite ele-
ment methods [38, 39, 8, 52, 7, 36, 49, 48, 57, 35, 11, 62, 41, 27, 20] have been proposed
to solve PDEs on surfaces. However, it is not straightforward to use these methods
in our case as the incomplete distance data structure has no global mesh structure
and the ground manifold could be with dimension higher than two and in a high co-
dimensional ambient space. As the definitions of differential operators on manifolds
are coordinate invariant, we can approximate differential operators point-wisely based
on its local coordinate reconstruction obtained from the matrix completion method
proposed in Section 2. Namely, each given point, its reconstructed local neighbor-
hood can be viewed as a point cloud, therefore, we apply moving least square (MSL)
method [33, 34] or local mesh (LM) method [29] to approximate the differential op-
erators. These methods can achieve high order accuracy and enjoy more flexibility.
They can be applied to manifolds with arbitrary dimensions and codimensions. To
make the paper self-sufficient, we briefly discuss these two methods in this section.

Denote the index set of the KNN of the i-th point as N(i) and write X (i) = {xk ∈
Rp | k ∈ N(i)} as the reconstructed Euclidean coordinates of the neighborhood N(i).
Based on X (i), its tangent space and normal space can be determined by standard
principle component analysis (PCA) [23], which is provided by eigensystem of the
covariance matrix Pi of N(i) defined on:

(13) Pi =
∑

k∈N(i)

(xk − ci)T (xk − ci).

where ci = 1
|N(i)|

∑
k∈N(i)

xk is the centroid of X (i). If the intrinsic dimension of the

manifold is d, then the jump of Pi’s eigenvalues guides the splitting Rp = Ti⊕Ni. Here
Ti represents the tangent space spanned by {e1

i , · · · , edi } corresponding to the d largest
eigenvectors of Pi, andNi represents the normal space spanned by the rest of the eigen-
vectors of Pi. As {e1

i , · · · , e
p
i } forms an orthonormal basis near the point xi, a new vir-

tual coordinates of xk can be obtained by (uk,vk) = ({〈xk, eαi 〉}dα=1, {〈xk, e
β
i 〉}

p
β=d+1).

Therefore, the manifold structure near xi can be approximated by a degree 2 polyno-

mial map Zi : Rd → Rp−d,Zi(u) = (
∑
|ξ|≤2

c1
ξu
ξ, · · · ,

∑
|ξ|≤2

cp−dξ uξ) whose coefficients
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are given by the following moving least square problem:

(14) min
c1ξ,··· ,c

p−d
ξ

∑
k∈N(i)

w(‖xk − xi‖)‖Zi(uk)− vk‖2,

where the standard multi-index notation is used for uξ = uξ11 · · ·u
ξd
d and w(·) is a

weight function whose typical choice can be w(d) = exp(− d2

h2 ) and h = max
k∈N(i)

‖xk −

xi‖. Similarly, any function f or vector filed V defined on X (i) can also be interpo-
lated as a degree 2 polynomial f(u) or V (u). Overall, we obtain a local polynomial
interpolation of X (i) as Zi(u) and a local polynomial interpolation of function defined
on X (i) as f(u). Therefore, the metric tensor G = (gst) near xi can be obtained by
gst = δst + 〈∂Zi

∂us
, ∂Zi

∂ut
〉. This enables us to approximate intrinsic differential operators

at xi such as:

∇Mf = gst
∂f

∂ut
∂us

, divMV =
1
√
g

∂

∂us
(
√
g V s) , ∆Mf =

1
√
g

∂

∂us

(
√
ggst

∂f

∂ut

)
.

where g = det(G), (gst) = G−1 and the Einstein summation is used. Other differential
operators can also be approximated using the similar method. After that, a finite
difference type of method can be applied to solve differential equations on the given
data. We refer [33, 34] for more details about this approach.

The local mesh method proposed in [29] is another way to approximate the above
differential operators from the virtual local coordinates. Namely, at i-th point, a local
connectivity can be constructed for the projection image of X (i) on Ti through the
standard Delaunay triangulation. Thus, this connectivity can be directly inherited on
X (i). If we write the simplex of the first ring of xi by R(i), the differential operators
at each point can be approximated by weighted average as follows:

∇Mf(xi) =

∑
S∈R(i) |S|∇Sf(xi)∑

S∈R(i) |S|
, divM

−→
V (pi) =

∑
S∈R(i) |S|divS

−→
V (xi)∑

S∈R(i) |S|

Moreover, a finite element type of method can be applied to estimate the mass matrix
and stiffness matrix. Therefore, differential equations like Laplace-Beltrami eigen-
values problems can be solved. We refer [29] for more detailed discussion about
construction of mass matrix and stiffness matrix.

We remark that the above constructions are conducted point-wisely. As long
as a differential operator is well-defined on a manifold, namely, its definition does
not depend on the choice of local coordinate, then the above procedure can consis-
tently approximate the desired differential operators. A different strategy that can
also be considered is to reconstruct coordinates first using the proposed Gram matrix
completion algorithm, then approximate differential operators based on the global
reconstructed coordinates. We would like to point out that the proposed methods of
approximating differential operators based on local reconstruction enjoys advantages
of computation efficiency and memory consumption. In fact, the most time-consuming
part of the coordinate reconstruction Algorithm 1 is the eigenvalue hard thresholding.
Consider a incomplete distance data with n nodes, the complexity of each eigenvalue
thresholding step is O(n2m) for global reconstruction if only the largest m eigenvalues
are computed. In our local reconstruction strategy, we only reconstruct coordinates
of ` nearest points near xi with complexity O(n`2m). When n is very large (such
as 16002 used in our experiments) and ` is small ( ≤ 30 in our experiments ), the
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local reconstruction strategy is apparently much more efficient than global recon-
struction strategy. Our numerical experiments discussed in Section 5 also support
this point (see Table 2). Moreover, the local reconstruction method supports parallel
computation which can further reduce time consumption. Additionally, the memory
consumption of global reconstruction is O(n2) and the matrix is not sparse, which
often crashes the program due to insufficient memory for large size data. However,
our local reconstruction strategy only requires the memory O(`2) which avoids the
problem of exceeding memory limit.

3.2. Solving differential equations based on incomplete distance. The
first PDE we consider is an elliptic eigenvalue problem of the Laplace-Beltrami (LB)
operator ∆M. The LB operator is self-adjoint and elliptic, so its spectrum is discrete.
We denote the eigenvalues of −∆M as 0 = λ0 < λ1 < λ2 < · · · and the corresponding
eigenfunctions as φ0, φ1, φ2, · · · satisfying the following equations [15]:

∆Mφk = −λkφk, k = 0, 1, 2, · · · .(15)

The set of LB eigenfunctions {φk}∞k=0 forms an orthonormal basis of the space of L2

functions on M. The set {λk, φk}∞k=0 is called LB eigensystem of M. Due to the
intrinsic definition of the LB operator ∆M, the induced LB eigensystem {λk, φk}∞k=0

is also completely intrinsic to the manifold geometry and provides an intrinsic and
systematic characterization of the underlying manifold geometry [5]. Recently, there
have been increasing interests in using the LB eigen-geometry for 3D shape analysis
as well as point clouds analysis [41, 32, 55, 46, 24, 51, 30, 12, 33, 31]. Therefore,
it would be also important to consider solve the LB eigensystem for manifolds rep-
resented as incomplete inter-point distance, then all existing methods of conducting
data analysis using the LB eigensystem can also be adapted to the incomplete dis-
tance data structure. Our numerical solvers are based on the numerical solvers for on
manifolds represented as point clouds. First, we apply the matrix completion model
for point-wise local coordinate reconstruction. Either MLS or LM can be then ap-
plied to obtain the discretized matrix form of the equation, where the only step we
need to conduct is to use the reconstructed local coordinates for the LB operator dis-
cretization as we discussed in the section 3.1. As the LB operator is invariant under
different choices of the local coordinates, the rigid motion ambiguity from the local
coordinate reconstruction will not introduce inconsistency across different coordinate
patches. This guarantees that our method can provide satisfactory numerical results
as we illustrate in the numerical section. We would like to remark that it is relatively
straightforward to have the local consistency of the differential operator as long as the
available distance information satisfying certain incoherence condition as we discussed
in our theoretical validation work [28]. However, the stability of the discretization is
still open and will be explored in our future work.

The second equation we consider is the Eikonal equation, a special type of nonlin-
ear hyperbolic PDE on manifolds. This equation is used to characterize the geodesic
distance, an intrinsic measurement between two points, on a manifold. The Eikonal
equation for the distance map d to a given set Γ on M can be stated as follows:

(16)

{
|∇Md(x)| = 1

d(x) = 0, x ∈ Γ ⊂M

when Γ only includes a single point p, the distance map can be denoted as dp. In
practice, provided points coordinates and mesh structure, model (16) can be solved
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by fast marching and fast sweeping methods [45, 25, 63]. For manifolds represented
as point clouds, a local mesh method based on fast marching is proposed in [29].
As long as the local coordinate reconstruction is obtained using the proposed matrix
completion model, then a local Delaunay mesh structure can be constructed. After
that, we repeat the local mesh method to conduct the fast marching as this approach
only depends on the distance information of the first ring structure of the local mesh,
which is again rigid motion invariant and will not be affected due to the rigid motion
ambiguity from the local coordinate reconstruction.

4. Applications on Manifold Reconstruction and Dimension Reduc-
tion. As we mentioned before, solutions of differential equations on manifolds can
provide global information for understanding data structure. Thus, PDEs can be
viewed as “bridges” linking between local information and global information. This
shares the same sprit as “think globally, fit locally” discussed in [43] although no
PDEs are involved there. Therefore, without global reconstruction, some global anal-
ysis of point clouds such as pattern recognition, comparisons and classification can
be further considered for data represented as incomplete distance. In this section, we
illustrate results on applications of manifold reconstruction and dimension reduction
based on solutions of the Laplace-Beltrami eigenvalue problem on incomplete distance
data.

4.1. Manifold reconstruction from distance via patch stitching using
LB eigenfunctions. The patch stitching problem is to reconstruct the coordinate of
a point cloud P ∈ Rn×d from coordinates of L subsets (referred as patches) {Ωj}Lj=1,
where Ωj denotes the index set for patch j. In practice, for each patch Ωj , the local
coordinates Qj ∈ Rnj×d, which are provided as input information or are reconstructed
from distance information, have the same pair-wise distance and geometry as the
restricted global coordinate PΩj with possible rigid motion difference. In other words,
PΩj

= QjRj + 1jbj , where Rj ∈ O(d) = {R ∈ Rd×d | R>R = Id} is an orthogonal
matrix for rotation and reflection, 1j ∈ Rnj×1 is a vector with all element equal to
1, and bj ∈ R1×d is the translation vector. A straightforward approach to solve {Rj}
and {bj} is to minimize the quadratic loss:

(17) min
P,{Rj∈O(d), bj∈Rd}Lj=1

L∑
j=1

‖PΩj −QjRj − 1jbj‖22,

Such model is a non-convex problem since {Rj} are required to optimize over the non-
convex domain of orthogonal transforms. In [18], the authors proposed a three-stage
patch stitching method from the local coordinate by synchronizing the reflection, rota-
tion and translation successively. However, the quality of synchronization is strongly
relies on the proportion of the overlapping index. More recently, a spectral relaxation
method is proposed to solve the above problem in [14]. This method essentially relax
the set of orthogonality constraints and perform well if neighborhood patches has
reasonable enough overlapping points.

Here, we propose an alternative method to reconstruct the global coordinate from
local coordinate, or merely incomplete distance information of each patch. Based on
solution of LB eigen-problem incomplete distance information discussed in Section 3.2,
we consider the LB eigen-system as a ”bridge” to connect the information of different
patches. This idea of this new method is essentially align each local patch in the
spectral domain instead of the original Euclidean coordinate domain. As the global
information has been captured from the LB eigen-system, the overlapping of different
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patches is not directly required here. This approach is inspired by approximating
coordinates using LB eigenfunctions. For a given point cloud P ∈ Rn×d, it can be
approximated by the linear combination of the LB eigenfunctions as P ≈ Φα. Here,
Φ = (φ1, · · · , φN ) ∈ Rn×N represents the first N LB eigenfunctions {φi}Ni=1 and α =
(α1, · · · , αd) ∈ RN×d represents coefficients of coordinates as column vectors. Since
the mass matrix is generally unknown without the prior knowledge of the structure
information, the coefficients matrix α can be obtained in the following least square
sense:

(18) min
α
‖P −

N∑
i=1

φiαi‖2F = min
α
‖P − Φα‖2F ,

Consider the relationship between restricted global coordinate {PΩj
} and the input

local coordinate {Qj}, we already have that for any 1 ≤ j ≤ L, PΩj
= QjRj + 1bj .

Therefore the norm ‖P − Φα‖22 in local patch Qj can be equivalently written as
‖PΩj −ΦΩjα‖22 = ‖QjRj +1jbj−ΦΩjα‖22 = ‖Qj +1jbjR

>
j −ΦΩjαR

>
j ‖22. Since bjR

>
j

is still a translation vector in Rd, the norm can be simplified as ‖Qj−ΦΩj
αRj−1jbj‖22

without loss of generality. As a result, with the given Φ and all the local coordinate
{Qj}, we propose the following model for stitching point clouds {Qj}Lj=1:

(19) min
α∈RN×d,{Rj∈O(d), bj∈Rd}Lj=1

E(α, Rj , bj) =
1

2

L∑
j=1

‖Qj − ΦΩj
αRj − 1jbj‖2F ,

Once {Rj} and {bj} are obtained, we can find all the adjusted coordinates PΩj =
QjRj + 1jbj , which leads to the global coordinate P ultimately.

Different from the synchronization method and the spectral relaxation method
considered in [18, 14], we design the following method to solve the nonconvex problem
(19) by updating α, {Rj} and {bj} iteratively:

(20)


αk+1 = αk − (

L∑
j=1

Φ>Ωj
ΦΩj

)−1∇αE(αk, Rkj , b
k
j ),

Rk+1
j = K(Rkj ,∇RjE(αk+1, Rkj , b

k
j )), ∀1 ≤ j ≤ L,

bk+1
j = bkj −

1

Card(Ωj)
∇bjE(αk+1, Rk+1

j , bkj ), ∀1 ≤ j ≤ L.

where we update α and {bj} using Newton’s method and it is straightforward to check

(21)


∇αE(αk, Rkj , b

k
j ) = −

L∑
j=1

Φ>Ωj
(Qj − ΦΩjα

kRkj − 1jb
k
j )(Rkj )>,

∇Rj
E(αk+1, Rkj , b

k
j ) = −(αk)>Φ>Ωj

(Qj − ΦΩj
αkRkj − 1jb

k
j ),

∇bjE(αk+1, Rk+1
j , bkj ) = −1>j (Qj − ΦΩj

αkRkj − 1jb
k
j ).

We next describe a method of updating the orthogonality constrained variable
{Rj}. The operator K proposed in [61] is designed for searching the gradient descent
direction on the Stiefel manifold, the geometric description of the set of orthogonal
matrices. To realize the operatorK(∇Rkj ), we first define the skew-symmetric operator
as

(22)
Gkj = ∇RjE(αk+1, Rkj , b

k
j )

Skj = Gkj (Rkj )> −Rkj (Gkj )>, ∀1 ≤ j ≤ L,
11



then the new trial point Rk+1
j satisfing Rk+1

j (Rk+1
j )> = I can be generated by

(23) Rk+1
j = K(Rkj , G

k
j ) = (1 +

δ

2
Skj )−1(1− δ

2
Skj )Rkj ,

where the step size δ can be obtained by setting fixed value or line search methods.
More detailed discussion about the orthogonality preserving property and conver-
gence of this approach can be found in [61]. With the above explanation of (20), we
summarize an algorithm of solving (19) as Algorithm 2.

Algorithm 2 Gradient Descent method to solve (19)

Initialization: Set the initial values such that α0 = 0, b0j = 0, R0
1 = Id×d. By

roughly estimating the orthogonal transform matrix Ri,j between neighbourhood
patches Ωi and Ωj with overlapping points, one can set the initial guess of R0

j =

R0
iRi,j . Using the broad first search (BFS) scheme, the rotation matrix of all

connected patches can be estimated. If a patch Ωi is isolated to any visited patches
in the BFS algorithm, set R0

i = Id×d.

while |E(k)−E(k−1)|
E(k) > ε do

1. αk+1 = αk + (

L∑
j=1

Φ>Ωj
ΦΩj

)−1(

L∑
j=1

Φ>Ωj
(Qj − ΦΩj

αkRkj − 1jb
k
j )(Rkj )>).

2. Rk+1
j = (1+

δ

2
Skj )−1(Rkj −

δ

2
SkjR

k
j ) where Gkj = −(αk)>Φ>Ωj

(Qj−ΦΩj
αkRkj −

1jb
k
j ), Skj = Gkj (Rkj )>−Rkj (Gkj )> ∀1 ≤ j ≤ L and δ is the step size which can be

solved by line search method.

3. bk+1
j = bkj +

1

Card(Ωj)
1>j (Qj − ΦΩj

αkRkj − 1jb
k
j ), ∀1 ≤ j ≤ L,

4. Calculate E(k + 1) = E(αk+1, Rk+1
j , bk+1

j ) for the stopping criteria.
end while
5. Apply PΩj = QjRj + 1jbj and combine all the PΩj to find the P .

Based on the above method, we therefore propose a global coordinate reconstruc-
tion algorithm from merely random missing distance in each local patches. Given
the local patches {Ωj}, 1 ≤ j ≤ L with patch size not larger than K, we assume the
local distance information include r% of the local distance of each patches. The full
reconstrution procedure can be summarized as follows:
Step 1 Using the method discussed in Section 3.2 with local mesh reconstruction

method to compute the first N Laplace-Beltrami eigenfunctions Φ.
Step 2 Using Algorithm 1 to generate the virtual local coordinate {Qj}, 1 ≤ j ≤ L

for each patch.
Step 3 Using Algorithm 2 to find the global coordinate P from Φ and {Qj}.

5. Numerical Results. In this section, numerical tests are presented to illus-
trate the proposed methods for solving PDEs on manifold represented as incomplete
inter-point distance information and the application to manifold stitching. First,
we demonstrate the effectiveness of the proposed matrix completion method for co-
ordinate reconstruction. We also illustrate the phase transition curve of successful
reconstruction. Second, we test our method of computing the LB eigen-problem and
illustrate that the proposed method of solving PDEs through local coordinate recon-
struction is much more efficient than solving PDEs from global coordinate reconstruc-
tion. In addition, we also test the problem of solving Eiknoal equations and illustrate
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the accuracy improvement of this approach to the canonical Dijkstra method. As
applications, we also demonstrate preliminary results on point clouds reconstruction
using global information from LB eigenfunctions and its potential application to di-
mension reduction problem. All numerical experiments are implemented by MATLAB
in a PC with a 32G RAM and 16 dual-core 2.7 GHz CPUs.

5.1. Coordinates reconstruction from incomplete distances. The local
coordinate reconstruction method based on matrix completion is a crucial part of
solving differential equations on a manifold represented as incomplete inter-point dis-
tance data. To demonstrate the effectiveness of the method proposed in Section 2,
we first test this method for global coordinate reconstruction, although our numerical
method for solving differential equations only conduct coordinate reconstruction for
a certain neighborhood of each point. Starting with a full distance matrix D ∈ Rn×n,
the actual number of freedom in D is (n2 − n)/2 as the diagonal elements of D are 0
and D is symmetric. We randomly chose γ(n2 − n)/2, (γ ∈ [0, 1]) number of entries
of D as the input incomplete distance matrix and apply Algorithm 1 to find a Gram
matrix B. After that, global coordinates can be consequently generated from B by
its eigen-decomposition as we described in Section 2.1.

Fig. 1. Phase transition of successful reconstruction rate ρ out of 50 tests of reconstructing a
uniformly sampled unit sphere. Left: successful reconstruction rate of the proposed model (2) based
on Gram matrix. Right: successful reconstruction rate based on distance completion model (12).

Our first numerical test is conducted for checking successful reconstruction rate
of reconstructing the input incomplete distance matrices. We test our model for
different size matrices with fixed rank. By uniformly choosing n points on the unit
sphere, we obtained the corresponding pairwise Euclidean distance matrix DT and
the associated Gram matrix BT as ground truth. After that, we randomly choose
γn(n − 1)/2 entries of DT as available information and apply our reconstruction
algorithm. We mean that the reconstruction is successful if the relative error between
BT and the reconstructed Gram matrix under the Frobenius norm is less than 10−3.
Given n and γ, we run 50 tests and record the rate of successful reconstruction as

ρ =
# successful reconstruction

50
. Based on the same input, Figure 1 plots the phase

transition of ρ using Gram matrix completion model (2) (the left image in Figure
1) and distance completion model (12) (the right image in Figure 1) in terms of
the sampling rate γ and the logarithm of total number of points log(n). Both images
clearly show that for a fixed rank problem, successful reconstruction needs less portion
of distance information as number of points increases. As we expect, the Gram
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matrix completion model (2) has a larger domain of successful reconstruction than
the model (12) using distance matrix completion. This is because the rank of Gram
matrix is less than the rank of distance matrix and an additional semi-positive definite
constraint is also impose for Gram matrix which further decrease the number of
freedom. Therefore, we use model (2) as our major local coordinate reconstruction
tool to approximate differential operators in the rest of numerical experiments.

Data
γ

1% 2% 3% 5% 10% 20%

S2 EB 7.157E-1 1.376E-3 4.791E-4 2.474E-4 1.342E-5 4.262E-5
ρ 0% 92% 100% 100% 100% 100%

Cow
EB 4.9427E-5 3.980E-4 1.837E-4 5.319E-5 1.4072E-5 2.155E-5
ρ 100% 100% 100% 100% 100% 100%

Swiss roll
EB 2.722E-4 2.894E-4 1.633E-4 5.054E-5 1.704E-5 1.114E-5
ρ 100% 100% 100% 100% 100% 100%

Table 1
Rate of The successful reconstruction ρ and the average relative error EB of the Gram matrix

out of 50 tests by the proposed model (2) from distances with information availability rate γ.

Fig. 2. Globally reconstructed coordinates of a unit sphere (1002 points) and a cow (2601 points)
using proposed model (2). Images from left top to right bottom are reconstructed from distance with
of 1%, 2%, 3%, and 5% available informatoin, respectively.

We further test distance matrices from different data including point clouds sam-
pled from the unit sphere(1002 points), a cow surface (2602 points), and a Swiss roll
surface (2048 points) using our Gram matrix completion model. Table 1 reports the
relative error of the Gram matrix and rates of successful reconstruction out of 50
tests for each γ. Figure 2 shows that with 1% distance information, the reconstructed
coordinates cannot formulate an outline of the unit sphere while the same rate of
distance information can successfully reconstruct the cow shape. This is compatible
with our observation showed in Figure 1, which indicates less percentage information
is need for successfully reconstructing matrices with larger size. In addition, Table 1
and Figure 2 also demonstrate both quantitatively and qualitatively that the pro-
posed reconstruction model can provide very good coordinate reconstruction once the
available distance information is sufficient.
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λ = 20

λ = 72

# of points 1002 1962 4002 7842 16002

finite element method with coordinates and mesh
λ = 20 0.0165 0.0085 0.0042 0.0021 0.0010
λ = 72 0.0660 0.0342 0.0169 0.0087 0.0043

γ = 100%, ` = 6
λ = 20 0.0196 0.0084 0.0039 0.0021 0.0011
λ = 72 0.1045 0.0599 0.0359 0.0221 0.0139

γ = 80%, ` = 9
λ = 20 0.0469 0.0280 0.0175 0.0108 0.0046
λ = 72 0.1292 0.0720 0.0420 0.0256 0.0161

γ = 50%, ` = 18
λ = 20 0.0488 0.0245 0.0128 0.0067 0.0034
λ = 72 0.3649 0.1172 0.0607 0.0322 0.0171

γ = 30%, ` = 30
λ = 20 0.0848 0.0431 0.0225 0.0103 0.0032
λ = 72 0.6146 0.3435 0.1029 0.0547 0.0263

3% of global distance information (` = 6 for MLS)
λ = 20 0.0155 0.0079 0.0047 0.0030 0.0021
λ = 72 0.0970 0.0550 0.0213 0.0099 0.0069

Fig. 3. Computation errors for LB eigenvalues λ = 20, 72 on the unit sphere based on incom-
plete distance Dγ,` with KNN information. Left: convergence curves. Right: Relative errors for
input distance matrices with different sample size.

5.2. Solve LB eigenvalue problem from distance data with missing val-
ues. Our second numerical experiment illustrates the proposed method of solving the
LB eigenvalue problem on manifolds represented as incomplete inter-point distance
information. Considering a point cloud {p1, · · · , pn} uniformly sampled on a given
manifold M ⊂ Rp, we compute the associated distance matrix D provided by pair-
wise Euclidean distance for this point cloud. Our numerical experiments illustrate
the proposed method for computing the LB eigenvalue problem only based on the
incomplete distance. More precisely, we first uniformly randomly choose a subset
Ωγ ⊂ {(i, j) | 1 ≤ j < i ≤ n}, such that |Ωγ | = dγn(n− 1)/2e. Then incompletion
distance information is provided as

Dγ,` =
{
D(i, j) | j ∈ N`(i) & (i, j) ∈ Ωγ , i = 1, · · · , n

}
where N`(i) denotes the index set of the nearest ` points to pi. Thus, Dγ,` roughly
contains γ`/n portion of D, which contains a very small portion of D if `� n as we
showed in our experiments. In addition, we measure computation accuracy using the

normalized error Emax,k = max
i

|λ̃k,i − λk|
|λk|

, where λ̃k,i are numerical approximation

from our method, and i represents the multiplicity.
We first demonstrate our method on different data sampled from the unit sphere.

It is known that the k-th LB eigenvalue of the unit sphere is given by λk = k(k + 1)
with multiplicity 2k+1. This allowss us to illustrate numerical accuracy of our meth-
ods on the unit sphere case. In the first test, we assume the K-nearest neighborhood
(KNN) is provided and sample distance matrices for point clouds on the unit sphere
by setting different values of γ = 100%, 80%, 50%, 30% and with different KNN size
` = 6, 9, 18, 30, respectively. Given a KNN size `, the settings of local sampling rate
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should above the border line as shown in Figure 1 to guarantee the exact local coor-
dinate reconstruction. Conversely, given a fixed sampling rate of local distance, we
need to set ` large enough to guarantee the successful reconstruction. With these
input data, we apply the proposed strategy for approximating the LB operator only
from local coordinates reconstruction and compute the first 100 LB eigenvalues. We
typically chose approximation results of LB eigenvalues λ = 20 and λ = 72 to con-
duct accuracy analysis by illustrating the numerical error Emax,n in the right table
of Figure 3. In addition, we list results from global coordinate reconstruction based
on 3% of distance information. As a reference, we also list computation results from
classical finite element method from all the exact coordinates of points and the mesh
information, which can be experimentally regarded as the best computation result
based on the whole distance information. It is clear that our method provides satis-
factory approximation of the LB eigenvalue problem on the unit sphere. Convergence
of our method is illustrated by the error curves showed in the left two plots in Figure
3. Moreover, we also observe the second order convergence numerically as Emax,k is
approximately reduced by half if the number of total point doubled. This is compat-
ible with convergence behavior of the moving least square method for solving the LB
eigenvalue problem on point clouds discussed in [33, 34].

number of points
1002 1962 4002 7842 16002

γ = 100%, ` = 6
0.26 0.51 1.01 2.03 4.05

γ = 80%, ` = 9
2.28 5.60 11.17 22.28 45.02

γ = 50%, ` = 18
4.03 8.09 16.14 32.44 64.71

γ = 30%, ` = 30
15.13 30.19 60.42 120.95 241.63

global reconstruction using 3% distance (` = 6 for MLS)
2.09 9.86 40.13 154.40 597.06

Table 2
Comparisons of time consumption (minutes) of solving the LB eigenvalue problem based on

local/global reconstruction methods.

We also report total time consumption in Table 2 for computing the first 100
LB eigenvalues with different setting of γ and ` in this test. Note that the major
time-consuming part is local coordinates reconstruction based on incomplete distance
information, whose complexity is dependent on the local size parameter ` and the
total number of points n. Theoretically, our local coordinate reconstruction method
generally has the time complexity O(min(`2nm, `3n)), while the global coordinate
reconstruction has time complexity O(n2m). Here, m is denoted as the maximum
number of eigenvalues used in the eigenvalue hard thresholding step of algorithm 1,
which is typically chosen as 20 in our experiments. For large data sets satisfying `� n,
local reconstruction method can save a huge amount of time. This advantage is also
illustrated in Table 2, where local reconstruction method for solving LB eigenvalue
problem is about 150 times faster than global reconstruction method if we choose
n = 16002 and ` = 6.

In practice, the input condition might be even weaker than our previous exper-
iment as the exact KNN information may not be directly obtained from incomplete
local distances. Therefore, we also test our method for reconstructing local coordi-
nates only relying on KNN information from incomplete distance information. In
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this scenario, we use the same setting as the previous test but require a larger rate
of available distance information to have successfully local coordinate reconstruction.
Our numerical results reported in Figure 4 also demonstrate nearly second order con-
vergence of LB eigenvalue problem on the unit sphere. We further test the robustness
of our method to distance with Gaussian perturbation. In this setting, we assume the
input data is a incomplete distance D80%,30 corrupted by different levels of Gaussian
noise with standard deviation σ = 2%dmax, 5%dmax, 10%dmax, 15%dmax respectively,
where dmax = maxi,j{D(i, j)}. The left table in Figure 5 reports numerical accuracy
for different levels of Gaussian noise. It is clear that our method still provides a
reasonable good approximation of LB eigenvalues. Moreover, we also plot the corre-
sponding LB eigenfunctions in Figure 6, where LB eigenfunctions are color-coded on
the unit sphere by setting red for positive values and blue for negative values. This fig-
ure illustrates consistent distribution patterns of LB eigenfunctions for noisy distance
case. In addition, we also test our method of computing LB eigenvalue problems for
incomplete distance information from point clouds sampled from more complicated
manifolds such as armadillo (16519 points) and kitten (2884 points) surfaces. Figure 7
reports serval LB eigenfunctions on armadillo and kitten surfaces based on incomplete
distance matrix D50%,30.

λ = 20

λ = 72

# of points 1002 1962 4002 7842 16002

finite element method from all the point and mesh
λ = 20 0.0165 0.0085 0.0042 0.0021 0.0010
λ = 72 0.0660 0.0342 0.0169 0.0087 0.0043

γ = 100%, ` = 6
λ = 20 0.0196 0.0084 0.0039 0.0021 0.0011
λ = 72 0.1045 0.0599 0.0359 0.0221 0.0139

γ = 90%, ` = 10
λ = 20 0.0494 0.0270 0.0137 0.0071 0.0033
λ = 72 0.2576 0.0792 0.0472 0.0258 0.0143

γ = 85%, ` = 20
λ = 20 0.0647 0.0332 0.0154 0.0075 0.0040
λ = 72 0.4830 0.2020 0.0691 0.0369 0.0193

γ = 80%, ` = 30
λ = 20 0.0813 0.0397 0.0164 0.0078 0.0040
λ = 72 0.6165 0.3387 0.0952 0.0483 0.0220

3% of global distance information (` = 6 for MLS)
λ = 20 0.0155 0.0079 0.0047 0.0030 0.0021
λ = 72 0.0970 0.0550 0.0213 0.0099 0.0069

Fig. 4. Computation errors for LB eigenvalues λ = 20, 72 on the unit sphere based on in-
complete distance Dγ,` without knowing exact KNN information. Left: convergence curves. Right:
Relative errors for input distance matrices with different sample size.
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λ = 20

λ = 72

# of points 1002 1962 4002 7842 16002

Noise free, γ = 100%, ` = 30
λ = 20 0.0813 0.0397 0.0164 0.0078 0.0040
λ = 72 0.6165 0.3387 0.0952 0.0483 0.0220

σ = 2% · dmax, γ = 80%, ` = 30
λ = 20 0.0858 0.0400 0.0186 0.0088 0.0043
λ = 72 0.6185 0.3410 0.0976 0.0492 0.0245

σ = 5% · dmax, γ = 80%, ` = 30
λ = 20 0.0886 0.0418 0.0220 0.0101 0.0054
λ = 72 0.6218 0.3418 0.1007 0.0540 0.0282

σ = 10% · dmax, γ = 80%, ` = 30
λ = 20 0.1023 0.0619 0.0393 0.0274 0.0232
λ = 72 0.6248 0.3653 0.1147 0.0668 0.0395

σ = 15% · dmax, γ = 80%, ` = 30
λ = 20 0.1488 0.0968 0.0690 0.0578 0.0475
λ = 72 0.6334 0.3920 0.1468 0.1018 0.0682

Fig. 5. Computation errors for LB eigenvalues λ = 20, 72 on the unit sphere based on in-
complete corrupted distance Dγ,` + N(0, σ2) without KNN information. Left: convergence curves.
Right: Relative errors for input distance matrices with different sample size.

Fig. 6. LB eigenfunctions are color-coded on the unit sphere (1002 points) based on incomplete
distance D80%,30 corrupted by Gaussian noise of different levels. Images from top to bottom repre-
sent the LB eigenfunctions from noise free distance, distance with Gaussian noise of σ = 5% ·dmax,
distance with Gaussian noise of σ = 10% · dmax, respectively. Images from left to right represent
the LB eigenfunctions corresponding to λ = 2, 6, 12, 20, respectively.
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Fig. 7. LB eigenfunctions for the armadillo (16519 points) and the kitten (2884 points) surfaces
based on incomplete distance D50%,30. Top: the first three eigenfunctions are color-coded on the
armadillo surface. Bottom: the first three eigenfunctions are color-coded on the kitten surfaces.

As we discussed before, our methods can also be applied on manifolds with di-
mension more than 2 and co-dimension more than 1. Our third experiment tests
the proposed method for computing LB eigenvalue problem on a 2 dimensional torus
T 2 = {(cos θ1, sin θ1, cos θ2, sin θ2) ∈ R4 | θ1, θ2 ∈ [0, 2π)} in R4 and a 3 dimension
torus T 3 = {(cos θ1, sin θ1, cos θ2, sin θ2, cos θ3, sin θ3) ∈ R6 | θ1, θ2, θ3 ∈ [0, 2π)} in R6.
Solutions of the corresponding LB eigenvalue problem for both objects have closed
forms, which enable us to conduct computation accuracy comparisons. For T 2, we
choose D80%,30 from the corresponding distance matrix obtained from different sam-
ple size on T 2. Similarly setting is considered for T 3 but using D85%,30 with slightly
large portion of information as the rank for each local Gram matrix for T 3 is higher
than the one for T 2. This requires more information of the distance matrix from the
matrix completion theory. Nevertheless, we only use less than 1% of the distance in-
formation for our experiments as ` = 30, n ≥ 2500. We remark that our computation
does not assume the exact KNN information is available. This is the reason that we
need higher portion of local information for accurate local coordinate reconstruction.
In addition, we do not assume the dimension information is available in our compu-
tation. As we demonstrated in the first experiment, the value of γ can be even lower
if the exact KNN information is provided. We compute the first 100 LB eigenvalues
for T 2 and T 3 using incomplete distance matrices with different sample size . Figure
8 reports the convergence and relative errors of our method. Both cases demonstrate
approximately second order convergence.

5.3. Solve Eikonal equation from incomplete distance. In this subsection,
we test our method for solving a special hyperbolic equation, the Eikonal equation,
on manifolds represented as incomplete distance information. In our experiments,
assuming the KNN information is given as prior knowledge, we considered the incom-
plete local distance of uniform/non-uniform sampled point cloud of a unit sphere, in
which the number of points vary from 1002 to 16002. In particular, we assume the
point cloud always contains two points with coordinate (0, 0, 1) and (0, 0,−1), namely,
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Fig. 8. Top: The first 100 LB eigenvalues for T 2 given by D80%,30 with different sample
size n = 2500, 3600, 4900, 6400, 10000. Top left: Relative errors. Top right: Convergence curves.
Bottom: The first 200 LB eigenvalues for T 3 given by D85%,30 with different sample size n =
12167, 15625, 19683, 27000, 42875. Bottom left: Relative errors. Bottom right: Convergence curves.

the north pole and the south pole (See Figure 9). To evaluate the quality of the re-
construction of distance map, we compare the relative error of the geodesic distance
from the north pole to south pole (referred as Ese), and from the north pole to all
other points (referred as Eav). The table in Figure 9 shows that our approach based
on the fast marching method is much more accurate than the Dijkstra’s method [19].
Moreover, relative errors of our method decrease as the number of points increase.
Furthermore, for the uniform sample cases, the relative error of geodesic distance
from north pole to south pole has first order convergence with respect to the den-
sity of points using our method, while the Dijkstra’s method does not have the same
convergence property.

Similarly, we also compute the distance function on a Swiss roll:

S = {(t+ 0.1) cos(t), (t+ 0.1) sin(t), 8πs) | t ∈ [0, 4π], s ∈ [0, 1]}

based on incomplete local distance from uniform/non-uniform sampling, in which two
diagonal points are fixed and their position can be seen in Figure 9. Using D60%,20

from different sample sizes vary from 1002 to 16002, the bottom Table in Figure 9
shows that our method can approximate the distance function with much less error
than the Dijkstra’s method, and approximate first convergence can also be observed
from the case of the uniform sampled Swiss roll.

5.4. Global coordinate reconstruction from using patch stitching. In
this experiment, we test our proposed global reconstruction model as an application
of using global information from solving the LB eigenproblem based on incomplete
distance. We assume the input manifold M ⊂ R3 sampled as a point cloud and has
been separated as partially overlapped L patches, namely, M =

⋃L
j=1 Ωj . We gen-

20



methods
sample size

1002 1962 4002 7842 16002

Uniform sampling on S2

Dijkstra
Eav 0.0348 0.0285 0.0248 0.0232 0.0224
Ese 0.008615 0.008606 0.008296 0.010642 0.011501

Our method
Eav 0.0113 0.0095 0.0080 0.0064 0.0022
Ese 0.008100 0.005890 0.004110 0.002877 0.002158

Non-Uniform sampling on S2

Dijkstra
Eav 0.0363 0.0344 0.0319 0.0305 0.0294
Ese 0.011209 0.016090 0.018380 0.016391 0.019953

Our method
Eav 0.0200 0.0163 0.0141 0.0124 0.0088
Ese 0.012016 0.008792 0.003742 0.001736 0.002765

Uniform sampling on a Swiss roll

Dijkstra
Eav 0.0119 0.0156 0.0198 0.0200 0.0203
Ese 0.013104 0.021242 0.024560 0.024311 0.026004

Our method
Eav 0.0065 0.0044 0.0052 0.0033 0.0022
Ese 0.003127 0.001637 0.001130 0.000783 0.000620

Non-Uniform sampling on a Swiss roll

Dijkstra
Eav 0.0400 0.0105 0.0114 0.0151 0.0180
Ese 0.016612 0.015779 0.014573 0.016587 0.018649

Our method
Eav 0.0138 0.0053 0.0047 0.0029 0.0073
Ese 0.004754 0.005189 0.003087 0.005171 0.007246

Fig. 9. Top left two images: Incomplete distance data D60%,20 from 1002 points sampled
uniformly and non-uniformly on the unit sphere with fixed north pole (red star) and south pole (blue
star) for calculating geodesic distance. Top right two images: D60%,20 from 2048 points sampled
uniformly and non-uniformly on the swiss role with a fixed starting point (red star) and an ending
point (blue star) for calculating geodesic distance. Bottom table: Relative error of geodesic distances
Eav (averaging from starting to all the points) and Ese (from the starting point to the ending point).

erate distance matrices {Dj}Lj=1 from pairwise Euclidean distance on each patch and
randomly choose 50% information of each distance matrix. Based on these incomplete
{Dj}Lj=1, we first compute the first 100 LB eigenfunctions of M using the proposed
method discussed in Section 3. After that, we reconstruct coordinates of each Ωj from
its incomplete distance using our matrix completion method. Finally, global recon-
struction of M is obtained by the manifold stitching model discussed in Section 4,
which can handle the coordinate inconsistency from each local reconstruction. In
Figure 10, we report numerical results for reconstructing an armadillo surface (with
16519 points, 28 patches) and a kitten surface (with 2884 points, 30 patches). The
two left images in Figure 10 illustrate coordinate reconstruction for each patch, the
two middle images show the corresponding global reconstruction and the two right en-
ergy curves indicate the convergence of the proposed global reconstruction algorithm.
It is clear to see that the proposed method can successfully reconstruct a manifold
from a set of incomplete distance matrices from separated patches, while the global
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methods
data

Armadillo Kitten Swiss roll

Global reconstruction 35321.84 1315.50 622.65
Stitching 760.18 138.76 199.75

Table 3
Time comparisons (seconds) between global reconstruction and the stitching model.

matrix completion model can not handle this case as the missing distance information
is quite coherent. Moreover, compared to direct global coordinate reconstruction, the
method of local distance reconstruction and patch stitching saves more computational
time. To validate this claim, we measured that the 50% of local distance {Dj}Lj=1

actually contains 3.59% of full distance D for armadillo surface and 3.45% for kitten
surface. Then we also implement the direct global coordinate reconstruction for these
two surfaces using the same rate of random missing global distance D. Table 3 shows
that the computation time is much smaller using the stitching scheme especially for
the armadillo surface with a large number of points.

Fig. 10. Top: Local (left) and global (middle) coordinate reconstruction of the armadillo sur-
face (16519 points, 28 patches) and the corresponding convergence curve of the global reconstruction
objective value log E. Bottom: Local (left) and global (middle) coordinate reconstruction of the kitten
surface( 2884 points, 30 patches) and the corresponding convergence curve of the global reconstruc-
tion objective value log E.

We further conduct computation based on an incomplete geodesic distance ma-
trix provided by a set of uniformly sampled points on the Swiss roll S used in the
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previous example. It is straightforward to check that the geodesic distance between
any two points ((t1 + 0.1) cos(t1), (t1 + 0.1) sin(t1), 8πs1) and ((t2 + 0.1) cos(t2), (t2 +
0.1) sin(t2), 8πs2) is given by

√
(8π(s1 − s2))2 + (G(t2)− G(t1))2, where G(t) = 1

2 [(t+

0.1)
√

1 + (t+ 0.1)2 + log(|
√

1 + (t+ 0.1)2 + (t + 0.1)|)]. In fact, this Swiss roll S is
isometrical to a 2D flat domain [G(0),G(4π)] × [0, 8π]. We uniformly sample 2048
points on S and construct a distance matrix D using pairwise geodesic distance. We
test two ways of reconstruct the Swiss roll based on incomplete information of D.
Firstly, similar as patch stitching simulations, we assume the Swiss roll is separated
as 23 patches with partial overlap. Then we chose only 50% of local geodesic distance
{Dj}23

j=1, which is essentially 3.61% coherent sampling of totally geodesic distance D.
The bottom row of figure 11 shows that the global stitched coordinate is a 2D rectan-
gle, which is identical to the theoretical ground truth of the dimension reduced Swiss
roll. Secondly, we assume 3.61% random sampled global geodesic distance is available
and apply our coordinate reconstruction algorithm to have the global coordinate re-
construction for the Swiss roll. Top right image in figure 11 shows that direct global
coordinate reconstruction from incoherent random missing distance is also applicable.
Table 3 shows that with same sampling rate from the whole distance matrix, the
direct global coordinate reconstruction takes much more computational time. The
reason can be explained similarly as computation complexity discussion in subsec-
tions 3.1 and 5.2. The step of solving PDEs from local distance has time complexity
O(min(l2mn, l3n)) while direct global coordinate reconstruction has time complex-
ity O(mn2) which is larger if total number of points n is large enough. Although
the eigen-decomposition of Laplace-Beltrami matrix also involves global computation
but it needs to be performed only once while eigenvalue thresholding is required in
every iteration for direct global coordinate reconstruction. Therefore, it is not up-
rising that the stitching scheme saves a lot of time. We remark that our method of
using geodesic distance to reconstructing manifolds is highly related to an important
topic called nonlinear dimension reduction in machine learning and statistics commu-
nity [42]. In our future work, we will investigate more along this direction based on
our methods.

6. Conclusion. In this paper, we proposed a framework for discretizing PDEs on
manifolds represented as incomplete inter-point distance information. Our approach
is to conduct PDE discretization point-wisely from a local coordinate reconstruction.
This strategy successfully avoids a time-consuming step of global coordinate recon-
struction and leads to a method with complexity linearly scaling to the number of
sample size. Our local reconstruction model is inspired from the recent advances of
low-rank matrix completion theory, which guarantee accuracy local coordinate recon-
struction by only requiring a very small portion of distance information. Our method
can be viewed as natural extensions of the moving least square method and the local
method method for solving PDEs on point clouds to manifold-structured data rep-
resented as incomplete inter-point distance information. As an application of using
solutions of PDEs, we propose a new manifold reconstruction model by stitching local
patches on the spectrum domain. Intense numerical experiments indicate effectiveness
and efficiency of our methods for solving LB eigenvalue problem, Eikonal equations
and manifold reconstruction using stitching methods based on global information from
the LB eigensystem.

7. Acknowledgement. We would like to thank Prof. Xiangxiaong Zhang’s
suggestions about optimizing distance matrix directly as we discussed in Remark 2.
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Fig. 11. Top: the Swiss roll surface (left) and its dimensional reduction result (right) from
randomly 3.61% of pair-wise geodesic distance. Bottom: local (left) and global (right) coordinates
reconstruction of the Swiss roll from its 80% local geodesic distance.

REFERENCES

[1] A. Y. Alfakih, A. Khandani, and H. Wolkowicz, Solving Euclidean distance matrix comple-
tion problems via semidefinite programming, Computational optimization and applications,
12 (1999), pp. 13–30.

[2] P. Axelsson, Processing of laser scanner data—algorithms and applications, ISPRS Journal
of Photogrammetry and Remote Sensing, 54 (1999), pp. 138–147.

[3] M. Belkin and P. Niyogi, Semi-supervised learning on Riemannian manifolds, Machine
Learning, 56 (2004), pp. 209–239.

[4] M. Belkin, J. Sun, and Y. Wang, Constructing Laplace operator from point clouds in Rd,
in Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms,
Philadelphia, PA, USA, 2009, pp. 1031–1040.

[5] P. Bérard, G. Besson, and S. Gallot, Embedding Riemannian manifolds by their heat
kernel, Geometric & Functional Analysis, 4 (1994), pp. 373–398.

[6] B. Berger, J. Kleinberg, and T. Leighton, Reconstructing a three-dimensional model with
arbitrary errors, Journal of the ACM (JACM), 46 (1999), pp. 212–235.

[7] M. Bertalmio, L.-T. Cheng, S. Osher, and G. Sapiro, Variational problems and partial
differential equations on implicit surfaces, Journal of Computational Physics, 174 (2002),
pp. 759–780.

[8] M. Bertalmio, G. Sapiro, L.-T. Cheng, and S. Osher, A framework for solving surface
partial differential equations for computer graphics applications, UCLA CAM Report (00-
43), (2000).

[9] P. Biswas, T.-C. Liang, K.-C. Toh, Y. Ye, and T.-C. Wang, Semidefinite programming
approaches for sensor network localization with noisy distance measurements, IEEE trans-
actions on automation science and engineering, 3 (2006), pp. 360–371.

[10] I. Borg and P. J. Groenen, Modern multidimensional scaling: Theory and applications,
Springer Science & Business Media, 2005.

[11] J. Brandman, A level-set method for computing the eigenvalues of elliptic operators defined
on compact hypersurfaces, Journal of Scientific Computing, 37 (2008), pp. 282–315.

24



[12] M. M. Bronstein and I. Kokkinos, Scale-invariant heat kernel signatures for non-rigid shape
recognition, IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
(2010), pp. 1704–1711.

[13] E. Candès and B. Recht, Exact matrix completion via convex optimization., Found. of Com-
put. Math., 9 (2008), pp. 717–772.

[14] K. N. Chaudhury, Y. Khoo, and A. Singer, Global registration of multiple point clouds using
semidefinite programming, SIAM Journal on Optimization, 25 (2015), pp. 468–501.

[15] I. Chavel, Eigenvalues in Riemannian geometry, Academic press. INC, 1984.
[16] R. R. Coifman and S. Lafon, Diffusion maps, Applied and computational harmonic analysis,

21 (2006), pp. 5–30.
[17] G. M. Crippen, T. F. Havel, et al., Distance geometry and molecular conformation, vol. 74,

Research Studies Press Taunton, UK, 1988.
[18] M. Cucuringu, Y. Lipman, and A. Singer, Sensor network localization by eigenvector syn-

chronization over the euclidean group, ACM Transactions on Sensor Networks (TOSN), 8
(2012), p. 19.

[19] E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische mathematik,
1 (1959), pp. 269–271.

[20] G. Dziuk and C. M. Elliott, Finite element methods for surface PDEs, Acta Numerica, 22
(2013), pp. 289–396.

[21] O. Faugeras and M. Hebert, The representation, recognition, and locating of 3-d objects,
The international journal of robotics research, 5 (1986), pp. 27–52.

[22] X. Ji and H. Zha, Sensor positioning in wireless ad-hoc sensor networks using multidimen-
sional scaling, in INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE
Computer and Communications Societies, vol. 4, IEEE, 2004, pp. 2652–2661.

[23] I. Jolliffe, Principal component analysis, Wiley Online Library, 2002.
[24] P. W. Jones, M. Maggioni, and R. Schul, Manifold parametrizations by eigenfunctions of

the Laplacian and heat kernels, Proceedings of the National Academy of Sciences, 105
(2008), pp. 1803–1808.

[25] R. Kimmel and J. A. Sethian, Computing geodesic paths on manifolds, Proceedings of the
National Academy of Sciences, 95 (1998), pp. 8431–8435.

[26] J. B. Kruskal and M. Wish, Multidimensional scaling, vol. 11, Sage, 1978.
[27] R. Lai and T. F. Chan, A framework for intrinsic image processing on surfaces, Computer

vision and image understanding, 115 (2011), pp. 1647–1661.
[28] R. Lai, J. Li, and A. Tasissa, Exact reconstruction of distance geometry problem using low-

rank matrix completion, Preprint, (2017).
[29] R. Lai, J. Liang, and H. Zhao, A local mesh method for solving PDEs on point clouds.,

Inverse Problems & Imaging, 7 (2013).
[30] R. Lai, Y. Shi, K. Scheibel, S. Fears, R. Woods, A. W. Toga, and T. F. Chan, Metric-

induced optimal embedding for intrinsic 3D shape analysis, Computer Vision and Pattern
Recognition (CVPR), (2010), pp. 2871–2878.

[31] R. Lai and H. Zhao, Multiscale nonrigid point cloud registration using robust sliced-
wasserstein distance via laplace-beltrami eigenmap, SIAM Journal on Imaging Sciences,
10 (2017), pp. 449–483.

[32] B. Levy, Laplace-Beltrami eigenfunctions: Towards an algorithm that understands geometry,
IEEE International Conference on Shape Modeling and Applications, invited talk, (2006).

[33] J. Liang, R. Lai, T. Wong, and H. Zhao, Geometric understanding of point clouds using
Laplace-Beltrami operator, CVPR, (2012).

[34] J. Liang and H. Zhao, Solving partial differential equations on point clouds, SIAM Journal
on Scientific Computing, 35 (2013), pp. A1461–A1486.

[35] L. M. Lui, X. Gu, T. F. Chan, S. Yau, et al., Variational method on riemann surfaces
using conformal parameterization and its applications to image processing, Methods and
Applications of Analysis, 15 (2008), pp. 513–538.
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