
The University of Manchester Research

Multilevel particle filters

DOI:
10.1137/17M1111553

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Jasra, A., Kamatani, K., Law, K. J. H., & Zhou, Y. (2017). Multilevel particle filters. SIAM JOURNAL ON
NUMERICAL ANALYSIS, 55(6), 3068-3096. https://doi.org/10.1137/17M1111553

Published in:
SIAM JOURNAL ON NUMERICAL ANALYSIS

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:26. Apr. 2024

https://doi.org/10.1137/17M1111553
https://research.manchester.ac.uk/en/publications/a9b0159a-1f43-40ea-b16d-d61d241c3f2d
https://doi.org/10.1137/17M1111553


MULTILEVEL PARTICLE FILTERS

AJAY JASRA∗, KENGO KAMATANI† , KODY J. H. LAW‡ , AND YAN ZHOU§

Abstract. In this paper the filtering of partially observed diffusions, with discrete-time observa-
tions, is considered. It is assumed that only biased approximations of the diffusion can be obtained,
for choice of an accuracy parameter indexed by l. A multilevel estimator is proposed, consisting of
a telescopic sum of increment estimators associated to the successive levels. The work associated to
O(ε2) mean-square error between the multilevel estimator and average with respect to the filtering
distribution is shown to scale optimally, for example as O(ε−2) for optimal rates of convergence of
the underlying diffusion approximation. The method is illustrated on some toy examples as well as
estimation of interest rate based on real S&P 500 stock price data.

Key words: Filtering; Diffusions; Particle Filter; Multilevel Monte Carlo

1. Introduction. Problems which involve continuum fields are typically dis-
cretized before they are solved numerically. Finer resolution solutions are more ex-
pensive to compute than coarse resolution ones. Often such discretizations naturally
give rise to resolution hierarchies, for example nested meshes. Successive solution
on refined meshes can be utilized to mitigate the number of necessary solves at the
finest resolution. For solution of linear systems, the coarsened systems are solved as
pre-conditioners within the framework of iterative linear solvers in order to reduce the
condition number, and hence the number of necessary iterations, at the fine resolution.
This is the principle of multi-grid methods [4].

In the context of Monte Carlo methods, a telescoping sum of correlated differences
at successive refinement levels can be utilized so that the bias of the resulting multilevel
estimator is determined by the finest level but the variance is given by the sum of the
variances of the increments. The decay in the variance of the increments of finer levels
means that the number of samples required to reach a given error tolerance is also
reduced for finer levels. This can then be optimized to balance the extra per-sample
cost at the finer levels [19, 14, 15].

This article is focused on the filtering problem. This means there is a pair of pro-
cesses in time, one of which is a hidden Markov chain (in our case a diffusion process),
and this is associated to the other process, which represents discretely observed data.
Exact filtering is seldom possible and one often has to resort to numerical methods,
such as Monte Carlo. It is well known in the literature that simple Monte Carlo strate-
gies involving ratios of likelihood-weighted integrals tend to converge slowly and be
inefficient, see for instance [12]. Perhaps the best known methodology to accurately
approximate the filtering distribution is the particle filter (see e.g. [12]). This method
generates a collection of weighted samples (or particles) in parallel, recursively in time.
The weighted particles are propagated at each time by a sampling step and are then
re-weighted in order to account for the new observation. It is well-known that this
procedure suffers from the so-called weight degeneracy problem, where eventually one
particle will have a weight very close to 1 and all the others will have negligible weight,
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meaning the effective sample size is 1. Incorporating a resampling step mitigates this
problem. The methodology is well understood, and several convergence results exist;
see for instance [7]. In particular, it is well-known that under various conditions,
the error (for instance measured in Lp) will not depend upon the time parameter; see
e.g. [7, 9]. The required conditions are often associated to the ergodicity of the hidden
chain and regularity properties of the weights, such as boundedness.

The natural and yet challenging extension of the multilevel Monte Carlo (MLMC)
framework to inference problems has recently been pioneered by the works [20, 26, 3,
21, 18]. Rigorous results for consistent filtering using the MLMC framework within
particle filtering have yet to be obtained. In this article, the context of a partially
observed diffusion is considered, with observations in discrete time; this will be de-
tailed explicitly in the next section. The works [18, 17] recently proposed to use the
MLMC idea in particle filters by leveraging a deterministic resampling mechanism,
and numerical results indicate that this can lead to the desired improvement in effi-
ciency in some cases. However, there are no rigorous convergence results and the cost
of that resampling step itself can be a problem.

In the context of filtering, one difficulty is the nonlinearity of the update, which
precludes the construction of unbiased estimators, at least with the currently available
methodology. However, this problem was already addressed in [3]. Indeed some
ingenuity is required to successfully actualize the necessary resampling step while
retaining adequate correlations. In this paper a novel coupled resampling procedure
is analyzed, which enables this extension of the MLMC framework to the multilevel
particle filter (MLPF). The work associated to O(ε2) mean-square error between the
multilevel estimator and average with respect to the filtering distribution is shown
to scale optimally, for example as O(ε−2) for optimal rate of convergence of the
underlying diffusion approximation. We remark that our rigorous results depend
upon the time parameter, whereas our numerical examples indicate time-uniform
convergence of the error. To obtain rigorous time-uniform results, one must very
precisely analyze the stability of the coupled resampling operator introduced here.
This challenging task is left for future work to keep the length of this article reasonable.

This new MLPF algorithm is illustrated on some toy diffusion examples, as well
as a stochastic volatility model with real S&P 500 stock price data. The performance
of the new algorithm easily reaches an order of magnitude or greater improvement in
cost, and the theoretical rate is verified so that improvement will continue to amplify
as more accurate estimates are obtained. The method is also broadly applicable
to a wide range of problems in data assimilation [28], for example meteorology and
subsurface geosciences. Furthermore, the method is very amenable to parallelization
strategies, leaving open great potential for its use on next generation super-computers.

2. Set Up. We consider the following partially-observed diffusion process:

dXt = a(Xt)dt+ b(Xt)dWt (2.1)

with Xt ∈ Rd, t ≥ 0, X0 having (possibly) degenerate distribution η0, a : Rd → Rd
(denote the jth−element as aj(Xt)), b : Rd → Rd×d (denote the jth, kth−element
as bj,k(Xt)) and {Wt}t∈[0,T ] a Brownian motion of d−dimensions. The following
assumptions will be made on the diffusion process.

Assumption 2.1. The coefficients aj(x), bj,k(x) are twice continuously differen-
tiable with bounded derivatives (x ∈ Rd), for j, k = 1, . . . , d. Also, a and b satisfy

(i) uniform ellipticity: b(x)b(x)T is uniformly positive definite;
2



(ii) globally Lipschitz: there is a C > 0 such that |aj(x) − aj(y)| + |bj,k(x) −
bj,k(y)| ≤ C|x− y| for all x, y ∈ Rd and j, k ∈ {1, . . . , d};

(iii) boundedness: E|X0|p <∞ for all p ≥ 1.
Notice that (ii) and (iii) together imply that E|Xt|p < ∞ for all t, where (Xt is

the solution of (2.1)).
It will be assumed that the data are regularly spaced (i.e. in discrete time) ob-

servations y1, . . . , yn, where yn ∈ Rm is a realization of Yn and Yn|Xnδ has density
given by G(yn, xnδ). For simplicity of notation let δ = 1 (which can always be done
by rescaling time), so Xn = Xnδ. The joint probability density of the observations
and the unobserved diffusion at the observation times is then

n∏
i=1

G(yi, xi)Q
∞(x(i−1), xi),

where Q∞(x(i−1), x) is the transition density of the diffusion process as a function of
x, i.e. the density of the solution X1 of Eq. (2.1) at time 1 given initial condition
X0 = x(i−1).

The following assumptions will be made on the observations.
Assumption 2.2 (Observation properties). There are some c > 1 and C > 0,

such that G satisfies
(i) boundedness: c−1 < G(y, x) < c for all x ∈ Rd and y ∈ Rm;
(ii) globally Lipschitz: for all y ∈ Rm, |G(y, x)−G(y, x′)| ≤ C|x− x′|.
The objective is to approximate the filtering distribution π∞(xn|y1:n), and the

forecast distribution π∞(xn|y1:n−1), which will be denoted η̂∞n and η∞n , respectively.
With a particle filter one obtains a collection of samples {u∞,in }Ni=1 with associated
weights {ω∞,in }Ni=1, giving rise to an empirical measure

η̂∞,Nn =

N∑
i=1

ω∞,in δu∞,in

which approximates η̂∞n , and similar for η∞n . The particle filter works by interlacing
importance sampling for the Bayesian updates incorporating observations, with a
resampling selection step to rejuvenate the ensemble, and a mutation move which
propagates the ensemble forward through the diffusion (e.g. [12] and the references
therein). It is a well-known fact that if Q∞(x, ·) can be sampled from exactly, then
the particle filter achieves standard convergence rates for Monte Carlo approximation
of expectations of quantities of interest ϕ ∈ Bb(Rd), the set of bounded measurable
functions over Rd [5] :

E|η̂∞,Nn (ϕ)− η̂∞n (ϕ)|2 ≤ C/N, (2.2)

where the shorthand notation µ(ϕ) =
∫
Rd ϕ(u)µ(du) is used for any probability µ

over Rd. Note that C often behaves poorly with respect to d [1, 2], but C may not
depend upon n; see [7]. In the setting considered in this paper:

1. It is (generally) not possible to sample exactly from Q∞(x, ·).
2. The transition density is unavailable up-to a non-negative unbiased estimate.

If either of these are possible, then alternative methods (e.g. [13]) may be more effi-
cient.

It will be assumed that the diffusion process is approximated by a time-stepping
method for time-step hl = 2−l, and the corresponding forecast and filtering distribu-
tions will be denoted by ηln and η̂ln. For simplicity and illustration, Euler’s method
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[27] will be considered. However, the results can easily be extended and the theory
will be presented more generally. In particular,

X l
n,(k+1) = X l

n,k + hla(X l
n,k) +

√
hlb(X

l
n,k)ξn,k, (2.3)

ξn,k
i.i.d.∼ Nd(0, Id)

for k = 0, . . . , 2l, where Nd(0, Id) is the d−dimensional normal distribution with mean
zero and identity covariance (when d = 1 the subscript is omitted). Note that X l

n,m

corresponds to X l
n+m2−l , where X

l
n is the solution to the discretized diffusion at time

n. The numerical scheme gives rise to its own transition density between observation
times Ql(x(n−1), x), which is the density of X l

(n−1),2l = X l
n,0 = X l

n, given initial
condition X l

(n−1),0 = x(n−1). Let ηl1(ϕ) := Eϕ(X l
1) for l = 0, . . . ,∞. Suppose one

aims to approximate the expectation of ϕ ∈ Bb(Rd). For a given L, the Monte Carlo
approximation of η∞1 (ϕ) by

ηL,N1 (ϕ) =
1

N

N∑
i=1

ϕ(XL,i
1 ), XL,i

1 ∼ QL(x0, ·) ,

has mean square error (MSE) given by

E|ηL,N1 (ϕ)− η∞1 (ϕ)|2 = E|ηL,N1 (ϕ)− ηL1 (ϕ)|2︸ ︷︷ ︸
variance

+|ηL1 (ϕ)− η∞1 (ϕ)|︸ ︷︷ ︸
bias

2
. (2.4)

If one aims for O(ε2) MSE with optimal cost, then one must balance these two terms.
For l = 0, 1, . . . , L, the hierarchy of time-steps {hl}Ll=0 gives rise to a hierarchy

of transition densities {Ql}Ll=0. In this context, for a single transition, it is well-
known that the multilevel Monte Carlo (MLMC) method [14, 19] can reduce the cost
to obtain a given level of mean-square error (MSE) (2.4). The description of this
method and its extension to the particle filter setting will be the topic of the next
section.

3. Multilevel Particle Filters. In this section, the multilevel particle filter
will be introduced. First, a review of the standard multilevel Monte-Carlo method is
presented, illustrating the strategy for reducing the necessary cost for a given level of
mean-square error. Next, the extension to the multilevel particle filter is presented.

3.1. Multilevel Monte Carlo. The standard multilevel Monte Carlo (MLMC)
framework [14] begins with asymptotic estimates for weak and strong error rates, and
the associated cost. In particular, assume the following.

Assumption 3.1 (MLMC Rates). There are α, β, γ > 0 such that
(i) |E[ϕ(X l

1)− ϕ(X∞1 )]| = O(hαl );
(ii) For p ≥ 1, E[|ϕ(X l

1)− ϕ(X∞1 )|p]2/p = O(hβl );
(iii) COST(X l

1) = O(h−γl ),
where COST denotes the computational effort to obtain one sample X l

1, and hl is the
grid-size of the numerical method, for example the Euler method as given in (2.3).
In this case α = β = γ = 1. In general α ≥ β/2, as the choice α = β/2 is always
possible, by Jensen’s inequality.

Recall that in order to minimize the effort to obtain a given MSE, one must bal-
ance the terms in (2.4). Based on Assumption 3.1(i) above, a bias error proportional
to ε will require

L(ε) ∝ − log(ε)/(log(2)α). (3.1)
4



The associated cost, in terms of ε, for a given sample is O(ε−γ/α). Furthermore, the
necessary number of samples to obtain a variance proportional to ε2 for this standard
single level estimator is given by N ∝ ε−2 following from (2.2). So the total cost
to obtain a mean-square error tolerance of O(ε2) is: #samples×(cost/sample)=total
cost∝ ε−2−γ/α. To anchor to the particular example of the Euler-Maruyama method,
the total cost is O(ε−3).

Define a kernel M l : [Rd × Rd] × [σ(Rd) × σ(Rd)] → R+, where σ(·) denotes the
sigma algebra of measurable subsets, such that M l

1(x,A) := M l([x, x′], A × Rd) =
Ql(x,A) and M l

2(x′, A) := M l([x, x′],Rd × A) = Ql−1(x′, A). The idea of MLMC is
the following. First approximate the lth increment (ηl1 − ηl−11 )(ϕ) by an empirical
average

Y Nll (ϕ) :=
1

Nl

Nl∑
i=1

ϕ(X l,i
1,1)− ϕ(X l,i

1,2), (3.2)

where [X l,i
1,1, X

l,i
1,2] ∼ M l([x0, x0], ·), given initial datum X0 = x0. The multilevel

estimator is a telescopic sum of such unbiased increment estimators, which yields an
unbiased estimator of ηL1 (ϕ). It can be defined in terms of its empirical measure as

ηL,Multi
1 (ϕ) :=

L∑
l=0

Y Nll (ϕ) , (3.3)

under the convention that ϕ(X0,i
1,2) ≡ 0.

The mean-square error of the multilevel estimator is given by

E
{
ηL,Multi
1 (ϕ)− η∞1 (ϕ)

}2

=

L∑
l=0

E
{
Y Nll (ϕ)− [ηl1(ϕ)− ηl−11 (ϕ)]

}2

︸ ︷︷ ︸
variance

+{ηL1 (ϕ)− η∞1 (ϕ)︸ ︷︷ ︸
bias

}2. (3.4)

The key observation is that the bias is given by the finest level, whilst the variance is
decomposed into a sum of variances of the increments V =

∑L
l=0 VlN

−1
l . Sufficient cor-

relation must be built into the kernelsM l to ensure condition Assumption 3.1(ii)above
carries over to the increments (for example two discretizations of the same random
realization of the SDE (2.1)). Then the variance of the lth increment has the form
VlN

−1
l and Vl = O(hβl ) following from Assumption 3.1 (ii), allowing smaller number of

samples Nl at cost Cl = O(h−γl ) for larger l, following from Assumption 3.1(iii). The
total cost is given by the sum C =

∑L
l=0 ClNl. Based on Assumption 3.1(ii) and As-

sumption 3.1(iii) above, optimizing C for a fixed V yields that Nl = λ−1/22−(β+γ)l/2,
for Lagrange multiplier λ. In the Euler-Maruyama case Nl = λ−1/22−l. Now, one can
see that after fixing the bias to cε, one aims to find the Lagrange multiplier λ such
that V ≈ c2ε2. Defining N0 = λ−1/2, then V = N−10

∑L
l=0 2(γ−β)l/2, so one must have

N0 ∝ ε−2K(ε), where K(ε) =
∑L
l=0

√
VlCl =

∑L
l=0 2(γ−β)l/2, and the ε-dependence

comes from L(ε), as defined in (3.1). There are three cases, with associated K, and
hence cost C, given in Table 3.1.

For example, Euler-Maruyama falls into the case (β = γ), so that C(ε) = O(ε−2 log(ε)2).
In this case, one chooses N0 = Cε−2| log(ε)| = C22LL, where the purpose of C is to
match the variance with the bias2, similar to the single level case.

5



CASE K(ε) C(ε)
β > γ O(1) O(ε−2)
β = γ O(− log(ε)) O(ε−2 log(ε)2)

β < γ O(ε(β−γ)/(2α)) O(ε−2+(β−γ)/α)

Table 3.1: The three cases of multilevel Monte Carlo, and associated constant K(ε)
and cost C(ε).

The kernel M l can be constructed using the following strategy. First the finer
discretization is simulated using (2.3) (ignoring index n) with X l,i

0,1 = x0, for i ∈
{1, . . . , Nl}. Now for the coarse discretization, let X l,i

0,2 = x0 for i ∈ {1, . . . , Nl}, let
hl−1 = 2hl and for k ∈ {1, . . . , 2l−1} simulate

X l,i
k+1,2 = X l,i

k,2 + hl−1a(X l,i
k,2) +

√
hl−1b(X

l,i
k,2)(ξi2k + ξi2k+1), (3.5)

where {ξik}
Nl,2

l

i=1,k=0 are the i
th realizations used in the simulation of the finer discretiza-

tion. This procedure defines a kernel M l as above, such that (X l,i
2l−1,1

, X l,i
2l−1,2

) ∼
M l([x0, x0], · ) are suitably coupled and the standard MLMC theory will go through
with α = β = γ = 1 above.

3.2. Multilevel Particle Filters. The framework of the previous section will
now be extended to the new multilevel particle filter (MLPF). Throughout, the ob-
servations y1:n, n ≥ 1 are omitted from the notations. It will be convenient to define
U ln := X l

n|y1:n−1 for l = 0, . . . ,∞, with U∞n := X∞n |y1:n−1 denoting the limiting
continuous-time process, and denote the associated predictive distributions by ηln. It
will also be useful to define Û ln := X l

n|y1:n, and its distribution η̂ln. Let ϕ ∈ Bb(Rd)
and consider the following decomposition

η̂∞n (ϕ) =

L∑
l=0

(η̂ln − η̂l−1n )(ϕ) + (η̂∞n − η̂Ln )(ϕ) (3.6)

where η−1n (ϕ) := 0.
Let U l,i0,1 = Û l,i0,1 = U l,i0,2 = Û l,i0,2 = Xi

0, where Xi
0 ∼ η0 = η̂0, and iterate the

following. Draw [U l,in,1, U
l,i
n,2] ∼ M l([Û l,in−1,1, Û

l,i
n−1,2], · ) Each summand in the first

term of (3.6) can be estimated with:

Nl∑
i=1

{
wl,in,1ϕ(U l,in,1)− wl,in,2ϕ(U l,in,2)

}
,

where the weights are defined as follows, for j ∈ {1, 2},

wl,in,j =
G(yn, U

l,i
n,j)∑Nl

h=1G(yn, U
l,h
n,j)

. (3.7)

It is clear that for suitably well-behaved G, for example satisfying Assumption 2.2,
such an estimate will satisfy the standard MLMC identity and cost. However, it is well-
known that one must perform resampling in order for a particle filter to perform well
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Algorithm 1 Coupled resampling

1: Independently, for every index k ∈ {1, . . . , Nl} ,
2: with probability αln =

∑Nl
i=1 w

l,i
n,1 ∧ w

l,i
n,2, draw I l,kn,1 according to

P(I l,kn,1 = i) =
1

αln
(wl,in,1 ∧ w

l,i
n,2), i = 1, . . . , Nl ,

and let I l,kn,2 = I l,kn,1.
3: with probability 1 − αln, draw I l,kn,1 independently from I l,kn,2, according to the

probabilities

P(I l,kn,j = i) =
wl,in,j − w

l,i
n,1 ∧ w

l,i
n,2

1− αln
, i = 1, . . . , Nl .

for multiple steps. Here this is a particularly challenging point, as the samples have to
remain suitably coupled after the resampling, so that similar rates hold as above. The
indices I l,kn,j , j ∈ {1, 2}, are sampled according to the coupled resampling procedure
described (see also [6]) in Algorithm 1.

The indices for the fine (resp. coarse) discretization are resampled marginally ac-
cording to wl,in,1 (resp. wl,in,2), which is exactly as required. Note that this is the
coupling which maximizes the probability αln that the indices are the same. There-
fore, pairwise correlations due to the standard coupled evolution step will be preserved
perfectly with the maximum probability. Notice that it is necessary to independently
sample the fine and coarse levels with a small probability in order to preserve the
marginals. However, it will be shown that the resulting samples do remain sufficiently
coupled, although with a slightly lower rate than the vanilla MLMC. As mentioned
in Sections 1 and 6, there are some alternative methods to coupled resampling, for
instance as in [18, 17]. The methods in [18, 17] do resampling using a determinis-
tic transformation linked to optimal transportation (see also [30]). This resampling
transformation itself can be prohibitively expensive, but in examples where this is not
the case it has been numerically shown to preserve the correct rate.

Finally the multilevel particle filter (MLPF) is given in Algorithm 2. To
ease the notation, the case l = 0 should be understood as the ordinary particle filter
which targets η̂0n.

The method is completed by (i) identifying L and {Nl}Ll=0 for use in Algorithm
2, and (ii) constructing the multilevel estimator as in Equation (4.2) below using the
multilevel ensemble output from Algorithm 2. We iterate that for the MLMC identity
to pay off optimally, it suffices to choose L = | log ε|/α log 2, where α is the weak rate
of convergence, and

Nl = ε−2
√
Vl/ClK(ε) ,

where we recall that in general K(ε) =
∑L
l=0

√
VlCl. Typically one can estimate the

cost Cl without simulation, but simulation can be done to verify the cost scaling of a
single simulation at each level or just a pair of levels. If one has a priori estimates for
the rate of convergence of Vl and the bias rate α, then these can be used. Otherwise,
these rates (and the associated constants) can be estimated using a pair (or more)
of levels as well, and one or a few coupled resampling steps. Note that the coupled

7



Algorithm 2 Multilevel particle filter (MLPF)

1: For l = 1, . . . , L and i = 1, . . . , Nl,
2: draw Û l,i0,1 ∼ η0, and let Û l,i0,2 = Û l,i0,1; end.
3: Initialize n = 1.
4: For l = 1, . . . , L and i = 1, . . . , Nl,
5: draw (U l,in,1, U

l,i
n,2) ∼M l((Û l,in−1,1, Û

l,i
n−1,2), · ) independently; end.

6: For l = 1, . . . , L and k = 1, . . . , Nl,
7: draw (I l,kn,1, I

l,k
n,2) according to the coupled resampling procedure above;

8: (Û l,kn,1, Û
l,k
n,2)← (U

l,Il,kn,1
n,1 , U

l,Il,kn,2
n,2 ); end.

9: n← n+ 1.
10: goto line 4.

resampling must be done, as the rate is affected by it. Indeed for Euler’s method as
considered here, and β defined in Assumption 4.2, Vl = 2lβ/2 (rather than 2lβ for the
evolution alone).

Note that if the variance of the weights becomes substantial, one can use the
approach in [22] to deal with this issue.

4. Theoretical Results. The calculations leading to the results in this section
are performed via a Feynman-Kac type representation (see [7, 8]) which is detailed
in the supplementary material. Denote the marginal transition kernels of the Euler
discretization procedure described above at level l asM l

1 (fine) andM l
2 (coarse). Note

that these results do not depend on Euler discretization and hold for any general cou-
pled particle filter. Also note that the results are easily extended to non-autonomous
SDE (2.1) (that is, the drift and diffusion coefficients are functions of time), at the
expense of additional technicalities. We remark that our analysis only applies to the
case where one resamples at each time. However, such analysis can be extended to the
case where one resamples according to the effective sample size (which is used in the
numerical simulations), i.e. at stochastic times, for example using the ideas in [10]. For
simplicity, the deterministic resampling approach is employed, since it simplifies what
are already long and detailed calculations. We expect the results to hold for stochastic
resampling strategies as well, which can result in lower variance estimators and can
therefore be preferable in practice. The predictor at time n, level l, is denoted as ηln,1
(fine) and ηln,2 (coarse). Bb(Rd) are the bounded, measurable and real-valued func-
tions on Rd and Lip(Rd) are the globally Lipschitz real-valued functions on Rd. Denote
the supremum norm as ‖ · ‖, and the total variation norm as ‖ · ‖tv. For two Markov
kernelsM1 andM2 on the same space E, letting A = {ϕ : ‖ϕ‖ ≤ 1, ϕ ∈ Lip(E)} write

|||M1 −M2||| := sup
ϕ∈A

sup
x
|
∫
E

ϕ(y)M1(x, dy)−
∫
E

ϕ(y)M2(x, dy)|.

Let wl,in,j denote the weights defined as in (3.7) with the index n indicated explicitly.
For each j ∈ {1, 2}, p ≥ 1, m ≥ 1 define

Mm,j(up, dup+m) =∫
Rd×m−1

Mj(up, dup+1) · · ·Mj(up+m−1, dup+m).

Finally, the following notation is introduced for the selection densities Gn(·) :=
G(yn+1, ·).
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The following assumption will be made, uniformly over the level l ∈ [0, 1, . . .),
which will be omitted for notational simplicity.

Assumption 4.1 (Mutation). There exists a C > 0 such that for each u, u′ ∈ Rd,
j ∈ {1, 2} and ϕ ∈ Bb(Rd) ∩ Lip(Rd)

|Mj(ϕ)(u)−Mj(ϕ)(u′)| ≤ C‖ϕ‖ |u− u′|.

Additionally, it will be assumed that for all suitable test-functions ϕ ∈ Bb(U) ∩
Lip(U) the following hold.

Assumption 4.2 (MLPF rates). For l ∈ [0, 1, . . .), and p ≥ 1, let (U l1, U
l
2) ∼

M l((U l0,1, U
l
0,2), · ), where |E[ϕ(U l0,1)−ϕ(U l0,2)]| = O(hαl ) and E[|ϕ(U l0,1)−ϕ(U l0,2)|p]2/p =

O(hβl ) for some α ≥ β/2 > 0. Then, there is a γ > 0 such that
(i) max

{
|E[ϕ(U l1)− ϕ(U l2)]|, |||M l

1 −M l
2|||
}

= O(hαl );
(ii) E[|ϕ(U l1)− ϕ(U l2)|p]2/p = O(hβl );
(iii) COST[M l] = O(h−γl ),

where COST[M l] is the cost to simulate one sample from the kernel M l.

4.1. Main Result. Here the MLPF theorem is presented, followed by the main
theorem upon which it is based. The proof and supporting lemmas are provided in
the supplementary materials. Let

ANll,n(ϕ) =

Nl∑
i=1

[wl,in,1ϕ(U l,in,1)− wl,in,2ϕ(U l,in,2)], (4.1)

with the convention that w0,i
n,2 := 0, and define

η̂ML
n (·) :=

L∑
l=0

ANll,n(·) . (4.2)

Theorem 4.1 (MLPF). Let Assumptions 2.2, 4.1, and 4.2 be given and let γ/α ≤
2. Then for any n ≥ 0, ϕ ∈ Bb(Rd)∩Lip(Rd), and ε > 0, there exists a finite constant
C(n, ϕ), an L > 0, and {Nl}Ll=0 such that

E

[(
η̂ML
n (ϕ)− η̂∞n (ϕ)

)2]
≤ C(n, ϕ)ε2,

for the cost C(ε) given in the third column of Table 4.1.

CASE K(ε) C(ε)
β > 2γ O(1) O(ε−2)
β = 2γ O(− log(ε)) O(ε−2 log(ε)2)

β < 2γ O(ε(β−2γ)/(4α)) O(ε−2+(β−2γ)/(2α))

Table 4.1: The three cases of MLPF, and associated constant K(ε) and cost C(ε).

Proof. Notice that

E
[(
η̂ML
n (ϕ)− η̂∞n (ϕ)

)2]
≤ 2E

[(
η̂ML
n (ϕ)− η̂Ln (ϕ)

)2]
+ 2
(
η̂Ln (ϕ)− η̂∞n (ϕ)

)2
.
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First, note that a theoretical kernel ML,∞ can be defined to generate coupled pairs
of particles (UL,∞n,1 , UL,∞n,2 ) for n ≥ 1 with marginals UL,∞n,1 ∼ η̂∞n and UL,∞n,2 ∼ η̂Ln
satisfying the Assumptions 4.2. Assumption 2.2(i) then ensures the rate carries over
to the update and finally induction shows the second term is O(h2αl ). The rest of
the proof follows from Theorems 4.2 and D.1, and Corollary D.1, noting that the
terms in Corollary D.1 are analogous to the Vl terms from the standard multilevel
theory described in the previous section. Therefore, upon choosing L ∝ − log(ε), and
Nl ∝ N02−(β+2γ)l/4 with N0 ∝ ε−2K(ε) and K(ε) as in the second column of Table
4.1, the results follow exactly as for MLMC above. Recall K(ε) =

∑L
l=0

√
VlCl,

which in this case is
∑L
l=0 2(2γ−β)l/4. �

This Theorem can be immediately applied to the particular example of the diffu-
sion (2.1), with appropriate discretization method. This is made explicit and precise
in the following Corollary.

Corollary 4.1. Theorem 4.1 holds for the diffusion example (2.1) under As-
sumptions 2.1, given a numerical method which satisfies Assumptions 4.2. Further-
more Assumptions 4.2 hold for Euler-Maruyama method, with α = β = γ = 1. For a
constant diffusion b(x) = b, one has β = 2.

Proof. Assumptions 2.1 on (2.1) guarantee the required Assumptions 4.1 on
the kernels ML,∞ [29]. For Euler-Maruyama method the kernels M l also satisfy
Assumptions 4.1 and 4.2 [16, 11], and the rates can be found in [16, 27]. The improved
rate β = 2 for b(x) = b is well-known, as the Euler method coincides with the Milstein
method in the case of constant diffusion [16]. �

The main theorem which provides the appropriate convergence rate for the MLPF
Theorem 4.1 is now presented.

Theorem 4.2. Assume 4.1 for each level for the mutation kernel(s) and 2.2 for
the updates. Then for any n ≥ 0, 1 ≤ L < +∞, ϕ ∈ Bb(Rd) ∩ Lip(Rd), there exists a
constant C(n, ϕ) = max0≤l≤L Cl(n, ϕ) such that

E

[(
η̂ML
n − η̂Ln (ϕ)

)2]
≤

C(n, ϕ)

L∑
l=0

1

Nl

(
Bl(n) +

L∑
q 6=l=0

√
Bl(n)Bq(n)

Nq

)
,

Bl(n) =
( n∑
p=0

E[{|U l,1p,1 − U
l,1
p,2| ∧ 1}2]1/2 + ‖ηlp,1 − ηlp,2‖tv

+

n∑
p=1

|||M l
p,1 −M l

p,2|||
)2
. (4.3)

Subscripts are added to indicate level-dependence, and the constants have been absorbed
into the single one.

Proof. Let ÃNll,n(·) =
(
ANll,n − (η̂ln − η̂l−1n )

)
(·), where ANll,n is defined in Equation

(4.1), with η̂−1n := 0. Noting the independence between increments, the telescoping
10



sum provides

E

[( L∑
l=0

ÃNll,n(ϕ)
)2]

=

L∑
l=0

(
E
[(
ÃNll,n(ϕ)

)2]
+

L∑
q 6=l=0

E
(
ÃNll,n(ϕ)

)
E
(
ÃNqq,n(ϕ)

))
.

The bound therefore follows trivially from applying Theorems C.1 and Lemma C.2
from the Supplementary materials to each level. �

Remark 4.1. Observe that the bound of the first term in Bl(n) of (4.3) is limited
by the coupled resampling, and is asymptotically proportional to hβ/2l , as proven in
Theorem D.1. This is the reason for the reduced rate.

5. Numerical Examples.

5.1. Model Settings. The numerical performance of the MLPF algorithm will
be illustrated here, with a few examples of the diffusion processes considered in this
paper. Recall that the diffusions take the following form

dXt = a(Xt)dt+ b(Xt)dWt, X0 = x0

with Xt ∈ Rd, t ≥ 0 and {Wt}t∈[0,T ] a Brownian motion of appropriate dimension.
In addition, partial observations {y1, . . . , yn} are available with Yn obtained at time
nδ, and Yn|Xnδ has a density function G(yn, xnδ). The objective is the estimation
of E[ϕ(Xnδ)|y1:n] for some test function ϕ(x). Details of each example are described
below. A summary of settings can be found in Table 5.1. Note that none of
our examples satisfy Assumption 2.2 (i). However, that assumption is made only
for technical convenience, in the sense that it significantly simplifies the calculations
made for our main mathematical results, which are already quite lengthy. We believe
that this assumption can be weakened to remove the lower bound on the likelihood,
with an increase in the technical details in our proofs. The numerical results serve as
a non-rigorous argument for this.

Ornstein-Uhlenbeck Process. First, consider the following OU process,

dXt = θ(µ−Xt)dt+ σdWt,

Yn|Xnδ ∼ N (Xnδ, τ
2), ϕ(x) = x.

An analytical solution exists for this process and the exact value of E[Xnδ|y1:n] can be
computed using a Kalman filter. The constants in the example are, x0 = 0, δ = 0.5,
θ = 1, µ = 0, σ = 0.5, and τ2 = 0.2.

Geometric Brownian Motion. Next consider the GBM process,

dXt = µXtdt+ σXtdWt,

Yn|Xnδ ∼ N (logXnδ, τ
2), ϕ(x) = x,

This process also admits an analytical solution, by using the transformation Zt =
logXt. The constants are, x0 = 1, δ = 0.001, µ = 0.02, σ = 0.2 and τ2 = 0.01.

11



Example a(x) b(x) G(y;x) ϕ(x)

OU θ(µ− x) σ N (x, τ2) x
GBM µx σx N (log x, τ2) x
Langevin 1

2∇ log π(x) σ N (0, τ2ex) τ2ex

NLM θ(µ− x) σ√
1+x2

L(x, s) x

Table 5.1: Model settings

Langevin Stochastic Differential Equation. Here the SDE is given by

dXt =
1

2
∇ log π(Xt)dt+ σdWt,

Yn|Xnδ ∼ N (0, τ2eXnδ), ϕ(x) = τ2ex

where π(x) denotes a probability density function. The density π(x) is chosen as the
Student’s t-distribution with degrees of freedom ν = 10. The other constants are,
x0 = 0, δ = 1, σ = 1 and τ2 = 1. Real daily S&P 500 log return data (from August
3, 2011 to July 24, 2015, normalized to unity variance) is used.

An SDE with a Non-Linear Diffusion Term. Last, the following SDE is consid-
ered,

dXt = θ(µ−Xt)dt+
σ√

1 +X2
t

dWt,

Yn|Xnδ ∼ L(Xnδ, s), ϕ(x) = x,

where L(m, s) denotes the Laplace distribution with location m and scale s. The
constants are x0 = 0, δ = 0.5, θ = 1, µ = 0, σ = 1 and s =

√
0.1. This example is

abbreviated NLM in the remainder of this section.

5.2. Simulation Settings. For each example, multilevel estimators are consid-
ered at levels L = 1, . . . , 8. For the OU and GBM processes, the ground truth is
computed through a Kalman filter. For the two other examples, results from particle
filters at level L = 9 are used as approximations to the ground truth.

For each level of MLPF algorithm, Nl = bN0,Lh
(β+2γ)/4
l c particles are used, where

hl = M−1l = 2−l is the width of the Euler-Maruyama discretization; γ is the rate of
computational cost, which is 1 for the examples considered here; and β is the rate
of the strong error. The value of β is 2 if the diffusion term b(x) is constant and 1
in general. The value N0,L ∝ ε−2K(ε) is set according to Table 4.1. For the cases
in which the diffusion term is constant, we let N0,L = 22LL, while for the other
cases N0,L = 2(9/4)L. Resampling is done adaptively. For the plain particle filters,
resampling is done when ESS (effective sample size) is less than a quarter of the
particle numbers. For the coupled filters, we use the ESS of the coarse filter as the
measurement of discrepancy. Each simulation is repeated 100 times. Note that the
analysis does not cover such stochastic resampling strategy, so this also serves as a
numerical argument for extendability of the theory.

5.3. Results. First consider the rate β/2 of the strong error. This rate can be es-
timated either by the sample variance of ϕ̂l(Xnδ) =

∑Nl
i=1{w

l,i
1 ϕ(U l,in,1)−wl,i2 ϕ(U l,in,2)},

or by 1−pl(n), where pl(n) is the probability of the coupled particles having the same
12
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Fig. 5.1: Rate estimates using the variance.

Example PF MLPF

OU −1.48 −1.04
GBM −1.48 −1.19
Langevin −1.46 −1.14
NLM −1.49 −1.24

Table 5.2: Cost rate log C ∼ logMSE.

resampling index at time step n. Both var[ϕ̂l(Xnδ)] and pl(n) can be estimated using
the samples from MLPF simulations. Figures 5.1 and 5.2 show the estimated variance
and value of 1−pl(n) against hl, respectively, scaled according to the minimum value
for GBM, for comparison. The estimated rates for the OU and Langevin examples are
about 1. For the other two examples, where the diffusion term b(x) is non-constant,
the estimated rates are about 0.5. This is consistent with Corollary 4.1.

Next the rate of cost vs. MSE is examined. This is shown in Figure 5.3 and
Table 5.2 for the estimator of E[ϕ(Xnδ)|y1:n]. This agrees with the theory, which
predicts a rate of −1.5 for the particle filter and a rate of −1.25 for the non-constant
diffusion cases, and a logarithmic penalty on −1 for the others.

6. Conclusions. In this article a multilevel version of the particle filter has been
introduced. The improvements that may be brought about by this approach were il-
lustrated both theoretically and numerically. There are several natural extensions to
this work. First, and perhaps most importantly, is to theoretically understand the
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Fig. 5.2: Rate estimates using the probability of coupling.
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Fig. 5.3: Cost rates as a function of MSE.
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advantage of the particular coupled resampling mechanism adopted in this article, in
comparison to other types of coupled resampling, e.g. via the variance in the CLT.
It is remarked that other resampling strategies were tried on these examples, and
they did not preserve a desired rate of strong convergence. However empirical results
recently appeared in [18] which indicate that more favorable convergence rates may
be preserved in certain cases by replacing the resampling step with a deterministic
transformation. No proofs are found in this latter article, which has appeared around
the same time as the first version of this paper [23]. Second, it would be of interest
to explore techniques for improving the preservation of coupling such that the same
MLMC rate β carries through to the MLPF, rather than β/2, e.g. via coupling the
independent pairs of particle filters in some way, or perhaps through a different re-
sampling strategy involving antithetic variables [15]. Strategies in [30], subsequent to
the first version of this article [23], may achieve this, but at this time there is no proof
of this. Finally, one can use the approach in e.g. [22] to improve the stability of the
particle filtering algorithm.
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Appendix A. Set Up.

A.1. Basic Notations. Consider a sequence of random variables (vn)n≥0 with
vn = (un,1, un,2) ∈ U × U =: V. For µ ∈ P(V) (the probability measures on V) and
function ϕ ∈ Bb(U) (bounded-measurable, real-valued) we will write:

µ(ϕj) =

∫
V
ϕ(uj)µ(dv) j ∈ {1, 2}, v = (u1, u2).

Write the j ∈ {1, 2} marginals (on uj) of a probability µ ∈ P(V) as µj . Define the
potentials: Gn : U → R+. Let η0 ∈ P(V) and define Markov kernels Mn : V → P(V)
and Mn,j : U → P(U) with n ≥ 1 and j ∈ {1, 2}. It is explictly assumed that for
ϕ ∈ Bb(U) the j marginals satisfy:

Mn(ϕj)(v) =

∫
V
ϕ(u′j)Mn(v, dv′) =

∫
U
ϕ(u′j)Mn,j(uj , du

′
j). (A.1)

We adopt the definition for (v, ṽ) = ((u1, u2), (ũ1, ũ2)) of a sequence of Markov kernels
(M̄n)n≥1, M̄n : V × V → P(V)

M̄n((v, ṽ), dv′) := Mn((u1, ũ2), dv′).

In the main text U = Rd, and in the references that follow U should replace Rd in
Assumptions 2.2 and 4.1.

A.2. Marginal Feynman-Kac Formula. Given the above notations and defin-
tions we define the j−marginal Feynman-Kac formulae:

γn,j(dun) =

∫ n−1∏
p=0

Gp(up)η0,j(du0)

n∏
p=1

Mp,j(up−1, dup)
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with for ϕ ∈ Bb(U)

ηn,j(ϕ) =
γn,j(ϕ)

γn,j(1)
.

One can also define the sequence of Bayes operators, for µ ∈ P(U)

Φn,j(µ)(du) =
µ(Gn−1Mn,j(·, du))

µ(Gn−1)
n ≥ 1.

Recall that for n ≥ 1, ηn,j = Φn,j(ηn−1,j).

A.3. Feynman-Kac Formulae for Multi-Level Particle Filters. For µ ∈
P(V) define for u ∈ U , v ∈ V:

Gn,j,µ(u) =
Gn(u)

µj(Gn)

Ḡn,µ(v) = Gn,1,µ(u1) ∧Gn,2,µ(u2).

Now for any sequence (µn)n≥0, µn ∈ P(V), define the sequence of operators
(Φ̄n(µn−1))n≥1:

Φ̄n(µn−1)(dvn) =

µn−1(Ḡn−1,µn−1
)
µn−1(Ḡn−1,µn−1Mn(·, dvn))

µn−1(Ḡn−1,µn−1
)

+ (1− µn−1(Ḡn−1,µn−1
))×

µn−1 ⊗ µn−1
([ Gn−1,1,µn−1

− Ḡn−1,µn−1

µn−1(Gn−1,1,µn−1
− Ḡn−1,µn−1

)
⊗

Gn−1,2,µn−1
− Ḡn−1,µn−1

µn−1(Gn−1,2,µn−1
− Ḡn−1,µn−1

)

]
×

M̄n(·, dvn)
)

Now define η̄n := Φ̄n(η̄n−1) for n ≥ 1, η̄0 = η0.
Proposition A.1. Let (µn)n≥0 be a sequence of probability measures on V with

µ0 = η0 and for each j ∈ {1, 2}, ϕ ∈ Bb(U)

µn(ϕj) = ηn,j(ϕ).

Then:

ηn,j(ϕ) = Φ̄n(µn−1)(ϕj).

In particular η̄n,j = ηn,j for each n ≥ 0.
Proof. By assumption Mn(ϕj) = Mn,j(ϕ), so we have

Φ̄n(µn−1)(ϕj) = µn−1(Ḡn−1,µn−1Mn,j(ϕ)) + µn−1

([
Gn−1,j,µn−1 − Ḡn−1,µn−1

]
Mn,j(ϕ)

)
= µn−1(Gn−1,j,µn−1Mn,j(ϕ))

= ηn−1,j(Gn−1,j,µn−1Mn,j(ϕ))

= Φn,j(ηn−1,j)(ϕ)

= ηn,j(ϕ).
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Remark A.1. It is established that for any µ ∈ P(V)

Φ̄n(µ)(ϕj) = Φn,j(µj)(ϕ). (A.2)

This property is very useful in subsequent calculations.
The point of the proposition is that if one has a system that samples η̄0, Φ̄1(η̄0)

and so on, that marginally, one has exactly the marginals ηn,j at each time point. In
practice one cannot do this, but rather runs the following system:

( N∏
i=1

η̄0(dvi0)
)( n∏

p=1

N∏
i=1

Φ̄p(η̄
N
p−1)(dvip)

)
which is exactly one pair of particle filters at a given level of the MLPF.

Appendix B. Normalizing Constant.
First note that one can use the following

n−1∏
p=0

η̄Np,j(Gp)

to estimate γn,j(1). It is now proven that this estimate is unbiased. More work on
the MLPF for normalizing constant estimation can be found in [24].

In particular, it will be shown that

(

n−1∏
p=0

η̄Np,j(Gp))η̄
N
n,j(ϕ)

is an unbiased estimator of γn,j(ϕ), and the above follows immediately. The proof is
by induction and the result at step 0 is clearly true. Now suppose it is true at step
n− 1 and consider the estimator above:

E
[( n−1∏

p=0

η̄Np,j(Gp)
)
η̄Nn,j(ϕ)

∣∣∣FN
n−1

]
=
( n−1∏
p=0

η̄Np,j(Gp)
)
E
[
η̄Nn,j(ϕ)

∣∣∣FN
n−1

]
where FN

n−1 is the filtration generated by the particle system up-to time n− 1. Now,
by the exchangeability of the particle system and (A.2) :

E
[
η̄Nn,j(ϕ)

∣∣∣FN
n−1

]
= Φ̄n(η̄Nn−1)(ϕj) = Φn,j(η̄

N
n−1,j)(ϕ).

So

E
[
(

n−1∏
p=0

η̄Np,j(Gp))η̄
N
n,j(ϕ)

]
= E

[
(

n−2∏
p=0

η̄Np,j(Gp))η̄
N
n−1,j(Gn−1Mn,j(ϕ))

]
.

The induction hypothesis and standard results complete the proof.

Appendix C. L2−Error.
The squared L2−Error (MSE) is considered here.
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C.1. Results for the Filter. Let

B(n) =
( n∑
p=0

E[{|u1p,1 − u1p,2| ∧ 1}2]1/2 + ‖ηp,1 − ηp,2‖tv +

n∑
p=1

|||Mp,1 −Mp,2|||
)2
.

(C.1)

Theorem C.1. Assume 2.2 and 4.1. Then for any n ≥ 0, ϕ ∈ Bb(U) ∩ Lip(U)
there exist a C(n, ϕ) < +∞ such that

E

[(
η̄Nn (Gn,1ϕ1)

η̄Nn (Gn,1)
− η̄Nn (Gn,2ϕ2)

η̄Nn (Gn,2)
− η̄n(Gn,1ϕ1)

η̄n(Gn,1)
+
η̄n(Gn,2ϕ2)

η̄n(Gn,2)

)2]
≤ C(n, ϕ)

N
B(n).

Proof. Follows directly from Lemma C.3 and similar calculations to the proof of

Theorem C.2 for the term E
[(

[Φ̄n(η̄Nn−1)− η̄n](ϕ1 − ϕ2)
)2]

.
Lemma C.1. Assume 2.2 and 4.1. Then for any n ≥ 1, ϕ ∈ Bb(U) there exist a

C(n, ϕ) < +∞ such that∣∣∣∣E[ η̄Nn (Gn,1ϕ1)

η̄Nn (Gn,1)
− η̄n(Gn,1ϕ1)

η̄n(Gn,1)

]∣∣∣∣+

∣∣∣∣E[ η̄Nn (Gn,2ϕ2)

η̄Nn (Gn,2)
− η̄n(Gn,2ϕ2)

η̄n(Gn,2)

]∣∣∣∣ ≤ C(n, ϕ)

N
.

Proof. The proof follows by using the bias result of Proposition 9.5.6 of [8] (which
holds in our context, see also Proposition C.1).

Lemma C.2. Assume 2.2 and 4.1. Then for any n ≥ 1, ϕ ∈ Bb(U) there exist a
C(n, ϕ) < +∞ such that∣∣∣∣E[ η̄Nn (Gn,1ϕ1)

η̄Nn (Gn,1)
− η̄Nn (Gn,2ϕ2)

η̄Nn (Gn,2)
− η̄n(Gn,1ϕ1)

η̄n(Gn,1)
+
η̄n(Gn,2ϕ2)

η̄n(Gn,2)

]∣∣∣∣ ≤ C(n, ϕ)

√
B(n)

N
.

Proof. For p ≤ n and for j = 1, 2, let

Qp,n,j(ϕ)(vp) =

∫
Gn(un,j)ϕ(un,j)

∏
p≤q<n

Gq(uq,j)Mq,j(uq,j , duq+1,j) (vp = (up,1, up,2)).

Observe that

ηp(Qp,n,1(ϕ))− ηp(Qp,n,2(ϕ)) = O

‖ηp,1 − ηp,2‖tv +
∑

p≤q<n

|||Mp,1 −Mp,2|||


= O(

√
B(n)). (C.2)

We prove the following by induction on p ≤ n:∣∣E[(η̄Np − η̄p)(Qp,n,1(ϕ)−Qp,n,2(ϕ))]
∣∣ ≤ C(n, ϕ)

√
B(n)

N
. (C.3)

The expectation is 0 for p = 0 by definition. Note that

E[(η̄Np+1 − η̄p+1)(Qp+1,n,1(ϕ)−Qp+1,n,2(ϕ))] = E[(Φ̄p+1(η̄Np )− η̄p+1)(Qp+1,n,1(ϕ)−
Qp+1,n,2(ϕ))]

= E
[
η̄Np (Qp,n,1(ϕ))

η̄Np (Gp,1)
−
η̄Np (Qp,n,2(ϕ))

η̄Np (Gp,2)

− η̄p(Qp,n,1(ϕ))

η̄p(Gp,1)
+
η̄p(Qp,n,2(ϕ))

η̄p(Gp,2)

]
.
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Thus by taking p = n, the proof is complete if we can show (C.3). To prove (C.3),
the departure point is Lemma C.3, letting a = η̄Np (Qp,n,1(ϕ)), A = η̄Np (Gp,1), b =

η̄Np (Qp,n,2(ϕ)), B = η̄Np (Gp,2), c = η̄p(Qp,n,1(ϕ)), C = η̄p(Gp,1), d = η̄p(Qp,n,2(ϕ)),
and D = η̄p(Gp,2). Note the following estimates hold, by Theorem 3.1 of [11]

E[|a− c|2]1/2, E[|b− d|2]1/2, E[|A− C|2]1/2, E[|B −D|2]1/2 = O(N−1/2), (C.4)

as well as the following, by Lemma C.1

E[a]− c, E[b]− d, E[A]− C, E[B]−D = O(N−1). (C.5)

Also, by (C.2),

c− d, C −D = O
(√

B(n)
)
. (C.6)

Hence, by Equations (C.6) and (C.5) (noting that c, C, d,D are not random), the last
4 terms of Lemma C.3 are bounded by C(n,ϕ)

N

√
B(n).

Now, note that the first two terms of Lemma C.3 can be further decomposed into

E
[
a− b− (c− d)

A
− b[A−B − (C −D)]

AB

]
=

E[a− b− (c− d)]

C
− dE[A−B − (C −D)]

CD

− E
[

(A− C)[a− b− (c− d)]

AC

]
− E

[
[A−B − (C −D)]×

(C −A)Db+ (D −B)Ab+ (b− d)AB

ABCD

]
.

The last two expectations above were O(1/N) by applying Cauchy-Schwartz inequal-
ity and using (C.4). Now, the first two terms above will be dealt with using the
inductive hypothesis. Hence the proof is complete.

C.2. Results for the Predictor. Theorem C.2. Assume 2.2 and 4.1. Then
for any n ≥ 0, ϕ ∈ Bb(U) ∩ Lip(U) there exist a C(n, ϕ) < +∞ such that

E
[(

[η̄Nn − η̄n](ϕ1 − ϕ2)
)2]
≤ C(n, ϕ)

N
B(n).

Proof. The proof is by induction and clearly holds at step 0 by the Marcinkiewicz-
Zygmund inequality (see e.g. [5]) so we proceed to the induction step. Throughout C
is a constant whose value may change from line-to-line. Any important dependencies
are given a function notation.

E
[(

[η̄Nn − η̄n](ϕ1 − ϕ2)
)2]
≤

2E
[(

[η̄Nn − Φ̄n(η̄Nn−1)](ϕ1 − ϕ2)
)2]

+ 2E
[(

[Φ̄n(η̄Nn−1)− η̄n](ϕ1 − ϕ2)
)2]

. (C.7)

Consider the two terms on the R.H.S. of (C.7) separately.
19



Term: E
[(

[η̄Nn − Φ̄n(η̄Nn−1)](ϕ1 − ϕ2)
)2]

.

Begin by conditioning on FN
n−1 and then apply the Marcinkiewicz-Zygmund in-

equality to yield that

E
[(

[η̄Nn − Φ̄n(η̄Nn−1)](ϕ1 − ϕ2)
)2]
≤

C

N

(
E[|ϕ(u1n,1)− ϕ(u1n,2)|2] + E[|Φ̄n(η̄Nn−1)(ϕ1 − ϕ2)|2]

)
≤

C

N

(
E[{|u1n,1 − u1n,2| ∧ 1}2] + E[|Φ̄n(η̄Nn−1)(ϕ1 − ϕ2)|2]

)
(C.8)

where the final line follows since ϕ ∈ Bb(U) ∩ Lip(U).
Now by (A.2)

Φ̄n(η̄Nn−1)(ϕ1 − ϕ2) =
ηNn−1,1(Gn−1Mn,1(ϕ))− ηNn−1,2(Gn−1Mn,2(ϕ))

ηNn−1,1(Gn−1)
+

ηNn−1,2(Gn−1Mn,2(ϕ))

ηNn−1,1(Gn−1)ηNn−1,2(Gn−1)
[ηNn−1,2(Gn−1)− ηNn−1,1(Gn−1)](C.9)

Consider the first term on the R.H.S. of (C.9).

ηNn−1,1(Gn−1Mn,1(ϕ))− ηNn−1,2(Gn−1Mn,2(ϕ))

ηNn−1,1(Gn−1)
= ηNn−1,1(Gn−1)−1[ηNn−1,1(Gn−1Mn,1(ϕ))

−ηNn−1,1(Gn−1Mn,2(ϕ)) + ηNn−1,1(Gn−1Mn,2(ϕ))− ηNn−1,2(Gn−1Mn,2(ϕ))] (C.10)

Now we deal with ηNn−1,1(Gn−1Mn,2(ϕ)) − ηNn−1,2(Gn−1Mn,2(ϕ)) on the R.H.S. of
(C.10).

ηNn−1,1(Gn−1Mn,2(ϕ))− ηNn−1,2(Gn−1Mn,2(ϕ)) =

1

N

N∑
i=1

{
[Gn−1(uin−1,1)−Gn−1(uin−1,2)]Mn,2(ϕ)(uin−1,1)+

Gn−1(uin−1,2)[Mn,2(ϕ)(uin−1,1)−Mn,2(ϕ)(uin−1,2)]
}
.

Then applying Assumptions 2.2 and 4.1 it follows that

|ηNn−1,1(Gn−1Mn,2(ϕ))− ηNn−1,2(Gn−1Mn,2(ϕ))| ≤ C(ϕ)
1

N

N∑
i=1

{|uin−1,1 − uin−1,2| ∧ 1}

(C.11)
Returning to (C.10) it follows that

|ηNn−1,1(Gn−1Mn,1(ϕ))− ηNn−1,1(Gn−1Mn,2(ϕ))| ≤ C(ϕ)|||Mn,1 −Mn,2|||.
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Thus using Assumptions 2.2 and 4.1 and noting (C.11)

ηNn−1,1(Gn−1Mn,1(ϕ))− ηNn−1,2(Gn−1Mn,2(ϕ))

ηNn−1,1(Gn−1)
≤

C(ϕ)
( 1

N

N∑
i=1

{|uin−1,1 − uin−1,2| ∧ 1}+ |||Mn,1 −Mn,2|||
)
. (C.12)

Returning to (C.9) and the second term on the R.H.S. it follows by the Lipschitz
property of Gn−1 and the upper-bound on ϕ and lower bound on Gn−1 that

ηNn−1,2(Gn−1Mn,2(ϕ))

ηNn−1,1(Gn−1)ηNn−1,2(Gn−1)
[ηNn−1,2(Gn−1)− ηNn−1,1(Gn−1)] ≤

C(ϕ)
1

N

N∑
i=1

{|uin−1,1 − uin−1,2| ∧ 1} (C.13)

Recalling (C.9) and noting (C.12)-(C.13)

Φ̄n(η̄Nn−1)(ϕ1 − ϕ2) ≤ C(ϕ)
( 1

N

N∑
i=1

{|uin−1,1 − uin−1,2| ∧ 1}+ |||Mn,1 −Mn,2|||
)
.

Thus, on returning to (C.8) it follows that

E
[(

[η̄Nn − Φ̄n(η̄Nn−1)](ϕ1 − ϕ2)
)2]
≤

C(ϕ)

N

(
E[{|uin−1,1−uin−1,2|∧1}2]+E

[( 1

N

N∑
i=1

{|uin−1,1−uin−1,2|∧1}+|||Mn,1−Mn,2|||
)2])

≤

C(ϕ)

N

(
E[{|uin−1,1 − uin−1,2| ∧ 1}2] + E[{|uin−1,1 − uin−1,2| ∧ 1}2] + |||Mn,1 −Mn,2|||2

)
.

(C.14)
The final equation follows from Jensen’s inequality.

Term: E
[(

[Φ̄n(η̄Nn−1)− η̄n](ϕ1 − ϕ2)
)2]

.

Application of Lemma C.3 to [Φ̄n(η̄Nn−1)− η̄n](ϕ1−ϕ2) allows one to treat the six
terms independently, by the C2−inequality. Denote the upper-bound in the induction
hypothesis at time n−1 as Bn−1(N) (omitting dependence on the function), to avoid
complex notations.
Term 1: First

E
[( 1

ηNn−1,1(Gn−1)

(
ηNn−1,1(Gn−1Mn,1(ϕ))− ηNn−1,2(Gn−1Mn,2(ϕ))−

ηn−1,1(Gn−1Mn,1(ϕ)) + ηn−1,2(Gn−1Mn,2(ϕ))
))2]

≤
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CE[(ηNn−1,1(Gn−1Mn,1(ϕ)−Gn−1Mn,2(ϕ))−ηn−1,1(Gn−1Mn,1(ϕ)−Gn−1Mn,2(ϕ)))2]+

E
[(

[η̄Nn−1 − η̄n−1]([Gn−1Mn,2(ϕ))]1 − [Gn−1Mn,2(ϕ))]2)
)2]

.

Application of Proposition C.1 and the induction hypothesis yields the upper bound:

C(n)|||Mn,1 −Mn,2|||
N

+Bn−1(N).

Term 2:

E
[( ηNn−1,2(Gn−1Mn,2(ϕ))

ηNn−1,1(Gn−1)ηNn−1,2(Gn−1)

(
ηNn−1,1(Gn−1)− ηn−1,1(Gn−1)−

ηNn−1,2(Gn−1) + ηn−1,2(Gn−1)
))

≤ CBn−1(N).

Term 3: By Proposition C.1

E
[( 1

ηNn−1,1(Gn−1)ηn−1,1(Gn−1)

(
ηn−1,1 − ηNn−1,1

)
(Gn−1)

(
ηn−1,1(Gn−1Mn,1(ϕ))−

ηn−1,2(Gn−1Mn,2(ϕ))
))2]

≤

C(n)

N
(|||Mn,1−Mn,1|||2 + ‖ηn−1,1− ηn−1,2‖2tv + |||Mn,1−Mn,1|||‖ηn−1,1− ηn−1,2‖tv).

Term 4: By Proposition C.1

E
[( 1

ηNn−1,1(Gn−1)ηNn−1,2(Gn−1)

(
ηNn−1,2(Gn−1Mn,2(ϕ))− ηn−1,2(Gn−1Mn,2(ϕ))

)
(
ηn−1,1(Gn−1)− ηn−1,2(Gn−1)

))2]
≤ C(n)

N
‖ηn−1,1 − ηn−1,2‖2tv.

Term 5: By Proposition C.1

E
[( ηn−1,2(Gn−1Mn,2(ϕ))

ηn−1,1(Gn−1)ηNn−1,2(Gn−1)ηn−1,2(Gn−1)

(
ηNn−1,2(Gn−1)− ηn−1,2(Gn−1)

)
(
ηn−1,1(Gn−1)− ηn−1,2(Gn−1)

))2]
≤ C(n)

N
‖ηn−1,1 − ηn−1,2‖2tv.

Term 6: By Proposition C.1

E
[( ηn−1,2(Gn−1Mn,2(ϕ))

ηNn−1,1(Gn−1)ηn−1,1(Gn−1)ηNn−1,2(Gn−1)

(
ηNn−1,1(Gn−1)− ηn−1,1(Gn−1)

)
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(
ηn−1,1(Gn−1)− ηn−1,2(Gn−1)

))2]
≤ C(n)

N
‖ηn−1,1 − ηn−1,2‖2tv.

Putting together the bounds on the terms 1-6 along with the bound on E
[(

[η̄Nn −

Φ̄n(η̄Nn−1)](ϕ1 − ϕ2)
)2]

completes the proof.

Lemma C.3. Let a, b, c, d, A,B,C,D ∈ R with A,B,C,D non-zero then:

a

A
− b

B
−
(
c

C
− d

D

)
=

[a− b− (c− d)]

A
− b[A−B − (C −D)]

AB
+

1

AC
[C −A][c− d]

− 1

AB
(b− d)(C −D) +

d

CBD
(B −D)(C −D) +

d

ACB
(A− C)(C −D).

Proposition C.1. Assume 2.2 and 4.1. Then for any n ≥ 0, p ≥ 1 there exists
a C(n, p) < +∞ such that for any ϕ ∈ Bb(U), j ∈ {1, 2},

E[|[ηNn,j − ηn,j ](ϕ)|p]1/p ≤ C(n, p)‖ϕ‖√
N

.

Proof. The proof is by induction and clearly holds at rank 0 by the Marcinkiewicz-
Zygmund inequality so we proceed to the induction step. Throughout C is a constant
whose value may change from line-to-line. Any important dependencies are given a
function notation.

The triangle inequality provides

E[|[ηNn,j−ηn,j ](ϕ)|p]1/p ≤ E[|ηNn,j(ϕ)−Φ̄n(η̄Nn−1)(ϕj)|p]1/p+E[|Φ̄n(η̄Nn−1)(ϕj)−ηn,j(ϕ)|p]1/p.

For the first term on the R.H.S. one can condition on FN
n−1 and then apply the

Marcinkiewicz-Zygmund inequality to yield that

E[|ηNn,j(ϕ)− Φ̄n(η̄Nn−1)(ϕj)|p]1/p ≤
C(n, p)‖ϕ‖√

N
.

For the second term on the R.H.S. one has the decomposition (see (A.2))

Φ̄n(η̄Nn−1)(ϕj)− ηn,j(ϕ) =

ηNn−1,j(Gn−1)−1[ηNn−1,j(Gn−1Mn,j(ϕ))− ηn−1,j(Gn−1Mn,j(ϕ))]+

ηn−1,j(Gn−1Mn,j(ϕ))

ηNn−1,j(Gn−1)ηn−1,j(Gn−1)
[ηn−1,j(Gn−1)− ηNn−1,j(Gn−1)].

Then one can control E[|Φ̄n(η̄Nn−1)(ϕj) − ηn,j(ϕ)|p]1/p via Minkowski, Assumptions
2.2 and 4.1 and the induction hypothesis, to yield

E[|Φ̄n(η̄Nn−1)(ϕj)− ηn,j(ϕ)|p]1/p ≤ C(n, p)‖ϕ‖√
N

,
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and this allows one to conclude.

Appendix D. Estimates for Stochastic Diffusion Processes.
Consider the case of the diffusion example (2.1) of Section 2, with the multilevel

kernel introduced in Subsection 3.1. Fix a level l, and for x, y ∈ Rd, let (Xx
1 , X

y
2 ) ∼

M((x, y), · ) be correlated Euler-Maruyama scheme of the solution process of the
stochastic differential equation (2.1) i.e. Xx

1 is the solution at step 2l of equation
(2.3) with initial condition x and Xy

2 is the solution at step 2l−1 of equation (3.5)
with initial condition y. It is well-known that the strong approximation error of
the Euler-Maruyama scheme E[|Xx

1 − Xx|κ]1/κ ≤ Ch
1/2
l for κ > 0 (see for example

[25, 27]), where Xx is also correlated to Xx
1 , in the sense that the latter arises from a

coarsening like (3.5) except with an integration of the stochastic forcing ξ(t) over the
interval hl. Let us generalize this slightly and assume some approximation method
for which

E[|Xx
1 −Xx|κ]1/κ ≤ Chβ/2l (D.1)

for some β > 0 and for any x ∈ Rd for some C > 0. As mentioned above, the equation
holds for β = 1 for the Euler-Maruyama scheme under Assumption 2.1.

Proposition D.1. Assume Assumption 2.1 and (D.1) for β > 0. Now let
y ∈ Rd. Then there exists a C ′ > 0 such that

E [|Xx
1 −X

y
2 |κ]

1/κ ≤ C ′(|x− y|+ h
β/2
l ).

Proof. By the triangular inequality, it is sufficient to show

E[|Xx
1 −Xx|κ]1/κ ≤ Chβ/2l

E[|Xx −Xy|κ]1/κ ≤ C ′|x− y|,

The first inequality holds by assumption. Now note that Assumption 4.1 follows from
Corollary V.11.7 of [31] together with Grönwall’s inequality, and the second estimate
is immediate.

Note that this provides Assumption 4.2(ii). For Euler the rate β = 1 is well-known
and may be found for example in [25, 27]. Assume M l

n,1 and M l
n,2 are transition ker-

nels corresponding to Euler-Maruyama scheme with grid sizes hl and hl−1 respectively.
Then, under the uniformly elliptic condition Assumption 2.1(i), by equation (2.4) of
[11],

|||M l
n,1 −M l

n,2||| ≤ Chαl (D.2)

for α = 1. This shows that the second term in Assumption 4.2(i) provides α = 1. As
for the first term of Assumption 4.2(i), preservation of the weak errror, the reader is
referred to [27, 16] where appropriate assumptions are detailed. Now an inequality
for predictors can be proven.

Lemma D.1. Assume Assumptions 2.1, 2.2 and (D.2) for α > 0. For l, n ∈ N,
there exists C > 0 such that

‖ηln,1 − ηln,2‖tv ≤ Chαl .
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Proof. Let

(H l
n,1ϕ)(x) =

∫
M l
n,1(x, dx∗)Gn−1(x)ϕ(x∗), (H l

n,2ϕ)(x) =

∫
M l
n,2(x, dx∗)Gn−1(x)ϕ(x∗).

Then

ηln,1ϕ =
ηln−1,1H

l
n,1ϕ

ηln−1,1H
l
n,11

, ηln,2ϕ =
ηln−1,2H

l
n,2ϕ

ηln−1,2H
l
n,21

.

By definition, ηl0,1 = ηl0,2. Suppose that the claim holds for 0, 1, . . . , n− 1. Then

|ηln,1ϕ− ηln,2ϕ| =

∣∣∣∣∣ηln−1,1H l
n,1ϕ

ηln−1,1H
l
n,11

−
ηln−1,2H

l
n,2ϕ

ηln−1,2H
l
n,21

∣∣∣∣∣
≤ 1

ηln−1,1H
l
n,11

∣∣ηln−1,1H l
n,1ϕ− ηln−1,2H l

n,2ϕ
∣∣

+
ηln−1,2H

l
n,2ϕ

ηln−1,1H
l
n,11× ηln−1,2H l

n,21

∣∣ηln−1,1H l
n,11− ηln−1,2H l

n,21
∣∣ .

By Assumption 2.2(i), c−1 ≤ ηln−1,1H
l
n,11, ηln−1,2H

l
n,21 ≤ c. Thus it is sufficient to

show ∣∣ηln−1,1H l
n,1ϕ− ηln−1,2H l

n,2ϕ
∣∣ ≤ C‖ϕ‖hαl .

However, the left-hand side of the above is dominated by∣∣ηln−1,1H l
n,1ϕ− ηln−1,2H l

n,1ϕ
∣∣+
∣∣ηln−1,2H l

n,1ϕ− ηln−1,2H l
n,2ϕ

∣∣
≤
(
‖ηln−1,1 − ηln−1,2‖tv + |||M l

n,1 −M l
n,2|||

)
sup
x,y
|G(y, x)|‖ϕ‖ ≤ C‖ϕ‖hαl .

where the second inequality follows from the induction assumption, and Assumption
2.2(i) and (D.2). Thus the claim follows by induction.

Let I ln,1(k) := I l,kn,1 and I ln,2(k) := I l,kn,2. For n ≥ 2, let Sln be the indices that
choose the same ancestor in each resampling step, that is,

Sln = {k ∈ {1, . . . , Nl};I ln,1(k) = I ln,2(k), I ln−1,1 ◦ I ln,1(k) = I ln−1,2 ◦ I ln,2(k), · · · ,
I l1,1 ◦ I l2,1 ◦ · · · ◦ I ln,1(k) = I l1,2 ◦ · · · ◦ I l2,2 ◦ I ln,2(k)}.

For n = 1, set Sl1 = {1, . . . , Nl}. Let

F ln =σ
({
U l,kp,1, U

l,k
p,2, Û

l,k
p,1, Û

l,k
p,2, I

l
p,1, I

l
p,2; p < n, k ≤ Nl

}
∪
{
U l,kn,1, U

l,k
n,2, k ≤ Nl

})
,

F̂ ln =σ
({
U l,kp,1, U

l,k
p,2, Û

l,k
p,1, Û

l,k
p,2, I

l
p,1, I

l
p,2; p < n, k ≤ Nl

}
∪
{
U l,kn,1, U

l,k
n,2, Û

l,k
n,1, Û

l,k
n,2, k ≤ Nl

})
.

Lemma D.2. Assume Assumptions 2.1, 2.2 and (D.1) for β > 0.For κ > 0 and
n ∈ N, there exists C > 0 such that

E

 1

Nl

∑
k∈Sln−1

|U l,kn,1 − U
l,k
n,2|κ

1/κ

≤ Chβ/2l .
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Proof. By Proposition D.1,

E

 1

Nl

∑
k∈Sln−1

|U l,kn,1 − U
l,k
n,2|κ

1/κ

= E

 1

Nl

∑
k∈Sln−1

E
[
|U l,kn,1 − U

l,k
n,2|κ

∣∣∣ F̂ ln−1]
1/κ

≤ CE

 1

Nl

∑
k∈Sln−1

{
|Û l,kn−1,1 − Û

l,k
n−1,2|+ h

β/2
l

}κ1/κ

.

Since (a+ b)κ ≤ C(aκ + bκ) (a, b ≥ 0), we have

E

 1

Nl

∑
k∈Sln−1

|U l,kn,1 − U
l,k
n,2|κ

1/κ

≤ CE

 1

Nl

∑
k∈Sln−1

|Û l,kn−1,1 − Û
l,k
n−1,2|κ

1/κ

+ Ch
β/2
l

= CE

 1

Nl

∑
k∈Sln−1

|U l,I
l,k
n−1,1

n−1,1 − U l,I
l,k
n−1,2

n−1,2 |κ
1/κ

+ Ch
β/2
l .

Note that I ln−1,1 = I ln−1,2 for k ∈ Sln−1. The conditional distribution of (U
l,Il,kn−1,1

n−1,1 , U
l,Il,kn−1,2

n−1,2 ) (k ∈
Sln−1) given Sln−1 and F ln−1 is

∑
k∈Sln−2

Gn−1(U
l,k
n−1,1)∑Nl

i=1Gn−1(U
l,i
n−1,1)

∧ Gn−1(U
l,k
n−1,2)∑Nl

i=1Gn−1(U
l,i
n−1,2)

δ(U l,kn−1,1,U
l,k
n−1,2)∑

k∈Sln−2

Gn−1(U
l,k
n−1,1)∑Nl

i=1Gn−1(U
l,i
n−1,1)

∧ Gn−1(U
l,k
n−1,2)∑Nl

i=1Gn−1(U
l,i
n−1,2)

≤ C 1

]Sln−2

∑
k∈Sln−2

δ(U l,kn−1,1,U
l,k
n−1,2)

The expected value of ]Sln−1 given F ln−1 is

E
[
]Sln−1
Nl

∣∣∣∣F ln−1] =
∑

k∈Sln−2

Gn−1(U l,kn−1,1)∑Nl
i=1Gn−1(U l,in−1,1)

∧
Gn−1(U l,kn−1,2)∑Nl
i=1Gn−1(U l,in−1,2)

≤ C
]Sln−2
Nl

.

26



Therefore

E

 1

Nl

∑
k∈Sln−1

|U l,I
l,k
n−1,1

n−1,1 − U l,I
l,k
n−1,2

n−1,2 |κ


= E

 1

Nl

∑
k∈Sln−1

E
[
|U l,I

l,k
n−1,1

n−1,1 − U l,I
l,k
n−1,2

n−1,2 |κ
∣∣∣∣Sln−1,F ln−1]



= E

 ]Sln−1Nl


∑
k∈Sln−2

|U l,kn−1,1 − U
l,k
n−1,2|κ

Gn−1(U
l,k
n−1,1)∑Nl

i=1Gn−1(U
l,i
n−1,1)

∧ Gn−1(U
l,k
n−1,2)∑Nl

i=1Gn−1(U
l,i
n−1,2)∑

k∈Sln−2

Gn−1(U
l,k
n−1,1)∑Nl

i=1Gn−1(U
l,i
n−1,1)

∧ Gn−1(U
l,k
n−1,2)∑Nl

i=1Gn−1(U
l,i
n−1,2)




= E

E [ ]Sln−1Nl

∣∣∣∣F ln−1]

∑
k∈Sln−2

|U l,kn−1,1 − U
l,k
n−1,2|κ

Gn−1(U
l,k
n−1,1)∑Nl

i=1Gn−1(U
l,i
n−1,1)

∧ Gn−1(U
l,k
n−1,2)∑Nl

i=1Gn−1(U
l,i
n−1,2)∑

k∈Sln−2

Gn−1(U
l,k
n−1,1)∑Nl

i=1Gn−1(U
l,i
n−1,1)

∧ Gn−1(U
l,k
n−1,2)∑Nl

i=1Gn−1(U
l,i
n−1,2)




≤ CE

 1

Nl

∑
k∈Sln−2

|U l,kn−1,1 − U
l,k
n−1,2|κ

 .

Thus the claim comes from induction.

Lemma D.3. Under Assumptions 2.1, 2.2 and (D.1) for β > 0, there exists
C > 0 such that for n ∈ N,

1− E
[
]Sln
Nl

]
≤ Chβ/2l .

Proof. Note that

1−
Nl∑
k=1

Gn(U l,kn,1)∑Nl
i=1Gn(U l,in,1)

∧
Gn(U l,kn,2)∑Nl
i=1Gn(U l,in,2)

=
1

2

Nl∑
k=1

∣∣∣∣∣ Gn(U l,kn,1)∑Nl
i=1Gn(U l,in,1)

−
Gn(U l,kn,2)∑Nl
i=1Gn(U l,in,2)

∣∣∣∣∣
≤1

2

∑
k∈Sln−1

∣∣∣∣∣ Gn(U l,kn,1)∑Nl
i=1Gn(U l,in,1)

−
Gn(U l,kn,2)∑Nl
i=1Gn(U l,in,2)

∣∣∣∣∣
+

1

2

∑
k/∈Sln−1

∣∣∣∣∣ Gn(U l,kn,1)∑Nl
i=1Gn(U l,in,1)

−
Gn(U l,kn,2)∑Nl
i=1Gn(U l,in,2)

∣∣∣∣∣
≤C 1

Nl

∑
k∈Sln−1

|U l,kn,1 − U
l,k
n,2|+ C

(
1−

]Sln−1
Nl

)
.
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Thus we have(
1− E

[
]Sln
Nl

∣∣∣∣F ln]) =

{
1−

Nl∑
k=1

Gn(U l,kn,1)∑Nl
i=1Gn(U l,in,1)

∧
Gn(U l,kn,2)∑Nl
i=1Gn(U l,in,2)

}

+
∑

k/∈Sln−1

Gn(U l,kn,1)∑Nl
i=1Gn(U l,in,1)

∧
Gn(U l,kn,2)∑Nl
i=1Gn(U l,in,2)

≤C 1

Nl

∑
k∈Sln−1

|U l,kn,1 − U
l,k
n,2|+ C

(
1−

]Sln−1
Nl

)
.

The claim follows by induction.
Theorem D.1. Assume Assumptions 2.1, 2.2 and (D.1) for β > 0. For κ > 1

and n ∈ N, there exists C > 0 such that

E
[(
|U l,1n,1 − U

l,1
n,2| ∧ 1

)κ]1/κ
≤ Chβ/2κl .

Proof. By Lemmas D.2 and D.3,

E
[(
|U l,1n,1 − U

l,1
n,2| ∧ 1

)κ]
= E

[
1

Nl

Nl∑
k=1

(
|U l,kn,1 − U

l,k
n,2| ∧ 1

)κ]

= E

 1

Nl

∑
k∈Sln−1

(
|U l,kn,1 − U

l,k
n,2| ∧ 1

)κ+ E

 1

Nl

∑
k/∈Sln−1

(
|U l,kn,1 − U

l,k
n,2| ∧ 1

)κ
≤ Chκβ/2l + Ch

β/2
l ≤ 2Ch

β/2
l .

Thus the claim follows.
Let α, β, γ > 0 be as in Assumption 4.2, and let L = L(ε) ∝ − log(ε)/(log(2)α),

K = K(ε) =
∑L
l=0

√
VlCl, Cl ∝ h−γl , Vl ∝ h

β/2
l , Nl ∝ ε−2K(ε)2−(β+2γ)l/4 and

hl = 2−l as in Section 3.1.
Corollary D.1. Assume Assumptions 2.1, 2.2 and 4.2. If γ/α ≤ 2, then the

bound of Theorem 4.2 is dominated by

L∑
l=0

C(m,ϕ)

Nl
h
β/2
l ,

where C(m,ϕ) = max0≤l≤L Cl(m,ϕ).
Proof. First note that Theorem D.1 provides a bound of Cl(m,ϕ)h

β/2
l on the first

term of Bl(n) defined in (C.1), and other terms are bounded by Cl(m,ϕ)h2αl . Recall
that 2α ≥ β, as they are defined here.

Now, one must show that
∑L
l=0

√
Bl
Nl

∑L
q=06=l

√
Bq
Nq

is higher order in comparison

to
∑L
l=0

Bl
Nl

= O(ε2). Choosing L(ε) and K(ε) as described in Section 3.1 and the
proof of Theorem 4.1, one has

L∑
l=0

√
Bl
Nl

L∑
q=06=l

√
Bq

Nq
. ε4K(ε)−2

L∑
l=0

√
Cl

L∑
q=06=l

√
Cq.
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Notice each of the two summations is O(CL) = O(ε−γ/2α), and K(ε)−1 = O(1).
Therefore,

L∑
l=0

√
Bl
Nl

L∑
q=0 6=l

√
Bq

Nq
. ε2ε2−γ/α,

and under the assumption that γ/α ≤ 2 the proof is concluded.
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