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ON THE ELLIPTIC-HYPERBOLIC TRANSITION IN WHITHAM
MODULATION THEORY

THOMAS J. BRIDGES* AND DANIEL J. RATLIFFf

Abstract. The dispersionless Whitham modulation equations in one space dimension and time
are generically hyperbolic or elliptic, and breakdown at the transition, which is a curve in the
frequency-wavenumber plane. In this paper, the modulation theory is reformulated with a slow
phase and different scalings resulting in a phase modulation equation near the singular curves which
is a geometric form of the two-way Boussinesq equation. This equation is universal in the same sense
as Whitham theory. Moreover, it is dispersive, and it has a wide range of interesting multiperiodic,
quasiperiodic and multi-pulse localized solutions. This theory shows that the elliptic-hyperbolic
transition is a rich source of complex behaviour in nonlinear wave fields. There are several examples
of these transition curves in the literature to which the theory applies. For illustration the theory
is applied to the complex nonlinear Klein-Gordon equation which has two singular curves in the
manifold of periodic travelling waves.

Key words. nonlinear waves, modulation, Lagrangian, multisymplectic, traveling waves

AMS subject classifications. 74J30,70S05,76B15

1. Introduction. Modulational instability is one of the key ways that periodic
travelling waves become unstable. The wavelength of the perturbation is slightly
longer than the wavelength of the underlying periodic wave. In conservative sys-
tems this instability, in the weakly nonlinear case, is most closely associated with
the Benjamin-Feir instability [4], and in non-conservative systems with the Eckhaus
instability [15]. For weakly nonlinear periodic travelling waves, the simplest way
to analyze modulational instability is to derive a nonlinear Schrodinger equation or
complex Ginzburg Landau equation [35]. A history of the beginnings of modulation
instability is given in [40].

For finite-amplitude periodic travelling waves in conservative systems modulation
instability is captured by the Whitham modulation theory. For a nonlinear periodic
travelling wave of frequency w and wavenumber k, modulation of the form

(1) k—k+qX,T,e) and w+— w+QX,T,e),
where X = ez, T = et, in the Whitham theory, results in
(2) gr =Qx and A+ Bx =0,

to leading order in €, where &7 (w + Q, k 4+ ¢q) and B(w + Q, k + q) are the wave action
and wave action flur respectively, evaluated on the family of periodic travelling waves
[37, 38]. The Whitham modulation equations (WMEs) in (2) are a closed nonlinear
first order set of PDEs for the functions 2 and g. Generically, the WMEs are either
hyperbolic or elliptic. The linearization of these equations about the basic state,
represented by w and k, is

(3) gr =Qx and A, Qr + dhqr + B.QUx + Brgx =0,
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2 T.J. BRIDGES & D.J. RATLIFF

or, with the assumption o7, # 0, they can be written in the standard form,

(8), rmem (3), - )

1 10 —d,
(5) A(va) = % |:93k o, +%w] :

Here, o and & are evaluated at Q2 = ¢ = 0. The characteristics are

Ay + By, 1 o, Low 2
+ __ Fw =/ — w k|l _ ww wk
(6) c*= o, + T vV-Ap, Ap=det [@w %J det [fkw gkk} ,

using the identities, & = £, and & = %, from Whitham theory, where £ is the
averaged Lagrangian. The modulation instability is recovered by letting

(157) {3

and substituting into (3) giving
A =icty,

and so an unstable exponent (positive real part of A\) with modulation wave number v
exists precisely when Ay > 0. While v is of order one, vX = evz, and so the modu-
lation wave number can be interpreted as being of order ¢ in the original coordinates.
Since the WMEs are dispersionless, there is no wavenumber cutoff of the modulation
instability.

In terms of characteristics, this modulation instability highlights the Lighthill
condition [22]: when Ay > 0 the linearized WMEs are elliptic and when Ay < 0 they
are hyperbolic. This criterion, and other features of Whitham modulation theory
have been widely studied and there is a vast literature; recent examples are the book
[20], the review articles [29, 11], and the special issue on Whitham theory [5].

In this paper the interest is in the case when the Lighthill determinant is singular

o,

(7) AL = det [%w %k

]:O but 7, #0 and @ #0.

The condition Ay, = 0 defines a curve in the (w, k) plane locally separating stable and
unstable states. The set Azl(()), which is not necessarily connected, will be denoted
by

(8) 2 =A7N0) = {(w,k) EUCR® : AL =0},

where U is the open subset of R? for which periodic travelling waves exist. This
notation comes from singularity theory and is elaborated further in §2, as the geometry
of ¥! appears in the phase modulation theory. A typical ! curve is shown in Figure
1.

As far as we are aware, a modulation theory near an elliptic-hyperbolic transition
curve, generalizing Whitham modulation theory, has not been attempted heretofore.
One strategy for deriving a new modulation equation near a X! curve is to take the
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ELLIPTIC-HYPERBOLIC TRANSITION IN WHITHAM THEORY 3
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F1c. 1. A typical curve defined by A, =0 n the (w, k) plane.

Whitham theory to higher order. Luke [25] has given a theory and algorithm for
deducing higher-order Whitham equations. However, the theory is quite complicated
after the first order, and a clear closed system does not immediately emerge.

Another strategy is to change the time scale. The breakdown of the WMEs can
be interpreted as a signal that a change in time scale, from T = et to T = £2t, is
appropriate. Another feature of points on X! curves with o7, # 0 is that the linearized
WMESs have a double characteristic with nonzero speed, suggesting a moving frame
is appropriate. Since @, = 4, the speed at the double characteristic is

_

(9) Cq dw

The symbol ¢4 is used as this velocity is a form of nonlinear group velocity. It is inter-
pretable as (minus) the derivative of the frequency with respect to the wavenumber
with wave action fixed. There are various generalizations of group velocity to the non-
linear regime in Whitham theory (e.g. [17, 30]). The definition (9) is preferred here
as it is the velocity at the double characteristic, and arises naturally in the nonlinear
modulation theory.

Our strategy for developing a nomlinear modulation theory near X' curves is
to slow down the time scale, go into a cy;—boosted moving frame, and slow down
the phase, wavenumber and frequency modulation. The modulation mapping (1) is
replaced by

(10) ki k+e*q(X,T,e),

and

(11) W w—cgeq(X,Toe) + QX T, ),
with

X =¢e(x—c4t) and T =¢e’t.

Substitution into the governing equations, which are the Euler-Lagrange equations
based on a general abstract Lagrangian, then leads at fifth order in ¢ via a solvability
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4 T.J. BRIDGES & D.J. RATLIFF

condition to the new modulation equations replacing (2) and (3),
(12) qgr =Qx and  ,Qr + Kkqgx + A gxxx =0.

Differentiating the second equation with respect to X and using the first equation
shows that it is a variant of the two-way Boussinesq equation, but with coefficents that
are universal in the same sense that the Whitham equations are universal (that they
follow from the abstract properties of the Lagrangian). The importance of &7, # 0
shows up in the first coefficient. The second coefficient, k is the second derivative of the
mapping (w, k) — (o (w, k), B(w,k)) evaluated on the kernel of the first derivative,
and the coefficient of dispersion ¢ is determined by a Jordan chain argument. The
details of the derivation leading to (12) are given in §4.

A two-way Boussinesq equation is derived via phase modulation in [34], but in that
case the Whitham theory has a double zero characteristic, and the phase modulation
is relative to a stationary frame of reference. Moreover, that theory requires two
parameters and is not associated directly with a stability-instability transition. The
theory in this paper addresses the stability-instability transition directly, and will be
more prevalent in applications as it only requires the variation of a single parameter.

There are several interesting consequences due to the modulation equation (12)
near X! curves: dispersion is generated, thereby admitting coherent structures (e.g.
solitary waves), and a wide range of complex solutions are generated (multi-pulse
solitary waves [18], breathers [13], blowup [7, 36], integrable structures [6]) and it has
its own elliptic-hyperbolic dichotomy. The two-way Boussinesq equation is said to be
elliptic (“bad”) if it is linearly ill-posed (corresponding in this case to 7, ¢ < 0) and
hyperbolic (“good”) for the reverse sign. The good Boussinesq equation moderates
the modulational instability, whereas the bad Boussinesq equation enhances the in-
stability. In either case, dispersion identifies a cut-off wavenumber for the modulation
instability which is absent in the dispersionless WMEs.

There are two familiar examples in the literature where ! curves arise. The first
is stabilization of the Benjamin-Feir instability, for water waves on infinite depth,
at large amplitude [24, 28, 39]. This case is interpreted in terms of the theory here
in §6. The second is stabilization of the Benjamin-Feir instability when the depth
parameter is below a critical threshold, khg ~ 1.363 [3, 16]. This latter case occurs in
the weakly nonlinear regime, and a theory for this case is developed by Johnson [19]
near the threshold by extending the nonlinear Schrédinger equation to higher order. A
new example has recently been discovered by Maiden & Hoefer [26] where an elliptic-
hyperbolic transition has been discovered in modulation of viscous fluid conduit waves.
However, in the latter two examples the modulation is multiphase and so the theory
of this paper does not directly apply (see comments in §8). Here an example, based
on modulation of a one-phase periodic travelling wave solution of a nonlinear complex
Klein-Gordon equation, is presented where all the details can be worked out explicitly
and it illustrates the key features induced by the elliptic-hyperbolic transition.

There is an interesting geometry associated with the mapping
(W, k) = (o (w, k), B(w, k) ,
and it is developed in §2. The condition Ay = 0 defines a curve in the (w, k) plane

which locally separates stable and unstable regions. The image defines a curve in
(o7, B) space. The geometry of these curves appears in the modulation theory. The

SIAM J. Appl. Math. (in press, 2017)
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ELLIPTIC-HYPERBOLIC TRANSITION IN WHITHAM THEORY 5

modulation theory is developed for general conservative PDEs generated by a La-
grangian, and the background for this is developed in §3. The details of the modu-
lation theory are presented in §4. In §5 features of the emergent two-way Boussinesq
equation are discussed. Two examples of the application of the theory are presented:
86 applies the theory to the instability-stability transition of the Benjamin-Feir in-
stability of Stokes waves in deep water, and §7 computes X! curves, and the reduced
Boussinesq equation for periodic travelling waves of a nonlinear complex Klein-Gordon
equation.

2. The frequency-wavenumber mapping. The geometry of the frequency-
wavenumber map

(13) (w, k) = (“;Eg g) = F(w, k),

appears centrally within the modulation theory. The Jacobian of this mapping,

A,
DF(w, k) := L@w «@ﬂ :

is degenerate on the X! curves (7). With the assumptions (7), the trace of DF is
nonzero and so the zero eigenvalue of DF is simple with geometric eigenvector

DF (w, k)n = 0.

Since DF is symmetric, n is both a left and right eigenvector. In terms of ¢,

(14) n= (_f”> :

modulo a nonzero multiplicative constant. Although this eigenvector is not unique
the choice (14) is canonical in that it will be shown to be relevant in the modulation
theory.

The symbol n is used for the eigenvector in (14) because it is a normal vector.
However, it is not the normal vector to the curve X!, it is the normal vector to the
image of this curve in the (&7, %) plane. To see this first look at the geometry of the
curve defined by X!. To lighten the notation define

flw, k) :=Ap(w, k).

Then the normal vector to the curve Ay = 0 is proportional to V f. A schematic is
shown on the left in Figure 2. Now parameterize the curve A, = 0 by (w(s), k(s)).
Then a tangent vector on the image of the mapping F(w(s), k(s)) is

Ay | (W

B, Br|\k)
The left eigenvector n of DF is orthogonal to this direction, giving a normal vector
on the image curve in (&7, %)—space. A schematic is shown on the right in Figure 2.

The geometry of mappings from a plane to a plane is a fundamental problem
in singularity theory and the basic results can be found in the first few chapters of

SIAM J. Appl. Math. (in press, 2017)
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6 T.J. BRIDGES & D.J. RATLIFF

F(w, k)
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\

Fic. 2. The singular curve defined by Ay, = 0 on the left, and its image curve under the
mapping F is on the right.

Arnold et al. [1]. For a mapping from the plane to the plane with a X! singularity,
there are generically two types of curves: either

T,3! @ Ker(DF) = R? (fold)
7,5 = Ker(DF) (cusp),
where p = (w, k) € X!, Since 7,5 = Ker(Vf), the fold condition is
(15) (Vf.m) #0,
where (-,-) is the standard inner product on R2. The cusp condition is simply
(16) (Vfin)=0.

All other potential singularities of mappings from the plane to the plane are not
stable under perturbation, a result known as Whitney’s theorem [1], although one
can potentially have many cusps [21]. This geometry plays a central role in the
modulation theory, as it turns out that x # 0 in (12) is precisely related to (15).

Define
(17) k= (n,D*F(w, k)(n,n)), (w,k)€X?t,

with n in the canonical form (14). The expression on the right is the intrinsic second
derivative [31, 1]. Tt is the ordinary second derivative of the mapping F but evaluated
on the kernel of the first derivative. It is widely used in singularity theory (cf. Chapter
3 of [1]).

The connection between k in (17) and the fold condition (15) is the following

as) (Vf.n) = (W) (n, D*F (i, )(n, m)

The coefficient on the right is nonzero since the zero eigenvalue of DF is simple. The
formula (18) is proved as follows. The function f can be characterized as

f(wv k) = det[DF(wa k)] )

SIAM J. Appl. Math. (in press, 2017)
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ELLIPTIC-HYPERBOLIC TRANSITION IN WHITHAM THEORY 7

and so, using the formula for the derivative of a determinant,
f. = Trace (DF#DF,) and f), = Trace (DF#DF},) ,
where DF# is the adjugate of DF. Combining

(Vf,n) =nqf, +nafi = Trace (DF#(nlDFw + nQDFk)) .

T

Now note that the adjugate of a 2 x 2 matrix of rank 1 is proportional to nn*, and

in this case it is exactly
Tr(DF
DF# = LQ)nnT,
]l
a formula which can be confirmed by direct calculation. Since Tr(nn”A) = (n, An)
for any 2 x 2 matrix A, the formula (18) follows.

Writing out (17) using the canonical form for n in (14),
(19) K :i(ﬁgkk A'Cg&y%k) "2Cg(ggwk A*CgiﬁLk) +fc§(33dw A'Cg&%Lw).

It is this form of the intrinsic second derivative x that shows up in the modulation
theory as the coefficient of nonlinearity in the modulation equation (12).

It is important to note that the “intrinsic” nature of the second derivative does
not mean that the value of x is independent of the choice of n. As an eigenvector n is
not unique and multiplication of n by a nonzero constant multiplies x by that constant
cubed, and so it can even change the sign of k. The intrinsic label signifies that the
affine part of the second derivative is removed, and the trilinear form of the second
derivative remains the same. See [31, 1] for further detail on intrinsic derivatives.

3. Lagrangian setup and basic state. The starting point for the modulation
theory is a general class of PDEs generated by an abstract Lagrangian,

to x9
(20) 2(U) = / / LU, U, U,) dedt,
t1 x1

where U(x,t) is a vector-valued field on the rectangle [xq, 2] x [t1,t2] C R%. It is
advantageous to first transform the Lagrangian density to multisymplectic form,

(21) L(Z) = /ttz /mz [32(Z,MZ) + 3(2,3Z,) — S(Z)] dadt,

where now Z € R" for each (z,t) and n is assumed to be even. The Lagrangian density
is the same in going from (20) to (21) but the representation (21) has more structure.
The operators M and J are constant skew-symmetric n X n matrices and S : R™ — R
is a given smooth function. The transformation from (20) to (21), effectively a double
Legendre transform, is discussed in previous papers [10, 8, 33, 34]. The Euler-Lagrange
equation deduced from the Lagrangian (21) takes the concise form

(22) MZ, +3Z, =VS(Z), ZeR".

The theory could be developed directly on the primitive abstract Lagrangian (20)
but partitioning the Lagrangian density as in (21) gives added structure that greatly
simplifies the theory.

SIAM J. Appl. Math. (in press, 2017)
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8 T.J. BRIDGES & D.J. RATLIFF

The basic state is a periodic travelling wave solution of wavelength 27/k and
period 27 /w of the form
(23) Z(x,t) = Z(0,w, k), Z(O+2m,-)=2(0,"), 0=kz+wt+6by,

with arbitrary phase shift 5. There is the usual assumption on existence and smooth-
ness of this solution so that the necessary differentiation in €, &k, and w is meaningful.
The basic state satisfies

(24) wMZy + kI Zy = VS(Z).

An important property of the structure is multisymplectic Noether theory [10]
associated with conservation of wave action, that is,

(25) VA(Z)=MZy and VB(Z)=J3Z,),

where A, B are the components of the action conservation law, 7 (0,w, k) is the basic
state, and the gradient is defined with respect to the inner product including averaging
over 6,

1 2

(26) W) =5 [ vy,
21 0

where (-, -) is the standard inner product on R".

To get the components of the conservation law for wave action, average the La-
grangian, evaluated on the family of travelling waves, over 6,

2
Lw =y | [‘“<Mze, 2)+202,,2) - 52)| a0,
2r Jo 2 2
and differentiate with respect to w and k, giving
Ly = d(wk)=1 M29,2
@) (w, k) = 3( s, )
L = Blwk) =532, 2)).

The key feature here is that the wave action and wave action flux, evaluated on the
family of periodic travelling waves, are related to the tangent vectors of the waves via
the structure matrices M and J. This is multisymplectic Noether theory in action.

The first derivatives needed for DF and Aj, are
o Ao = (MZoZ), o= (MZ0.2),
Bo = (320,200, P =320, Zx) .

The second derivatives needed in the construction of k can be simplified by using a
boosted symplectic structure. Define

(29) K:=J—c,M.
Then differentiating (28) and combining gives
Buow = s = (K, Z) + (KZp, Ziows)
(30) B — ot = (KZok, Zo) + (KZg, Zoot.))
By, — ot = (KZor, 1) + (KZo, Zi)) .

SIAM J. Appl. Math. (in press, 2017)
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ELLIPTIC-HYPERBOLIC TRANSITION IN WHITHAM THEORY 9

3.1. Linearization about the periodic basic state. Define the linear oper-
ator

= d d
1 LW = |D?*S(Z) — kJ— — wM—
(31) W S(Z) deQ wM— W,
obtained by linearizing (24). Then differentiating (24) with respect to 6, k and w
gives,

D2S(Z2)Zy = kI Zgg+wMZyy,
D2S(2)Z = kIZgw +wMZgy, +IZg
D%S(2)Z, = kIZgw+wMZg, +MZy,
or
(32) LZy=0, LZ,=J3Zy, and LZ,=MZ,,

with other derivatives following a similar pattern. The first equation of (32) shows
that Zy is in the kernel of L, and it is natural to assume that the kernel is no larger.
Hence assume

(33) Kernel(L) = span{fg} .

For inhomogeneous equations that arise in the modulation theory and the Jordan
chain theory, a solvability condition will be needed. With the assumption (33) and
the symmetry of L, the solvability condition for the inhomogeneous equation LW = F'
is

(34) LW = F is solvable if and only if (Z, F)) =0.

3.2. A twisted symplectic Jordan chain. The second and third equation of
(32) show that there are potentially two non-trivial Jordan chains associated with
the zero eigenvalue of L with geometric eigenvector Z;. In previous work [8, 33, 34],
the phase modulation theory required a longer Jordan chain formed from either a
J—chain or an M—chain. Here the intertwining of these two chains will be required
in the phase modulation theory. Then, using (32),

(35) L(Zy — cgZu) = (I — ;M) Zg = KZg ,

using the boosted symplectic structure K (29) in the last equality. Therefore, define
(36) & =2y and & = Zg —cyZ,.

Then a mixed K—Jordan chain of length two is formed

(37) L& =0 and L& =K¢E .

It is the extension of this chain and its connection with the singularity (7) that will
appear in the modulation theory. Since the symplectic structure assures that the
chain length is even, a proposed longer chain is

L& = 0
L = K&
(38)
L& = Ké
Ly = K.

SIAM J. Appl. Math. (in press, 2017)
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In this chain it is either assumed that K is invertible or K¢; # 0 for j = 1,2, 3.

The second equation in (38) is solvable due to (32), and the third equation is
solvable since

(Zo,K&) = (Zo,K(Zk — cyZ.))
= —(KZo, (Zk — ¢y Z.))
(39) = —(IZyg — cyMZg, (Z) — ¢y Z,)))
= —Br+ cgBu + cgHy — chz{w
—-Ar,

using (28), and Az, = 0 on X! curves. The fourth equation in (38) is solvable due to
even-ness of the Jordan chain, but it can be confirmed explicitly,

(Zo, K&) = -

with the last line following from skew-symmetry of K. This Jordan chain terminates
at four if the next equation
L& = Kéa

is not solvable; that is, when
(40) (Zo, KEysY) := —H #0.

It is this coefficient ¢ that shows up as the coefficient of dispersion in the modulation
equation (12).

To summarize: for (w,k) € X', with the assumption (33), the algebraic multiplic-
itity of the zero eigenvalue of L is at least four and is exactly four when J& # 0.

4. Modulation ansatz. Given the family of basic states, 2(9, w, k), the classical
Whitham modulation equations (2) are obtained using the modulation ansatz

= 1 1
(41) Z(x,t):Z(H—l—g(b,w—l—Q,k—i—q)+5W(9+6¢,X,T,5) ,

with ¢ dependent on (X, T, ¢),
q=¢x, Q=¢r, X=ecx, T=ct.

Substitution of the ansatz (41) into the Euler-Lagrange equation (22) leads, via a
solvability condtion at order e!, to the dispersionless conservation of wave action in
(2). This modulation ansatz is valid away from a $! curve.

For (w, k) € ¥! the ansatz needs to be modified. A posteriori it is confirmed that
the appropriate modification of (41) is

(42) Z(x,t)=Z(0 + ed,w — cge’q+ ek +2q) + W (0, X, T,e¢).

SIAM J. Appl. Math. (in press, 2017)
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ELLIPTIC-HYPERBOLIC TRANSITION IN WHITHAM THEORY 11

The conservation of waves is still operational
(43) q:¢X7 Q:¢T7 and qT:QXv
but the scaling of the independent variables is changed to

Lok _ T

(44) X=ce(x—cgt) and T =c, with c¢,:= 7 =

The strategy is then to substitute the ansatz (42) into the Euler-Lagrange equation
(22), expand everything in powers of ¢, and solve order by order in e. While the ansatz
(42) is new, particularly in how the speed ¢, affects the modulation, the machinations
of the expansions is similar to previous work [8, 33, 34], and so only a summary is
given. The zeroth, first, and second order equations in € reproduce the equation for
the basic state, the linearization, and conservation of waves (43). At third order the
resulting equation is

LWs = ax [IZ; - cMZy + EMZ, - ¢, 32,
(45) ‘
= oxK(Zr — ¢yZ,) = K&,

using (29) and (36). Here, W3 is obtained from the Taylor expansion of W,
SSW(0,X,T,e) = 3Ws(0, X, T) +*Wy(0, X, T) + W5 (0, X, T) +--- .

The equation (45) is solvable for (w,k) € £! due to (39). Hence
(46) W3 =qx& + a1,
where at this point (X, T) is an arbitrary function.

4.1. Fourth order equation. The fourth order equation simplifies to

L(Wy — qxx€1 — ax€s — dax (€3)s — adZpg)
= qr (Mék - CQMZ,) +Qx (Jéw - chZJ> .

A curiosity in the theory is that the ¢r and Qx terms are exactly solvable for (w, k) €

> since R R R
QT<<ZG7 (MZ]C - CgMZW)» = qT(i"Q{k + Cgﬁfw) = Oa

and
Ox(Zo(IZy — cgMZ,)) = Qx (B — cgl,) =0,

using the definition of ¢, and the cross-derivatives @, = %,,.

The complete solution for Wy is therefore

(47) Wi = qrn + qxx&a + axa + dax (€3)s + adZog + 861,

where 8(X,T) is arbitrary at this point, and 7 is a particular solution of
(48) Ly =MZ;, —2¢,MZ, +J3Z,.

The solution 7 of this equation will not be needed explicitly in the theory, only its
abstract definition in (48).
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4.2. Solvability at fifth order. After some simplification, the fifth order terms
reduce to

LW; = QrMZ, +qqx {KT +K(&)o — D3S(Z) (&, 53)}

(49)
+axxxK& + Qxx (M& + Kn) ,

where W5 incorporates all terms that are exactly solvable and,
T:= Ekk: - QCgéwk + C?wa .

An explicit expression for Ws can be constructed but is not needed as solvability
delivers the modulation equation (12).

The awkward term in (49) is the Qxx term which would make the resulting
modulation equation non-conservative. However, it too is in the range of L, and it is
the abstract definition of the function 7 in (48) that is used to show that this term is
removable,

(Zo,M&s +Kn) = ((Zo,M&s)) — (KZg,m)
= (Zo,M&s) — (Léa, 1)
= —(MZp, &) — (&, Ln)
= —(LZuy, &) — (€&, MZy, — c;MZ, + KZ,)
= —(Zu L&) — (€&, MZy, — c;MZ, + KZ,)
= (2, KE) — (£2,MZ), — cMZ,, + KZ,)
= (& M(Zx — ¢, 2.))
= —{({&,M&)
= 0

)

using skew-symmetry of M and K, symmetry of L, the Jordan chain, and the function
71 (48). Therefore there exists a function ¢ such that

Lé = Mé& + K.
This simplifies the fifth order equation to
L(I/IA/; —Qxx6) = QrMZ, + qxxx K&
+9qx |KY +K(&)o — D*S(Z°) (&, &)

This equation is solvable if and only if the right hand side is orthogonal to 29, giving

(50) a1 + a2qqx +azgxxx =0,

with
a1 = (Zo,MZ,)

(51) az = <<207 {KT + K(&3)o — D35@)(€27§3)} >>
a3 = (Zo,K&).
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Now

= (Z6.MZ,)) = —(MZy, Z,)) =~
using (28), and appeal to (40) shows that
az = — (K&, &) = — 7.

Using the geometry of the frequency-wavenumber map it is shown below that as = —«k,
where k is defined in (17), giving the final form of the modulation equation as

(52) G, Qr + kaqx + Fqxxx =0 and ¢r =Qx,
and for non-degeneracy of this equation it is assumed that

(53) Ay #0, k#0, and H #0.

4.3. The geometry of the frequency-wavenumber map and as. It is not
at all obvious that the intrinsic second derivative that arises from the geometry of
the frequency-wavenumber map (17) should be related to the above coefficient as that
appears from the modulation analysis as the coefficient of nonlinearity. However, with
the canonical choice of normal vector n, they are exactly equal and this is proved as
follows. The expression that arises in the modulation analysis and solvability condition
is

(54) az = (Zo, [KT +K(&)o ~ D*S(2)(&2,&)] ) -
Differentiating Lés = K&, with respect to 6,

L(&3)p +D*S(Z)(&1,63) = K(&2)e

Hence, with Zy = &1, the second term in (54) is

(Zo,K(&)o) = —(K&,(E)o)
= —((L&, (&3)a)
= —<<§2»L(§3)9>>
= —(& K(&)o —D*S(Z)(&, &)
= —(& K(&)o) + (&, D*S(2)(&1,6))
= —(& K(&)o) + (&1.D*S(Z)(&2,&))

using L& = K¢, skew-symmetry of K, symmetry of L, and permutation of the
trilinear form in the last line. Substitution of the expression for {(Z, K(&3)g)) into as
reduces it to

(55) az = (K&, (&2)o) + (Zo, KT)) .

SIAM J. Appl. Math. (in press, 2017)
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Start with this expression for as, and substitute for T and &,
—ay = —(K&, (&)o) — (Zs, KT))

= (K(Zro — cgZu), Z — cgZ.,) + (KZp, 1)

= (KZow Z0) — ¢y (KZow, 2.) — ¢y (K Zuur, Zi)
+2(K 2o, Zu) + (KZg, 1))

= (K Zok, Z) — co(KZor, Z.) — (K Zow, Z) + (K Zow, Zus)
+(KZp, Zyk — 2¢q Zuoks + 2 Z i)

= ((KZow Zu) + (KZo, Za)) + 3 ((KZow, Z) + (KZo, Zo))
—co((KZok, Zo) + (KZpw, Z1) + 2(K Zp, Zior)

= Bk — cghn) — 2¢9(Buok — cgGit) + 2 (PBuso — Cg i)

= (n,D°F(w,k)(n,n))

= kK,

when n is in canonical form (14). The third to last step follows from the substitution
of the identities (30). This completes the derivation of the phase modulation equations
(52) on Xt curves.

4.4. Invariance under coordinate change. Since the modulation equation
(52) relies on two eigenvector choices there is a potential non-uniqueness in the final
form. The first potential non-uniqueness is the choice of geometric eigenvector & of
the zero eigenvalue of L, R

L& =0 = & =02,
where b is an arbitrary multiplicative constant. This constant is then multiplied by
each element in the Jordan chains. Hence a; and a3 in (50) would be multiplied by b?.
However, the signs of a; and a3 would not change and the factor b? can be removed
by scaling. The other eigenvector choice is n and

DF(w,k)n=0 = nb<fﬂ,

for some nonzero constant b. In this case the only change would be a scale factor
on k, K — b’k. Since x multiplies a nonlinearity, scaling q (or ¢) using b* would
eliminate this scale factor in k. A change in sign of  is eliminated by a change in sign
of q. Hence, with the canonical choices £, = Zy and n as in (14), and the modulation
ansatz (42), the modulation equation (52) is uniquely defined.

4.5. Unfolding from X! curves. Instead of taking A to be identically zero, it
can be taken to be of order £2 giving an unfolding of the two-way Boussinesq equation
(56) A, + pgx +rggx + X qxxx =0 and gqr =Qx,

where sign(p) = sign(e,Ar). In this case, the combined equation is the classical
two-way Boussinesq equation with a second derivative in X term

(57) Doqrr + paxx + (580°) g + H axxxx =0.

This unfolded version allows one to extend the discussion from solely along the X!
curves to the neighbourhood around them, characterised by the small parameter €.

SIAM J. Appl. Math. (in press, 2017)
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129 5. The two-way Boussinesq equation. Once the modulation equation (52)
130 is derived in a specific context, analysis of the solutions follows the standard strategy.
431  Assuming all the coefficients are non-zero, the dependent and independent variables
432 can be scaled so that the coefficients are +1, simplifying the form of the equation.
133 Starting with (57), scale X, T, and ¢ and let

134 s1 =sign(Ayp) and sp =sign (o, %) .

135 Denote the scaled space and time variables by £ and 7, and the scaled ¢ by u(&, 7).
136 Then the two-way Boussinesq equation is reduced to the standard form

137 (58) Urr + S1Uge + (%UQ)& + SoUgeee = 0, s1,89==1.

138 The set 3! locally separates the subset of the (w, k) for which travelling waves exist
139 into two regions: elliptic (s; = +1) and hyperbolic (s; = —1). The sign s, indicates
140 whether the resulting two-way Boussinesq equation is good (sg = +1) or bad (s =
441 —1). In the latter case, the initial value problem for the linearized system is ill posed.

442 Consider the linearization of (58) about the trivial solution and consider a normal
143 mode solution of the form e!(*¢+%7) then the dispersion relation is of the form

444 &% = —s1k + sk .

445 There are four cases depending on the signs s; and s, and they are shown in Figure
146 3. The figure plots &? against k% and so &2 < 0 indicates linear instability of the
trivial solution which in turn reflects linear instability of the basic travelling wave.

2 w?
AL <0
\ ]%2 122
&2 w?
AL >0 /
i? i

Fi1G. 3. The four cases determined by the signs s1 = sign(Ar) and sy = sign(<,. %) in the
two-way Boussinesq equation near a B! curve.
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When s; < 0 (the upper two cases in Figure 3) then either an unstable band
emerges at finite k when so = —1 or the Boussinesq equation is also hyperbolic
(s = +1). When s; > 0 (lower two cases in Figure 3) then either a cutoff wave
number emerges with re-stabilization at finite k (as in the lower right diagram with

s9 = +1), or instability is further enhanced (s; = +1 and sy = —1).

The simplest class of nonlinear solutions of (58) are travelling solitary wave solu-
tions, for example,

u(§, ) =u(€+97),
which satisfies the ODE

(Y0 + s10 + 202 + s20”")" = 0.
Integrating and taking the function of integration to be constant
SQiL\” + (81 + 72)ﬁ+ %a2 =h.

The constant of integration h is fixed by initial data or the value of @ at infinity. For
appropriate parameter values, this planar ODE has a family of periodic solutions and
a homoclinic orbit which represent periodic travelling waves and a solitary travelling
wave solution of (58). The implication of these solutions is that the transition from
elliptic to hyperbolic of a periodic travelling wave of the original system generates a
coherent structure in the transition, which is represented by the above solitary wave.
However, there is much more complexity generated at the transition. Hirota [18]
shows that there is a large family of N—soliton solutions to (58) as well. Further
details especially in the case N = 2 are given in [18]. Numerical simulations of the
case N = 2 are presented in [27].

The two-way Boussinesq equation is also generated by a Lagrangian, and has
both a Hamiltonian and multisymplectic structure (e.g. [6], §10 of [9], and [12]).

6. Example: finite-amplitude stabilization of Stokes waves. The four
scenarios in Figure 3 can be used to identify the type of stability-instability transition
in the water wave problem at finite-amplitude, linearized about Stokes waves on deep
water. It was first shown by Longuet-Higgins [24] that the Benjamin-Feir instability of
Stokes travelling waves in deep water stabilizes at finite amplitude. This stabilization
can be seen most clearly in the numerics of McLean [28]. Linear stability exponents
for finite-amplitude Stokes waves in deep water are computed, and in Figure 2 of [28]
stability regions are plotted as a function of the modulation wavenumbers, for a se-
quence of amplitudes. Three-dimensional instabilities (two modulation wavenumbers)
are plotted but only the two-dimensional (one modulation wavenumber) instabilities
are of interest here. At low amplitude the Benjamin-Feir instability is operational
and it persists as the amplitude increases, until a wave steepness of h/A =~ 0.108 is
reached, where h is crest to trough distance and A the wavelength. At this value, the
region of modulation instability in wavenumber space detaches from the orgin (see
the transition in going from Figure 2(c) to 2(d) in [28]).

Independently, in the same year, Whitham [39] showed that the stabilization point
was precisely a transition point associated with Ay = 0. Whitham first transforms
the averaged Lagrangian into a functional 7 based on the energy,

L(w, k, I)=wl —H#(k,I),
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where [ is the value of the wave action. The amplitude of the wave is parameterized in
terms of wave action (see [17] for discussion of Whitham modulation theory in terms
of #(k,I)). In terms of ¢ (k,I) the Lighthill determinant is

dot [ﬂw ﬂk] ek

B P _%1'

An explicit transformation from £ to J# is given in the introduction and Appendix
A of [17]. The sign here differs from [17] and [39] as they define wave-action flux with
the opposite sign.

Whitham [39] then argues (see §10 in [39]) that the energy takes a self similar
form

3
%(k,[):%W(q) with g;:jgik.

He then appeals to the tabulated values of the energy in Longuet-Higgins [23] to show
that 777 > 0 and does not change sign along a branch of Stokes waves, but shows
that %%, = 0 precisely at h/\ = 0.109 which agrees, to numerical accuracy, with the
change of stability found in [24] and [28].

With this association between the stability-instability transition point and van-
ishing of the Lighthill determinant, the theory of this paper can be used to deduce
that the two-way Boussinesq equation is generated at the transition.

Going by the transition in Figure 2 of [28], the appropriate Boussinesq model
is the bad Boussinesq with so = —1, and A}, goes from positive to negative as the
amplitude increases, corresponding to the two left graphs in Figure 3. Since the
sign of the coefficient of the nonlinearity in (52) is not important, and generically it
is nonzero, the appropriate Boussinesq model for water waves near the instability-
stability transition of Stokes waves is

(59) Urr + S1Uge + (%uz)gg — Uggge = 0, s3==1,

with s; = +1 below the amplitude threshold and s; = —1 above.

This example is not of much interest physically since the numerics of [28] show
that the above threshold point is surrounded by unstable Stokes waves. Below the
threshold the waves are modulationally unstable, and above the threshold other finite-
wavenumber instabilities and multidimensional (two modulation wavenumbers) take
over. However, it is of theoretical interest in that it shows how limited qualitative
information, obtained numerically, is sufficient to predict the nature of the modulation
equation near the transition point.

7. Example: X! curves and explicit reduction for a nonlinear wave
equation. Consider the nonlinear wave equation, a complex Klein-Gordon (CKG)
equation,

(60) \Iltt = \Ilmm -0+ ‘\IJ|2\P3

for the complex-valued function ¥(x,t), which is a model for the nonlinear dynamics
near the Kelvin-Helmholtz instability [2]. The CKG equation is generated by the
Lagrangian

o 1 t2 o
o0 LB = [ [P P R - ] dedr,
t1 T
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on the set [z1,z2] X [t1,t2] € R2. The variation §£/6¥ = 0, with fixed endpoints,
generates (60), and 6L/ = 0 generates the conjugate of (60). Multisymplectification
of CKG will be introduced below when required for the calculation of the dispersion
coefficient 7.

7.1. Periodic travelling waves. The CKG equation (60) has a family of exact
periodic travelling wave solutions

(62) U(x,t) = Woel? | O =ke+wt+6,

and substitution into (60) gives the nonlinear dispersion relation, relating amplitude
to the frequency and wavenumber

(63) [T =1 —w? + k2.

This solution set consists of a hyperboloid of one sheet in the three dimensional space
(w, k,r) with r = |¥y| > 0. The projection of this hyperboloid onto the (w, k) plane
is shown in Figure 4. The unshaded region is the set where solutions of (63) exist and
it consists of

(64) U={(wk)eR® : W’ <1+k*, k#0}.

w

/

4
% Tk

FIG. 4. Regions of ezistence and X' curve for the family of periodic travelling wave solutions
of CKG. The symbols s (u) denote regions where the periodic travelling wave is stable (unstable).

7.2. Conservation law and 3! curves. The conservation law which represents
conservation of wave action is due to an S'—symmetry: e*¥ is a solution of CKG
whenever ¥ is a solution for any s € R. The conservation law is

Ay + B, =0, with A=-Im(¥¥;), B=Im(¥¥,).

Evaluate the components of the conservation law on the family of periodic travelling
waves

(k) = —w|Vo|? = —w(l+k? —w?)

(65)
Bl k) = ko2 = k(1 + k2 — w?).
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They can also be obtained by substituting (62) into (61), averaging, and differentiating
with respect to w and k. The matrix in the Lighthill determinant is

A,
B, By

—1 — k2 4 3w? —2wk
—2wk 1+ 3k% — w?

Setting the determinant to zero gives
A = A PBr — B
= (=1—k%+3w?)(1 + 3k? — w?) — 4w?k?
= —(1-w?+k?)(1-3w?+3k?)
= —|Ug|2(1 — 3w? + 3k?).

Hence the only non-trivial points in U where Ay = 0 are when the second factor
vanishes

(66) 21:{(w,k‘)€U : wz—kzzé},

with U defined in (64). The singular set 3! consists of two curves and they are labelled
in Figure 4, and the stable (unstable) regions in the (w, k)—plane are labelled with s
(u). The image of X! in the (&7, %) plane consists of the two curves

4

o — B =— .

27
All the points in 3! are fold points. There are no cusp points in this example, and so
k # 0. Explicitly,

K = (ﬂkk — Cgﬂkk) — 209(93wk — Cg,Swak> + C;(t%ww — Cgﬂww) .

Computing
o |l _ W
Y o, 51 -k

and 5

(Bow — CqgH o) ‘21 = 4k + %

[%wk — ngwk] |21 = —dw

B ) = 4k 3

(Brr — ¢4 kk]|21 = Tk
Combining gives

2
KR = % .

Since 'Q{w’El = 2k?, the emergent two-way Boussinesq equation is

2

2k qrr + %(QQX)X + X axxxx =0.

It remains to compute the coefficient of dispersion. It can be computed in this case
by deriving the dispersion relation for the linearization of (60) about the periodic
travelling wave, but the Jordan chain strategy is used instead to illustrate it in an
example, and because it is the most general strategy for more complex problems.

SIAM J. Appl. Math. (in press, 2017)



581
582

583

584

586

594

505

596

20 T.J. BRIDGES & D.J. RATLIFF

7.3. Multisymplectification, linearization and J#. A Legendre transform
can be used to develop the multisympletic formulation of CKG, but it is simple enough
to write down directly. Let

_ (Re(¥) _ _
a_<Im(\Il)>’ b=a;, and c=a,.

Then CKG has the multisymplectic formulation

0 -I, 0] /a 0 0 L] /a a — |jal|?a
L 0 o [b|l+]0o o of[b] = b ,
0 0 O c -I, 0 O c —c

where I is the 2 x 2 identity matrix, or

Mz, +3Z,=VS5(2),
with
0 CgIQ IQ a
K=J-¢M=|-¢I, 0 0|, Z=|[b|eR’,
-1, 0 0 c
and
S(Z) = 5Ibl* = §llcl® + 3llall* — Fllal*.
In these coordinates the basic state is
a
Z(0,w,k)=Gp|b ]|, b=wla, c=kJa,
c

with ||a)? = 1 — w? + k2,

0 ing 0 -1
Go=Ry® Ry ® Ry, Re:[ﬁo CZ’IJZ] and JQ:[l 0]'

The linearized operator L is

(1 — ||é.||2)1 — QééT w.]g —k‘.]g

(67) L= —wJ2 IQ 0 s
k‘Jg 0 _12
and the Jordan chain satisfies L{; = K¢&;_1, j = 1,2,3,4 with {§; = 0. Computing

R Joa
§1=2p=Gp | —wa |,
—ka
and, with v = (k 4+ we,)||al| 72,
ya 0
§2=Gq | —(cg—wy)doa | +RE, & =Gy | —ycea | +RE,
(1+kvy)Jqa ~a
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where R¢; represents the arbitrary amount of homogeneous solution. The first three
terms in the Jordan chain will be sufficient for computing ¢ since

H = (K&, &) = (L2, &) = (€2, Léa)) = (€2, KEs) -

Hence
H = (&, K&) =~*(1 - c))|[a)*.

Now using the restrictions

~ 2 1
cg=——, |a*= 3 and = ~%% when (w, k) € B!,

it follows that 1

= ek

7.4. CKG to Boussinesq reduction. The Boussinesq model for (w,k) € !
is therefore

2 1
(68) 2k qrr + 575 (qax)x — —ogaxxxx =0.

3k3 18k
The importance of the assumption k # 0 in U (64) is evident here. The resulting
Boussinesq equation is the linearly ill-posed version since 7,2 < 0. Unfolding and
scaling leads to the following canonical form

Urr + S1lUge + (%Ug)gg — Ugeee = 07 S1 = +1 5

where s; = —1 (s; = +1) on the stable (unstable) side of the X! curve (66).

To summarize, the CKG equation (60) has a family of exact periodic travelling
waves. Modulation of these travelling waves in the neighbourhood of the X! curves
(66) leads to a reduction to the two-way Boussinesq equation (68). The reduced
equation contains a range of bounded periodic, quasiperiodic and localized solutions,
but it also portends more dramatic behaviour in the original CKG equation in that
it is linearly ill-posed and so general initial data may be dramatically unstable.

8. Coalescing characteristics and multiphase wavetrains. The theory in
this paper is for basic states with one phase. However there are many examples in
the literature where at least two phases are present. Examples are modulation of the
cnoidal wave solutions of the KdV equation (§16.14 of [38]), modulation of Stokes
waves in finite depth coupled to mean flow (§16.6-16.11 in [38]), and modulation of
viscous fluid conduit periodic waves (MAIDEN & HOEFER [26]). In the latter two
examples there is an elliptic-hyperbolic transition. However the theory of this paper
does not apply directly and needs to be generalized to multiphase wavetrains. A
theory for bifurcation of multiphase wavetrains near a zero characteristic has recently
been developed by RATLIFF & BRIDGES [32]. Hence there is some optimism that
the theory of this paper can be generalized to the elliptic-hyperbolic transition in
multiphase wavetrains, but is outside the scope of this paper.

9. Concluding remarks. The modulation equations derived here

(69) qr =Qx and Q1+ kegx + H qxxx =0,
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are asymptotically valid in that the modulation ansatz (42) satisfies the governing
equation (22) exactly with an error of order £5. However, this theory gives no indica-
tion of convergence to all orders in €.

Rigorous validity of the theory presented here is an open question, and outside the
scope of this paper. Rigorous validity is generally done in three steps: show that the
original equation has a well-defined existence theory, show that the reduced equation
has a well-defined existence theory, and then show that the difference between the
exact and approximate solution stays close for a time interval of order e~P, for some
p > 0.

Even considering validity of the CKG reduction to Boussinesq as an example,
rather than reduction from an abstract Lagrangian, there is still a difficulty with the
fact that the reduced equation (69) may not be well posed in general, particularly in
the case where 7, # < 0, which arises in the CKG example. Hence methodology
based on Cauchy-Kowalevskaya in a space of functions which are complex analytic in a
strip would be required. This approach was successfully used by Diill & Schneider [14]
in their proof of the validity of elliptic Whitham modulation equations in a reduction
from the nonlinear Schrédinger equation.
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