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ON THE ELLIPTIC-HYPERBOLIC TRANSITION IN WHITHAM1

MODULATION THEORY2

THOMAS J. BRIDGES∗ AND DANIEL J. RATLIFF†3

Abstract. The dispersionless Whitham modulation equations in one space dimension and time4
are generically hyperbolic or elliptic, and breakdown at the transition, which is a curve in the5
frequency-wavenumber plane. In this paper, the modulation theory is reformulated with a slow6
phase and different scalings resulting in a phase modulation equation near the singular curves which7
is a geometric form of the two-way Boussinesq equation. This equation is universal in the same sense8
as Whitham theory. Moreover, it is dispersive, and it has a wide range of interesting multiperiodic,9
quasiperiodic and multi-pulse localized solutions. This theory shows that the elliptic-hyperbolic10
transition is a rich source of complex behaviour in nonlinear wave fields. There are several examples11
of these transition curves in the literature to which the theory applies. For illustration the theory12
is applied to the complex nonlinear Klein-Gordon equation which has two singular curves in the13
manifold of periodic travelling waves.14

Key words. nonlinear waves, modulation, Lagrangian, multisymplectic, traveling waves15

AMS subject classifications. 74J30,70S05,76B1516

1. Introduction. Modulational instability is one of the key ways that periodic17

travelling waves become unstable. The wavelength of the perturbation is slightly18

longer than the wavelength of the underlying periodic wave. In conservative sys-19

tems this instability, in the weakly nonlinear case, is most closely associated with20

the Benjamin-Feir instability [4], and in non-conservative systems with the Eckhaus21

instability [15]. For weakly nonlinear periodic travelling waves, the simplest way22

to analyze modulational instability is to derive a nonlinear Schrödinger equation or23

complex Ginzburg Landau equation [35]. A history of the beginnings of modulation24

instability is given in [40].25

For finite-amplitude periodic travelling waves in conservative systems modulation26

instability is captured by the Whitham modulation theory. For a nonlinear periodic27

travelling wave of frequency ω and wavenumber k, modulation of the form28

(1) k 7→ k + q(X,T, ε) and ω 7→ ω +Ω(X,T, ε) ,29

where X = εx, T = εt, in the Whitham theory, results in30

(2) qT = ΩX and AT + BX = 0 ,31

to leading order in ε, where A (ω+Ω, k+ q) and B(ω+Ω, k+ q) are the wave action32

and wave action flux respectively, evaluated on the family of periodic travelling waves33

[37, 38]. The Whitham modulation equations (WMEs) in (2) are a closed nonlinear34

first order set of PDEs for the functions Ω and q. Generically, the WMEs are either35

hyperbolic or elliptic. The linearization of these equations about the basic state,36

represented by ω and k, is37

(3) qT = ΩX and AωΩT + AkqT + BωΩX + BkqX = 0 ,38
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2 T.J. BRIDGES & D.J. RATLIFF

or, with the assumption Aω 6= 0, they can be written in the standard form,39

(4)

(
q
Ω

)

T

+A(ω, k)

(
q
Ω

)

X

=

(
0
0

)
,40

where41

(5) A(ω, k) =
1

Aω

[
0 −Aω

Bk Ak + Bω

]
.42

Here, A and B are evaluated at Ω = q = 0. The characteristics are43

(6) c± =
Aω + Bk

2Aω

± 1

Aω

√
−∆L , ∆L = det

[
Aω Ak

Bω Bk

]
= det

[
Lωω Lωk

Lkω Lkk

]
,44

using the identities, A = Lω and B = Lk, from Whitham theory, where L is the45

averaged Lagrangian. The modulation instability is recovered by letting46

(
q(X,T )
Ω(X,T )

)
= Re

{(
q̂

Ω̂

)
eλT+iνX

}
,47

and substituting into (3) giving48

λ = ic±ν ,49

and so an unstable exponent (positive real part of λ) with modulation wave number ν50

exists precisely when ∆L > 0. While ν is of order one, νX = ενx, and so the modu-51

lation wave number can be interpreted as being of order ε in the original coordinates.52

Since the WMEs are dispersionless, there is no wavenumber cutoff of the modulation53

instability.54

In terms of characteristics, this modulation instability highlights the Lighthill55

condition [22]: when ∆L > 0 the linearized WMEs are elliptic and when ∆L < 0 they56

are hyperbolic. This criterion, and other features of Whitham modulation theory57

have been widely studied and there is a vast literature; recent examples are the book58

[20], the review articles [29, 11], and the special issue on Whitham theory [5].59

In this paper the interest is in the case when the Lighthill determinant is singular60

(7) ∆L := det

[
Aω Ak

Bω Bk

]
= 0 but Aω 6= 0 and Ak 6= 0 .61

The condition ∆L = 0 defines a curve in the (ω, k) plane locally separating stable and62

unstable states. The set ∆−1
L (0), which is not necessarily connected, will be denoted63

by64

(8) Σ1 = ∆−1
L (0) =

{
(ω, k) ∈ U ⊂ R

2 : ∆L = 0
}
,65

where U is the open subset of R
2 for which periodic travelling waves exist. This66

notation comes from singularity theory and is elaborated further in §2, as the geometry67

of Σ1 appears in the phase modulation theory. A typical Σ1 curve is shown in Figure68

1.69

As far as we are aware, a modulation theory near an elliptic-hyperbolic transition70

curve, generalizing Whitham modulation theory, has not been attempted heretofore.71

One strategy for deriving a new modulation equation near a Σ1 curve is to take the72
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ELLIPTIC-HYPERBOLIC TRANSITION IN WHITHAM THEORY 3
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Fig. 1. A typical curve defined by ∆L = 0 in the (ω, k) plane.

Whitham theory to higher order. Luke [25] has given a theory and algorithm for73

deducing higher-order Whitham equations. However, the theory is quite complicated74

after the first order, and a clear closed system does not immediately emerge.75

Another strategy is to change the time scale. The breakdown of the WMEs can76

be interpreted as a signal that a change in time scale, from T = εt to T = ε2t, is77

appropriate. Another feature of points on Σ1 curves with Ak 6= 0 is that the linearized78

WMEs have a double characteristic with nonzero speed, suggesting a moving frame79

is appropriate. Since Ak = Bω, the speed at the double characteristic is80

(9) cg =
Ak

Aω

.81

The symbol cg is used as this velocity is a form of nonlinear group velocity. It is inter-82

pretable as (minus) the derivative of the frequency with respect to the wavenumber83

with wave action fixed. There are various generalizations of group velocity to the non-84

linear regime in Whitham theory (e.g. [17, 30]). The definition (9) is preferred here85

as it is the velocity at the double characteristic, and arises naturally in the nonlinear86

modulation theory.87

Our strategy for developing a nonlinear modulation theory near Σ1 curves is88

to slow down the time scale, go into a cg−boosted moving frame, and slow down89

the phase, wavenumber and frequency modulation. The modulation mapping (1) is90

replaced by91

(10) k 7→ k + ε2q(X,T, ε) ,92

and93

(11) ω 7→ ω − cgε
2q(X,T, ε) + ε3Ω(X,T, ε) ,94

with95

X = ε(x− cgt) and T = ε2t .96

Substitution into the governing equations, which are the Euler-Lagrange equations97

based on a general abstract Lagrangian, then leads at fifth order in ε via a solvability98

SIAM J. Appl. Math. (in press, 2017)



4 T.J. BRIDGES & D.J. RATLIFF

condition to the new modulation equations replacing (2) and (3),99

(12) qT = ΩX and AωΩT + κqqX + K qXXX = 0 .100

Differentiating the second equation with respect to X and using the first equation101

shows that it is a variant of the two-way Boussinesq equation, but with coefficents that102

are universal in the same sense that the Whitham equations are universal (that they103

follow from the abstract properties of the Lagrangian). The importance of Aω 6= 0104

shows up in the first coefficient. The second coefficient, κ is the second derivative of the105

mapping (ω, k) 7→ (A (ω, k),B(ω, k)) evaluated on the kernel of the first derivative,106

and the coefficient of dispersion K is determined by a Jordan chain argument. The107

details of the derivation leading to (12) are given in §4.108

A two-way Boussinesq equation is derived via phase modulation in [34], but in that109

case the Whitham theory has a double zero characteristic, and the phase modulation110

is relative to a stationary frame of reference. Moreover, that theory requires two111

parameters and is not associated directly with a stability-instability transition. The112

theory in this paper addresses the stability-instability transition directly, and will be113

more prevalent in applications as it only requires the variation of a single parameter.114

There are several interesting consequences due to the modulation equation (12)115

near Σ1 curves: dispersion is generated, thereby admitting coherent structures (e.g.116

solitary waves), and a wide range of complex solutions are generated (multi-pulse117

solitary waves [18], breathers [13], blowup [7, 36], integrable structures [6]) and it has118

its own elliptic-hyperbolic dichotomy. The two-way Boussinesq equation is said to be119

elliptic (“bad”) if it is linearly ill-posed (corresponding in this case to AωK < 0) and120

hyperbolic (“good”) for the reverse sign. The good Boussinesq equation moderates121

the modulational instability, whereas the bad Boussinesq equation enhances the in-122

stability. In either case, dispersion identifies a cut-off wavenumber for the modulation123

instability which is absent in the dispersionless WMEs.124

There are two familiar examples in the literature where Σ1 curves arise. The first125

is stabilization of the Benjamin-Feir instability, for water waves on infinite depth,126

at large amplitude [24, 28, 39]. This case is interpreted in terms of the theory here127

in §6. The second is stabilization of the Benjamin-Feir instability when the depth128

parameter is below a critical threshold, kh0 ≈ 1.363 [3, 16]. This latter case occurs in129

the weakly nonlinear regime, and a theory for this case is developed by Johnson [19]130

near the threshold by extending the nonlinear Schrödinger equation to higher order. A131

new example has recently been discovered by Maiden & Hoefer [26] where an elliptic-132

hyperbolic transition has been discovered in modulation of viscous fluid conduit waves.133

However, in the latter two examples the modulation is multiphase and so the theory134

of this paper does not directly apply (see comments in §8). Here an example, based135

on modulation of a one-phase periodic travelling wave solution of a nonlinear complex136

Klein-Gordon equation, is presented where all the details can be worked out explicitly137

and it illustrates the key features induced by the elliptic-hyperbolic transition.138

There is an interesting geometry associated with the mapping139

(ω, k) 7→ (A (ω, k),B(ω, k)) ,140

and it is developed in §2. The condition ∆L = 0 defines a curve in the (ω, k) plane141

which locally separates stable and unstable regions. The image defines a curve in142

(A ,B) space. The geometry of these curves appears in the modulation theory. The143

SIAM J. Appl. Math. (in press, 2017)



ELLIPTIC-HYPERBOLIC TRANSITION IN WHITHAM THEORY 5

modulation theory is developed for general conservative PDEs generated by a La-144

grangian, and the background for this is developed in §3. The details of the modu-145

lation theory are presented in §4. In §5 features of the emergent two-way Boussinesq146

equation are discussed. Two examples of the application of the theory are presented:147

§6 applies the theory to the instability-stability transition of the Benjamin-Feir in-148

stability of Stokes waves in deep water, and §7 computes Σ1 curves, and the reduced149

Boussinesq equation for periodic travelling waves of a nonlinear complex Klein-Gordon150

equation.151

2. The frequency-wavenumber mapping. The geometry of the frequency-152

wavenumber map153

(13) (ω, k) 7→
(

A (ω, k)
B(ω, k)

)
:= F(ω, k) ,154

appears centrally within the modulation theory. The Jacobian of this mapping,155

DF(ω, k) :=

[
Aω Ak

Bω Bk

]
,156

is degenerate on the Σ1 curves (7). With the assumptions (7), the trace of DF is157

nonzero and so the zero eigenvalue of DF is simple with geometric eigenvector158

DF(ω, k)n = 0 .159

Since DF is symmetric, n is both a left and right eigenvector. In terms of cg160

(14) n =

(
−cg
1

)
,161

modulo a nonzero multiplicative constant. Although this eigenvector is not unique162

the choice (14) is canonical in that it will be shown to be relevant in the modulation163

theory.164

The symbol n is used for the eigenvector in (14) because it is a normal vector.165

However, it is not the normal vector to the curve Σ1, it is the normal vector to the166

image of this curve in the (A ,B) plane. To see this first look at the geometry of the167

curve defined by Σ1. To lighten the notation define168

f(ω, k) := ∆L(ω, k) .169

Then the normal vector to the curve ∆L = 0 is proportional to ∇f . A schematic is170

shown on the left in Figure 2. Now parameterize the curve ∆L = 0 by (ω(s), k(s)).171

Then a tangent vector on the image of the mapping F(ω(s), k(s)) is172

[
Aω Ak

Bω Bk

](
ω̇

k̇

)
.173

The left eigenvector n of DF is orthogonal to this direction, giving a normal vector174

on the image curve in (A ,B)−space. A schematic is shown on the right in Figure 2.175

The geometry of mappings from a plane to a plane is a fundamental problem176

in singularity theory and the basic results can be found in the first few chapters of177

SIAM J. Appl. Math. (in press, 2017)



6 T.J. BRIDGES & D.J. RATLIFF

ω

k

∇f

F(ω, k)

B

A

n

Fig. 2. The singular curve defined by ∆L = 0 on the left, and its image curve under the
mapping F is on the right.

Arnold et al. [1]. For a mapping from the plane to the plane with a Σ1 singularity,178

there are generically two types of curves: either179

TpΣ
1 ⊕Ker(DF) = R

2 (fold)

TpΣ
1 = Ker(DF) (cusp) ,

180

where p = (ω, k) ∈ Σ1. Since TpΣ
1 = Ker(∇f), the fold condition is181

(15) 〈∇f,n〉 6= 0 ,182

where 〈·, ·〉 is the standard inner product on R
2. The cusp condition is simply183

(16) 〈∇f,n〉 = 0 .184

All other potential singularities of mappings from the plane to the plane are not185

stable under perturbation, a result known as Whitney’s theorem [1], although one186

can potentially have many cusps [21]. This geometry plays a central role in the187

modulation theory, as it turns out that κ 6= 0 in (12) is precisely related to (15).188

Define189

(17) κ = 〈n,D2F(ω, k)(n,n)〉 , (ω, k) ∈ Σ1 ,190

with n in the canonical form (14). The expression on the right is the intrinsic second191

derivative [31, 1]. It is the ordinary second derivative of the mapping F but evaluated192

on the kernel of the first derivative. It is widely used in singularity theory (cf. Chapter193

3 of [1]).194

The connection between κ in (17) and the fold condition (15) is the following195

(18) 〈∇f,n〉 =
(

Aω + Bk

‖n‖2
)
〈n,D2F(ω, k)(n,n)〉 .196

The coefficient on the right is nonzero since the zero eigenvalue of DF is simple. The197

formula (18) is proved as follows. The function f can be characterized as198

f(ω, k) = det[DF(ω, k)] ,199

SIAM J. Appl. Math. (in press, 2017)



ELLIPTIC-HYPERBOLIC TRANSITION IN WHITHAM THEORY 7

and so, using the formula for the derivative of a determinant,200

fω = Trace
(
DF#DFω

)
and fk = Trace

(
DF#DFk

)
,201

where DF# is the adjugate of DF. Combining202

〈∇f,n〉 = n1fω + n2fk = Trace
(
DF#(n1DFω + n2DFk)

)
.203

Now note that the adjugate of a 2 × 2 matrix of rank 1 is proportional to nnT , and204

in this case it is exactly205

DF# =
Tr(DF)

‖n‖2 nnT ,206

a formula which can be confirmed by direct calculation. Since Tr(nnTA) = 〈n,An〉207

for any 2× 2 matrix A, the formula (18) follows.208

Writing out (17) using the canonical form for n in (14),209

(19) κ = (Bkk − cgAkk)− 2cg(Bωk − cgAωk) + c2g(Bωω − cgAωω) .210

It is this form of the intrinsic second derivative κ that shows up in the modulation211

theory as the coefficient of nonlinearity in the modulation equation (12).212

It is important to note that the “intrinsic” nature of the second derivative does213

not mean that the value of κ is independent of the choice of n. As an eigenvector n is214

not unique and multiplication of n by a nonzero constant multiplies κ by that constant215

cubed, and so it can even change the sign of κ. The intrinsic label signifies that the216

affine part of the second derivative is removed, and the trilinear form of the second217

derivative remains the same. See [31, 1] for further detail on intrinsic derivatives.218

3. Lagrangian setup and basic state. The starting point for the modulation219

theory is a general class of PDEs generated by an abstract Lagrangian,220

(20) L (U) =

∫ t2

t1

∫ x2

x1

L(U,Ux, Ut) dxdt ,221

where U(x, t) is a vector-valued field on the rectangle [x1, x2] × [t1, t2] ⊂ R
2. It is222

advantageous to first transform the Lagrangian density to multisymplectic form,223

(21) L (Z) =

∫ t2

t1

∫ x2

x1

[
1
2 〈Z,MZt〉+ 1

2 〈Z,JZx〉 − S(Z)
]
dxdt ,224

where now Z ∈ R
n for each (x, t) and n is assumed to be even. The Lagrangian density225

is the same in going from (20) to (21) but the representation (21) has more structure.226

The operators M and J are constant skew-symmetric n×n matrices and S : Rn → R227

is a given smooth function. The transformation from (20) to (21), effectively a double228

Legendre transform, is discussed in previous papers [10, 8, 33, 34]. The Euler-Lagrange229

equation deduced from the Lagrangian (21) takes the concise form230

(22) MZt + JZx = ∇S(Z) , Z ∈ R
n .231

The theory could be developed directly on the primitive abstract Lagrangian (20)232

but partitioning the Lagrangian density as in (21) gives added structure that greatly233

simplifies the theory.234

SIAM J. Appl. Math. (in press, 2017)



8 T.J. BRIDGES & D.J. RATLIFF

The basic state is a periodic travelling wave solution of wavelength 2π/k and235

period 2π/ω of the form236

(23) Z(x, t) = Ẑ(θ, ω, k) , Ẑ(θ + 2π, ·) = Ẑ(θ, ·) , θ = kx+ ωt+ θ0 ,237

with arbitrary phase shift θ0. There is the usual assumption on existence and smooth-238

ness of this solution so that the necessary differentiation in θ, k, and ω is meaningful.239

The basic state satisfies240

(24) ωMẐθ + kJẐθ = ∇S(Ẑ) .241

An important property of the structure is multisymplectic Noether theory [10]242

associated with conservation of wave action, that is,243

(25) ∇A(Ẑ) = MẐθ and ∇B(Ẑ) = JẐθ ,244

where A,B are the components of the action conservation law, Ẑ(θ, ω, k) is the basic245

state, and the gradient is defined with respect to the inner product including averaging246

over θ,247

(26) 〈〈U, V 〉〉 := 1

2π

∫ 2π

0

〈U, V 〉 dθ ,248

where 〈·, ·〉 is the standard inner product on R
n.249

To get the components of the conservation law for wave action, average the La-250

grangian, evaluated on the family of travelling waves, over θ,251

L (ω, k) =
1

2π

∫ 2π

0

[
ω

2
〈MẐθ, Ẑ〉+ k

2
〈JẐθ, Ẑ〉 − S(Ẑ)

]
dθ ,252

and differentiate with respect to ω and k, giving253

(27)
Lω := A (ω, k) = 1

2 〈〈MẐθ, Ẑ〉〉

Lk := B(ω, k) = 1
2 〈〈JẐθ, Ẑ〉〉 .

254

The key feature here is that the wave action and wave action flux, evaluated on the255

family of periodic travelling waves, are related to the tangent vectors of the waves via256

the structure matrices M and J. This is multisymplectic Noether theory in action.257

The first derivatives needed for DF and ∆L are258

(28)
Aω = 〈〈MẐθ, Ẑω〉〉 , Ak = 〈〈MẐθ, Ẑk〉〉 ,

Bω = 〈〈JẐθ, Ẑω〉〉 , Bk = 〈〈JẐθ, Ẑk〉〉 .
259

The second derivatives needed in the construction of κ can be simplified by using a260

boosted symplectic structure. Define261

(29) K := J− cgM .262

Then differentiating (28) and combining gives263

(30)

Bωω − cgAωω = 〈〈KẐθω, Ẑω〉〉+ 〈〈KẐθ, Ẑωω〉〉

Bωk − cgAωk = 〈〈KẐθk, Ẑω〉〉+ 〈〈KẐθ, Ẑωk〉〉

Bkk − cgAkk = 〈〈KẐθk, Ẑk〉〉+ 〈〈KẐθ, Ẑkk〉〉 .

264

SIAM J. Appl. Math. (in press, 2017)



ELLIPTIC-HYPERBOLIC TRANSITION IN WHITHAM THEORY 9

3.1. Linearization about the periodic basic state. Define the linear oper-265

ator266

(31) LW =

[
D2S(Ẑ)− kJ

d

dθ
− ωM

d

dθ

]
W ,267

obtained by linearizing (24). Then differentiating (24) with respect to θ, k and ω268

gives,269

D2S(Ẑ)Ẑθ = kJẐθθ + ωMẐθθ ,

D2S(Ẑ)Ẑk = kJẐθk + ωMẐθk + JẐθ

D2S(Ẑ)Ẑω = kJẐθω + ωMẐθω +MẐθ ,

270

or271

(32) LẐθ = 0 , LẐk = JẐθ , and LẐω = MẐθ ,272

with other derivatives following a similar pattern. The first equation of (32) shows273

that Ẑθ is in the kernel of L, and it is natural to assume that the kernel is no larger.274

Hence assume275

(33) Kernel(L) = span
{
Ẑθ} .276

For inhomogeneous equations that arise in the modulation theory and the Jordan277

chain theory, a solvability condition will be needed. With the assumption (33) and278

the symmetry of L, the solvability condition for the inhomogeneous equation LW = F279

is280

(34) LW = F is solvable if and only if 〈〈Ẑθ, F 〉〉 = 0 .281

3.2. A twisted symplectic Jordan chain. The second and third equation of282

(32) show that there are potentially two non-trivial Jordan chains associated with283

the zero eigenvalue of L with geometric eigenvector Ẑθ. In previous work [8, 33, 34],284

the phase modulation theory required a longer Jordan chain formed from either a285

J−chain or an M−chain. Here the intertwining of these two chains will be required286

in the phase modulation theory. Then, using (32),287

(35) L
(
Ẑk − cgẐω

)
=

(
J− cgM

)
Ẑθ = KẐθ ,288

using the boosted symplectic structure K (29) in the last equality. Therefore, define289

(36) ξ1 = Ẑθ and ξ2 = Ẑk − cgẐω .290

Then a mixed K−Jordan chain of length two is formed291

(37) Lξ1 = 0 and Lξ2 = Kξ1 .292

It is the extension of this chain and its connection with the singularity (7) that will293

appear in the modulation theory. Since the symplectic structure assures that the294

chain length is even, a proposed longer chain is295

(38)

Lξ1 = 0

Lξ2 = Kξ1

Lξ3 = Kξ2

Lξ4 = Kξ3 .

296

SIAM J. Appl. Math. (in press, 2017)



10 T.J. BRIDGES & D.J. RATLIFF

In this chain it is either assumed that K is invertible or Kξj 6= 0 for j = 1, 2, 3.297

The second equation in (38) is solvable due to (32), and the third equation is298

solvable since299

(39)

〈〈Ẑθ,Kξ2〉〉 = 〈〈Ẑθ,K(Ẑk − cgẐω)〉〉

= −〈〈KẐθ, (Ẑk − cgẐω)〉〉

= −〈〈JẐθ − cgMẐθ, (Ẑk − cgẐω)〉〉
= −Bk + cgBω + cgAk − c2gAω

= − 1
Aω

∆L ,

300

using (28), and ∆L = 0 on Σ1 curves. The fourth equation in (38) is solvable due to301

even-ness of the Jordan chain, but it can be confirmed explicitly,302

〈〈Ẑθ,Kξ3〉〉 = −〈〈Kξ1, ξ3〉〉
= −〈〈Lξ2, ξ3〉〉
= −〈〈ξ2,Lξ3〉〉
= −〈〈ξ2,Kξ2〉〉
= 0 ,

303

with the last line following from skew-symmetry of K. This Jordan chain terminates304

at four if the next equation305

Lξ5 = Kξ4 ,306

is not solvable; that is, when307

(40) 〈〈Ẑθ,Kξ4〉〉 := −K 6= 0 .308

It is this coefficient K that shows up as the coefficient of dispersion in the modulation309

equation (12).310

To summarize: for (ω, k) ∈ Σ1, with the assumption (33), the algebraic multiplic-311

itity of the zero eigenvalue of L is at least four and is exactly four when K 6= 0.312

4. Modulation ansatz. Given the family of basic states, Ẑ(θ, ω, k), the classical313

Whitham modulation equations (2) are obtained using the modulation ansatz314

(41) Z(x, t) = Ẑ

(
θ +

1

ε
φ, ω +Ω, k + q

)
+ εW

(
θ +

1

ε
φ,X, T, ε

)
,315

with φ dependent on (X,T, ε),316

q = φX , Ω = φT , X = εx , T = εt .317

Substitution of the ansatz (41) into the Euler-Lagrange equation (22) leads, via a318

solvability condtion at order ε1, to the dispersionless conservation of wave action in319

(2). This modulation ansatz is valid away from a Σ1 curve.320

For (ω, k) ∈ Σ1 the ansatz needs to be modified. A posteriori it is confirmed that321

the appropriate modification of (41) is322

(42) Z(x, t) = Ẑ(θ + εφ, ω − cgε
2q + ε3Ω, k + ε2q) + ε3W (θ,X, T, ε) .323
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The conservation of waves is still operational324

(43) q = φX , Ω = φT , and qT = ΩX ,325

but the scaling of the independent variables is changed to326

(44) X = ε
(
x− cgt

)
and T = ε2t , with cg :=

Lωk

Lωω

=
Ak

Aω

.327

The strategy is then to substitute the ansatz (42) into the Euler-Lagrange equation328

(22), expand everything in powers of ε, and solve order by order in ε. While the ansatz329

(42) is new, particularly in how the speed cg affects the modulation, the machinations330

of the expansions is similar to previous work [8, 33, 34], and so only a summary is331

given. The zeroth, first, and second order equations in ε reproduce the equation for332

the basic state, the linearization, and conservation of waves (43). At third order the333

resulting equation is334

(45)
LW3 = qX

[
JẐk − cgMẐk + c2gMẐω − cgJẐω

]

= qXK
(
Ẑk − cgẐω

)
= Kξ2 ,

335

using (29) and (36). Here, W3 is obtained from the Taylor expansion of W ,336

ε3W (θ,X, T, ε) = ε3W3(θ,X, T ) + ε4W4(θ,X, T ) + ε5W5(θ,X, T ) + · · · .337

The equation (45) is solvable for (ω, k) ∈ Σ1 due to (39). Hence338

(46) W3 = qXξ3 + αξ1 ,339

where at this point α(X,T ) is an arbitrary function.340

4.1. Fourth order equation. The fourth order equation simplifies to341

L
(
W4 − qXXξ4 − αXξ2 − φqX(ξ3)θ − αφẐθθ

)

= qT

(
MẐk − cgMẐω

)
+ΩX

(
JẐω − cgMẐω

)
.

342

A curiosity in the theory is that the qT and ΩX terms are exactly solvable for (ω, k) ∈343

Σ1 since344

qT 〈〈Ẑθ, (MẐk − cgMẐω)〉〉 = qT (−Ak + cgAω) = 0 ,345

and346

ΩX〈〈Ẑθ(JẐω − cgMẐω)〉〉 = ΩX(Bω − cgAω) = 0 ,347

using the definition of cg and the cross-derivatives Ak = Bω.348

The complete solution for W4 is therefore349

(47) W4 = qT η + qXXξ4 + αXξ2 + φqX(ξ3)θ + αφẐθθ + βξ1 ,350

where β(X,T ) is arbitrary at this point, and η is a particular solution of351

(48) Lη = MẐk − 2cgMẐω + JẐω .352

The solution η of this equation will not be needed explicitly in the theory, only its353

abstract definition in (48).354
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4.2. Solvability at fifth order. After some simplification, the fifth order terms355

reduce to356

(49)
LW̃5 = ΩTMẐω + qqX

[
KΥ+K(ξ3)θ −D3S(Ẑ)(ξ2, ξ3)

]

+qXXXKξ4 +ΩXX

(
Mξ3 +Kη

)
,

357

where W̃5 incorporates all terms that are exactly solvable and,358

Υ := Ẑkk − 2cgẐωk + c2gẐωω .359

An explicit expression for W̃5 can be constructed but is not needed as solvability360

delivers the modulation equation (12).361

The awkward term in (49) is the ΩXX term which would make the resulting362

modulation equation non-conservative. However, it too is in the range of L, and it is363

the abstract definition of the function η in (48) that is used to show that this term is364

removable,365

〈〈Ẑθ,Mξ3 +Kη〉〉 = 〈〈Ẑθ,Mξ3〉〉 − 〈〈KẐθ, η〉〉

= 〈〈Ẑθ,Mξ3〉〉 − 〈〈Lξ2, η〉〉

= −〈〈MẐθ, ξ3〉〉 − 〈〈ξ2,Lη〉〉

= −〈〈LẐω, ξ3〉〉 − 〈〈ξ2,MẐk − cgMẐω +KẐω〉〉

= −〈〈Ẑω,Lξ3〉〉 − 〈〈ξ2,MẐk − cgMẐω +KẐω〉〉

= −〈〈Ẑω,Kξ2〉〉 − 〈〈ξ2,MẐk − cgMẐω +KẐω〉〉

= −〈〈ξ2,M(Ẑk − cgẐω)〉〉
= −〈〈ξ2,Mξ2〉〉
= 0 ,

366

using skew-symmetry of M and K, symmetry of L, the Jordan chain, and the function367

η (48). Therefore there exists a function δ such that368

Lδ = Mξ3 +Kη .369

This simplifies the fifth order equation to370

L
(
W̃5 − ΩXXδ

)
= ΩTMẐω + qXXXKξ4

+qqX

[
KΥ+K(ξ3)θ −D3S(Ẑo)(ξ2, ξ3)

]
.

371

This equation is solvable if and only if the right hand side is orthogonal to Ẑθ, giving372

(50) a1ΩT + a2qqX + a3qXXX = 0 ,373

with374

(51)

a1 = 〈〈Ẑθ,MẐω〉〉

a2 =
〈〈
Ẑθ,

[
KΥ+K(ξ3)θ −D3S(Ẑ)(ξ2, ξ3)

]〉〉

a3 = 〈〈Ẑθ,Kξ4〉〉 .

375
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Now376

a1 = 〈〈Ẑθ,MẐω〉〉 = −〈〈MẐθ, Ẑω〉〉 = −Aω ,377

using (28), and appeal to (40) shows that378

a3 = −〈〈Kξ1, ξ4〉〉 = −K .379

Using the geometry of the frequency-wavenumber map it is shown below that a2 = −κ,380

where κ is defined in (17), giving the final form of the modulation equation as381

(52) AωΩT + κqqX + K qXXX = 0 and qT = ΩX ,382

and for non-degeneracy of this equation it is assumed that383

(53) Aω 6= 0 , κ 6= 0 , and K 6= 0 .384

4.3. The geometry of the frequency-wavenumber map and a2. It is not385

at all obvious that the intrinsic second derivative that arises from the geometry of386

the frequency-wavenumber map (17) should be related to the above coefficient a2 that387

appears from the modulation analysis as the coefficient of nonlinearity. However, with388

the canonical choice of normal vector n, they are exactly equal and this is proved as389

follows. The expression that arises in the modulation analysis and solvability condition390

is391

(54) a2 =
〈〈
Ẑθ,

[
KΥ+K(ξ3)θ −D3S(Ẑ)(ξ2, ξ3)

]〉〉
.392

Differentiating Lξ3 = Kξ2 with respect to θ,393

L(ξ3)θ +D3S(Ẑ)(ξ1, ξ3) = K(ξ2)θ ,394

Hence, with Ẑθ = ξ1, the second term in (54) is395

〈〈Ẑθ,K(ξ3)θ〉〉 = −〈〈Kξ1, (ξ3)θ〉〉
= −〈〈Lξ2, (ξ3)θ〉〉
= −〈〈ξ2,L(ξ3)θ〉〉

= −〈〈ξ2,K(ξ2)θ −D3S(Ẑ)(ξ1, ξ3)〉〉

= −〈〈ξ2,K(ξ2)θ〉〉+ 〈〈ξ2,D3S(Ẑ)(ξ1, ξ3)〉〉

= −〈〈ξ2,K(ξ2)θ〉〉+ 〈〈ξ1,D3S(Ẑ)(ξ2, ξ3)〉〉 ,

396

using Lξ2 = Kξ1, skew-symmetry of K, symmetry of L, and permutation of the397

trilinear form in the last line. Substitution of the expression for 〈〈Ẑθ,K(ξ3)θ〉〉 into a2398

reduces it to399

(55) a2 = 〈〈Kξ2, (ξ2)θ〉〉+ 〈〈Ẑθ,KΥ〉〉 .400
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Start with this expression for a2, and substitute for Υ and ξ2,401

−a2 = −〈〈Kξ2, (ξ2)θ〉〉 − 〈〈Ẑθ,KΥ〉〉

= 〈〈K(Ẑkθ − cgẐωθ), Ẑk − cgẐω〉〉+ 〈〈KẐθ,Υ〉〉

= 〈〈KẐθk, Ẑk〉〉 − cg〈〈KẐθk, Ẑω〉〉 − cg〈〈KẐθω, Ẑk〉〉

+c2g〈〈KẐθω, Ẑω〉〉+ 〈〈KẐθ,Υ〉〉

= 〈〈KẐθk, Ẑk〉〉 − cg〈〈KẐθk, Ẑω〉〉 − cg〈〈KẐθω, Ẑk〉〉+ c2g〈〈KẐθω, Ẑω〉〉

+〈〈KẐθ, Ẑkk − 2cgẐωk + c2gẐωω〉〉

=
(
〈〈KẐθk, Ẑk〉〉+ 〈〈KẐθ, Ẑkk〉〉

)
+ c2g

(
〈〈KẐθω, Ẑω〉〉+ 〈〈KẐθ, Ẑωω〉〉

)

−cg
(
〈〈KẐθk, Ẑω〉〉+ 〈〈KẐθω, Ẑk〉〉+ 2〈〈KẐθ, Ẑωk〉〉

)

=
(
Bkk − cgAkk

)
− 2cg

(
Bωk − cgAωk

)
+ c2g

(
Bωω − cgAωω

)

= 〈n,D2F(ω, k)(n,n)〉
= κ ,

402

when n is in canonical form (14). The third to last step follows from the substitution403

of the identities (30). This completes the derivation of the phase modulation equations404

(52) on Σ1 curves.405

4.4. Invariance under coordinate change. Since the modulation equation406

(52) relies on two eigenvector choices there is a potential non-uniqueness in the final407

form. The first potential non-uniqueness is the choice of geometric eigenvector ξ1 of408

the zero eigenvalue of L,409

Lξ1 = 0 ⇒ ξ1 = bẐθ ,410

where b is an arbitrary multiplicative constant. This constant is then multiplied by411

each element in the Jordan chains. Hence a1 and a3 in (50) would be multiplied by b2.412

However, the signs of a1 and a3 would not change and the factor b2 can be removed413

by scaling. The other eigenvector choice is n and414

DF(ω, k)n = 0 ⇒ n = b

(
−cg
1

)
,415

for some nonzero constant b. In this case the only change would be a scale factor416

on κ, κ 7→ b3κ. Since κ multiplies a nonlinearity, scaling q (or φ) using b3 would417

eliminate this scale factor in κ. A change in sign of κ is eliminated by a change in sign418

of q. Hence, with the canonical choices ξ1 = Ẑθ and n as in (14), and the modulation419

ansatz (42), the modulation equation (52) is uniquely defined.420

4.5. Unfolding from Σ1 curves. Instead of taking ∆L to be identically zero, it421

can be taken to be of order ε2 giving an unfolding of the two-way Boussinesq equation422

(56) AωΩT + µqX + κqqX + K qXXX = 0 and qT = ΩX ,423

where sign(µ) = sign(Aω∆L). In this case, the combined equation is the classical424

two-way Boussinesq equation with a second derivative in X term425

(57) AωqTT + µqXX +
(
1
2κq

2
)
XX

+ K qXXXX = 0 .426

This unfolded version allows one to extend the discussion from solely along the Σ1427

curves to the neighbourhood around them, characterised by the small parameter ε.428
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5. The two-way Boussinesq equation. Once the modulation equation (52)429

is derived in a specific context, analysis of the solutions follows the standard strategy.430

Assuming all the coefficients are non-zero, the dependent and independent variables431

can be scaled so that the coefficients are ±1, simplifying the form of the equation.432

Starting with (57), scale X, T , and q and let433

s1 = sign(∆L) and s2 = sign (AωK ) .434

Denote the scaled space and time variables by ξ and τ , and the scaled q by u(ξ, τ).435

Then the two-way Boussinesq equation is reduced to the standard form436

(58) uττ + s1uξξ +
(
1
2u

2)ξξ + s2uξξξξ = 0 , s1, s2 = ±1 .437

The set Σ1 locally separates the subset of the (ω, k) for which travelling waves exist438

into two regions: elliptic (s1 = +1) and hyperbolic (s1 = −1). The sign s2 indicates439

whether the resulting two-way Boussinesq equation is good (s2 = +1) or bad (s2 =440

−1). In the latter case, the initial value problem for the linearized system is ill posed.441

Consider the linearization of (58) about the trivial solution and consider a normal442

mode solution of the form ei(k̂ξ+ω̂τ), then the dispersion relation is of the form443

ω̂2 = −s1k̂
2 + s2k̂

4 .444

There are four cases depending on the signs s1 and s2, and they are shown in Figure445

3. The figure plots ω̂2 against k̂2 and so ω̂2 < 0 indicates linear instability of the446

trivial solution which in turn reflects linear instability of the basic travelling wave.

s2 = −1 s2 = +1

k̂2 k̂2

∆L > 0

k̂2
k̂2

ω̂2 ω̂2

ω̂2 ω̂2

∆L < 0

Fig. 3. The four cases determined by the signs s1 = sign(∆L) and s2 = sign(AωK ) in the
two-way Boussinesq equation near a Σ1 curve.

447
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When s1 < 0 (the upper two cases in Figure 3) then either an unstable band448

emerges at finite k̂ when s2 = −1 or the Boussinesq equation is also hyperbolic449

(s2 = +1). When s1 > 0 (lower two cases in Figure 3) then either a cutoff wave450

number emerges with re-stabilization at finite k̂ (as in the lower right diagram with451

s2 = +1), or instability is further enhanced (s1 = +1 and s2 = −1).452

The simplest class of nonlinear solutions of (58) are travelling solitary wave solu-453

tions, for example,454

u(ξ, τ) = û(ξ + γτ) ,455

which satisfies the ODE456

(
γ2û+ s1û+ 1

2 û
2 + s2û

′′
)′′

= 0 .457

Integrating and taking the function of integration to be constant458

s2û
′′ + (s1 + γ2)û+ 1

2 û
2 = h .459

The constant of integration h is fixed by initial data or the value of û at infinity. For460

appropriate parameter values, this planar ODE has a family of periodic solutions and461

a homoclinic orbit which represent periodic travelling waves and a solitary travelling462

wave solution of (58). The implication of these solutions is that the transition from463

elliptic to hyperbolic of a periodic travelling wave of the original system generates a464

coherent structure in the transition, which is represented by the above solitary wave.465

However, there is much more complexity generated at the transition. Hirota [18]466

shows that there is a large family of N−soliton solutions to (58) as well. Further467

details especially in the case N = 2 are given in [18]. Numerical simulations of the468

case N = 2 are presented in [27].469

The two-way Boussinesq equation is also generated by a Lagrangian, and has470

both a Hamiltonian and multisymplectic structure (e.g. [6], §10 of [9], and [12]).471

6. Example: finite-amplitude stabilization of Stokes waves. The four472

scenarios in Figure 3 can be used to identify the type of stability-instability transition473

in the water wave problem at finite-amplitude, linearized about Stokes waves on deep474

water. It was first shown by Longuet-Higgins [24] that the Benjamin-Feir instability of475

Stokes travelling waves in deep water stabilizes at finite amplitude. This stabilization476

can be seen most clearly in the numerics of McLean [28]. Linear stability exponents477

for finite-amplitude Stokes waves in deep water are computed, and in Figure 2 of [28]478

stability regions are plotted as a function of the modulation wavenumbers, for a se-479

quence of amplitudes. Three-dimensional instabilities (two modulation wavenumbers)480

are plotted but only the two-dimensional (one modulation wavenumber) instabilities481

are of interest here. At low amplitude the Benjamin-Feir instability is operational482

and it persists as the amplitude increases, until a wave steepness of h/λ ≈ 0.108 is483

reached, where h is crest to trough distance and λ the wavelength. At this value, the484

region of modulation instability in wavenumber space detaches from the orgin (see485

the transition in going from Figure 2(c) to 2(d) in [28]).486

Independently, in the same year, Whitham [39] showed that the stabilization point487

was precisely a transition point associated with ∆L = 0. Whitham first transforms488

the averaged Lagrangian into a functional H based on the energy,489

L (ω, k, I) = ωI − H (k, I) ,490
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where I is the value of the wave action. The amplitude of the wave is parameterized in491

terms of wave action (see [17] for discussion of Whitham modulation theory in terms492

of H (k, I)). In terms of H (k, I) the Lighthill determinant is493

det

[
Aω Ak

Bω Bk

]
=

Hkk

HII

.494

An explicit transformation from L to H is given in the introduction and Appendix495

A of [17]. The sign here differs from [17] and [39] as they define wave-action flux with496

the opposite sign.497

Whitham [39] then argues (see §10 in [39]) that the energy takes a self similar498

form499

H (k, I) =
g

k2
W (ζ) with ζ :=

k3I√
gk

.500

He then appeals to the tabulated values of the energy in Longuet-Higgins [23] to show501

that HII > 0 and does not change sign along a branch of Stokes waves, but shows502

that Hkk = 0 precisely at h/λ = 0.109 which agrees, to numerical accuracy, with the503

change of stability found in [24] and [28].504

With this association between the stability-instability transition point and van-505

ishing of the Lighthill determinant, the theory of this paper can be used to deduce506

that the two-way Boussinesq equation is generated at the transition.507

Going by the transition in Figure 2 of [28], the appropriate Boussinesq model508

is the bad Boussinesq with s2 = −1, and ∆L goes from positive to negative as the509

amplitude increases, corresponding to the two left graphs in Figure 3. Since the510

sign of the coefficient of the nonlinearity in (52) is not important, and generically it511

is nonzero, the appropriate Boussinesq model for water waves near the instability-512

stability transition of Stokes waves is513

(59) uττ + s1uξξ ±
(
1
2u

2)ξξ − uξξξξ = 0 , s1 = ±1 ,514

with s1 = +1 below the amplitude threshold and s1 = −1 above.515

This example is not of much interest physically since the numerics of [28] show516

that the above threshold point is surrounded by unstable Stokes waves. Below the517

threshold the waves are modulationally unstable, and above the threshold other finite-518

wavenumber instabilities and multidimensional (two modulation wavenumbers) take519

over. However, it is of theoretical interest in that it shows how limited qualitative520

information, obtained numerically, is sufficient to predict the nature of the modulation521

equation near the transition point.522

7. Example: Σ1 curves and explicit reduction for a nonlinear wave523

equation. Consider the nonlinear wave equation, a complex Klein-Gordon (CKG)524

equation,525

(60) Ψtt = Ψxx −Ψ+ |Ψ|2Ψ ,526

for the complex-valued function Ψ(x, t), which is a model for the nonlinear dynamics527

near the Kelvin-Helmholtz instability [2]. The CKG equation is generated by the528

Lagrangian529

(61) L(Ψ,Ψ) =
1

2

∫ t2

t1

∫ x2

x1

[
−|Ψt|2 + |Ψx|2 + |Ψ|2 − 1

2 |Ψ|4
]
dxdt ,530
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on the set [x1, x2] × [t1, t2] ⊂ R
2. The variation δL/δΨ = 0, with fixed endpoints,531

generates (60), and δL/δΨ = 0 generates the conjugate of (60). Multisymplectification532

of CKG will be introduced below when required for the calculation of the dispersion533

coefficient K .534

7.1. Periodic travelling waves. The CKG equation (60) has a family of exact535

periodic travelling wave solutions536

(62) Ψ(x, t) = Ψ0e
iθ , θ = kx+ ωt+ θ0 ,537

and substitution into (60) gives the nonlinear dispersion relation, relating amplitude538

to the frequency and wavenumber539

(63) |Ψ0|2 = 1− ω2 + k2 .540

This solution set consists of a hyperboloid of one sheet in the three dimensional space541

(ω, k, r) with r = |Ψ0| > 0. The projection of this hyperboloid onto the (ω, k) plane542

is shown in Figure 4. The unshaded region is the set where solutions of (63) exist and543

it consists of544

(64) U =
{
(ω, k) ∈ R

2 : ω2 < 1 + k2 , k 6= 0
}
.545

ω

k

Σ
1

s

s

u

u

Fig. 4. Regions of existence and Σ1 curve for the family of periodic travelling wave solutions
of CKG. The symbols s (u) denote regions where the periodic travelling wave is stable (unstable).

546

7.2. Conservation law and Σ1 curves. The conservation law which represents547

conservation of wave action is due to an S1−symmetry: eisΨ is a solution of CKG548

whenever Ψ is a solution for any s ∈ R. The conservation law is549

At +Bx = 0 , with A = −Im(ΨΨt) , B = Im(ΨΨx) .550

Evaluate the components of the conservation law on the family of periodic travelling551

waves552

(65)
A (ω, k) = −ω|Ψ0|2 = −ω(1 + k2 − ω2)

B(ω, k) = k|Ψ0|2 = k(1 + k2 − ω2) .
553
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They can also be obtained by substituting (62) into (61), averaging, and differentiating554

with respect to ω and k. The matrix in the Lighthill determinant is555

[
Aω Ak

Bω Bk

]
=

[
−1− k2 + 3ω2 −2ωk

−2ωk 1 + 3k2 − ω2

]
.556

Setting the determinant to zero gives557

∆L = AωBk − AkBω

= (−1− k2 + 3ω2)(1 + 3k2 − ω2)− 4ω2k2

= −(1− ω2 + k2)(1− 3ω2 + 3k2)

= −|Ψ0|2(1− 3ω2 + 3k2) .

558

Hence the only non-trivial points in U where ∆L = 0 are when the second factor559

vanishes560

(66) Σ1 =
{
(ω, k) ∈ U : ω2 − k2 = 1

3

}
,561

with U defined in (64). The singular set Σ1 consists of two curves and they are labelled562

in Figure 4, and the stable (unstable) regions in the (ω, k)−plane are labelled with s563

(u). The image of Σ1 in the (A ,B) plane consists of the two curves564

A
2 − B

2 =
4

27
.565

All the points in Σ1 are fold points. There are no cusp points in this example, and so566

κ 6= 0. Explicitly,567

κ = (Bkk − cgAkk)− 2cg(Bωk − cgAωk) + c2g(Bωω − cgAωω) .568

Computing569

cg =
Ak

Aω

∣∣∣∣
Σ1

= −ω

k
,570

and571

[Bωω − cgAωω]
∣∣
Σ1

= 4k +
2

k

[Bωk − cgAωk]
∣∣
Σ1

= −4ω

[Bkk − cgAkk]
∣∣
Σ1

= 4k − 3

2k
.

572

Combining gives573

κ =
2

3k3
.574

Since Aω

∣∣
Σ1

= 2k2, the emergent two-way Boussinesq equation is575

2k2qTT +
2

3k3
(qqX)X + K qXXXX = 0 .576

It remains to compute the coefficient of dispersion. It can be computed in this case577

by deriving the dispersion relation for the linearization of (60) about the periodic578

travelling wave, but the Jordan chain strategy is used instead to illustrate it in an579

example, and because it is the most general strategy for more complex problems.580
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7.3. Multisymplectification, linearization and K . A Legendre transform581

can be used to develop the multisympletic formulation of CKG, but it is simple enough582

to write down directly. Let583

a =

(
Re(Ψ)
Im(Ψ)

)
, b = at , and c = ax .584

Then CKG has the multisymplectic formulation585



0 −I2 0
I2 0 0
0 0 0





a

b

c




t

+




0 0 I2
0 0 0

−I2 0 0





a

b

c




x

=



a− ‖a‖2a

b

−c


 ,586

where I2 is the 2× 2 identity matrix, or587

MZt + JZx = ∇S(Z) ,588

with589

K = J− cgM =




0 cgI2 I2
−cgI2 0 0
−I2 0 0


 , Z =



a

b

c


 ∈ R

6 ,590

and591

S(Z) = 1
2‖b‖

2 − 1
2‖c‖

2 + 1
2‖a‖

2 − 1
4‖a‖

4 .592

In these coordinates the basic state is593

Ẑ(θ, ω, k) = Gθ



â

b̂

ĉ


 , b = ωJ2â , c = kJ2â ,594

with ‖â‖2 = 1− ω2 + k2,595

Gθ = Rθ ⊕Rθ ⊕Rθ , Rθ =

[
cos θ − sin θ
sin θ cos θ

]
, and J2 =

[
0 −1
1 0

]
.596

The linearized operator L is597

(67) L =



(1− ‖â‖2)I− 2ââT ωJ2 −kJ2

−ωJ2 I2 0
kJ2 0 −I2


 ,598

and the Jordan chain satisfies Lξj = Kξj−1, j = 1, 2, 3, 4 with ξ0 = 0. Computing599

ξ1 = Ẑθ = Gθ




J2â

−ωâ
−kâ


 ,600

and, with γ = (k + ωcg)‖â‖−2,601

ξ2 = Gθ




γâ
−(cg − ωγ)J2â

(1 + kγ)J2â


+ Rξ1 , ξ3 = Gθ




0
−γcgâ
γâ


+ Rξ1 ,602
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where Rξ1 represents the arbitrary amount of homogeneous solution. The first three603

terms in the Jordan chain will be sufficient for computing K since604

K := 〈〈Kξ1, ξ4〉〉 = 〈〈Lξ2, ξ4〉〉 = 〈〈ξ2,Lξ4〉〉 = 〈〈ξ2,Kξ3〉〉 .605

Hence606

K = 〈〈ξ2,Kξ3〉〉 = γ2(1− c2g)‖â‖2 .607

Now using the restrictions608

cg = −ω

k
, ‖â‖2 =

2

3
and γ = − 1

2k
when (ω, k) ∈ Σ1 ,609

it follows that610

K = − 1

18k4
.611

7.4. CKG to Boussinesq reduction. The Boussinesq model for (ω, k) ∈ Σ1612

is therefore613

(68) 2k2qTT +
2

3k3
(qqX)X − 1

18k4
qXXXX = 0 .614

The importance of the assumption k 6= 0 in U (64) is evident here. The resulting615

Boussinesq equation is the linearly ill-posed version since AωK < 0. Unfolding and616

scaling leads to the following canonical form617

uττ + s1uξξ + ( 12u
2)ξξ − uξξξξ = 0 , s1 = ±1 ,618

where s1 = −1 (s1 = +1) on the stable (unstable) side of the Σ1 curve (66).619

To summarize, the CKG equation (60) has a family of exact periodic travelling620

waves. Modulation of these travelling waves in the neighbourhood of the Σ1 curves621

(66) leads to a reduction to the two-way Boussinesq equation (68). The reduced622

equation contains a range of bounded periodic, quasiperiodic and localized solutions,623

but it also portends more dramatic behaviour in the original CKG equation in that624

it is linearly ill-posed and so general initial data may be dramatically unstable.625

8. Coalescing characteristics and multiphase wavetrains. The theory in626

this paper is for basic states with one phase. However there are many examples in627

the literature where at least two phases are present. Examples are modulation of the628

cnoidal wave solutions of the KdV equation (§16.14 of [38]), modulation of Stokes629

waves in finite depth coupled to mean flow (§16.6-16.11 in [38]), and modulation of630

viscous fluid conduit periodic waves (Maiden & Hoefer [26]). In the latter two631

examples there is an elliptic-hyperbolic transition. However the theory of this paper632

does not apply directly and needs to be generalized to multiphase wavetrains. A633

theory for bifurcation of multiphase wavetrains near a zero characteristic has recently634

been developed by Ratliff & Bridges [32]. Hence there is some optimism that635

the theory of this paper can be generalized to the elliptic-hyperbolic transition in636

multiphase wavetrains, but is outside the scope of this paper.637

9. Concluding remarks. The modulation equations derived here638

(69) qT = ΩX and AωΩT + κqqX + K qXXX = 0 ,639
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are asymptotically valid in that the modulation ansatz (42) satisfies the governing640

equation (22) exactly with an error of order ε6. However, this theory gives no indica-641

tion of convergence to all orders in ε.642

Rigorous validity of the theory presented here is an open question, and outside the643

scope of this paper. Rigorous validity is generally done in three steps: show that the644

original equation has a well-defined existence theory, show that the reduced equation645

has a well-defined existence theory, and then show that the difference between the646

exact and approximate solution stays close for a time interval of order ε−p, for some647

p > 0.648

Even considering validity of the CKG reduction to Boussinesq as an example,649

rather than reduction from an abstract Lagrangian, there is still a difficulty with the650

fact that the reduced equation (69) may not be well posed in general, particularly in651

the case where AωK < 0, which arises in the CKG example. Hence methodology652

based on Cauchy-Kowalevskaya in a space of functions which are complex analytic in a653

strip would be required. This approach was successfully used by Düll & Schneider [14]654

in their proof of the validity of elliptic Whitham modulation equations in a reduction655

from the nonlinear Schrödinger equation.656
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