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Abstract
In this paper we improve the deterministic complexity of two funda-

mental communication primitives in the classical model of ad-hoc radio
networks with unknown topology: broadcasting and wake-up. We con-
sider an unknown radio network, in which all nodes have no prior knowl-
edge about network topology, and know only the size of the network n, the
maximum in-degree of any node ∆, and the eccentricity of the network
D.

For such networks, we first give an algorithm for wake-up, based on
the existence of small universal synchronizers. This algorithm runs in
O( min{n,D∆} log n log ∆

log log ∆ ) time, the fastest known in both directed and undi-
rected networks, improving over the previous best O(n log2 n)-time result
across all ranges of parameters, but particularly when maximum in-degree
is small.

Next, we introduce a new combinatorial framework of block synchro-
nizers and prove the existence of such objects of low size. Using this
framework, we design a new deterministic algorithm for the fundamental
problem of broadcasting, running in O(n log D log log D∆

n
) time. This is

the fastest known algorithm for the problem in directed networks, im-
proving upon the O(n log n log log n)-time algorithm of De Marco (2010)
and the O(n log2 D)-time algorithm due to Czumaj and Rytter (2003). It
is also the first to come within a log-logarithmic factor of the Ω(n log D)
lower bound due to Clementi et al. (2003).

Our results also have direct implications on the fastest deterministic
leader election and clock synchronization algorithms in both directed and
undirected radio networks, tasks which are commonly used as building
blocks for more complex procedures.
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1 Introduction
1.1 Model of communication networks
We consider the classical model of ad-hoc radio networks with unknown struc-
ture. A radio network is modeled by a (directed or undirected) network N =
(V,E), where the set of nodes corresponds to the set of transmitter-receiver
stations. The nodes of the network are assigned different identifiers (IDs),
and throughout this paper we assume that all IDs are distinct numbers in
{1, . . . , |V |}. A directed edge (v, u) ∈ E means that node v can send a message
directly to node u. To make propagation of information feasible, we assume
that every node in V is reachable in N from any other.

In accordance with the standard model of unknown (ad-hoc) radio networks
(for more elaborate discussion about the model, see, e.g., [1, 2, 6, 10, 11, 14, 20,
22, 25]), we make the assumption that a node does not have any prior knowledge
about the topology of the network, its in-degree and out-degree, or the set of
its neighbors. We assume that the only knowledge of each node is its own
ID, the size of the network n, the maximum in-degree of any node ∆, and the
eccentricity of the network D, which is the maximum distance from the source
node to any node in N.

Nodes operate in discrete, synchronous time steps, but we do not need to
assume knowledge of a global clock. When we refer to the “running time” of an
algorithm, we mean the number of time steps which elapse before completion
(i.e., we are not concerned with the number of calculations nodes perform within
time steps). In each time step a node can either transmit a message to all of its
out-neighbors at once or can remain silent and listen to the messages from its
in-neighbors. Some variants of the model make restrictions upon message size
(e.g. that they should be O(logn) bits in length); our algorithms only forward
the source message so comply with any such restriction.

The distinguishing feature of radio networks is the interfering behavior of
transmissions. In the most standard radio networks model, the model without
collision detection (see, e.g., [1, 2, 11, 25]), which is studied in this paper, if a
node v listens in a given round and precisely one of its in-neighbors transmits,
then v receives the message. In all other cases v receives nothing; in particular,
the lack of collision detection means that v is unable to distinguish between zero
of its in-neighbors transmitting and more than one.

The model without collision detection describes the most restrictive interfer-
ing behavior of transmissions; also considered in the literature is a less restrictive
variant, the model with collision detection, where a node listening in a given
round can distinguish between zero of its in-neighbors transmitting and more
than one (see, e.g., [14, 25]).

1.2 Discussion of assumptions of node knowledge
We consider the model that assumes that all nodes have knowledge of the param-
eters n,D, and ∆. While these assumption may seem strong, they are standard
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in previous works when running time dependencies upon the parameters ap-
pear. For example, the O(n log2D)-time algorithm of [12] requires knowledge
of n and D, and the O(D∆ log n

∆ )-time algorithm of [11] requires knowledge of n
and ∆ (though they provide methods of removing these knowledge assumptions
at the expense of extra running time factors). Similar assumptions also appear
in previous related work.

Furthermore, we note that nodes need only know common upper bounds for
the parameters, rather than the exact values (these upper bounds will replace
the true values in the running time expression). Therefore, even if only some
polynomial upper bound for D is known, and no knowledge about ∆ is assumed
at all, our broadcasting algorithm still runs within O(n logD log logD) time,
and remains the fastest known algorithm. Similarly, with only a polynomial
upper bound on ∆ and no bound on D, our wake-up algorithm still runs in
O(n logn log ∆

log log ∆ )-time. In this latter case, the algorithm is also faster than previous
algorithms when only n is known.

For both algorithms (as with all broadcasting and wake-up algorithms with
at least linear dependency on n) this assumption too can be removed by stan-
dard double-and-test techniques, at the cost of never having acknowledgment
of completion. The task of achieving acknowledgment in such circumstances is
addressed in [26].

Note that to avoid non-well-defined expressions, we will use log(x) to mean
min{1, log2(x)} wherever logarithms appear.

1.3 Communications primitives: broadcasting and wake-
up

In this paper we consider two fundamental communications primitives, namely
broadcasting and wake-up, and consider deterministic protocols for each of these
tasks.

1.3.1 Broadcasting

Broadcasting is one of the most fundamental problems in communication net-
works and has been extensively studied for many decades (see, e.g., [25] and the
references therein).

The premise of the broadcasting task is that one particular node, called
the source, has a message which must become known to all other nodes. We
assume that all other nodes start in a dormant state and do not participate until
they are “woken up” by receiving the source message (this is referred to in some
works as the “no spontaneous transmissions” rule). As a result, while the model
does not assume knowledge of a global clock, we can make this assumption in
practice, since the current time can be appended to the source message as it
propagates, and therefore will be known be all active nodes. This is important
since it allows us to synchronize node behavior into fixed-length blocks.
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1.3.2 Wake-up

The wake-up problem (see, e.g., [17]) is a related fundamental communication
problem that arises in networks where there is no designated “source” node, and
no synchronized time-step at which all nodes begin communicating. The goal is
for all nodes to become “active” by receiving some transmission. Rather than
a single source node which begins active, we instead assume that some subset
of nodes spontaneously become active at arbitrary time-steps. The task can be
seen as broadcast from multiple sources, without the ability to assume a global
clock. This last point is important, and results in wake-up protocols being
slower than those for broadcast, since nodes cannot co-ordinate their behavior.

1.4 Related work
As a fundamental communications primitive, the task of broadcasting has been
extensively studied for various network models for many decades.

For the model studied in this paper, directed radio networks with unknown
structure and without collision detection, the first sub-quadratic determinis-
tic broadcasting algorithm was proposed by Chlebus et al. [6], who gave an
O(n11/6)-time broadcasting algorithm. After several small improvements (cf.
[7, 24]), Chrobak et al. [10] designed an almost optimal algorithm that com-
pletes the task in O(n log2 n) time, the first to be only a poly-logarithmic factor
away from linear dependency. Kowalski and Pelc [20] improved this bound to
obtain an algorithm of complexity O(n logn logD) and Czumaj and Rytter [12]
gave a broadcasting algorithm running in time O(n log2D). Finally, De Marco
[23] designed an algorithm that completes broadcasting in O(n logn log logn)
time steps. Thus, in summary, the state of the art result for deterministic
broadcasting in directed radio networks with unknown structure (without col-
lision detection) is the complexity of O(nmin{logn log logn, log2D}) [12, 23].
The best known lower bound is Ω(n logD) due to Clementi et al. [11].

Broadcasting has been also studied in various related models, including undi-
rected networks, randomized broadcasting protocols, models with collision de-
tection, and models in which the entire network structure is known. For ex-
ample, if the underlying network is undirected, then an O(n logD)-time algo-
rithm due to Kowalski [19] exists. If spontaneous transmissions are allowed
and a global clock available, then deterministic broadcast can be performed
in O(n) time in undirected networks [6]. Randomized broadcasting has been
also extensively studied, and in a seminal paper, Bar-Yehuda et al. [2] de-
signed an almost optimal broadcasting algorithm achieving the running time
of O((D + logn) · logn). This bound has been later improved by Czumaj and
Rytter [12], and independently Kowalski and Pelc [21], who gave optimal ran-
domized broadcasting algorithms that complete the task in O(D log n

D + log2 n)
time with high probability, matching a known lower bound from [22].

Haeupler and Wajc [15] improved this bound for undirected networks in the
model that allows spontaneous transmissions and designed an algorithm that
completes broadcasting in O(D logn log logn/ logD+ logO(1) n) time with high
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probability. In the model with collision detection for undirected networks, an
O(D+log6 n)-time randomized algorithm due to Ghaffari et al. [14] is the first to
exploit collisions and surpass the algorithms (and lower bound) for broadcasting
without collision detection.

For more details about broadcasting algorithms in various model, see e.g.,
[25] and the references therein.

The wake-up problem (see, e.g., [17]) is a related communication problem
that arises in networks where there is no designated “source” node, and no
synchronized time-step at which all nodes begin communicating. Before any
more complex communication can take place, we must first require all nodes to
be “active,” i.e., aware that they should be communicating. This is the goal
of wake-up, and it is a fundamental starting point for most other tasks in this
setting, for example leader election and clock synchronization [9].

The first sub-quadratic deterministic wake-up protocol was given in by Chrobak
et al. [9], who introduced the concept of radio synchronizers to abstract the
essence of the problem. They give an O(n5/3 logn)-time protocol for the wake-
up problem. Since then, there have been two improvements in running time,
both making use of the radio synchronizer machinery: firstly to O(n3/2 logn)
[4], and then to O(n log2 n) [3]. Unlike for the problem of broadcast, the fastest
known protocol for directed networks is also the fastest for undirected networks.
Randomized wake-up has also been studied (see, e.g., [9, 18]). A recent survey
of the current state of research on the wake-up problem is given in [17].

1.5 New results
In this paper we present a new construction of universal radio synchronizers
and introduce and analyze a new concept of block synchronizers to improve
the deterministic complexity of two fundamental communication primitives in
the model of ad-hoc radio networks with unknown topology: broadcasting and
wake-up.

By applying the analysis of block synchronizers, we present a new determin-
istic broadcasting algorithm (Algorithm 1) in directed ad-hoc radio networks
with unknown structure, without collision detection, that for any directed net-
workN with n nodes, with eccentricityD, and maximum in-degree ∆, completes
broadcasting in O(n logD log log D∆

n ) time-steps. This result almost matches a
lower bound of Ω(n logD) due to Clementi et al. [11], and improves upon the
previous fastest algorithms due to De Marco [23] and due to Czumaj and Rytter
[12], which require O(n logn log logn) and O(n log2D) time-steps, respectively.

Our result reveals that a non-trivial speed-up can be achieved for a broad
spectrum of network parameters. Since ∆ ≤ n, our algorithm has the complexity
at most O(n logD log logD). Therefore, in particular, it significantly improves
the complexity of broadcasting for shallow networks, whereD � nO(1). Further-
more, the dependency on ∆ reduces the complexity even further for networks
where the product D∆ is near linear in n, including sparse networks which can
appear in many natural scenarios.
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Our broadcasting result has also direct implications on the fastest deter-
ministic leader election algorithm in directed and undirected radio networks. It
is known that leader election can be completed in O(logn) times broadcasting
time (see, e.g., [10, 13]) (assuming the broadcast algorithm extends to multiple
sources, which is the case here as long as we have a global clock), and so our
result improves the bound to achieve a deterministic leader election algorithm
running in O(n logn logD log log D∆

n ) time. For undirected networks the best
result is O(n log3/2 n

√
log logn) time [8] (we note that the O(n logD) broadcast

protocol of [19] cannot be used at a logn slowdown for leader election, since
it relies on token traversal and does not extend to multiple sources). Our re-
sult therefore favorably compares for shallow networks (for small D) even in
undirected networks.

We also present a deterministic algorithm (Algorithm 2) for the related
task of wake-up. We show the existence of universal radio synchronizers of
delay g(k) = O(n logn log k

log log k ), and demonstrate that this yields a wake-up protocol
taking time O(min{n,D∆} logn log ∆

log log ∆ ). This improves over the previous best result
for both directed and undirected networks, the O(n log2 n)-time protocol of [3];
the improvement is largest when ∆ is small, but even when it is polynomial in
n, our algorithm is a log logn-factor faster.

Our improved result for wake-up has direct applications to communication
algorithms in networks that do not have access to a global clock, where wake-up
is an essential starting point for most more complex communication tasks. For
example, wake-up is used as a subroutine in the fastest known protocols for fun-
damental tasks of leader election and clock synchronization (cf. [9]). These are
two fundamental tasks in networks without global clocks, since they allow ini-
tially unsynchronized networks to be brought to a state in which synchronization
can be assumed, and results from the better-understood setting with a global
clock can then be applied. Our wake-up protocol yields O(min{n,D∆} log2 n log ∆

log log ∆ )-
time leader election and clock synchronization algorithms, which are the fastest
known in both directed and undirected networks.

1.6 Previous approaches
Almost all deterministic broadcasting protocols with sub-quadratic complexity
(that is, since [6]) have made use of the concept of selective families (or some
similar variant thereof, such as selectors). These are families of sets for which
one can guarantee that any subset of [n] := {1, 2, . . . , n} below a certain size
has an intersection of size exactly 1 with some member of the family. They
are useful in the context of radio networks because if the members of the fam-
ily are interpreted to be the set of nodes which are allowed to transmit in a
particular time-step, then after going through each member, any node with an
active in-neighbor and an in-neighborhood smaller than the size threshold will
be informed. Most of the recent improvements in broadcasting time have been
due to a combination of proving smaller selective families exist, and finding
more efficient ways to apply them (i.e., choosing which size of family to apply
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at which time).
One of the drawbacks of selective-family based algorithms is that applying

them requires coordination between nodes. For the problem of broadcast, this
means that some time may be wasted waiting for the current selective family to
finish, and also that nodes cannot alter their behavior based on the time since
they were informed, which might be desirable. For the problem of wake-up, this
is even more of a difficulty; since we cannot assume a global clock, we cannot
synchronize node behavior and hence cannot use selective families at all.

To tackle this issue, Chrobak et al. [9] introduced the concept of radio syn-
chronizers. These are a development of selective families which allow nodes to
begin their behavior at different times. A further extension to universal syn-
chronizers in [4] allowed effectiveness across all in-neighborhood sizes. However,
the adaptability to different node start times comes at a cost of increased size,
meaning that synchronizer-based wake-up algorithms were slightly slower than
selective family-based broadcasting algorithms.

The proofs of existence for selective families and synchronizers follow similar
lines: a probabilistic candidate object is generated by deciding on each element
independently at random with certain carefully chosen probabilities, and then it
is proven that the candidate satisfies the desired properties with positive prob-
ability, and so such an object must exist. The proofs are all non-constructive
(and therefore all resulting algorithms non-explicit; cf. [16, 5] for explicits con-
struction of selective families).

Returning to the problem of broadcasting, a breakthrough came in 2010 with
a paper by De Marco [23] which took a new approach. Rather than having all
nodes synchronize their behavior, it instead had them begin their own unique
pattern, starting immediately upon being informed. These behavior patterns
were collated into a transmission matrix. The existence of a transition matrix
with appropriate selective properties was then proven probabilistically. The
ability for a node to transmit with a frequency which decayed over time al-
lowed De Marco’s method to inform nodes with a very large in-neighborhood
faster, and this in turn reduced total broadcasting time from O(n log2D) [12]
to O(n logn log logn).

A downside of this new approach is that having nodes begin immediately,
rather than wait until the beginning of the next selector, gives rise to a far
greater number of possible starting-time scenarios that have be accounted for
during the probabilistic proof. This caused the logarithmic factor in running
time to be logn rather than logD. Furthermore, the method was compara-
tively slow to inform nodes of low in-degree, compared to a selective family of
appropriate size. These are the difficulties that our approach overcomes.

1.7 Overview of our approach
Our wake-up result follows a similar line to the previous works; we prove the
existence of smaller universal synchronizers than previously known, using the
probabilistic method. Our improvement stems from new techniques in analysis
rather than method, which allow us to gain a log-logarithmic factor by choosing
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what we believe are the optimal probabilities by which to construct a randomized
candidate.

Our broadcasting result takes a new direction, some elements of which are
new and some of which can be seen as a compromise between selective family-
type objects and the transmission schedules of De Marco [23]. We first note that
nodes of small in-degree can be quickly dealt with by repeatedly applying (n, nD )-
selective families “in the background” of the algorithm. This allows us to tailor
the more novel part of the approach to nodes of large in-degree. We have nodes
performing their own behavior patterns with decaying transmission frequency
over time, but they are semi-synchronized to “blocks” of length roughly n

D , in
order to cut down the number of circumstances we must consider. This idea is
formalized by the concept of block synchronizers, combinatorial objects which
can be seen as an extension of the radio synchronizers used for wake-up.

An important new concept used in our analysis of block synchronizers (and
also in our proof of small universal synchronizers) is that of cores. Cores reduce
a set of nodes and starting times to a (usually smaller) set of nodes which are
active during a critical period. In this way we can combine many different
circumstances into a single case, and demonstrate that for our purposes they all
behave in the same way.

The most technically involved part of both of the proofs is the selection of
the probabilities with which we generate a randomized candidate object (univer-
sal synchronizer or block synchronizer). Intuitively, when thinking about radio
networks, a node in our network is aiming to inform its out-neighbors, and it
should assume that as time goes on, only those with large in-neighborhoods
will remain uninformed (because these nodes are harder to inform quickly).
Therefore a node should transmit with ever-decreasing frequency, roughly in-
versely proportional to how large it estimates remaining uninformed neighbors’
in-neighborhoods must be. However, the size of these in-neighborhoods can-
not be estimated precisely, and so we must tweak the probabilities slightly to
cover the possible range. In block synchronizers we do this using phases of
length O(log log D∆

n ) during which nodes halve their transmission probability
every step, but since behavior must be synchronized to achieve this we cannot
do the same for radio synchronizers. Instead, we allow our estimate to be fur-
ther from the true value, and require more time-steps around the same value to
compensate.

As with previous results based on selective families, synchronizers, or sim-
ilar combinatorial structures, the proofs of the structures we give are non-
constructive, and therefore the algorithms are non-explicit.

2 Combinatorial tools
Our communications protocols rely upon the existence of objects with certain
combinatorial properties, and we will separate these more abstract results from
their applications to radio networks. In this section, we will define the com-
binatorial objects we will need. Next, in Sections 3–4, we will demonstrate in
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detail how these combinatorial objects can be used to obtain fast algorithms for
broadcasting and wake-up.

2.1 Selective families
We begin with a brief discussion about selective families, whose importance in
the context of broadcasting was first observed by Chlebus et al. [6]. A selective
family is a family of subsets of [n] := {1, . . . , n} such that every subset of [n]
below a certain size has intersection of size exactly 1 with a member of the family.
For the sake of consistency with successive definitions, rather than defining the
family of subsets Si, we will instead use the equivalent definition of a set of
binary sequences Sv (that is, Svi = 1 if and only if v ∈ Si).

For some m ∈ N, let each v ∈ [n] have its own length-m binary sequence
Sv = Sv0S

v
1S

v
2 . . . S

v
m−1.

Definition 1. S = {Sv}v∈[n] is an (n, k)-selective family if for any X ⊆ [n]
with 1 ≤ |X| ≤ k, there exists j, 0 ≤ j < m, such that

∑
v∈X S

v
j = 1. (We say

that such j hits X.)

2.1.1 Existence of small selective families

The following standard lemma (see, e.g., [11]) posits the existence of (n, k)-
selective families of size O(k log n

k ). This has been shown to be asymptotically
optimal [11].

Lemma 2 (Small selective families). For some constant c and for any 1 ≤
k ≤ n, there exists an (n, k)-selective family of size at most m = ck log n

k .

2.1.2 Application to radio networks

During the course of radio network protocols we can “apply” a selective family
S on an n-node network by having each node v transmit in time-step j if and
only if v has a message it wishes to transmit and Svj = 1 (see, e.g., [6, 11]).
Some previous protocols involved nodes starting to transmit immediately if they
were informed of a message during the application of a selective family (or a
variant called a selector designed for such a purpose), but here we will require
nodes to wait until the current selective family is completed before they start
participating. That is, nodes only attempt to transmit their message if they
knew it at the beginning of the current application.

The result of applying an (n, k)-selective family is that any node u which
has between 1 and k active neighbors before the application will be informed of
a message upon its conclusion. This is because there must be some time-step j
which hits the set of u’s active neighbors, and therefore exactly one transmits
in that time-step, so u receives a message. This method of selective family
application in radio networks was first used in [6].
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2.2 Radio synchronizers
Radio synchronizers are an extension of selective families designed to account
for nodes in a radio network starting their behavior patterns at different times,
and without access to a global clock. They were first introduced in [9] and used
in an algorithm for performing wake-up, and this is also the purpose for which
we will apply them.

To define radio synchronizers, we first define the concept of activation sched-
ule.

Definition 3. An n-activation schedule is a function ω : [n]→ N.

We will extend the definition to subsetsX ⊆ [n] by setting ω(X) = minv∈X ω(v).
As for selective families, let each v ∈ [n] have its own length-m binary

sequence Sv = Sv0S
v
1S

v
2 . . . S

v
m−1. We then define radio synchronizers as follows:

Definition 4. S = {Sv}v∈[n] is called an (n, k,m)-radio synchronizer if for
any activation schedule ω and for any X ⊆ [n] with 1 ≤ |X| ≤ k, there exists j,
ω(X) ≤ j < ω(X) +m, such that

∑
v∈X S

v
j−ω(v) = 1.

One can see that the definition is very similar to that of selective families
(Definition 1), except that now each v’s sequence is offset by the value ω(v). To
keep track of this shift in expressions such as the sum in the definition, we will
call such values j columns. As with selective families, we say that any column
j satisfying the condition in Definition 4 hits X.

In [4], the concept of radio synchronizers was extended to universal radio
synchronizers which cover the whole range of k from 1 to n. Let g : [n]→ N be
a non-decreasing function, which we will call the delay function.

Definition 5. S = {Sv}v∈[n] is called an (n, g)-universal radio synchro-
nizer if for any activation schedule ω, and for any X ⊆ [n], there exists column
j, ω(X) ≤ j < ω(X) + g(|X|), such that

∑
v∈X S

v
j−ω(v) = 1.

2.2.1 New result: Existence of small universal radio synchronizers

We obtain a new, improved construction of universal radio synchronizers, which
improves over the previous best result of Chlebus et al. [3] of universal synchro-
nizers with g(q) = O(q log q logn).

Theorem 6. For any n ∈ N, there exists an (n, g)-universal radio synchro-
nizer with g(q) = O( q log q logn

log log q ).

Our approach will be to randomly generate a candidate synchronizer, and
then prove that with positive probability it does indeed satisfy the required
property. Then, for this to be the case, at least one such object must exist. We
will prove Theorem 6 in Section 5.
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2.2.2 Application of universal radio synchronizers to radio networks

One can apply universal radio synchronizers to the problem of wake-up in ra-
dio networks by having ω(v) represent the time-step in which node v becomes
active during the course of a protocol (either spontaneously or by receiving a
transmission). Subsequently, v interprets Sv as the pattern in which it should
transmit, starting immediately from time-step ω(v). That is, in each time-step
j after activation, v checks the next value in Sv (i.e., Svj−ω(v)), transmits if it
is 1 and stays silent otherwise. Then, the selective property specified by the
definition guarantees that any node u with an in-neighborhood of size q hears a
transmission within at most g(q) steps of its first in-neighbor becoming active.

We will present this approach in details in Section 3.2, where we will obtain
a new, improved algorithm for the wake-up problem.

2.3 Block synchronizers
Next, we introduce block synchronizers, which are a new type of combinatorial
object designed for use in a fast broadcasting algorithm. They can be seen as an
extension of both radio synchronizers and the transmission matrix formulation
of De Marco [23].

Let ω be an n-activation schedule (cf. Definition 3). Let each v ∈ [n] have its
own length-m binary sequence Sv = Sv0S

v
1S

v
2 . . . S

v
m−1. For any fixed B, define

a function µB : N→ N which rounds its input up to the next multiple of B, that
is, µB(x) = min{pB : p ≥ x

B , p ∈ N}; we will call s(v) := µB(ω(v)) the start
column of v. We extend s to subsets of [n] in the obvious way, s(X) = µB(ω(X)).

Definition 7. S = {Sv}v∈[n] is an (n,∆, r, B)-block synchronizer if for any
activation schedule ω and any set X ⊆ [n] with |X| ≤ ∆, there exists a column
j, s(X) ≤ j < s(X) +B · d |X|r e, such that

∑
v∈X S

v
j−s(v) = 1.

Block synchronizers differ from radio synchronizers in two ways: Firstly, on
top of the offsetting effect of the activation schedule, there is also the function
µB that effectively “snaps” behavior patterns to blocks of size B, hence the
name block synchronizer. Secondly, the size of the range in which we must
hit X is linearly dependent on |X|. This could be generalized to a generic
non-decreasing function g(|X|) as with universal radio synchronizers, but here
for simplicity we choose to use the specific function which works best for our
broadcasting application. The parameter r is the increment by which each block
increases the size of sets we can hit.

2.3.1 New result: Existence of small block synchronizers

We will show the existence of small block synchronizers in the following theorem.

Theorem 8. For any n,D,∆ ∈ N with D, ∆ ≤ n < D∆, there exists an
(n,∆, nD , O( nD logD log log D∆

n ))-block synchronizer.
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We will prove the existence of a small block synchronizer by randomly gen-
erating a candidate S, and proving that it indeed has the required properties
with positive probability, in a similar fashion to the proof of small radio syn-
chronizers. We will prove Theorem 8 in Section 6.

2.3.2 Application of block synchronizers to radio networks

The idea of our broadcasting algorithm will be that any node v waits until
the start of the first block after its activation time ω(v), and then begins its
transmission pattern Sv. The definition of block synchronizer aims to model this
scenario. The hitting condition ensures that any node with an in-neighborhood
of size q ≤ ∆ will be informed within Bd qr e time-steps of the start of the block
in which its first in-neighbor begins transmitting.

We will present this approach in details in Section 3.1, where we will obtain
a new, improved algorithm for the broadcasting problem.

3 Algorithms for broadcasting and wake-up
In this section we use the machinery developed in the previous section to design
our algorithms for broadcasting and wake-up in radio networks.

3.1 Broadcasting
We will assume that D∆ > n, otherwise an earlier O(D∆ log n

∆ )-time protocol
from [11] can be used to achieve O(D∆ log n

∆ ) = O(n logD) time.
Let S be an (n,∆, nD ,B)-block synchronizer, with B = c nD logD log log D∆

n
(cf. Theorem 8), and recall that µB(x) = min{pB : p ≥ x

B , p ∈ N}, i.e. the start
of the first block after x. We will say that the source node becomes active at
time-step 0, and any other node v becomes active in a time-step i if it received its
first transmission at time-step i−1. Our broadcasting algorithm is the following
(Algorithm 1):

Algorithm 1 Broadcast at a node v
Let i be the time-step in which v becomes active
for j from 0 to DB − 1, in time-step µB(i) + j do

v transmits source message iff Svj = 1
end for

3.2 Wake-up
Let S be an (n, g)-universal radio synchronizer with g(q) = cq log q logn

log log q (cf. The-
orem 6). We will say that a node v becomes active in a time-step i if it either
spontaneous wakes up at i, or received its first transmission at time-step i− 1.
Our wake-up algorithm is the following (Algorithm 2):
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Algorithm 2 Wake-up at a node v
Let i be the time-step in which v becomes active
for j from 0 to g(n)− 1, in time-step i+ j do

v transmits source message iff Svj = 1
end for

4 Analysis of broadcasting and wake-up algo-
rithms

In this section we show that our algorithms for broadcasting and wake-up have
the claimed running times. Our analysis critically relies on the constructions of
small block synchronizers and small universal radio synchronizers, as presented
in Theorems 8 and 6.

We begin with the analysis of the broadcasting algorithm.

Theorem 9. Algorithm 1 performs broadcast in O(n logD log log D∆
n ) time-

steps.

To begin the analysis, fix some arbitrary node v and let P be a shortest
path from the source (or first informed node) x to v. Number the nodes in
this path consecutively, e.g., P0 = x and Pdist(x,v) = v. Classify all other
nodes into layers dependent upon the furthest node along the path P to which
they are an in-neighbor (some nodes may not be an in-neighbor to any node
in P ; these can be discounted from the analysis). That is, layer L` = {u ∈
V : maxu in-neighbour to Pi i = `} for ` ≤ dist(x, v). We separately define layer
Ldist(x,v)+1 to be {v}.

(For a depiction of layer numbering, see Figure 1.)

Figure 1: An example of layer numbering.

At any time step, we call a layer leading if it is the foremost layer containing
an active node, and our goal is to progress through the network until the final
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layer is leading, i.e., v is active. The use of layers allows us to restrict to the set of
nodes of our main interest: if we focus on the path node whose in-neighborhood
contains the leading layer, we cannot have interference from earlier layers since
they contain no in-neighbors of this path node, and we cannot have interference
from later layers since they are not yet active.

Lemma 10. Let h : [∆] → N be a non-decreasing function, and define
T (n,D,∆, h) to be the supremum of the function

∑D
i=1 h(qi), where integers

1 ≤ qi ≤ ∆ satisfy the additional constraint
∑D
i=1 qi ≤ n. If a broadcast or

wake-up protocol ensures that any layer (under any choice of v) of size q re-
mains leading for no more than h(q) time-steps, then all nodes become active
within T (n,D,∆, h) time-steps.

Proof. Let qi = |Li|. Layer Ldist(x,v)+1 must be leading (and thus node v active)
once no other layers are leading, and so this occurs within

∑dist(x,v)
i=1 h(qi) time-

steps after layer L1 becomes leading. Since
∑dist(x,v)
i=1 h(qi) ≤

∑D
i=1 h(qi) and∑D

i=1 qi ≤ n, this is no more than T (n,D,∆, h) time-steps.
Since v was chosen arbitrarily, all nodes must be active within T (n,D,∆, h)

time-steps of x becoming active.

We make use of Lemma 10 to give bounds on the running times of our
algorithms:

Lemma 11. Algorithm 1 ensures that any layer of size q remains leading for
fewer than Bd q+rr e time-steps.

Proof. For all nodes w, let ω(w) be the time-step that w becomes active during
the course of the algorithm. By definition of a block selector, for any layer Li
of size qi there is a time-step j < s(Li) +Bd qir e in which exactly one element of
Li transmits. Then, either path node Pi hears the transmission (and so layer Li
is no longer leading in time-step j + 1), or Pi has active in-neighbors not in Li,
in which case these must be in a later layer so Li is not leading. Thus, Li can
remain leading for no more than s(Li)+Bd qir e−ω(Li) < Bd qi+rr e time-steps.

With these tools, we are now ready to complete the proof of Theorem 9.

Proof of Theorem 9. By Lemma 10, Algorithm 1 ensures that all nodes are
active (and have therefore heard the source message) within T (n,D,∆, h) time-
steps, where h(q) = Bd q+rr e. We will use an upper bound T (n,D,∆, h′),
where h′(q) = B q+2r

r . Since h′ is linear and increasing,
∑D
i=1 h

′(qi) subject
to
∑D
i=1 qi ≤ n is maximized whenever

∑D
i=1 qi = n, for example at qi = n

D for
all i ∈ [D]. So, the algorithm completes broadcast within

D∑
i=1

h′( n
D

) =
D∑
i=1
B
n
D + 2r
r

= 3BD = 3c′n logD log log D∆
n

time-steps.

14



In a similar way, we can analyze Algorithm 2:

Theorem 12. Algorithm 2 performs wake-up in O(min(n,D∆) logn log ∆
log log ∆ ) time-

steps.

Proof. By Lemma 10, and the selective property of the universal synchroniz-
ers proven in Theorem 6, Algorithm 2 ensures that all nodes are active within
T (n,D,∆, g) time-steps, where g(q) = cq log q logn

log log q . Since g is convex and in-
creasing,

∑D
i=1 g(qi) subject to

∑D
i=1 qi ≤ n and qi ≤ ∆ is maximized at qi = ∆

if i ≤ n
∆ , and qi = 0 otherwise. Hence, the algorithm completes wake-up within

min(D, n∆ )∑
i=1

g(∆) =
min(D, n∆ )∑

i=1

c∆ log ∆ logn
log log ∆ = cmin(n,D∆) logn log ∆

log log ∆

time-steps.

5 Small universal radio synchronizers: Proof of
Theorem 6

In this section we will prove our main result about the existence of small uni-
versal radio synchronizers, Theorem 6. We first restate the theorem:

Theorem 6. For any n ∈ N, there exists an (n, g)-universal radio synchro-
nizer with g(q) = O( q log q logn

log log q ).

Our approach will be to randomly generate a candidate synchronizer, and
then prove that with positive probability it does indeed satisfy the required
property. Then, for this to be the case, at least one such object must exist.
We note that, since we are only concerned with asymptotic behavior, we can
assume that n is at least a sufficiently large constant.

Let c be a constant to be chosen later. Our candidate S = {Sv}v∈[n] will
be generated by independently choosing each Svj (for j < g(n)) to be 1 with
probability c logn

6(j+c logn) and 0 otherwise.
In analyzing whether S hits all sets X ⊆ [n] under any activation schedule,

we must first define the concept of a core to reduce the number of possibilities
we must consider.

Definition 13. Fix any X ⊆ [n] and any activation schedule ω. Let Xj be the
elements of X which are active by column j, i.e., Xj = {v ∈ X : ω(v) ≤ j}.
Let j′ be the smallest j such that j − ω(X) ≥ g(|Xj |). For every v, define
ψ(v) = ω(v)− ω(X), i.e., ψ is ω shifted so that ψ(X) = 0.

The core CX,ω of a subset X ⊆ [n] with respect to activation schedule ω is
defined to be

{(v, ψ(v)) : ω(v) < j′}
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This definition aims to narrow our focus to only the important elements in
a particular subset X. Cores cut down the number of possibilities by removing
redundant elements which only become active after the set must already have
been hit, and by shifting activation times to begin at zero (which, as we show,
can be done without loss of generality). We do not want cores to be subject to
an overriding activation schedule, so we include the activation times of elements
of a core within its definition. When we talk about “hitting” a core, we mean
using these incorporated activation times rather than an activation schedule,
and we assume that column numberings start at 0 at the beginning of the core.

We note that if S hits a core CX,ω within g(|CX,ω|) columns under ψ, then
it hits the set X within g(|X|) columns under ω.This result allows us to ‘shift’
the activation times, and analyze a core independently of the many activation
schedules from which it could be derived. We now need only prove that our
candidate synchronizer hits all possible cores, since this will imply that it hits
all subsets of [n] under all activation schedules.

We make one further definition which will simplify our analysis:

Definition 14. For a core C and column j, let C(j) denote {(v, ψ(v)) ∈ C :
ψ(v) ≤ j}. The load of column j of core C, denoted fC(j), is defined to be
fC(j) =

∑
(v,ψ(v))∈C(j)

c logn
6(j−ψ(v)+c logn) .

Note that load of a column j of core C is the expected number of 1s in
a column, under the probabilities used for our candidate S, that is, fC(j) =∑

(v,ψ(v))∈C(j) PrSvj−Bφ(v) = 1.
If fC(j) is close to constant, then the probability of S hitting C in column

j will also be almost constant. We therefore wish to bound fC(j), both from
above and below.

Lemma 15. For all j < g(|C|), fC(j) > log log |C|
12 log |C| .

Proof. The minimum contribution each v ∈ C(j) can add to fC(j) is c logn
6(j+c logn) .

Hence, fC(j) ≥ c logn
6(j+c logn) · |C(j)|. To bound this quantity, we separate into two

cases:

Case 1: j < c logn. In this case we can obtain an adequate bound simply using
that |C| ≥ 1:

c logn
6(j + c logn) · |C(j)| ≥ c logn

6(j + c logn) >
1
12 ≥

log log |C|
12 log |C|

Case 2: j ≥ c logn. If j < g(|C|), then we also have j < g(|C(j)|). This can
be seen by examining any set X and activation schedule ω from which C
can be derived, and noting that

j + ω(X) < g(|C|) + ω(X) = g(|Xj′ |) + ω(X) ≤ j′

by Definition 13, and so

j = (j + ω(X))− ω(X) < g(|Xj+ω(X)|) = g(|C(j)|)
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also by Definition 13.
Recalling (cf. Theorem 6) that g(q) = cq log q logn

log log q , rearranging gives
|C(j)| > j log log |C(j)|

c logn log |C(j)| . Therefore total load is bounded by

fC(j) ≥ c logn
6(j + c logn) · |C(j)| > j log log |C(j)|

6(j + c logn) log |C(j)| ≥
log log |C|
12 log |C|

This lemma provides a lower bound on fC(j). We also need an upper bound,
but we cannot obtain a good one for all j, since transmission load in a particular
column can be as large as |C|. We instead prove that the set of columns with
load within our desired range is sufficiently large.

Let FC = {j < g(|C|) : log log |C|
12 log |C| < fC(j) < 1

2 log log |C|}. We prove the
following bound:

Lemma 16. |FC | ≥ c|C| logn log |C|
10 log log |C| .

Proof. Let us first upper-bound the total load over all columns j < g(|C|):∑
j<g(|C|)

fC(j) =
∑

j<g(|C|)

∑
(v,ψ(v))∈C(j)

c logn
6(j − ψ(v) + c logn)

=
∑

(v,ψ(v))∈C

∑
j<g(|C|)

c logn
6(j − ψ(v) + c logn)

≤
∑

(v,ψ(v))∈C

∫ g(|C|)−1

ψ(v)−1

c logn
6(j − ψ(v) + c logn)dj

(by standard integral bound)

= c logn
6

∑
(v,ψ(v))∈C

ln
(
g(|C|)− 1− ψ(v) + c logn

c logn− 1

)
(evaluating integral)

≤ c logn · |C|
6 · ln

(
g(|C|) + c logn− 1

c logn− 1

)

= c|C| logn
6 · ln

 c|C| logn log |C|
log log |C| + c logn− 1

c logn− 1


(substituting g’s definition)

≤ c|C| logn
6 · ln

 c|C| logn log |C|
log log |C|
1
2c logn

+ 1


≤ c|C| logn

6 · ln(4|C|1.1)
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= 1.1 ln 2 log |C|+ ln 4
6 c|C| logn

≤ 0.45c|C| logn log |C|

In the penultimate inequality we use that 2|C| log |C|
log log |C| + 1 ≤ 4|C|1.1, which is

obvious for sufficiently large |C| and can be checked manually for small |C|
(remembering that we consider log(x) to mean min{log2(x), 1}). The final in-
equality can be checked similarly.

Since fC(j) ≥ 0 for any j < g(|C|), the inequality above implies that the
number of columns j < g(|C|) with fC(j) ≥ 1

2 log log |C| must be fewer than
0.9c|C| logn log |C|

log log |C| . Therefore, since by Lemma 15 all elements j 6∈ FC must have
fC(j) ≥ 1

2 log log |C|, and since g(|C|) = c|C| logn log |C|
log log |C| , we obtain:

|FC | ≥ g(|C|)− 0.9c|C| logn log |C|
log log |C| = c|C| logn log |C|

10 log log |C|

Next, we will give a lower bound for the probability that j hits C, which will
later be shown to imply that columns in the set FC (and hence the candidate
synchronizer as a whole) have a good probability of hitting C. The following
lemma, or variants thereof, has been used in several previous works such as [23],
but we prove it here for completeness.

Lemma 17. Let xi, i ∈ [n] be independent {0, 1}-valued random variables with
Prxi = 1 ≤ 1

2∀i, and let f =
∑
i∈[n] Prxi = 1. Then Pr

∑
i∈[n] xi = 1 ≥ f4−f .

Proof.

Pr
∑
i∈[n]

xi = 1 =
∑
j∈[n]

Prxj = 1 ∧ xi = 0∀i 6= j

≥
∑
j∈[n]

Prxj = 1 · Prxi = 0∀i

≥ f · Prxi = 0∀i

= f ·
∏
i∈[n]

(1− Prxi = 1)

≥ f ·
∏
i∈[n]

4−Pr xi=1

= f · 4−
∑

i∈[n]
Pr xi=1

= f4−f

For any j, applying this lemma with xv = Svj−ψ(v), we get that the proba-
bility that j hits C is at least fC(j) · 4−fC(j).
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Lemma 18. For any core C, the probability that there is no column j < g(|C|)
that hits C is at most 1− n

−c|C|
140 ln 2 .

Proof. By Lemma 17, each column j independently hits C with probability at
least fC(j) · 4−fC(j). To proceed with the analysis we will focus on the columns
in FC , that is, columns j < g(|C|) with log log |C|

12 log |C| < fC(j) < 1
2 log log |C|.

Let us consider the function 1−x4−x for x > 0, and notice that this function
has a global minimum at µ = 1/ ln 4, is decreasing for x < µ, and is increasing
for x > µ. For simplicity of notation, let h denote the number of columns
j ∈ FC with µ < fC(j) < 1

2 log log |C|. Then, the probability that no columns
hit is upper bounded as follows:

Prno column hits ≤
∏

j<g(|C|)

(1− fC(j) · 4−fC(j))

≤
∏
j∈FC

(1− fC(j) · 4−fC(j))

=
∏
j∈FC ,

µ<fC(j)≤ 1
2 log log |C|

(1− fC(j)4−fC(j))
∏
j∈FC ,

log log |C|
12 log |C| <fC(j)≤µ

(1− fC(j) · 4−fC(j))

≤
∏
j∈FC ,

µ<fC(j)≤ 1
2 log log |C|

(
1− log log |C|

2 log |C|

) ∏
j∈FC ,

log log |C|
12 log |C| <fC(j)≤µ

(
1− log log |C|

14 log |C|

)

(since products are maximised by setting fC(j) = 1
2 log log |C| and fC(j) = log log |C|

12 log |C| , respectively)

≤
(

1− log log |C|
2 log |C|

)h
·
(

1− log log |C|
14 log |C|

)|FC |−h
≤
(

1− log log |C|
14 log |C|

)|FC |
≤
(

1− log log |C|
14 log |C|

) c|C| logn log |C|
10 log log |C|

(by Lemma 16)

≤ e
−c|C| logn

140 (using 1− x ≤ e−x for x ∈ (0, 1))

= n
−c|C|
140 ln 2

We now have a lower bound on the probability that S hits a particular core,
but it remains to bound the number of possible cores we must hit.

Let Cq be the set of possible cores of size q.

Lemma 19. |Cq| ≤ n3q.
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Proof. There are at most n · g(n) possible pairs of (v, ψ(v)), and thus at most(
n·g(n)
q

)
ways of choosing a size-q subset. So, |Cq| is at most

(
n·g(n)
q

)
≤ (n ·

g(n))q = ( cn
2 log2 n

log logn )q ≤ n3q (for sufficiently large n).

We are now ready to prove our existence result:

Lemma 20. With positive probability, S is an (n, g)-universal synchronizer.

Proof. We will set c to be 700 ln 2. By union bound, using Lemmas 18 and 19,

PrS is an (n, g)-universal synchronizer ≤
n∑
q=1

∑
C∈Cq

PrC is not hit

≤
n∑
q=1

∑
C∈Cq

n
−c|C|
140 ln 2 ≤

n∑
q=1

n3q · n
−cq

140 ln 2 =
n∑
q=1

n(3− c
140 ln 2 )q

≤
n∑
q=1

n−2q < 1 .

We are now ready to prove Theorem 6:

Proof. Since our candidate S satisfies the properties of an (n, g)-universal radio
synchronizer with positive probability, such an object must exist. This com-
pletes the proof of Theorem 6.

6 Small block synchronizers: Proof of Theorem
8

In this section we will prove our main result about the existence of small block
synchronizers, Theorem 8. We first restate the theorem:

Theorem 8. For any n,D,∆ ∈ N with D, ∆ ≤ n < D∆, there exists an
(n,∆, nD , O( nD logD log log D∆

n ))-block synchronizer.

As in our proof of the existence of small radio synchronizers (see Section
5), we only consider the case where n is at least a sufficiently large constant,
since we are only concerned with asymptotic behavior. We will again need
to define the core of a subset of [n] (with respect to an activation schedule
ω) in order to reduce the amount of possible circumstances we will consider.
The main difference to our definition of cores in Section 5 is that we need only
retain the relative values of ω to the nearest block, rather than keeping the exact
(shifted) values. This is the reason for us introducing the concept of blocks (and
block synchronizers), and it allows the range of possible cores to be cut down
substantially.
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Definition 21. Fix any X ⊆ [n] and activation schedule ω. Let Xj be the
elements of X which are active by the start of the block containing column j, i.e.,
Xj = {v ∈ X : s(v) ≤ j}. Let j′ be the smallest j such that j − s(X) ≥ B·|Xj |

r .
For every v, define φ(v) = s(v)−s(X)

B , i.e., φ(v) is the number of blocks
that pass between the start column of X and the start column of v. Note that
φ(v) ∈ N.

The core CX,ω of a subset X ⊆ [n] with respect to activation schedule ω is
defined to be

{(v, φ(v)) : v ∈ X, s(v) < j′}

We see, as we did in Section 5, that if some object S “hits” all cores, then
it hits all subsets of [n] under any activation schedule. By hitting a core C
at column j, we mean that

∑
(v,φ(v))∈C S

v
j−Bφ(v) = 1, and we assume column

numberings start at the beginning of the core. So, if S hits a core CX,ω within
B·|CX,ω|

r columns, then it hits the set X within B·|X|
r columns of s(X) under

activation schedule ω.
We wish to prove the existence of a small block synchronizer by randomly

generating a candidate S, and proving that it indeed has the required proper-
ties with positive probability, in a similar fashion to the proof of small radio
synchronizers. While this could be achieved directly, we can in fact get a better
result by proving existence of a slightly weaker object using this method, and
then bridging the gap with selective families.

Definition 22. S = {Sv}v∈[n] is an (n, k,∆, r, B)-upper block synchronizer
if, for any core C with k ≤ |C| ≤ ∆, there exists column j < B·|C|

r such that∑
(v,φ(v))∈C S

v
j−Bφ(v) = 1.

An upper block synchronizer has a lower bound k on the size of the cores
it must hit. To obtain our full block synchronizer result, we will first show the
existence of small upper block synchronizers, and then show that these can be
extended to block synchronizers by adding selective families to hit cores of size
less than k.

Theorem 23. For some constant c and for any n,D,∆ with D,∆ ≤ n < D∆,
there exists an (n, nD ,∆,

n
D , c

n
D logD log log D∆

n )-upper block synchronizer.

Proof. Let c be a constant to be chosen later. For simplicity of notation we now
set k = n

D , r = n
D , and B = c nD logD log log D∆

n .
Define ρ(j) = j mod 2 log log D∆

n . Our candidate upper block synchronizer
S = {Sv}v∈[n] will be generated by independently choosing each Svj (for j < nB

r )
to be 1 with probability c logD log log D∆

n

(B+j)2ρ(j)+1 and 0 otherwise.
We will analyze our candidate upper block synchronizer by fixing some par-

ticular core and bounding the probability that the candidate hits it. We begin
by defining the load of a column (with respect to some fixed core C), and bound-
ing it both above and below on a subset of columns. As before, load represents
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expected number of 1s in a column, and we want it to be constant in order to
maximize hitting probability. Recall that we now consider column numbering
to begin at the start of the core, i.e. min(v,φ(v))∈C φ(v) = 0.

Definition 24. Let C(j) denote {(v, φ(v)) ∈ C : Bφ(v) ≤ j}. The load of a col-
umn j of core C, denoted fC(j), is defined to be

∑
(v,φ(v))∈C(j) PrSvj−Bφ(v) = 1 =∑

(v,φ(v))∈C(j)
c logD log log D∆

n

(j−Bφ(v)+B)2ρ(j)+1 .

Since load varies across a wide range during each 2 log log D∆
n -length “phase,”

we first consider only the columns at the start of each phase (i.e., those j with
ρ(j) = 0), which we will call 0-columns.

Lemma 25. For all B2 ≤ j <
B·|C|
r with ρ(j) = 0, fC(j) > 1

6 .

Proof. Recall that, when deriving a core from a set X, we ended the core at
the first column j′ with j′ − s(X) ≥ B·|Xj |

r , i.e. for all j ≤ j′ − 1, j − s(X) <
B·|Xj |
r . Having shifted column numberings, this implies that for j < B·|C|

r ,
j < B·|C(j)|

r . The minimum contribution any(v, φ(v)) ∈ C(j) can add to fC(j) is
c logD log log D∆

n

2(j+B) . Therefore total load is upper bounded by

fC(j) ≥ |C(j)| ·
c logD log log D∆

n

2(j +B) >
cj

2c(j +B) ≥
1
6

This lemma provides a lower bound on fC(j). We also need an upper bound,
but we cannot obtain a good one for all j, since load in a particular column can
be very large. We circumvent this issue by only bounding the load on a smaller
set of columns.

Let FC = {j < B·|C|
r : ρ(j) = 0, 1

6 < fC(j) < 3 log |C|Dn }. We prove a lower
bound on |FC |.

Lemma 26. If n
D ≤ |C| ≤ ∆, then |FC | ≥ c

6 |C| logD.

Proof. We first upper bound the total load of all 0-columns j with j < B·|C|
r

and then show that not too many of these columns can have fC(j) ≥ 3 log |C|Dn ,
giving a lower bound for the number of 0-columns in FC .

We bound the total load of all 0-columns j with j < B·|C|
r as follows:

∑
j<

B·|C|
r

ρ(j)=0

fC(j) =
∑

j<
B·|C|
r

ρ(j)=0

∑
(v,φ(v))∈C(j)

c logD log log D∆
n

2(j −Bφ(v) +B)

=
∑

(v,φ(v))∈C

∑
Bφ(v)≤j<B·|C|

r

ρ(j)=0

c logD log log D∆
n

2(j −Bφ(v) +B)
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=
∑

(v,φ(v))∈C

B·|C|
2r log log D∆

n

−1∑
i= Bφ(v)

2 log log D∆
n

c logD log log D∆
n

2(2i log log D∆
n −Bφ(v) +B)

(substitution of sum index variable)

≤
∑

(v,φ(v))∈C

∫ B·|C|
2r log log D∆

n

−1

Bφ(v)
2 log log D∆

n

−1

c logD log log D∆
n

2(2i log log D∆
n −Bφ(v) +B)

di

(using standard integral bound)

= c logD
4

∑
(v,φ(v))∈C

ln
(
B·|C|
r − 2 log log D∆

n −Bφ(v) +B

B − 2 log log D∆
n

)
(evaluating integral)

≤ c|C| logD
4 ln

(
B·|C|
r − 2 log log D∆

n +B

B − 2 log log D∆
n

)

= c|C| logD
4 ln

(
|C|c logD log log D∆

n − 2 log log D∆
n +B

B − 2 log log D∆
n

)

≤ c|C| logD
4 ln

(
2(c|C| logD log log D∆

n +B)
B

)

= c|C| logD
4 ln

(2(|C|+ n
D )

n
D

)
≤ 1

4c|C| logD ln 4|C|D
n

(using the assumption n
D
≤ |C|)

≤ 1
4c|C| logD log |C|D

n

Since for any j < B·|C|
r we have fC(j) > 0, the inequality above implies that

there must be not more than 1
12c|C| logD 0-columns with fC(j) ≥ 3 log |C|Dn .

By Lemma 25, the number of columns j with j < B·|C|
r for which fC(j) ≤ 1

6
is at most B

2 , and hence the number of such 0-columns is at most B
4 log log D∆

n

.

Therefore, |FC |, which is the number of 0-columns j with j < B·|C|
r for which

1
6 < fC(j) < 3 log |C|Dn , is upper bounded as follows:

|FC | ≥
B · |C|

2r log log D∆
n

− B

4 log log D∆
n

− 1
12c|C| logD

= c

2 logD
(
|C| − n

2D −
|C|
6

)
≥ c

6 |C| logD

where the last inequality follows from our assumption that n
D ≤ |C|.
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With the bound of the load of 0-columns in Lemma 26, we can obtain a
significantly tighter bound on a subset of all columns.

Let FC = {j < B·|C|
r : 1

6 < fC(j) ≤ 2}.

Lemma 27. For any C with n
D ≤ |C| ≤ ∆, |FC | ≥ c

12 |C| logD.

Proof. We show that, whenever we have a 0-column with load in the range
( 1

6 , 3 log |C|Dn ), there must be some column within the same phase for which
load is in the range ( 1

6 , 2).
For any j ∈ FC , let j′ = j + log fC(j)− 1. Then,

j′ < j + log(3 log |C|D
n

)− 1 < j + 2 log log D∆
n

so j′ is in the same phase as j (i.e., j − ρ(j) = j′ − ρ(j′)). Hence,

fC(j′) =
∑

(v,φ(v))∈C(j′)

c logD log log D∆
n

(j′ −Bφ(v) +B)2ρ(j′)+1

=
∑

(v,φ(v))∈C(j)

c logD log log D∆
n

(j′ −Bφ(v) +B)2ρ(j)+log fC(j)

=
∑

(v,φ(v))∈C(j)

c logD log log D∆
n

(j′ −Bφ(v) +B)fC(j)

= 2
fC(j)

∑
(v,φ(v))∈C(j)

c logD log log D∆
n

2(j −Bφ(v) +B) ·
(j −Bφ(v) +B)
(j′ −Bφ(v) +B)

Since, for any (v, φ(v)) ∈ C(j), 1
3 <

1

1+
2 log log D∆

n
B

≤ (j−Bφ(v)+B)
(j′−Bφ(v)+B) ≤ 1, we can

bound fC(j′) from above:

fC(j′) ≤
2

fC(j)
∑

(v,φ(v))∈C(j)

c logD log log D∆
n

2(j −Bφ(v) +B) · 1 = 2

and below:

fC(j′) >
2

fC(j)
∑

(v,φ(v))∈C(j)

c logD log log D∆
n

2(j −Bφ(v) +B) ·
1
3 = 2

3

(The reason we allow loads to be as low as 1
6 in the definition of FC is to

account for cases where fC(j) ≤ 2 and so j′ = j.)
Therefore j′ ∈ FC . This mapping of j to j′ is an injection from FC to FC ,

and so |FC | ≥ |FC | ≥ c
12 |C| logD.
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Now that we have proven that sufficiently many columns have loads within a
constant-size range, we want to show that S has a good probability of hitting C
on these columns. To do so, we again apply Lemma 17, setting xv = Svj−Bφ(v),
and see that the probability of S hitting C on column j is at least fC(j) · 4−fC(j)

Lemma 28. For any core C with n
D ≤ |C| ≤ ∆, with probability at least 1 −

D−
c|C|
63 there is a column j < B·|C|

r on which S hits C.

Proof. Let us first recall that FC = {j < B·|C|
r : 1

6 < fC(j) ≤ 2}, and note that
function h(x) = 1− x4−x for 1

6 ≤ x ≤ 2 is maximized at x = 2, with h(2) = 7
8 .

Each column j independently hits C with probability at least fC(j) ·4−fC(j),
so the probability that none hit is bounded by:

Pr no column hits ≤
∏

j<
B·|C|
r

(1− fC(j) · 4−fC(j)) ≤
∏
j∈FC

(1− fC(j) · 4−fC(j))

≤
∏
j∈FC

7
8 ≤

(
7
8

) c
12 |C| logD

= D−
c
12 |C| log 7

8 ≤ D−
c·|C|
63

where the penultimate inequality follows from Lemma 27.

We have a bound on the probability of hitting a particular core, but before
we can show that we can hit all of them, we must count the number of possible
cores.

Let Cq be the set of possible cores of size q.

Lemma 29. |Cq| ≤ D2q.

Proof. For any (v, φ(v)) ∈ C, Bφ(v) < B|C|
r , i.e., for a core of size q, φ(v) < q

r .
Therefore there are at most n · qr possible pairs of (v, φ(v)), and thus at most(
n· qr
q

)
ways of choosing a size-q subset. So, |Cq| is at most

(
nq/r
q

)
=
(
Dq
q

)
≤

(eD)q ≤ D2q.

We are now ready to prove the existence of a small upper block synchronizer:

Lemma 30. With positive probability, S is an
(n, nD ,∆,

n
D , c

n
D logD log log D∆

n )-upper block synchronizer.
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Proof. We will set c to be 189. By union bound,

PrS is not an upper block synchronizer ≤
∆∑

q= n
D

∑
C∈Cq

PrC is not hit

≤
∆∑

q= n
D

∑
C∈Cq

D−cq/63 ≤
∆∑

q= n
D

D2qD−cq/63 =
∆∑

q= n
D

D2qD−3q

=
∆∑

q= n
D

D−q <
2
D
< 1

Since, with positive probability, our candidate S is an
(n, nD ,∆,

n
D , c

n
D logD log log D∆

n )-upper block synchronizer, at least one
such object must exist, and so we have completed our proof of Theorem 23.

We can now prove Theorem 8:

Proof. We construct block synchronizer S by taking an
(n, nD ,∆,

n
D , c

n
D logD log log D∆

n )-upper block synchronizer S and insert-
ing an (n, nD )-selective family R of size c̃ nD logD log log D∆

n at the beginning of
each block (we know by Lemma 2 that a selective family of size c̃ nD logD exists,
and we can pad it arbitrarily to this larger size). That is, our block size will
now be B := |R| + B = (c + c̃) nD logD log log D∆

n , and our block synchronizer
S will be formally defined by:

S = {Sv}v∈[n] is defined by Svj =
{
Rvj mod B if (j mod B) < |R|,
Sv
j−d jB eR

otherwise.

Setting ĉ = c + c̃, we show that S satisfies the conditions of an
(n,∆, nD , ĉ

n
D logD log log D∆

n )-block synchronizer.
Let C be a core of size at most ∆.

Case 1: |C| ≤ n
D . ∀(v, φ(v)) ∈ C we have φ(v) = 0, since the core ends before

column B by Definition 21, and so C will be hit by the (n, nD )-selective fam-
ily R. It will therefore be hit by S on some column j < |R| < B = Bd |C|r e.
Note that this case is the reason we require the ceiling function in the
definition of a block synchronizer, but not in an upper block synchronizer.

Case 2: |C| > n
D . If |C| > n

D , then it will be hit by a column j < B·|C|
r in the

upper block synchronizer S, which corresponds to the column j + d jB e|R|
in S. Since j + d jB e|R| <

B·|C|
r + d |C|r e|R| ≤ (B +R)d |C|r e = Bd |C|r e, this

satisfies the block synchronizer property.

So, S hits all cores C with |C| < ∆ within Bd |C|r e columns, and therefore hits
all sets X within Bd |X|r e under any activation schedule, fulfilling the criteria of
an (n,∆, nD , ĉ

n
D logD log log D∆

n )-block synchronizer.
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7 Conclusions
The task of broadcasting in radio networks is a longstanding, fundamental prob-
lem in communication networks. Our result for deterministic broadcasting in
directed networks combines elements from several of the previous works with
some new techniques, and, in doing so, makes a significant improvement to the
fastest known running time. Our algorithm for wake-up also improves over the
previous best running time, in both directed and undirected networks, and re-
lies on a proof of smaller universal synchronizers, a combinatorial object first
defined in [4].

Neither of these algorithms are known to be optimal. The best known lower
bound for both broadcasting and wake-up is Ω(min(n logD,D∆ log n

∆ )) [11];
our broadcasting algorithm therefore comes within a log-logarithmic factor, but
our wake-up algorithm remains a logarithmic factor away.

As well as the obvious problems of closing these gaps, there are several
other open questions regarding deterministic broadcasting in radio networks.
Firstly, the lower bound for undirected networks is weaker than that for directed
networks [21], and so one avenue of research would be to find an Ω(n logD) lower
bound in undirected networks, matching the broadcasting time of [19]. Secondly,
the algorithms given here, along with almost all previous work, are non-explicit,
and therefore it remains an important challenge to develop explicit algorithms
that can come close to the existential upper bound. The best constructive
algorithm known to date is by [16], but it is a long way from optimality.

Some variants of the model also merit interest, in particular the model with
collision detection. It is unknown whether the capacity for collision detection
improves deterministic broadcast time, as it does for randomized algorithms [14].
Collision detection does remove the requirement of spontaneous transmissions
for the use of the O(n) algorithm of [6], but a synchronized global clock would
still be required. It should be noted that collision detection renders the wake-up
problem trivial, since if every active node transmits in every time-step, collisions
will wake up the entire network within D time-steps.
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