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LEAF-RECONSTRUCTIBILITY OF PHYLOGENETIC NETWORKS∗

LEO VAN IERSEL† AND VINCENT MOULTON‡

Abstract. An important problem in evolutionary biology is to reconstruct the evolutionary
history of a set X of species. This history is often represented as a phylogenetic network, that is, a
connected graph with leaves labelled by elements in X (for example, an evolutionary tree), which is
usually also binary, i.e., all vertices have degree 1 or 3. A common approach used in phylogenetics to
build a phylogenetic network on X involves constructing it from networks on subsets of X. Here we
consider the question of which (unrooted) phylogenetic networks are leaf-reconstructible, i.e., which
networks can be uniquely reconstructed from the set of networks obtained from it by deleting a
single leaf (its X-deck). This problem is closely related to the (in)famous reconstruction conjecture
in graph theory but, as we shall show, presents distinct challenges. We show that some large classes
of phylogenetic networks are reconstructible from their X-deck. This includes phylogenetic trees,
binary networks containing at least one nontrivial cut-edge, and binary level-4 networks. (The level
of a network measures how far it is from being a tree.) We also show that for fixed k, almost all
binary level-k phylogenetic networks are leaf-reconstructible. As an application of our results, we
show that a level-3 network N can be reconstructed from its quarnets, that is, 4-leaved networks
that are induced by N in a certain recursive fashion. Our results lead to several interesting open
problems which we discuss, including the conjecture that all phylogenetic networks with at least five
leaves are leaf-reconstructible.

Key words. phylogenetic trees, phylogenetic networks, graph reconstruction, reconstruction
conjecture

AMS subject classifications. 05C60, 92D15

DOI. 10.1137/17M1111930

1. Introduction. An important problem in evolutionary biology is to recon-
struct the evolutionary history of a set of species. This commonly involves construct-
ing some form of phylogenetic network, that is, a graph (often a tree) labeled by
a set X of species, for which some data (e.g., molecular sequences) has been col-
lected. Over the past four decades several ways have been introduced to construct
phylogenetic trees (see, e.g., [4]) and, more recently, methods have been developed to
construct more general phylogenetic networks (see, e.g., [6, 7]).

One particular approach for constructing phylogenetic networks involves building
them up from smaller networks. This approach is particularly useful when it is only
feasible to compute networks from the biological data on small datasets (e.g., when
using likelihood approaches). The problem of building trees from smaller trees has
been studied for some time (where it is commonly known as the supertree problem;
cf., e.g., [15, Chapter 6]) but the related problem for networks has been considered
only more recently (see, e.g., [8, 9] focusing on directed phylogenetic networks and [17]
focusing on pedigrees). Even so, this problem can be extremely challenging.
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2048 LEO VAN IERSEL AND VINCENT MOULTON

In this paper, we shall present a unified approach to constructing phylogenetic
networks from smaller networks. We shall consider unrooted phylogenetic networks
(cf. [5]). Essentially, these are connected graphs with leaf-set labelled by a set X ; they
are called binary if the degree of every vertex is 1 or 3. For such networks, we focus
on the problem of reconstructing a phylogenetic network from its X-deck; roughly
speaking, this is the collection of networks that is obtained by deleting one leaf and
supressing the resulting degree-2 vertex. We call a network that can be reconstructed
from its X-deck leaf-reconstructible. See sections 2 and 3 for formal definitions.

Intriguingly, the problem of reconstructing a graph from its vertex deleted sub-
graphs has been studied for over 75 years. (It was introduced in 1941 by Kelly and
Ulam [3], where it is known as the reconstruction conjecture.) In particular, this
conjecture states that every finite simple undirected graph on three of more vertices
can be constructed from its collection of vertex deleted subgraphs. This conjecture
remains open, but has been shown to hold for several large and important classes
of graphs [3]. Even so, as we shall see, although determining leaf-reconstructibilty
of a phylogenetic network is closely related to the reconstruction conjecture, there
are several key differences which mean that they need to be treated as quite distinct
problems.

We now summarize the contents of the rest of the paper. In the next section, we
present some preliminaries concerning phylogenetic networks. In section 3, we then
formally define leaf-reconstructibility and explain why this concept is distinct from the
notion of end-vertex reconstructibilty, a well-studied concept in graph reconstruction
theory (see [3, p. 237]). (While the notions end-vertex and leaf have the same mean-
ing, the difference comes from the fact that end-vertex reconstructibility is applied to
graphs without leaf-labels, while leaf-reconstructibility is applied to networks where
the leaves are labelled.) In addition, we show that certain key features of a binary
phylogenetic network (such as its level and reticulation number) can be reconstructed
from its X-deck.

In section 4, we then show that a large class of phylogenetic networks, which we
call decomposable networks, are leaf-reconstructible. These are networks containing
at least one cut-edge not incident to a leaf. To show this we first show that any
phylogenetic tree with at least 5 leaves is leaf-reconstructible. We also note that
phylogenetic trees with 4 leaves are not leaf-reconstructible. Our result concerning
decomposable networks is analogous to a result by Yongzhi [20], who showed that the
graph reconstruction conjecture can be restricted to considering 2-connected graphs.

The fact that decomposable networks are reconstructible implies that we can re-
strict our attention to leaf-reconstructibility of simple networks, that is, nondecompos-
able networks. An important feature of a phylogenetic network N is its level, which
measures how far away the network is from being a phylogenetic tree. (In particular,
trees are level-0 networks.) By considering certain subconfigurations in simple net-
works, in section 5, we prove that, for fixed k, almost all binary level-k networks are
leaf-reconstructible.

In section 6, we then turn to the problem of computing the smallest number
of elements in the X-deck of a leaf-reconstructible network that are required to re-
construct it, which we call its leaf-reconstruction number. This is analogous to the
so-called reconstruction number of a graph (cf. [1] for a survey on these numbers).
In particular, we show that the leaf-reconstruction number of any phylogenetic tree
on 5 or more leaves is 2, unless it is a star-tree, in which case this number is 3. We
also show that this implies that the leaf-reconstruction number of any decomposable
phylogenetic network with at least 5 leaves is 2.
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In section 7, we turn our attention to low-level networks, showing that all bi-
nary level-4 networks with at least five leaves have a leaf-reconstruction number at
most 2. The proof uses several lemmas that could be useful in studying the leaf-
reconstructibility of higher-level networks.

In practice, most methods for constructing phylogenetic networks from smaller
networks to date have focused on using networks with small numbers of leaves (in the
rooted case, often 3-leaved networks). In section 8, by using a recursive argument
and our previous results, we show that any level-3 network can be reconstructed from
its set of quarnets. Essentially, these are 4-leaved networks which are obtained from
N by selecting 4 leaves in the network, removing all other leaves, and suppressing
degree-2 vertices, multiedges, and biconnected components with two incident cut-
edges. Our result on quartnets is analogous to results presented in [11] for level-2
rooted phylogenetic networks.

Several variants of the reconstruction conjecture have been considered in the
literature (see [3]). We can also consider variants for phylogenetic networks. In
section 9, we consider the problem of reconstructing a phylogenetic network from
its collection of edge-deleted subgraphs, showing that in this setting we can sharpen
the leaf-reconstructibility bounds that we previously obtained. We then conclude
in the last section by discussing the problem of reconstructing directed phylogenetic
networks, as well as various open problems.

2. Preliminaries. In this section, we present some preliminaries concerning
phylogenetic networks (cf. [5]).

Let X be a finite set with |X | ≥ 2.

Definition 2.1. A phylogenetic tree on X is a tree with no degree-2 vertices in
which the leaves (degree-1 vertices) are bijectively labelled by the elements of X.

A biconnected component of a graph is a maximal 2-connected subgraph and it is
called a blob if it contains at least two edges.

Definition 2.2. A phylogenetic network on X is a connected graph N such that
contracting each blob (one by one) into a single vertex gives a phylogenetic tree on X.

A bipartition A|B of X with A,B �= ∅ is a split of a phylogenetic network N if N
contains a cut-edge e such that the elements of A and B are the leaf-labels of the two
connected components of N − e. If this is the case, we also say that the split A|B is
induced by e. From the definition of a phylogenetic network it follows that each of its
cut-edges induces a split and no two cut-edges induce the same split. Moreover, the
phylogenetic tree obtained by contracting each blob of N into a single vertex is the
unique phylogenetic tree that has precisely the same splits as N . This phylogenetic
tree is denoted T (N); see Figure 1 for an example.

A cut-edge is called trivial if at least one of its endpoints is a leaf. A phyloge-
netic network with at least one nontrivial cut-edge is called decomposable. We call a
phylogenetic network simple if it has precisely one blob.

Definition 2.3. A pseudonetwork on X is a multigraph with no degree-2 vertices
in which the leaves (degree-1 vertices) are bijectively labelled by the elements of X.

Hence, each phylogenetic tree is a phylogenetic network and each phylogenetic
network is a pseudonetwork. We let L(N), V (N), E(N) denote, respectively, the set
of leaves, vertices, and edges of a pseudonetwork N . In addition, the phylogenetic
tree T (N) is defined as the phylogenetic tree obtained by contracting each blob of N
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Fig. 1. A binary phylogenetic network N , the phylogenetic tree T (N), and two elements of the
X-deck of N : the phylogenetic network Na and the pseudonetwork Ne.

into a single vertex and suppressing any resulting degree-2 vertices. Two pseudonet-
works N,N ′ are equivalent, denoted N ∼ N ′, if there exists a graph isomorphism
between N and N ′ that is the identity on X .

A pseudonetwork is called binary if every nonleaf vertex has degree 3. Note
that our definition of a binary phylogenetic network is slightly different from the
one presented in [5] and has the advantage that for fixed X , there are only finitely
many phylogenetic networks with fixed level and leaf-set X (essentially because the
number of phylogenetic trees with leaf set X is finite cf. [15]). Note also that a binary
phylogenetic network is simple precisely when it is not decomposable and not a star
tree. However, this is not the case for nonbinary networks (because then there can be
blobs that overlap in a single vertex).

3. X-decks and leaf-reconstructibility. In this section we introduce the con-
cept of leaf-reconstructibility. We begin by defining the X-deck for a phylogenetic
network on X .

Given a phylogenetic network N and a vertex v ∈ V (N), the pseudonetwork Nv is
the result of deleting vertex v from N , together with its incident edges, and suppress-
ing resulting degree-2 vertices. See Figure 1 for an example. Given a phylogenetic
network N on X and U ⊆ V (N), the U -deck of N is the multiset {Nu | u ∈ U}.

A U -reconstruction of a network N on X is a network N ′ on X with V (N ′) =
V (N) and N ′

u ∼ Nu for all u ∈ U . We call a phylogenetic network N U -reconstructible
if every U -reconstruction of N is equivalent to N . The U -reconstruction number of a
network N on X is the smallest k for which there is a subset U ′ ⊆ U with |U ′| = k
such that N is U ′-reconstructible.

We are usually interested in the case that U ⊆ X . For the case that U = X ,
we will also refer to X-reconstruction, X-reconstructible, and the X-reconstruction
number as leaf-reconstruction, leaf-reconstructible, and the leaf-reconstruction number,
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a

b

c

d

a

b

d

c

Fig. 2. A pair of phylogenetic networks that are not leaf-reconstructible (and not even V (N)-
reconstructible) but that are end-vertex reconstructible (when ignoring the leaf-labels).

x z

y

z x

y

Fig. 3. A pair of phylogenetic networks that are not end-vertex reconstructible (when ignoring
the leaf-lables) but that are leaf-reconstructible.

respectively. It could also be interesting to take U = V (N), but we shall not consider
this possibility in this paper.

If N is a binary network on X and x ∈ X , then N can be obtained from Nx by
attaching x to some edge e, i.e., to subdivide e by a new vertex v and adding a vertex
labelled x and an edge between v and x. For example, the network N in Figure 1
is {e}-reconstructible since it can be uniquely reconstructed from Ne by attaching
leaf e to one of the multiedges. Hence, this network has leaf-reconstruction number 1.
The networks in Figure 2 are not leaf-reconstructible since both networks have the
same X-deck.

Remark 1. At first sight it might appear that leaf-reconstructibility of a phyloge-
netic network could be equivalent to end-vertex reconstructibility (where one tries to
reconstruct a graph from the deck obtained by deleting only its end-vertices, i.e.,
leaves; cf. [3, p. 237]). However, these are distinct concepts. For example, the
phylogenetic networks in Figure 3 are leaf-reconstructible. However, considered as
graphs (with no labels), they are not end-vertex reconstructible, as they both have
the same end-vertex deck (the multiset of graphs obtained by deleting a single leaf) [14,
p. 313]. Conversely, the networks in Figure 2 are end-vertex reconstructible but not
leaf-reconstructible. Leaf-reconstructibility is also different from reconstructibility,
because the latter aims at reconstructing a graph from subgraphs obtained by delet-
ing any vertex (not necessarily a leaf) and without suppressing any resulting degree-2
vertices.

We call a class N of phylogenetic networks leaf-reconstructible if each N ∈ N is
leaf-reconstructible. ClassN is weakly leaf-reconstructible if, for each networkN ∈ N ,
all leaf-reconstructions of N that are in N are equivalent to N . Class N is leaf-
recognizable if, for each network N ∈ N , every leaf-reconstruction of N is also in N .

Observation 1. A class N of phylogenetic networks is leaf-reconstructible if and
only if it is leaf-recognizable and weakly leaf-reconstructible.
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We conclude this section by showing that certain features of a binary phylogenetic
network on X can be reconstructed from its X-deck. The reticulation number of a
pseudonetwork N is defined as |E(N)| − |V (N)|+1. The level of N is the maximum
reticulation number of a biconnected component of N . A phylogenetic network is
called a level-k network, with k ∈ N, if its level is at most k. A phylogenetic network
is called a simple level-k network if it is simple and has level exactly k.

A function f defined on a class N of phylogenetic networks is leaf-reconstructible
if for each N ∈ N and for any leaf-reconstrution M of N we have f(N) = f(M).

Proposition 3.1. The functions assigning to each binary phylogenetic network
its number of edges, number of vertices, reticulation number, or level are all leaf-
reconstructible.

Proof. Let N be any phylogenetic network and x ∈ L(N).
If |V (N)| = 2, then |V (Nx)| = |V (N)| − 1 and |E(Nx)| = |E(N)| − 1. Moreover,

the level and reticulation number of Nx are 0, the same as the reticulation number
and level of N .

If |V (N)| ≥ 3, then |V (Nx)| = |V (N)| − 2 and |E(Nx)| = |E(N)| − 2. Moreover,
the level and reticulation number of Nx are the same as the reticulation number and,
respectively, level of N .

In both cases, the proposition follows directly.

The following is a direct consequence.

Corollary 3.2. For each k ∈ N, the class of binary level-k phylogenetic networks
is leaf-recognizable.

4. Decomposable networks. In this section we will consider decomposable
networks, that is, networks with at least one nontrivial cut-edge (that is, a cut-edge
which does not contain a leaf). We start with a few simple observations. Note that,
for |X | ≤ 3, there exists a unique phylogenetic tree on X which is therefore X-
reconstructible. For |X | = 4, no binary phylogenetic tree on X is X-reconstructible,
but all phylogenetic trees T on X are V (T )-reconstructible.

Theorem 4.1. Any phylogenetic tree with at least five leaves is leaf-reconstructible.

Proof. The class of phylogenetic trees is leaf-recognizable by Corollary 3.2. To
show weak-reconstructibility, suppose that there exist phylogenetic trees T �∼ T ′ on X
such that T and T ′ have the same X-deck. Then there is at least one nontrivial split
A|B that is a split of, without loss of generality, T but not of T ′. Since |X | ≥ 5,
at least one of A and B contains at least three elements. The other side contains at
least two elements since the split is nontrivial. Assume a1, a2, a3 ∈ A and b1, b2 ∈ B.
Then Ta1 has split A \ {a1}|B and Ta2 has split A \ {a2}|B. Hence, T ′

a1
and T ′

a2
have

the same splits, respectively. This implies that T ′ has a split that can be obtained
from A \ {a1}|B by inserting a1. Since it does not have split A|B, it must have split
A \ {a1}|B ∪ {a1}. Similarly, T ′ must have the split A \ {a2}|B ∪ {a2}. This leads to
a contradiction because these splits are incompatible (see, e.g., [15]).

Remark 2. It is known that any tree is reconstructible [13]. A proof of this result
is given in [3, p. 232], which uses a generalization of Kelly’s lemma [13]. Kelly’s lemma
is key to proving several results in graph reconstructibility. We were unable to derive
an analogous result for leaf-reconstructibility—it would be interesting to know if some
such result exists. Note also that trees are known to be end-vertex reconstructible
[10].
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To extend Theorem 4.1 to decomposable networks, we will use the following ob-
servation.

Observation 2. For any phylogenetic network N on X and any leaf x ∈ X we
have

(T (N))x = T (Nx).

Corollary 4.2. The function mapping a phylogenetic network N with at least
five leaves to T (N) is leaf-reconstructible.

Proof. By Observation 2 and Theorem 4.1.

Theorem 4.3. Any decomposable phylogenetic network with at least five leaves is
leaf-reconstructible.

Proof. Let N be the class of phylogenetic networks with at least five leaves and
at least one nontrivial cut-edge. This class is leaf-recognizable since a phylogenetic
network on X belongs to this class if and only if every element of its X-deck has at
least four leaves and at most two elements of its X-deck have no nontrivial cut-edges.

It remains to show weak leaf-reconstructibility. Suppose |X | ≥ 5 and let N be
a phylogenetic network on X with some nontrivial cut-edge e. Let A|B be the split
induced by e. By Corollary 4.2, T (N) is X-reconstructible. Hence, any reconstruc-
tion N ′ of N contains a unique edge e′ representing split A|B. Since e is nontrivial,
there exist leaves a1, a2 ∈ A and b1, b2 ∈ B. Pseudonetwork Na1 contains a unique
edge f inducing split A \ {a1}|B. Since Na1 ∼ N ′

a1
, the connected component of

Na1 − f containing B is equivalent to the connected component of N ′ − e′ contain-
ing B. Call this connected component NB and let u be the endpoint of f that
it contains. Similarly, pseudonetwork Nb1 contains a unique edge g inducing split
A|B \ {b1} and the connected component of Nb1 − g containing A is equivalent to the
connected component of N ′ − e′ containing A. Call this connected component NA

and let v be the endoint of g that it contains. Then, N ′ can be obtained from NA

and NB by adding an edge between u and v. Therefore, N ′ ∼ N .

5. Simple networks. When considering leaf-reconstructability of binary net-
works we can, by Theorem 4.3, restrict to simple networks, which are binary net-
works containing precisely one blob. Therefore, in this section we focus on leaf-
reconstructibility of simple binary networks. The class of such networks is clearly
leaf-recognizable since a phylogenetic network on X is contained in this class if and
only if each element of its X-deck is binary and has precisely one blob.

We say that (x, y, z) is a 3-chain of a phylogenetic network N on X if x, y, z ∈ X
and N contains a path (u, v, w) such that x, y and z are, respectively, a neighbor
of u, v, and w.

Lemma 5.1. Any simple binary level-k phylogenetic network containing a 3-chain
is leaf-reconstructible if it has at least 4 leaves and at least 5 leaves if k = 1.

Proof. The class N of such networks is leaf-recognizable since a simple binary
level-k phylogenetic network on X , with |X | ≥ 4 and |X | ≥ 5 if k = 1, is contained
in N if and only if at most three elements of its X-deck do not contain a 3-chain.

To show weak leaf-reconstructibility, let N ∈ N be a phylogenetic network on X
and let (x, y, z) be a 3-chain in N . Since |X | ≥ 4, there exists at least one other
leaf a ∈ X . Consider Ny and Na. First observe that Na contains a 3-chain (x, y, z).
In Ny, there is a unique edge e between the neighbors of x and z. Moreover, in Ny

there is no 3-chain (x, a, z) by the assumption that |X | ≥ 5 if k = 1. Let N ′ ∈ N be
a {y, a}-reconstruction of N . Then N ′ contains a 3-chain (x, y, z) since Na contains
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a 3-chain (x, y, z) and Ny does not contain a 3-chain (x, a, z). Hence, N ′ can be
reconstructed from Ny by attaching y to edge e. Therefore, N ′ ∼ N .

Corollary 5.2. Any simple binary level-k phylogenetic network with at least
6k − 5 leaves and k ≥ 2 is leaf-reconstructible.

Proof. Leaf-recognizability is clear. Let N be a simple binary level-k phylogenetic
network onX with k ≥ 2 and |X | ≥ 6k−5. Deleting all leaves fromN and suppressing
all degree-2 vertices gives a 3-regular multigraphG. SinceN is simple level-k, |E(N)|−
|V (N)|+1 = k and hence |E(G)|−|V (G)|+1 = k. Combining this with the fact that,
since G is 3-regular, 3|V (G)| = 2|E(G)| gives that |E(G)| = 3k − 3. Suppose that N
contains no 3-chain. Then it could have at most two leaves per edge of G, implying
that |X | ≤ 6k− 6. Hence, N contains a 3-chain and is therefore X-reconstructible by
Lemma 5.1.

Corollary 5.3. Any binary phylogenetic network N = (V,E) on X with |X | ≥
max{6(|E| − |V |) + 1, 5} is leaf-reconstructible.

Proof. If N contains a nontrivial cut-edge, then apply Theorem 4.3. If it is simple
level-1, then apply Lemma 5.1. If it is simple level-k with k ≥ 2, then |E|−|V |+1 = k
and hence |X | ≥ 6k − 5 and therefore we can apply Corollary 5.2.

We say that almost all phylogenetic networks from a certain class N are leaf-
reconstructible, if the probability that a network drawn uniformly at random out of
all networks in N with n leaves is leaf-reconstructible goes to 1 when n goes to infinity.

Corollary 5.4. For any fixed k, almost all binary level-k phylogenetic networks
are leaf-reconstructible.

Proof. All networks with at least five leaves and some nontrivial cut-edge are leaf-
reconstructible by Theorem 4.3. For a simple binary level-k phylogenetic networkN =
(V,E) on X with k ≥ 1 we have (similar to the proof of Corollary 5.2)

|V | = 2k − 2 + 2|X |.

Hence, when |V | → ∞ then |X | → ∞. When |X | ≥ max{6k − 5, 5} then N is
X-reconstructible by Lemma 5.1 and Corollary 5.2. The corollary follows.

6. Reconstruction numbers of decomposable networks. In this section,
we shall show that the reconstruction number of a decomposable phylogenetic network
with at least five leaves is at most two.

Observation 3. Let k ≥ 0. To recognize that a phylogenetic network N is level-k
it suffices to check that any element of its X-deck is level-k.

We start by determining the reconstruction number of binary trees.
The median of three leaves x, y, z ∈ L(T ) in a phylogenetic tree T is the unique

vertex that lies on each of the paths between all pairs of leaves in {x, y, z}.
Lemma 6.1. Any binary phylogenetic tree T with at least five leaves has leaf-recon-

struction number 2.

Proof. The class of phylogenetic trees on X is {x}-recognizable for any x ∈ X
by Observation 3. No phylogenetic tree on X with |X | ≥ 5 is {x}-reconstructible
for any x ∈ X since attaching x to different edges in Tx gives different nonequivalent
trees. Hence, the leaf-reconstruction number of such trees is at least 2. It remains to
show that it is exactly 2.
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Consider a binary phylogenetic tree T on X with |X | ≥ 5. Take any two
leaves x, y ∈ X such that the distance between them is at least 4. Such leaves exist
since |X | ≥ 5. We will show that T can be uniquely reconstructed from Tx and Ty.
First observe that any leaf-reconstruction of T is binary since Tx and Ty are binary
and x and y do not have a common neighbor.

Let w be the neighbor of x in T and u, v the other two neighbors of w. Then Tx

has an edge {u, v}.
First assume that neither u nor v is a leaf. Then there exist leaves a, b �= y

such that the path between a and b (in T ) contains u but not w and there exist
leaves c, d �= y such the path between c and d (in T ) contains v but not w. Then u
is the median of a, b, c and v is the median of a, c, d in T . Call in Tx and Ty the
median of a, b, c also u and the median of a, c, d also v. Then, in Ty, the neighbor of x
is adjacent to u and v. Hence, we can reconstruct T from Tx by attaching x to the
edge {u, v}.

Now assume that u is a leaf. Then there again exist leaves c, d �= y such that v
is on the path between c and d (in T ). In this case, v is the median of u, c, d in T .
Call the median of u, c, d in Tx and Ty also v. Then, since the neighbor of x in Ty is
adjacent to u and v, we can again uniquely reconstruct T from Tx by attaching x to
the edge {u, v}.

We now consider nonbinary trees.

Theorem 6.2. Any phylogenetic tree with at least five leaves has leaf-reconstruction
number 2 unless it is a star, in which case it has leaf-reconstruction number 3.

Proof. As in the proof of Lemma 6.1, it is clear that, for any x ∈ X , the class
of phylogenetic trees on X is {x}-recognizable and no phylogenetic tree on X is {x}-
reconstructible if |X | ≥ 5. Consider a phylogenetic tree T on X with |X | ≥ 5.

First consider the case that T is a star. Then, for any x, y ∈ X , there exists a
phylogenetic tree T ′ �∼ T on X such that T ′

x ∼ Tx and T ′
y ∼ Ty. (T

′ has two internal
vertices, and leaves x and y are adjacent to one of these internal vertices while all
other leaves are adjacent to the other internal vertex.) Hence, the X-reconstruction
number of T is at least 3. To see that it is exactly 3, note that any phylogenetic tree
that is not a star has at most two elements in its X-deck that are stars. Hence, since
there exists a unique phylogenetic star tree on X , the reconstruction number of T
is 3.

Now consider the case that T contains exactly one nontrivial cut-edge {u, v}.
Take one leaf x adjacent to u and one leaf y adjacent to v. First suppose that u has
degree 3. Then v has degree at least 4. Hence, Tx is a star tree and Ty has exactly
one nontrivial cut-edge {u′, v′}. Suppose x is adjacent to u′. Then u′ is adjacent to
exactly one other leaf z. Hence, we can uniquely reconstruct T from Tx by attaching x
to the edge incident to z. Now suppose that both u and v have degree at least 3.
Then Tx and Ty both have exactly one nontrivial cut-edge. Let z be any leaf adjacent
to the neighbor of x in Ty. Then we can uniquely reconstruct T from Tx by adding x
with an edge to the neighbor of z.

Finally, assume that T has at least two nontrivial cut-edges. Then there exist
two leaves x, y ∈ X such that the distance between them is at least 4. Let w be the
neighbor of x in T and u, v �= x two other neighbors of w.

If w has degree 3, then we can proceed as in the proof of Lemma 6.1.
Now assume w has degree at least 4. Then it has a neighbor z /∈ {u, v, x}. Then

there exist leaves a, b, c /∈ {x, y} reachable by paths from u, v, and z, respectively,
that do not contain w. Therefore, the median of a, b, and c in T is w. Hence, we
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level-2

level-3

level-4

G1 G3G2

G4 G5

Fig. 4. All binary level-k generators, for 2 ≤ k ≤ 4.

can uniquely reconstruct T from Tx by adding x with an edge to the median of a, b,
and c.

Corollary 6.3. Any decomposable phylogenetic network with at least five leaves
has leaf-reconstruction number at most 2.

Proof. Let N be a phylogenetic network that has at least five leaves and at least
one nontrivial cut-edge and let x and y be maximum distance apart in T (N). Then
any {x, y}-reconstruction has a nontrivial cut-edge. Moreover, since the distance
between x and y in T (N) is at least 3, T (N) is {x, y}-reconstructable by the proof
of Theorem 6.2. Moreover, by the proof of Theorem 4.3, it now follows that N is
{x, y}-reconstructable.

7. Low-level networks. In this section we show that all binary networks with
at least five leaves and level at most 4 are leaf-reconstructible and, moreover, have
leaf-reconstruction number at most 2. The proofs are based on the following notions.

Definition 7.1. A binary level-k generator, for k ≥ 2, is a 2-connected 3-regular
multigraph G = (V,E) with |E| − |V |+ 1 = k. The underlying generator of a binary
simple level-k network N is the generator obtained from N by deleting all leaves and
suppressing resulting degree-2 vertices. For an edge e of G, we say that a leaf x is on
edge e in N if the neighbor of x is on a path that is suppressed into edge e. If x is on
edge e, then we also say that e contains x and we refer to e as the x-edge.

See Figure 4 for all binary level-k generators for 2 ≤ k ≤ 4.
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We say that two cycles are similar if they have the same number of vertices and
the same number of vertices that are neighbors of leaves, and hence also the same
number of generator vertices (i.e., vertices that are not neighbors of leaves).

The following three lemmas show several special cases of simple level-k networks
that are leaf-reconstructible. We will use these lemmas to show that all simple level-4
networks are leaf-reconstructible, if they have at least five leaves.

Lemma 7.2. Let N be a binary simple level-k network on X with k ≥ 2 and |X | ≥
5. If N contains a cycle C containing the neighbors of leaves a, b, c, and d and either

(i) there is no cycle C ′ �= C in N that is similar to C and contains the neighbors
of a, b, and c, or

(ii) c and d are on the same edge of the underlying generator and there is no
cycle C′ �= C in N that is similar to C and contains the neighbors of a, b, c,
and d in a different order,

then N is {d, e}-reconstructible for any e ∈ X \ {a, b, c, d}.
Proof. (i) Note thatNe has a cycle Ce containing the neighbors of a, b, c, and d and

no other cycle that is similar to Ce and contains the neighbors of a, b, c, and d. Assume
without loss of generality that these neighbors are visited in this order. Suppose that
the neighbor of d is the ith vertex on the path from the neighbor of c to the neighbor
of a on Ce. Now consider Nd, which contains a cycle Cd containing the neighbors
of a, b, and c and no other cycle similar to Cd that contains the neighbors of a, b,
and c. Let P be the path from the neighbor of c to the neighbor of a on Cd, not via
the neighbor of b. If the neighbor of e is among the first i vertices of P , then we let f
be the ith edge on P . Otherwise, we let f be the (i − 1)th edge on P . Then the
unique way to insert d into Nd is by attaching it to edge f .

(ii) Assume without loss of generality that the distance between c and d is 3.
Note that Ne has a cycle Ce containing the neighbors of a, b, c, and d and no cycle
that is similar to Ce and contains the neighbors of a, b, c, and d in a different order.
Assume again that Ce visits a, b, c, and d in this order. Now consider Nd and choose
any cycle Cd containing the neighbors of a, b, and c. Let f be the first edge on the
path from the neighbor of c to the neighbor of a along Cd, not via the neighbor of b.
Then the unique way to insert d into Nd is by attaching it to edge f .

Lemma 7.3. Let N be a binary simple level-k network on X with k ≥ 2 and |X | ≥
5. If the underlying generator of N has a pair of multiedges e1, e2, then, unless
one of e1, e2 contains two leaves and the other one no leaves in N , N has leaf-
reconstruction number at most 2.

Proof. First suppose that there is exactly one leaf x that is on one of the mul-
tiedges. Then Nx has multiedges. Since multiedges are not allowed in phylogenetic
networks, the unique way to insert x into Nx is by attaching it to one of the multi-
edges.

Now suppose that there is exactly one leaf x on e1 and exactly one leaf a on e2.
Let y be any other leaf. Then Ny contains a unique 4-cycle containing the neighbors
of x and a, and these neighbors are not adjacent. Since Nx contains a unique 3-cycle C
containing the neighbor of a, the only way to insert x into Nx is by attaching it to
the unique edge on C that is not incident to the neighbor of a.

Now suppose that there are exactly two leaves a, b on e1 and exactly one leaf x
on e2. Let y ∈ X \ {a, b, x}. Then, Ny contains a unique 5-cycle containing the
neighbors of a, b, and x and the neighbor of x is not adjacent to the neighbors of a
and b. Since Nx contains a unique 4-cycle C containing the neighbors of a and b, the
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unique way to insert x into Nx is by attaching it to the unique edge on C that is not
incident to the neighbors of a and b.

Now suppose that there are exactly two leaves a, b on e1 and exactly two leaves c, d
on e2. This case is handled by Lemma 7.2(i).

The only remaining possibility is that there is a 3-chain, which is handled by the
proof of Lemma 5.1.

Lemma 7.4. Let N be a binary simple level-k network on X with k ≥ 2 and |X | ≥
5. If the underlying generator of N has three pairwise incident edges and N has at
least three leaves on these edges, then N has leaf-reconstruction number at most 2.

Proof. First suppose that all three edges are incident to some vertex v and the
other three endpoints are all distinct. If each edge contains at least one leaf, let a, b, c
be the leaves closest to v on each of the edges. Then N is {a, d}-reconstructible for
any d ∈ X \ {a, b, c}, since we can reconstruct N from Na by attaching a to the
edge that is incident to the vertex v′ that is incident to the b-edge and to the c-edge,
making a the leaf closest to v′ on that edge. Similarly, if one edge contains at least two
leaves a, b and another edge at least one leaf c, then N is again {a, d}-reconstructible
for any d ∈ X \ {a, b, c}.

A similar argument can be used to handle the case that the three edges form a
triangle.

Finally, suppose that at least two of the three edges are multiedges. Then, by
Lemma 7.3, exactly two of the three edges formmultiedges, one of them containing two
leaves, the other one no leaves, and the third edge of the three pairwise incident edges
contains at least one leaf. Then again it can be seen that N has leaf-reconstruction
number at most 2 by using a similar argument as above.

Theorem 7.5. Any binary level-4 phylogenetic network with at least five leaves
has leaf-reconstruction number at most 2.

Proof. Let N be such a network. By Corollary 6.3, we may assume that N has
no nontrivial cut-edges, i.e., N is simple.

IfN is a simple level-1 network, pick any two x, y that are distance at least 4 apart.
The fact that N is simple is {x, y}-recognizable. Moreover, using the fact that N has
at least five leaves, it can easily be shown that N can be uniquely reconstructed
from Nx and Ny.

Now suppose that N is a simple level-k network with k ≥ 2.
If N has a 3-chain (x, y, z) and a ∈ X \ {x, y, z}, then any {y, a}-reconstruction

of N is simple. Moreover, by the proof of Lemma 5.1 it can be concluded that N is
{y, a}-reconstructible. Hence, we may assume that N contains no 3-chains.

If k = 2, then, considering the unique level-2 generator in Figure 4, we are done
by Lemma 7.3.

If k = 3, then there are two possible underlying generators; see Figure 4. First
suppose the underlying generator G is not K4 and thus has two pairs of multiedges.
Then, by Lemma 7.3, we may assume that each pair of multiedges has one edge
containing exactly two leaves. Hence, we are done by Lemma 7.2(i). Now suppose
that G = K4. Since |X | ≥ 5, it is straightforward to check that at least one 3-cycle C
of G contains at least three leaves in N . By Lemma 7.2, it contains exactly 3 leaves.
There are two cases (by Lemma 5.1). Either each edge of C contains exactly one leaf,
or one edge contains two leaves and one edge one leaf. In either case, it is easy to
check that wherever the other two leaves are, we can apply Lemma 7.2 to see that N
has reconstruction number at most 2.
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Finally, suppose k = 4. Then there are five possibilities for the underlying gen-
erator G; see Figure 4. If G ∈ {G1, G2, G3}, then, by Lemma 7.3, each pair of
multiedges has one edge containing exactly two leaves and one edge containing no
leaves. If G = G1 or G3, then we are done by Lemma 7.2(i). If G = G2, then it is
straightforward to check that, since |X | ≥ 5, there must exist some cycle that satisfies
the condition of Lemma 7.2(ii).

Now suppose that G = G4. Observe that G4 consists of two disjoint 3-cycles and
three other edges, which we will call the middle edges. For every vertex of G4, at
most two edges incident to this vertex contain leaves by Lemma 7.4. Since |X | ≥ 5, it
is straightforward to check that there is at least one vertex v of G4 with exactly two
leaves a, b on the edges incident to v.

First assume that a is on a middle edge and b is on a triangle edge. Then there
is a unique Hamiltonian cycle C of G containing the a-edge and the b-edge. First
suppose that there is at least one leaf c ∈ X \ {a, b} on an edge of C. Assume that c
is the first such leaf on the path along C between the neighbor of b and the neighbor
of a not containing v. Let i be the distance from the neighbor of b to the neighbor
of c on this path. Let d ∈ X \ {a, b, c}. Then N is {c, d}-reconstructible, since the
unique way to insert c into Nc is by attaching it to the ith edge of the path along C
from the neighbor of b to the neighbor of a not containing v. Now suppose that none
of the leaves in X \ {a, b} are on edges of C. By Lemma 7.4 there are no leaves on
the third edge incident to v. Hence, since |X | ≥ 5, there at least three leaves on the
two edges of G that are not on C and not incident to v. It is now straightforward to
check that N has reconstruction number 2 by Lemma 7.2(i).

Now assume that a and b are both on the same triangle-edge. Then, if the previous
case is not applicable for any vertex v′ of G4, the only remaining possibility is that
the other triangle also has an edge containg two leaves and we can apply Lemma 7.2.

Now assume that a and b are on different triangle edges (of the same triangle).
Then, if the previous cases are not applicable, all other leaves must be on the other
triangle and we can use Lemma 7.4.

Finally, assume that a and b are both on the same middle edge. Then, if the
previous cases are not applicable, the only remaining possibility is that some other
middle edge also contains two leaves and we can apply Lemma 7.2.

Now consider the last level-4 generatorG5 = K3,3. As before, it is straightforward
to check that there is at least one vertex v of G5 with exactly two leaves a, b on the
edges incident to v.

First suppose that a and b are on different edges incident to v. Observe that
there are precisely two Hamiltonian cycles C and D of G5 containing the a-edge and
the b-edge. Since each leaf is on an edge of at least one of C and D, at least one
edge of C and D contains a third leaf c ∈ X \ {a, b}. Suppose that c is on an edge
of C. First suppose that all leaves are on edges of C. Then we can use a similar
argument as for the Hamiltonian cycle in G4 to show that N is {c, d}-reconstructible
for some d ∈ X \ {a, b, c}. If at least one leaf e ∈ X \ {a, b, c} is on an edge that
is not also on D, then we choose the Hamiltonian cycle containing the e-edge, and
choose d �= e. Otherwise, all leaves are also on edges of D. Observe that there are
precisely four edges that are on both C and D, which are two pairs of incident edges.
Since |X | ≥ 5, it then follows by Lemma 7.4 that N has leaf-reconstruction number 2.
Now suppose that at least one leaf e ∈ X \ {a, b, c} is not on an edge of C. Then N
is {c, d}-reconstructible, with d ∈ X \ {a, b, c, e}, again using a similar argument as
for the Hamiltonian cycle in G4, choosing the Hamiltonian cycle of G not containing
the e-edge.
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b

a

e

c

d
N

b

e c

d
NP

a

b

a e

c

NP
d

Fig. 5. An example of a level-1 phylogenetic network N on X such that no elements of its X-
deck are phylogenetic networks. Nevertheless, it is possible to reconstruct N from the quarnets NP

a
and NP

d .

Finally, suppose that a and b are on the same edge incident to v. Then, if the
previous case is not applicable for any vertex v′ of G5, the only remaining possibil-
ity is that there is some other edge of G5 containing two leaves and we can apply
Lemma 7.2(ii).

8. Reconstructing networks from quarnets. We have focused so far on re-
constructing networks from their X-deck. We could try to use a recursive argument in
order to reconstruct networks from smaller subnetworks, with less than |X |−1 leaves.
However, this approach does not work in general since there are networks for which
no elements of its X-deck are phylogenetic networks; see Figure 5. Nevertheless, it is
possible to apply a recursive approach if we use the following variant of the X-deck
of a network.

Definition 8.1. Given a phylogenetic network N on X and a leaf x ∈ X, the
phylogenetic network NP

x is the result of deleting leaf x from N , together with its
incident edge, and applying the following three operations until none is applicable:

(i) suppress a degree-2 vertex;
(ii) replace a pair of multiedges by a single edge;
(iii) collapse a blob with precisely two incident cut-edges into a single vertex.

Given a phylogenetic network N on X and X ′ ⊆ X, the phylogenetic X ′-deck of N
is the set {NP

x | x ∈ X ′}.
See again Figure 5 for an example. Note that this form of leaf-deletion was

introduced for directed level-1 phylogenetic networks in [9]—see also [8] for more
details for general phylogenetic networks.

All elements of a phylogenetic X-deck are phylogenetic networks by the following
observation, which is easily verified.

Observation 4. Let N be a phylogenetic network N on X with |X | ≥ 3, and x ∈
X . Then NP

x is a phylogenetic network on X \ {x}.
This opens the door to reconstructing networks from smaller subnetworks. A

quarnet is a phylogenetic network with precisely four leaves. The set of quarnets Q(N)
of a phylogenetic network N on X is defined recursively by Q(N) = {N} if |X | = 4
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b d

a c

N

d b

a c

M

Fig. 6. Two phylogenetic networks that have the same phylogenetic X-deck but not the same X-
deck (even though the X-deck and phylogenetic X-deck of N are equivalent). Network N is neither
X-reconstructible nor reconstructible from its phylogenetic X-deck, while M is X-reconstructible but
not reconstructible from its phylogenetic X-deck.

and

Q(N) =
⋃

x∈X

Q(NP
x ) if |X | ≥ 5.

Here, the union operation keeps one phylogenetic network from each group of
equivalent phylogenetic networks. We say that two sets N ,N ′ of phylogenetic net-
works are equivalent, denoted N ∼ N ′, if there exists a bijection f : N → N ′

with N ∼ f(N) for all N ∈ N .
We say that a network N is reconstructible from its quarnets if every phylogenetic

networkN ′ with Q(N)∼Q(N ′) is equivalent toN . Moreover, a classN of phylogenetic
networks is quarnet-reconstructible if each N ∈ N is reconstructible from its quarnets.

Similarly, N is reconstructible from its phylogenetic X-deck if every phylogenetic
networkN ′, whose phylogeneticX-deck is equivalent to the phylogeneticX-deck ofN ,
is equivalent to N . Moreover, a class N of phylogenetic networks is phylogenetically
reconstructible if each N ∈ N is reconstructible from its phylogenetic X-deck.

If two phylogenetic networks onX have equivalentX-decks, then they have equiv-
alent phylogenetic X-decks (but not conversely; see Figure 6). Consequently, if a
phylogenetic network on X is reconstructible from its phylogenetic X-deck, then it is
X-reconstructible. The following proposition, which shows that the converse is also
true in some cases, will permit us to apply results from previous sections.

Proposition 8.2. Let N be a phylogenetic network on X with |X | ≥ 4. If N is
Y -reconstructible for some Y ⊆ X with |Y | ≥ 2 and NP

y ∼ Ny for all y ∈ Y , then N
is reconstructible from its phylogenetic X-deck.

Proof. Suppose that there exists a network M that is not equivalent to N but has
an equivalent phylogenetic X-deck. Since N is Y -reconstructible, there exists a y ∈ Y
such that Ny �∼ My. Since M

P
y ∼ NP

y ∼ Ny, it follows that M
P
y �∼ My and hence that

the neighbor of y in M is in a triangle. Moreover, since Ny has the same reticulation
number as N , MP

y also has the same reticulation number as N . Since, in M , the

neighbor of y is in a triangle, M has a higher reticulation number than MP
y and N .

Take any z ∈ Y \ {y}. Then, since MP
z ∼ NP

z ∼ Nz, M
P
z has the same reticulation

number as N and MP
y and hence a lower reticulation number than M . It follows that

the neighbor of z in M is also in a triangle. We distingish two cases.
First assume that the neighbors of y and z are both in the same triangle in M .

Consider any two leaves x, p ∈ X \{y, z}. Then, the neighbors of y and z are together
in the same triangle inMP

x ∼ NP
x and inMP

p ∼ NP
p . On the other hand, neither of the

neighbors of y and z is in a triangle in N , since NP
z ∼ Nz and NP

y ∼ Ny. This is only
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a

b c
b

c

a

Fig. 7. Phylogenetic networks on X = {a, b, c} that are X-reconstructible but not reconstructible
from their phylogenetic X-deck.

possible when N is a simple level-1 network on X = {x, y, z, p}. This contradicts the
assumption that N is Y -reconstructible, with Y ⊆ X , and hence X-reconstructible.

Now assume that the neighbors of y and z are in different triangles in M . Then,
the neighbor of z is also in a triangle in MP

y ∼ Ny. On the other hand, the neighbor

of z is not in a triangle in N , since NP
z ∼ Nz. Hence, in N , the neighbors of y and z

are part of a 4-cycle. Consider again two leaves x, p ∈ X \ {y, z}. In NP
x ∼ MP

x

and in NP
p ∼ MP

p , the neighbors of y and z are in a triangle or 4-cycle. This is only
possible when, in M , the neighbors of (without loss of generality) x and y are in one
triangle while the neighbors of p and z are in a different triangle, and the two triangles
are adjacent. This implies that there are no other leaves, i.e., X = {x, y, z, p}, and
again N is a simple level-1 network on X . This again leads to a contradiction since N
is X-reconstructible.

In particular, we have the following.

Corollary 8.3. Let N be a phylogenetic network on X with |X | ≥ 4. If the
X-deck of N consists of only phylogenetic networks, then N is reconstructible from
its phylogenetic X-deck if and only if N is X-reconstructible.

Note that Corollary 8.3 does not hold when |X | = 3; see Figure 7.

Theorem 8.4. Let N be a class of phylogenetic networks such that each element
of N has at least five leaves and, for each element N of N with at least six leaves, the
phylogenetic X-deck of N is equivalent to a subset of N . Then N is phylogenetically
reconstructible if and only if it is quarnet-reconstructible.

Proof. If N is quarnet-reconstructible, then it is phylogenetically reconstructible
since if two phylogenetic networks N,N ′ ∈ N have equivalent phylogenetic X-decks,
then it follows directly that Q(N)∼Q(N ′).

Now suppose that N is phylogenetically reconstructible. We prove by induction
on i that each N ∈ N with at most i leaves is quarnet-reconstructible. If i = 5,
then the phylogenetic X-deck of N is equal to Q(N) and therefore N is quarnet-
reconstructible. Now suppose i ≥ 6. Since N is reconstructible from its X-deck and
each element of its X-deck is, by induction, quarnet-reconstructible, N is quarnet-
reconstructible.

First observe that each phylogenetic tree on X with |X | ≥ 5 is reconstructible
from its phylogenetic X-deck by Theorem 4.1 and Proposition 8.2. Hence, the class
of phylogenetic trees with at least five leaves is phylogenetically reconstructible.

However, a similar argument cannot be used to show that even the class of level-
1 networks is phylogenetically reconstructible. Therefore, it is interesting to study
which classes of networks are phylogenetically reconstructible.

Theorem 8.5. The class of level-3 phylogenetic networks with at least five leaves
is phylogenetically reconstructible.
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To prove this theorem, we will first show that an analogue of Theorem 4.3 holds.

Theorem 8.6. The class of decomposable phylogenetic networks with at least five
leaves is phylogenetically reconstructible.

Proof. The proof is very similar to that of Theorem 4.3. As in that proof, first note
that a phylogenetic network has at least one nontrivial cut-edge if and only if at most
two elements of its phylogenetic X-deck do not. Let N be some phylogenetic network
on X with at least one nontrivial cut-edge and |X | ≥ 5. Since (T (N))Px = T (NP

x ),
for all x ∈ X , we can reconstruct T (N) from the phylogenetic X-deck of N . We can
then use exactly the same argument as in the last part of the proof of Theorem 4.3
to show that N is reconstructible from its phylogenetic X-deck. (See Figure 5 for an
illustration.)

We now prove Theorem 8.5.

Proof. By Theorem 8.6, it suffices to consider simple level-k networks with 1 ≤
k ≤ 3. For simple level-1 networks, the phylogenetic X-deck is precisely equal to the
X-deck and we are done by Proposition 8.2.

Now consider a simple level-2 network N and its underlying generator G. If the
phylogenetic X-deck of N is not equal to its X-deck, then one of the three edges
of G contains exactly one leaf x, another edge of G contains no leaves, and the third
edge of G contains all other leaves X \ {x}. Then N is {y, z}-reconstructible for any
y, z ∈ X \ {x} with distance between them at least 4. Since NP

y = Ny and NP
z = Nz

we are done by Proposition 8.2.
Therefore, we may assume that N is a simple level-3 network. Suppose the

phylogeneticX-deck ofN is not equal to its X-deck. Then the underlying generatorG
of N is not equal to K4 (since K4 does not have any multiedges). Hence, G is the
other level-3 generator; see Figure 4. Moreover, at least one pair of multiedges contains
precisely one leaf, say, leaf x. The other pair of multiedges contains at least one leaf y.

If there is at least one leaf z on an edge that is not in a pair of multiedges,
then it is straightforward to check that, wherever you put leaves p, q ∈ X \ {x, y, z},
there is a cycle containing the neighbors of leaves a, b, c, d satisfying the conditions of
Lemma 7.2(i) and a fifth leaf e such that NP

d = Nd and NP
e = Ne, and we are done

by Proposition 8.2.
The only remaining case is that all leaves in X \ {x} are on the pair of mul-

tiedges not containing x. Then there is again a cycle containing the neighbors of
leaves a, b, c, d satisfying the conditions of Lemma 7.2(i) and a fifth leaf e such that
NP

d = Nd. However, if |X | = 5, then the only choice for e is e = x and hence NP
e �∼Ne.

Nevertheless, we can use a similar argument as in the proof of Lemma 7.2(i) since NP
e

does contain a unique cycle containing the neighbors of a, b, c, and d.

Corollary 8.7. Any level-3 phylogenetic network is reconstructible from its quar-
nets.

9. Edge-reconstructibility. In this section we shall consider the problem of
reconstructing a phylogenetic network from its edge-deleted networks. We first for-
malize this concept (cf. [3, section 2] for a review of edge-reconstruction in graphs).

Given a phylogenetic network N and an edge e ∈ E(N), the pseudonetwork Ne

is the result of deleting edge e from N and suppressing resulting degree-2 vertices.
The edge-deck of N is the multiset {Ne | e ∈ E(N)}. An edge-reconstruction of
a network N on X is a network N ′ on X with E(N ′) = E(N) and N ′

e ∼ Ne for
all e ∈ E(N). Note that by E(N ′) = E(N) we do not mean that the edges of N
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b d

a c

d b

a c

b d

a c

d b

a c

b c d

a

b d c

a

a b c a c b

Fig. 8. Pairs of phylogenetic networks that are not leaf-reconstructible but that are edge-
reconstructible. The dashed edges indicate an edge e such that Ne is not contained in the edge-deck
of the other network of the pair.

are the same pairs of vertices as the edges of N ′, but that there exists a bijection
f : E(N) → E(N ′) which we assume to be the identity. We call a phylogenetic
network N edge-reconstructible if every edge-reconstruction of N is equivalent to N .

Lemma 9.1. Let N be a phylogenetic network on X. If N is leaf-reconstructible,
then it is edge-reconstructible.

Proof. This follows directly from the observation that Ne ∼ N ′
e if and only if

Nx ∼ N ′
x for each edge e that has an endpoint x ∈ X in both N and N ′.

However, there exist edge-reconstructible networks that are not leaf-reconstruc-
tible; see the examples in Figure 8.

When considering edge-reconstructability of binary networks we can, by Theo-
rem 4.3 and Lemma 9.1, again restrict to simple networks.

We say that (x, y) is a 2-chain of a phylogenetic network N on X if x, y ∈ X and
the distance between x and y in N is 3.

Proposition 9.2. Any simple binary phylogenetic network on X containing a
2-chain is edge-reconstructible.

Proof. The fact that N is simple can be recognized by considering three elements
of its edge-deck Ne1 , Ne2 , Ne3 such that each of e1, e2, e3 is incident to a leaf. Since
each of Ne1 , Ne2 , Ne3 consists of a simple network and an isolated vertex, any edge-
reconstruction of N is simple.
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Suppose that N has a 2-chain (x, y). Let u and v be the neighbors of x and y
in N , respectively, and e = {u, v}. Let u′ and v′ be the neighbors of x and y in Ne,
respectively.

First suppose that (x, y) is not a 2-chain in Ne. There exists at least one edge f
that is not incident to u or v. Since (x, y) is a 2-chain in Nf , we can uniquely
reconstruct N from Ne by subdividing the edges {u′, x} and {v′, y} and creating a
new edge between the subdividing vertices.

Now suppose that (x, y) is also a 2-chain in Ne. We say that a network has an
xy-ladder of length k if there exist disjoint paths (x, u1, . . . , uk) and (y, v1, . . . , vk)
such that ui and vi are adjacent for 1 ≤ i ≤ k. Let p ≥ 1 be the maximum length of
an xy-ladder in N . Take any such ladder and observe that there exists at least one
edge g that is not incident to any vertex of the ladder. Then the maximum length of
an xy-ladder is p in Ng and is p−1 in Ne. Hence, we can again uniquely reconstructN
from Ne by subdividing the edges {u′, x} and {v′, y} and creating a new edge between
the subdividing vertices.

The following corollary can be proved in a similar way to Corollaries 5.2 and 5.3.

Corollary 9.3.
(i) Any simple binary level-k phylogenetic network on X with k ≥ 2 and |X | ≥

3k − 2 is edge-reconstructible.
(ii) Any binary phylogenetic network N = (V,E) on X with |X | ≥ max{3(|E| −

|V |) + 1, 5} is edge-reconstructible.

10. Discussion. In this paper we have introduced the concept of leaf-recon-
structible phylogenetic networks. We have shown that several large classes of phy-
logenetic networks are leaf-reconstructible and used our results to show that level-3
networks are defined by their quarnets. We conjecture that all unrooted phylogenetic
networks with 5 or more leaves are leaf-reconstructible. We expect that this could
be a difficult conjecture to settle, as with other variants of the graph reconstruction
conjecture.

In another direction, it could be of interest to also consider leaf-reconstructibility
of nonbinary networks. In Theorem 4.1, we showed that nonbinary phylogenetic trees
are leaf-reconstructible, and in Theorem 4.3 that even all decomposable nonbinary
phylogenetic networks are leaf-reconstructible, but what about nondecomposable non-
binary networks? The following related question could also be worth considering: If
every nonbinary phylogenetic network with at least five leaves is leaf-reconstructible,
then is every graph reconstructible?

In section 9, we considered edge-reconstructibility, a variant of the leaf-reconstruc-
tibility problem. Another variant that should be considered is leaf-reconstructibility
for directed phylogenetic networks. This is an important class of networks, in which
the networks are directed acyclic graphs, with a single root and leaves labeled by
the set X . In [8] certain examples of directed phylogenetic networks are presented
which indicate that such networks may not be leaf-reconstructible, but it remains
an open problem whether or not this is the case. (Note that not all digraphs are
reconstructible [16].)

In the longer term, it would be interesting to consider leaf-reconstructibility of
networks that arise in biological settings. Indeed, even if not every network is leaf-
reconstructible, it may be that counterexamples are somewhat unlikely to occur as
evolutionary histories (e.g., if they are highly symmetric).
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One way to approach this could be to consider random networks. As we have
seen in Corollary 5.4, for any fixed k, almost all level-k phylogenetic networks are
leaf-reconstructible. It would be interesting to know whether or not almost all phy-
logenetic networks on a fixed leaf-set are leaf-reconstructible. In this context, it is
worth noting that almost every graph has reconstructing number three [2]. We have
shown that decomposable and binary level-4 networks with at least five leaves have
reconstruction number at most 2. So, do almost all (binary) phylogenetic networks
have reconstruction number at most 2?

Finally, it would be interesting to consider leaf-reconstructibilty of networks that
are generated according to some model of molecular evolution. (See, e.g., [4] for a
review of such models.) This would be somewhat analogous to recent groundbreaking
work on reconstructibility of pedigrees in a stochastic setting [18, 19] and could focus
on models such as those presented in, for example, [12].
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