
A PRACTICAL RANDOMIZED CP TENSOR DECOMPOSITION∗

CASEY BATTAGLINO† , GREY BALLARD‡ , AND TAMARA G. KOLDA§

Abstract. The CANDECOMP/PARAFAC (CP) decomposition is a leading method for the
analysis of multiway data. The standard alternating least squares algorithm for the CP decomposi-
tion (CP-ALS) involves a series of highly overdetermined linear least squares problems. We extend
randomized least squares methods to tensors and show the workload of CP-ALS can be drastically re-
duced without a sacrifice in quality. We introduce techniques for efficiently preprocessing, sampling,
and computing randomized least squares on a dense tensor of arbitrary order, as well as an efficient
sampling-based technique for checking the stopping condition. We also show more generally that
the Khatri-Rao product (used within the CP-ALS iteration) produces conditions favorable for direct
sampling. In numerical results, we see improvements in speed, reductions in memory requirements,
and robustness with respect to initialization.

Key words. canonical polyadic tensor decomposition, CANDECOMP/PARAFAC (CP), mul-
tilinear algebra, randomized algorithms, randomized least squares

AMS subject classifications. 15A69, 68W20

1. Introduction. The CANDECOMP/PARAFAC (CP) tensor decomposition
is an important tool for data analysis in applications such as chemometrics [26], bio-
geochemistry [20], neuroscience [1, 14, 13], signal processing [34], cyber traffic anal-
ysis [24], and many others. We consider the problem of accelerating the alternating
least squares (CP-ALS) algorithm using randomization.

Because randomized methods have been used successfully for solving linear least
squares problems [16, 3, 42], it is natural that they might prove beneficial to CP-ALS
since its key kernel is the solution of a least squares problem. However, the CP-ALS
least squares subproblem has a special structure that already greatly reduces its cost,
so it is unclear whether or not sketching would be beneficial. Nevertheless, we find
that our randomized algorithms significantly reduce the memory and computational
overhead of the CP-ALS process for dense tensors and moreover positively impact
algorithmic robustness. To the best of our knowledge, this is the first successful
application of matrix sketching methods in the context of CP. The contributions of
this paper are as follows:

• The least squares coefficient matrix in the CP-ALS subproblem is a Khatri-
Rao product of factor matrices. Our randomized algorithm prefers incoherent
matrices. We prove that the coherence of the Khatri-Rao product is bounded
above by the product of the coherence of its factors.

• We introduce the CPRAND algorithm that uses a randomized least squares
solver for the subproblems in CP-ALS and never explicitly forms the full
Khatri-Rao matrices used in the subproblems. We also introduce the comple-
mentary CPRAND-MIX algorithm that employs efficient mixing to promote
incoherence and thereby improves the robustness of the method.

∗This material is based upon work supported by the U.S. Department of Energy, Office of Sci-
ence, Office of Advanced Scientific Computing Research, Applied Mathematics program. Sandia
National Laboratories is a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International,
Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract
DE-NA-0003525.
†Georgia Institute of Technology Computational Sci. and Engr. (cbattaglino3@gatech.edu).
‡Wake Forest University (ballard@wfu.edu).
§Sandia National Laboratories (tgkolda@sandia.gov).

1

ar
X

iv
:1

70
1.

06
60

0v
2

 [
cs

.N
A

]
 2

2
O

ct
 2

01
7

mailto:cbattaglino3@gatech.edu
mailto:ballard@wfu.edu
mailto:tgkolda@sandia.gov

• We derive a novel, lightweight stopping condition that estimates the model
fit error, and we prove its accuracy using Chernoff-Hoeffding bounds.

• We demonstrate the speed and robustness of our algorithms over a large
number of synthetic tensors as well as real-world data sets. In comparison
with CP-ALS, CPRAND is faster and much less sensitive to the starting
point.

We give an example of our methods’ fast time to solution in Figure 1, comparing
CPRAND and CPRAND-MIX with CP-ALS. For the CPRAND methods, we use 100
sampled rows for each least squares solve. The randomized methods converge much
more quickly, in only a few iterations. The fit is not monotonically increasing for
the randomized methods due to (small) variations in the solution to each random-
ized subproblem. See section 4 for full details on problem generation and further
experiments.

0 5 10 15 20
0.9

0.92

0.94

0.96

0.98

1

time (s)

fi
t

(a) Random 300× 300× 300 tensor

0 5 10 15 20
0.9

0.92

0.94

0.96

0.98

1

time (s)

CP-ALS

CPRAND

CPRAND-MIX

(b) Random 80× 80× 80× 80 tensor

Fig. 1. Runtime comparison for fitting the CP tensor decomposition on random synthetic
tensors generated to have rank 5, factor collinearity of 0.9, and 1% noise. We compare a single run
of three methods using a target rank of 5. CPRAND and CPRAND-MIX use random initialization,
100 sampled rows for each least squares solve. CP-ALS uses HOSVD initialization. The marks
indicate each iteration. The thin dashed black line represents a fit of 99%, which is the best we
expect when the noise is 1%.

2. Background and Definitions. In this section we provide information on
key matrix and tensor operations, as well as randomized least squares.

2.1. Matrix and Tensor Background. A tensor is an element in a tensor
product of one or more vector spaces. In data analysis it suffices to think about a
tensor as a multidimensional array. We represent a tensor as a Euler script capital
letter, e.g., X ∈ RI1×···×IN . The number of modes (or dimensions) is referred to as
the order, denoted here by N . The mode-n fibers of a tensor are the higher-order
analogue of matrix column and row vectors. The mode-n unfolding or matricization
of a tensor aligns the mode-n fibers as the columns of an In ×

∏
m 6=n Im matrix.

Assuming 1-indexing, tensor entry xi1,i2,...,iN then maps to entry (in, j) of X(n) via
the relation:

(1) j = 1 +

N∑
k=1
k 6=n

(ik − 1)Jk, where Jk =

k−1∏
m=1
m6=n

Im.

2

Given matrices A ∈ RI×J and B ∈ RK×L, their Kronecker product is

A⊗B =

a11B a12B · · · a1JB
...

...
. . .

...
aI1B aI2B · · · aIJB

 ∈ RIK×JL.

Assuming K = L, their Khatri-Rao product, also known as the matching columnwise
Kronecker product, is

A�B =
[
a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK .

]
Assuming I = K and J = L, their Hadamard product is A~B ∈ RI×J , the element-
wise product of the matrices. Three useful identities are:

(A�B)T(A�B) = ATA ~ BTB,(2)

AB⊗CD = (A⊗C)(B⊗D), and(3)

AB�CD = (A⊗C)(B�D).(4)

The mode-n tensor-times-matrix product is a contraction between a matrix and a
tensor in its nth mode. The two operations below are equivalent and can be computed
in place (i.e., without explicitly unfolding X(n)) [23]:

Y = X×n A ⇔ Y(n) = AX(n).

If a tensor is followed by a series of mode-n products, its mode-n matricization has a
particular structure [22] that will useful in the discussion of “mixing” in subsection 3.3:

Y = X×1 U(1) · · · ×N U(N) ⇔
Y(n) = U(n)X(n)(U

(N) ⊗ · · · ⊗U(n+1) ⊗U(n−1) ⊗ · · · ⊗U(1))T.
(5)

The CP tensor decomposition aims to approximate an order-N tensor as a sum
of R rank-one tensors [19, 9, 18, 22]:

(6) X ≈ X̃ =

R∑
r=1

a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r ,

where factor vector a
(n)
r has length In. Each rank-one tensor is called a component.

The collection of all factor vectors for a given mode is called a factor matrix :

A(n) =
[
a
(n)
1 a

(n)
2 · · · a

(n)
r

]
∈ RIn×R.

The mode-n matricization of X̃ can be written in terms the factor matrices as

(7) X̃(n) = A(n)Z(n)T where Z(n) = A(N) � · · ·A(n+1) �A(n−1) � · · · �A(1).

We may alternatively represent (6) by normalizing all the factor vectors to unit length
and expressing the product of the normalization factors as a scalar weight λr for each
component:

(8) X̃ =

R∑
r=1

λr a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r .

3

2.2. Randomized Least Squares and Sketching. Sketching is a technique
for solving linear algebra problems by constructing a smaller problem whose solution
is a reasonable approximation to the original problem with high probability [42]. For
instance, a large matrix may be formed by applying random sampling or random
projections to form a smaller sketch matrix. We focus on the case where a regres-
sion problem minx ‖Ax− b‖2 (with overdetermined A ∈ Rn×d) is transformed using
some random projection M ∈ RS×n, with S � n, such that an exact solution to
minx ‖MAx−Mb‖2 is an approximate solution to the original problem [33, 16, 3].

There are two leading sampling approaches for randomized least squares problems.
One involves sampling from the coefficient matrix in a weighted manner, e.g. by
computing (or estimating) leverage scores for each row and sampling based on their
distribution. The other approach, which we use in this work, is to mix the coefficient
matrix with the intention of evenly distributing leverage scores across all rows in such
a way that uniform sampling is effective.

Definition 1. Given A ∈ Rn×d, n > d, the leverage score of row i of A is
li = ||U(i, :)||22 for i ∈ {1, . . . , n} where U contains the d left singular vectors of A.

Thus, the leverage score of a row corresponds in some sense to the importance of that
row in constructing the column-space of the coefficient matrix.

In 2007, Drineas et al. [16] presented a relative-error least squares algorithm that
gives a 1 + ε approximation. They first mix the coefficient matrix using a randomized
Hadamard transform (discussed later), and then sample

(9) O(max{d log (n) log (d log (n)), d log (nd)/ε})

rows of the resulting matrix before computing the solution using normal equations.
The dependence of the sampling size on ε makes this algorithm fairly impractical for
typical direct solvers. However, subsequent work by Rokhlin and Tygert [33] applied
a related sketching strategy to the preconditioning of a Krylov-subspace method,
establishing a relationship between sample size and condition number.

Avron et al. synthesized these concepts into a high-performance solver called
Blendenpik [3]. They first apply a randomized Hadamard transform (or similar trans-
form), compute a QR decomposition of the result, and use its R-factor as a precon-
ditioner for the standard LSQR solver. Additionally they show that the condition
number of their system depends on the maximal leverage score of the matrix, referred
to as coherence.

Definition 2 ([15, 8]). Coherence is the maximum leverage score of A, i.e.,

µ(A) = max
i∈{1,...,n}

li,

where li is the leverage score of the ith row of A. It holds that d
n ≤ µ(A) ≤ 1.

Intuitively, if a row of a matrix A contains the only nonzero in a column then µ(A) = 1
and any row-sampling SA must include that row (which has leverage score 1) or it
will be rank deficient. If coherence is close to 1, a uniform row-sampling is likely to
be nearly rank-deficient, leading to a poorly conditioned reduced-size least squares
problem and an inaccurate approximate solution vector.

In subsection 3.2 we prove that the standard formulation of CP-ALS may increase
incoherence, making uniform sampling effective in many situations. However, in order
to guarantee incoherence (w.h.p.) regardless of input, it is necessary to preprocess
with a mixing step.

4

This mixing strategy relates to a more general class of transformations that rely on
quality guarantees provided by the Johnson-Lindenstrauss Lemma [21]. This lemma
specifies a class of random projections that preserve the distances between all pairs of
vectors with reasonable accuracy. The fast Johnson-Lindenstrauss transform (FJLT)
is able to avoid explicit matrix multiplications by utilizing efficient algorithms such
as the fast Fourier transform (FFT), discrete cosine transform (DCT), or Walsh-
Hadamard Transform (WHT) [2]. These transforms can operate on a vector x ∈ Rn

in O(n log2 n) time. What these algorithms have in common is that they improve
incoherence, mixing information across every element of a vector, while at the same
time being orthogonal operations (i.e., a change of basis). The theoretical quality
guarantees and theoretical computational costs are the same for all fast transforms.

The FJLT consists of three steps. First, each row of the coefficient matrix is
sign-flipped with probability 1/2. This is equivalent to computing DA with diagonal
matrix D ∈ Rn×n, where each diagonal element is ±1 with equal probability. Second,
we apply the fast mixing operation F . Third we uniformly sample S rows of the result
with uniform probability. Thus, the entire operation can be written out as SFDA,
where S is a row-sampling operator (containing unit row vectors ei, for each sampled
row i). The reasoning behind first applying D is that input data is often sparse in
the frequency domain, and randomly flipping the signs of the coefficient matrix is
an orthogonal operation that spreads out the frequency domain of the signal [2]. In
this paper we will exclusively use the FFT for the F operation due to its ease of
reproducibility and its efficiency in MATLAB. Though portable, this has the result of
making all data complex-valued, which we discuss in more detail later on. We observed
that using alternative transforms had no effect on the quality of our solutions, but real-
valued transforms were slower to apply because of a lack of efficient implementations
within MATLAB.

3. Algorithms. In this section we introduce CPRAND, which samples without
mixing, and CPRAND-MIX, which efficiently applies mixing before sampling. We first
recall the standard CP-ALS method, which is the starting point for our modifications.

3.1. CP-ALS. The standard method for fitting the CP model is alternating
least squares (CP-ALS) [18, 22]. The method alternates among the modes, fixing
every factor matrix but A(n) and solving for it. From (7), we see that we can find
A(n) by solving the linear least squares problem given by

(10) arg min
A(n)

‖X(n) −A(n)Z(n)T‖F .

In CP-ALS, we work with the normal equations for (10):

X(n)Z
(n) = A(n)(Z(n)TZ(n)),

and solve for A(n) for given X(n) and Z(n). By identity (2), we have

Z(n)TZ(n) = A(N)TA(N) ~ · · ·~ A(n+1)TA(n+1) ~ A(n−1)TA(n−1) ~ · · ·~ A(1)TA(1).

The CP-ALS algorithm [22] is presented in Algorithm 1. Note the step where
vector λ stores normalization values of each column so that the final approximation
is as in (8); this normalization helps alleviate issues due to scaling ambiguity.

The initialization of the factor matrices in line 2 can impact the performance of
the algorithm. There are many possible ways to do the the initialization. One way

5

is to initialize is to set A(n) to be the leading R left singular vectors of the mode-
n unfolding, X(n), and we call this HOSVD initialization, as it corresponds to the
factor matrices in the rank-(R×· · ·×R) Higher-Order SVD. A less expensive but less
effective initialization is to choose random factor matrices.

Algorithm 1 CP-ALS

1: function [λ, {A(n) }] = CP-ALS(X, R) . X ∈ RI1×···×IN

2: Initialize factor matrices A(2), . . . ,A(N)

3: repeat
4: for n = 1, . . . , N do
5: V← A(N)TA(N) ~ · · · ~ A(n+1)TA(n+1) ~ A(n−1)TA(n−1) ~ · · · ~ A(1)TA(1)

6: Z(n) ← A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

7: W← X(n)Z
(n)

8: Solve A(n)V = W for A(n)

9: Normalize columns of A(n) and update λ
10: end for
11: until termination criteria met
12: return λ, factor matrices {A(n) }
13: end function

3.1.1. Cost. We consider the cost of a single outer iteration of CP-ALS. In
line 5, the cost of computing the mth Gram matrix is R2Im; so the entire cost is
R2
∑

m 6=n Im flops to compute all the Gram matrices plus O(R2N) to multiply them
all together to form V. The combination of line 6 and line 7 form an operation
called the matricized tensor times Khatri-Rao product (MTTKRP). This is a frequent
target of optimization [5, 30, 35, 12]. The Khatri-Rao product in line 6 requires
O(R

∏
m6=n Im) flops (flops may be reduced at the cost of more memory by storing and

reusing partial products, but we ignore this detail in our discussion). The computation
of X(n)Z

(n) in line 7 is the most expensive step, with a cost of 2R
∏

m Im flops. We
note that Phan et al. [30] give a clever reorganization of line 6 and line 7, which
avoids data movement and so may reduce overall runtime. The cost of solving the
linear system in line 8 using Cholesky decomposition is dominated by the triangular
solves with the Cholesky factors, which requires 2R2In flops. The overall cost of each
outer iteration (updating each factor matrix once) is O(NR

∏
n In).

If HOSVD initialization is used in line 2, then the costs of forming the mode-n
Gram matrix is In

∏
m Im and the cost of computing the eigenvectors is I3n. Hence,

the total initialization cost is (
∑

n>1 In)
∏

m Im +
∑

n>1 I
3
n.

3.2. CPRAND. Consider the overdetermined least squares problem in (10),
which is convenient to rewrite as

(11) arg min
A(n)

‖Z(n)A(n)T −XT
(n)‖F .

The simplest sampling algorithm uniformly samples rows from Z(n) and the corre-

sponding rows from XT
(n). We let S denote the number of desired number of samples.

Without loss of generality, we assume S > max { I1, . . . , IN , R }. Let S denote the
samples from { 1, . . . ,

∏
m6=n Im } such that |S| = S. We do uniform sampling with

replacement which means that every row has equal chance of being selected and the
same row may be selected more than once. We can express the sampling operation as
the application of a selection matrix S ∈ RS×

∏
m6=n Im , where the rows of S are rows

of the
∏

m 6=n Im ×
∏

m 6=n Im identity matrix.

6

R R
i

j

…
…

i3

i2
i3

i2

a
p3q
i3

f a
p2q
i2

Fig. 2. Sampled Khatri-Rao rows correspond to sampled fibers in X.

Forming the (full) Khatri-Rao product Z(n) is expensive, so we want to com-
pute the sampled matrix SZ(n) without ever explicitly forming Z(n). Consider sam-
pling the jth row of Z(n). Using the mapping in (1), we can map j to indices

(i1, . . . , in−1, in+1, . . . , iN) (the nth index is omitted). In fact, the jth row of Z(n)

is the Hadamard product of the appropriate rows of the factor matrices, i.e.,

Z(n)(j, :) = A(1)(i1, :) ~ · · ·~ A(n−1)(in−1, :) ~ A(n+1)(in+1, :) ~ · · ·~ A(N)(iN , :).

This is illustrated in Figure 2 for a three-way tensor. We give the algorithm for
computing sampled Khatri-Rao (SKR) in Algorithm 2, where idxs is the set of tuples

{i(j)1 , . . . , i
(j)
n−1, i

(j)
n+1, . . . , i

(j)
N } for j ∈ S.

We assume these tuples are stacked in matrix form for efficiency. Thus, each multi-

plicand A
(m)
S is of size S ×R.

Algorithm 2 Sampled Khatri-Rao Product

1: function ZS = SKR(S,A(N), . . . ,A(n+1),A(n−1), . . . ,A(1))
2: Retrieve idxs from S
3: ZS ← 1 . 1 ∈ RS×R

4: for m = 1, . . . , n− 1, n+ 1, . . . , N do

5: A
(m)
S ← A(m)(idxs(:,m), :) . MATLAB-style indexing

6: ZS ← ZS ~ A
(m)
S

7: end for
8: return ZS

9: end function

In the same way we wanted to avoid forming Z(n) explicitly, we also want to
avoid forming X(n) (i.e., in this case that means avoiding the data movement). In-
stead, we observe that if we sample the jth row of X(n), then we want the fiber
xi1,...,in−1,:,in+1,...,iN where we are using the same mapping as for SKR. Thus, we can
avoid matricization and pull entries from the tensor directly to form SXT

(n).
Our randomized version of CP-ALS is named CPRAND and shown in Algo-

rithm 3, where we solve a sampled version of the least squares problem in (11). In
line 6, we use the SKR from Algorithm 2 to get the sampled version of Z(n). In line 7,
we sample rows of XT

(n). In line 8, we solve the sampled least squares problem where
the coefficient matrix ZS is of size S × R and the corresponding sampled right hand
side XT

S is of size S × In. The solution A(n) is of size In ×R.
In all of the experiments in this paper, a sample size of S = 10R log (R) has

proven sufficient, provided that the data is incoherent.

3.2.1. Cost. The arithmetic cost of Algorithm 3 comprises the cost of sampling,
to set up the smaller least squares problem, and the cost of solving the least squares

7

Algorithm 3 CPRAND

1: function CPRAND(X, R, S) . X ∈ RI1×···×IN

2: Initialize factor matrices A(2), . . . ,A(N)

3: repeat
4: for n = 1, . . . , N do

5: Define sampling operator S ∈ RS×
∏

m 6=n Im

6: ZS ← SKR(S,A(1), . . . ,A(n−1),A(n+1), . . . ,A(N))

7: XT
S ← SXT

(n)

8: A(n) ← arg min
A

∥∥∥ZSAT −XT
S

∥∥∥
F

9: Normalize columns of A(n) and update λ.
10: end for
11: until termination criteria met
12: return λ, factor matrices {A(n) }
13: end function

problem. Generating S random multiindices is O(SN) operations. Sampling the
Khatri-Rao product in line 6 using Algorithm 2 requires SR(N−1) flops, as each of

the S length-R rows of Z
(n)
S is formed as a Hadamard product of N−1 rows of the

fixed factor matrices. Sampling S fibers from X to form X
(n)
S requires no flops, but it

does require irregular data access to construct the In × S matrix and is actually the
most time-consuming operation for large tensors. Using QR to solve the reduced least

squares problem in line 8 is 2SR2 flops, the cost of computing X
(n)
S Q (applying Q) is

2SRIn operations, and the cost of the triangular solve is R2In operations. Assuming
In > R and S > R, the leading order cost is 2SRIn operations. The overall cost of
each outer iteration (updating each mode once) is O(SR

∑
n In).

3.2.2. Coherence in CPRAND. The effectiveness of CPRAND depends on
the coherence of coefficient matrix Z(n). Since Z(n) is formed as the Khatri-Rao
product of factor matrices, it is natural to ask what effect the Khatri-Rao product
has on coherence.

More rigorously we now show that there is, at the very least, a multiplicative
reduction in coherence when we form Z(n). We begin by bounding the coherence
of the Kronecker product and use this to bound the coherence of the Khatri-Rao
product.

Lemma 3. Given A ∈ RI×J and B ∈ RK×L, µ(A⊗B) = µ(A)µ(B).

Proof. We take the reduced QR factorizations of the two terms and then apply (3):

A⊗B = QARA ⊗QBRB = (QA ⊗QB)(RA ⊗RB)

This is a reduced QR factorization of A ⊗ B, and the Q factor has rows QA(i, :) ⊗
QB(j, :) for every possible pair (i, j). We know through simple arithmetic that ‖a⊗
b‖ = ‖a‖‖b‖, so the max row norm of QA⊗QB is the product of the max row norms
of QA and QB .

Lemma 4. Given A ∈ RI×J and B ∈ RK×L, µ(A�B) ≤ µ(A)µ(B).

Proof. We again take the reduced QR factorizations of the two terms and then
apply (4):

A�B = QARA �QBRB = (QA ⊗QB)(RA �RB).

8

We then take the QR decomposition of the second term:

(QA ⊗QB)(RA �RB) = (QA ⊗QB)QRRR = Q̂RR.

The reduced Q term for A�B is Q̂ = (QA ⊗QB)QR, so the norm of row i in Q̂ is

l̂i, the ith leverage score of A�B. Letting q̂T be row i of QA ⊗QB ,

l̂i = ‖q̂T
i QR‖ = ‖QT

Rq̂i‖ ≤ ‖QT
R‖‖q̂i‖.

QT
R has orthonormal rows, so ‖QT

R‖ = 1, yielding:

µ(A�B) = µ(Q̂) = max
i
l̂i ≤ max

i
‖q̂i‖ = µ(QA ⊗QB) = µ(A)µ(B).

Using the notation of the prior proof, the exact coherence expands to:

µ(A�B) = max
i

√
q̂T
i QRQT

Rq̂i,

where the amount of truncation in QR corresponds to how loose the inequality is.
This bound is tight, e.g., for A = (1, 1)T and B = (1,−1)T, but we typically see a
large factor of coherence reduction.

3.3. CPRAND-MIX. Lemma 4 shows that the Khatri-Rao product inherits
incoherence from its factors. However, if the individual factor matrices happen to be
highly coherent, CPRAND may fail to converge. We can prevent this by mixing the
terms before sampling occurs, as in Algorithm 5. Consider the least squares problem
in CP-ALS in (11). Recall the FJLT introduced in subsection 2.2. We could apply
such a transformation directly to the inner iteration before sampling, yielding

arg min
A(n)

‖FDZ(n)A(n)T −FDX(n)‖F ,

where D is a diagonal random sign matrix and F is the FFT matrix. However, this
would involve mixing the matricization of X in each mode, as well as forming and
mixing the full Khatri-Rao product at each iteration. Instead of mixing the rows of
the entire Khatri-Rao product Z(n), we mix the rows of each factor A(m) individually.
Using the distributive property in equation (4), we see that this is equivalent to
applying a Kronecker product of mixing terms:

Ẑ(n) =

1⊙
m=N
m6=n

FmDmA(m) =

 1⊗
m=N
m 6=n

FmDm

Z(n) =

 1⊗
m=N
m6=n

Fm

 1⊗

m=N
m 6=n

Dm

Z(n).

Applying this operation to the CP least squares problem leads to the mixed formula-
tion of the least squares problem:

(12) arg min
A(n)

∥∥∥∥∥∥∥
 1⊗

m=N
m 6=n

FmDm

Z(n)A(n)T −

 1⊗
m=N
m 6=n

FmDm

XT
(n)

∥∥∥∥∥∥∥
F

.

The Kronecker product preserves orthogonality (unitarity), so (12) is equivalent to
(11).

9

Note that while we do not prove that applying uniform sampling to the columns
of (12) is an FJLT (we conjecture it is), we know that µ(Ẑ(n)) is upper bounded
by Lemma 4, so we expect uniform sampling to be sufficient for an accurate approxi-
mate solution. Using equation (5) we can see that the second term of (12) is equivalent
to

(13)
(
DnF∗nX̂(n)

)T
, where X̂ = X×1 F1D1 · · · ×N FNDN ,

where we note that Dn is its own inverse, Fn is unitary in the case of the FFT, and
the asterisk denotes the conjugate transpose. Using a uniform sampling matrix S, our
reduced problem has the form

(14) arg min
A(n)

∥∥∥∥(SẐ(n)
)

A(n)T −DnF∗n
(
SX̂T

(n)

)T∥∥∥∥
F

.

This approach is presented as CPRAND-MIX in Algorithm 4. We highlight two
computational optimizations in Algorithm 4. First, by (13), we can apply a single
upfront mixing of the tensor in all modes in a preprocessing step (line 5). Then, at each
inner iteration for mode n, we unmix the tensor in only mode n. Furthermore, this
unmixing can be done after the columns of X̂(n) are sampled, as shown in line 10.
Second, we can avoid mixing the entire Khatri-Rao product matrix at each step
because only one factor matrix changes each iteration. Thus, we mix the nth factor
matrix to produce Â(n) in line 13 only once per outer iteration, immediately after
computing A(n). Then, we can sample the mixed Khatri-Rao product without forming
it explicitly using Algorithm 2.

Algorithm 4 CPRAND-MIX

1: procedure CPRAND-MIX(X, R, S) . X ∈ RI1×···×IN

2: Initialize factor matrices A(m), m ∈ {2 . . . N}
3: Define random sign-flip operators Dm and unitary matrices Fm, m ∈ { 1, . . . , N }
4: Mix factor matrices: Â(m) ← FmDmA(m), m ∈ {2 . . . N}
5: Mix tensor: X̂← X×1 F1D1 · · · ×N FNDN

6: repeat
7: for n = 1, . . . , N do

8: Define sampling operator S ∈ RS×
∏

m 6=n Im

9: ẐS ← SKR(S, Â(N), . . . , Â(n+1), Â(n−1), . . . , Â(1))

10: X̂T
S ← DnF∗n

(
SX̂T

(n)

)T

11: A(n) ← arg min
A

∥∥∥ẐSAT − X̂T
S

∥∥∥
F

subject to A being real-valued

12: Normalize columns of A(n) and update λ

13: Â(n) ← FnDnA(n)

14: end for
15: until termination criteria met
16: return λ, factor matrices {A(n) }
17: end procedure

Next, we point out a subtlety within Algorithm 4 due to our use of the FFT,
which is complex valued. Assuming the input tensor is real valued, we seek a CP
decomposition that is also real valued. However, the least squares problem in line 11
involves complex-valued matrices, and the solution can be also be complex valued. We
note that if the least squares problem is mixed but not sampled, and if the Khatri-Rao
product is full rank, then the solution would still be real valued. However, because
sampling implies that we are solving the original least squares problem approximately,

10

the solution can drift into the complex plane. In order to maintain a real-valued CP
approximation, we solve the least squares problem over only real values by using the
equivalence

(15) arg min
x∈Rn

‖Ax− b‖2 = arg min
x∈Rn

∥∥∥∥[<(A)
=(A)

]
x−

[
<(b)
=(b)

]∥∥∥∥
2

,

where A ∈ Cm×n and b ∈ Cm. When a real-valued orthogonal matrix is used instead
of the FFT (such as the DCT or the WHT), the aforementioned subtlety can be
ignored. In fact, the algorithm can be further simplified. We note that if we write
the new ALS update in terms of the pseudoinverse we get the following:

A(n) ← DnF∗n(X̂(n)S
T)[(SẐ(n))T]†.

This update implies that we store the unmixed factor matrices, mix them before
each iteration, and then unmix afterwards. We can actually avoid this process by
maintaining the factor matrices in their mixed state for the duration of the algorithm:

Â(n) ← FnDnA(n) = X̂(n)S
T [(SẐ(n))T]†.

This transformation yields the following least squares problem:

arg min
Â(n)

∥∥∥Â(n)(SẐ(n))T − X̂(n)S
T
∥∥∥
F
,

which is equivalent to line 8 in Algorithm 3, just in the mixed basis. Thus, in the case
of real-valued transforms, it is sufficient to mix X, call CPRAND as a subroutine, and
then unmix the solution factors, as shown in Algorithm 5.

Algorithm 5 CPRAND-PREMIX

1: function CPRAND-PREMIX(X, R, S) . X ∈ RI1×···×IN

2: Define random sign-flip operators Dm and orthogonal matrices Fm, m ∈ { 1, . . . , N }
3: Mix: X̂← X×1 F1D1 × · · · ×N FNDN

4: [λ, {Â(n)}] = CPRAND(X̂, R, S)
5: for n = 1, . . . , N do
6: Unmix: A(n) = DnFT

nÂ(n)

7: end for
8: return λ, factor matrices {A(n) }
9: end function

3.3.1. Cost. In the case of real-valued orthogonal transformations, as we show
in Algorithm 5, we can implement CPRAND-MIX using CPRAND along with pre-
processing (mixing) and post-processing (unmixing) steps. The initial mixing of the
tensor in line 3 requires significant upfront cost, but the unmixing of the factor ma-
trices in line 6 is relatively cheap. Compared to Algorithm 3, the dominant extra cost
(of line 3) is

(16) O

(
N∑

k=1

∏
m

[Im log Ik]

)
= O

((∏
m

Im

)
log

(∏
m

Im

))
.

The cost of Algorithm 4 includes the mixing cost given by (16), and the cost per
iteration is slightly larger than Algorithm 3. In particular, due to the complex values

11

and complex arithmetic, the cost of each operation is increased by a constant factor
between 2 and 4. The leading order cost of Algorithm 3 comes from solving the least
squares problem in line 8, and the leading order cost of Algorithm 4 also comes from
solving the least squares problem (line 11). Following (15), the least squares problem
is solved in real arithmetic, but the number of rows of the coefficient matrix is twice
as many as in Algorithm 3. This yields an increase in the leading order per-iteration
cost of a factor of 2 compared to CPRAND.

3.4. Stopping Criteria. Given the original tensor X and CP approximation
X̃ from (6), the relative residual norm is ‖X− X̃‖/‖X‖. However, the sampled least
squares computations are so inexpensive that checking this stopping condition can
take longer than the rest of the iteration. This is particularly true for out-of-core
problem sizes [40]. Thus, we propose a different sampling-based method for computing
an approximate stopping criterion and present a theoretical rationale for why it works.
One tempting strategy would be to track the norm of the residual within the sampled
least squares computation. Unfortunately, the variance of this value is very high
due to the small number of fibers sampled from X. Thus, we propose an alternative
approach.

We use the notation [N] to denote the set {1, . . . , N}. For a given natural number
P̂ , let

Î ⊂ I ≡ [I1]⊗ [I2]⊗ · · · ⊗ [IN]

be a uniform random subset of P̂ indices of X. Let i = (i1, i2, . . . , iN) denote a

multiindex, i.e., xi = xi1i2···iN . Define E = X− X̃, and observe that

‖E‖2 =
∑
i∈I

e2i = Pµ where P =
∏
n

In and µ = mean { e2i | i ∈ I } .

We can approximate the mean µ with the mean µ̂ of the subset of entries in Î:

µ ≈ µ̂ where µ̂ = mean { e2i | i ∈ Î } .

The relative residual norm can be estimated as

‖E‖
‖X‖

=
(Pµ)1/2

‖X‖
≈ (Pµ̂)1/2

‖X‖
.

We can now apply the multiplicative Chernoff-Hoeffding bounds if we make some
assumptions on our data [25]. Assume the errors are drawn from a finite distribution
and µ is the true mean (or close enough to it). This is a reasonable assumption is
we assume that the CP models elicits the low-rank structure which is contaminated
by noise. We do not make assumptions about what the specific distribution is. Our
samples are assumed to be i.i.d. Let µmax = maxi(e

2
i) be the maximum allowable

value. For any γ > 0 we have the following very conservative upper- and lower-tail
bounds:

Pr{µ̂ ≥ (1 + γ)µ} ≤ exp

(
−2γ2µ2P̂

µ2
max

)
,

Pr{µ̂ ≤ (1− γ)µ} ≤ exp

(
−γ

2µ2P̂

µ2
max

)
.

(17)

We can then write this in terms of the the residual norm:

12

Lemma 5. For any γ ∈ (0, 1), we can bound the relative difference in the approx-
imated and true error as

Pr

{√
1− γ ≤ (Pµ̂)1/2

‖E‖
≤
√

1 + γ

}
≤ exp

(
−2

γ2µ2P̂

µ2
max

)
.

Proof. Multiply both sides within the probability terms of (17) by P , take the
square root and simplify.

Let 0 ≤ µ ≤ 0.5 (if the error is higher than this we are far from terminating). Let√
1 + γ = 1.05; that is, we allow our estimate to be wrong by 5% multiplicatively.

Then γ = 0.1025. A confidence of 98% is maintained when P̂ ≥ 372µ2
max. The

fortunate aspect of this conservative bound is that we expect µmax to become smaller
and smaller as the ALS algorithm proceeds. In general, we usually assume µmax = 1.

The cost of computing P̂ µ̂ to get an estimate of the error is O(P̂RN) flops. For
each sampled entry of the tensor, the corresponding entry of the model tensor must
be computed via a sum of R terms, each with N + 1 multiplicands (including the
weights). For comparison, the cost of computing the exact error is O(R

∏
n In) flops.

The relative residual of CP-ALS is guaranteed to decrease at each iteration, mak-
ing a termination condition easy to specify (stop when the change in error drops below
a threshold). Termination of CPRAND is more complicated because neither the true
nor approximate error are guaranteed to decrease at each iteration. In practice, the
simplest strategy is to store the lowest relative error achieved so far, and terminate
when a particular number of iterations have elapsed without any reduction in this
minimum.

4. Experiments. We evaluate the performance of the randomized algorithms on
both synthetic and real-world data. The synthetic experiments enable us to generate
tensors from known latent factors and thus measure whether the ground truth is
recovered. We also consider real data sets which are free of the simplifying assumptions
of synthetic data (e.g., Gaussian noise) and demonstrate our algorithms’ effectiveness
in practice.

All experiments are run on MATLAB R2016a using Tensor Toolbox v2.6 [4, 5, 6]
on an Intel Xeon E5-2650 Ivy Bridge 2.0 GHz machine with 32 GB of memory. The
CP-ALS implementation we compare against incorporates the recent optimizations of
Phan et al. [30], without which it would be several times slower.

4.1. Computational Time. Our first experiments ignore the convergence of
the randomized methods and compare only the computational time for each itera-
tion. Although the randomized methods will typically require more iterations, these
experiments enable us to understand the difference in costs for the least squares solves
and the initialization. We consider convergence and solution quality in subsequent
subsections.

Figure 3 shows how much cheaper each iteration of the ALS algorithm is when
using the randomized least squares solvers. We consider third- and fifth-order tensors
of various sizes, where the dimensions of all modes are the same. We used a target
rank R = 5 in all experiments. We sampled S = 90 rows for the randomized methods,
although the exact number of rows makes little difference in runtime. For each size, we
compute the mean time for 100 iterations over three tensors. The convergence checks
are entirely omitted in the computation and do not contribute to the timings. Since
we do a fixed number of iterations, the initial guesses are irrelevant. We see that as the
size increases, the relative speedup of the randomized algorithms also increases to as

13

much as 50× for order-3 tensors over 500× for order-5 tensors. This is mainly due to
the per-iteration computational cost of the randomized algorithms being O(NRIS),
where N is the order of the tensor and I is the size of each dimension, as derived in
subsection 3.2.1. For comparison, the cost of CP-ALS is O(NRIN) flops per iteration.

0 200 400 600 800

10−2

10−1

100

Dimension Size (I)

T
im

e
p

er
It

er
a
ti

o
n

(s
)

CP-ALS

CPRAND

CPRAND-MIX

(a) Order 3: I × I × I

20 40 60

10−2

10−1

100

Dimension Size (I)

T
im

e
p

er
It

er
a
ti

o
n

(s
)

CP-ALS

CPRAND

CPRAND-MIX

(b) Order 5: I × I × I × I × I

Fig. 3. Mean time per iteration of CP-ALS, CPRAND and CPRAND-MIX for 3rd- and 5th-
order tensors. The target rank is R = 5. The randomized methods use S = 90 sampled rows. Each
dot represents the mean iteration time for three different tensors over 100 iterations (no checks for
convergence).

Figure 4 demonstrates how much faster it is to compute the stopping criterion
based on the sampling approach described in subsection 3.4. In this experiment, we
compute the model fit both exactly and using P̂ = 214 samples for order-3 and order-5
tensors. The tensors and models are generated synthetically, with a prescribed fit of
95%. For these problems, the largest relative error between the true and sampled fit
is less than 10−3, which is more than enough accuracy to make the correct decision
on when to stop the iteration. For both order-3 and order-5 tensors, we see speedups
of over two orders of magnitude for the largest problems, and we can expect larger
speedups for larger problems because the number of flops required by the sampling
method is independent of the tensor dimensions.

We also consider the initialization costs of the methods. For CPRAND-MIX, we
need to apply an FFT to the fibers of the tensor in each mode. If we use the HOSVD
initialization for CP-ALS, then we need to consider its cost. We note that we do
not actually compute the full HOSVD, but rather the leading left singular vectors of
the unfolded tensor X(n) for n = 2, . . . , N . Figure 5 shows the preprocessing time
for third- and fifth-order tensors of various sizes, again where all modes have the
same dimension. The target rank (needed for HOSVD) is R = 5. Each data point
is the mean time over 3 trials of 100 iterations each for the given size. The cost
of preprocessing for CPRAND-MIX is O(NIN log I), as derived in subsection 3.3.1,
while the cost of HOSVD to initialize CP-ALS(H) is O(NIN+1) (we use an iterative
eigenvector solver on the Gram matrix of each mode). While the cost of HOSVD is
generally larger than mixing the tensor with FFTs, the data access patterns of the
methods are similar, and we observe very similar timing results. We mention that
CP-ALS requires a good starting point, like HOSVD, to ensure good performance.
However, the randomized methods gain no advantage from using the HOSVD initial
guess so they use a random initialization.

14

0 200 400 600 800
10−3

10−2

10−1

100

Dimension Size (I)

T
im

e
p

er
F

it
C

h
ec

k
(s

) Exact

Sampled

(a) Order 3: I × I × I

20 40 60

10−2

10−1

100

Dimension Size (I)

T
im

e
p

er
F

it
C

h
ec

k
(s

) Exact

Sampled

(b) Order 5: I × I × I × I × I

Fig. 4. Termination criterion (fit check) time of exact (for CP-ALS) and sampled (for
CPRAND and CPRAND-MIX) for 3rd- and 5th-order tensors. The target rank is R = 5. The

estimate of the fit is computed using P̂ = 214 sampled entries. Each dot is the mean time to
compute fit over 10 trials.

0 200 400 600 800

10−2

10−1

100

101

Dimension Size (I)

P
re

p
ro

ce
ss

in
g

T
im

e
(s

)

HOSVD

MIX

(a) Order 3: I × I × I

20 40 60

10−2

10−1

100

101

Dimension Size (I)

P
re

p
ro

ce
ss

in
g

T
im

e
(s

)

HOSVD

MIX

(b) Order 5: I × I × I × I × I

Fig. 5. Initialization time comparison between MIX (for CPRAND) and HOSVD (for CP-
ALS) for 3rd- and 5th-order tensors. The target rank is R = 5 for HOSVD. Each dot represents
the mean of 3 trials.

4.2. Synthetic Data. For our experiments on synthetic tensors, we use various
generation parameters. We create tensors based on known randomly-generated weight
vectors (λ) and factor matrices ({A(n) }). In this way, we know the true solution.
We consider 3rd and 4th-order problems, i.e., N ∈ { 3, 4 }. In the 3rd-order case, we
set the size to be 400 × 400 × 400, and in the 4th-order case we set the size to be
90× 90× 90× 90. For all experiments, we set the rank to be Rtrue = 5. The weight
vector λ ∈ RRtrue has entries drawn uniformly from [0.2, 0.8]. The factor matrices
A(n) ∈ RIn×Rtrue are randomly generated as described in [37] so that the columns
have collinearity C, which means that any two column vectors from the same factor
matrix satisfy

C =
a
(n)T
r a

(n)
s

‖a(n)T
r ‖‖a(n)

s ‖
.

15

Intuitively, higher collinearity corresponds to greater overlap between factors, while
geometrically it corresponds to smaller angles between factor vectors. High collinear-
ity makes the original factors harder to recover using CP-ALS, and can introduce
swamping behavior [31]. In our experiments we generate tensors with C ∈ { 0.5, 0.9 }.
Using the synthetic weight vectors (λ) and factor matrices ({A(n) }), the tensor we
are trying to recover is

Xtrue =

Rtrue∑
r=1

λr a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r .

Finally, we add noise to obtain the observed tensor. Let N ∈ RI1×I2×···×IN be a noise
tensor with entries drawn from a standard normal distribution. Then our observed
tensor is

X = Xtrue + η

(
‖Xtrue‖
‖N‖

)
N,

where the parameter η ∈ { 0.01, 0.10 } is the amount of noise. Generally, the rank is
unknown, so we run the algorithms with R ∈ {Rtrue, Rtrue + 1 }. The parameters for
the experiments are summarized in Table 1.

Table 1
Parameters varied in synthetic experiments.

Parameter Values
Order & Size (N, I) { (3, 400), (4, 90) }

True # Components (Rtrue) 5
Collinearity (C) { 0.5, 0.9 }

Noise (η) { 0.01, 0.1 }
Model # Components (R) { 5, 6 }

We use the standard score metric to measure how well the ground truth is re-
covered by a CP decomposition in those cases where the true factors are known [37].
The score between two rank-one tensors X = a ◦b ◦ c and Y = p ◦ q ◦ r is defined as:

(18) score(X,Y) =
aTp

‖a‖‖p‖
× bTq

‖b‖‖q‖
× cTr

‖c‖‖r‖
.

The λ values are ignored. For R > 1, we average the scores for all pairs of components.
Alas, the CP decomposition does not recover factors in their original order, so the
score is the maximal average across all permutations of rank-one components.

We use the fit to determine convergence, and the fit is defined as

F = 1− ‖X− X̃‖
‖X‖

.

For a tensor with η noise, we expect the final fit to be at best 1−η. In the presence of
noise, maximizing fit does not exactly correspond to maximizing score. The method
terminates when either the number of iterations exceeds 200, the change in fit goes
below 10−4 (|Ft − Ft−1| ≤ 10−4), or the fit is within 20% of the noise level (Ft ≥
1 − 1.2η). All methods use the same criteria for termination with the exception
that CPRAND and CPRAND-MIX use an approximation to the fit, as discussed
in subsection 3.4. Specifically, these methods compute the error at P̂ entries and use

16

that to estimate the overall fit. We use P̂ = 214 in these experiments, and we stress
that the same P̂ entries are used across all iterations.

As mentioned previously, we use the CP-ALS method provided by the Tensor
Toolbox for MATLAB. For CPRAND and CPRAND-MIX, the number of rows sam-
pled for each least squares solve is S = 80 for R = 5 and S = 108 for R = 6. Here we
stress that we make a new random selection of rows at each iteration.

● ●●● ● ●●● ●● ● ● ●●● ● ●●● ●●●● ●●● ●●●●● ●● ●● ●●● ●●● ●●● ● ●●● ●●●● ●

●●●●●●●●●●●●●●●●

●●●●●●●● ●●●●●●●●● ●

0 5 10 15 20 25 30

Time (s)

●●●

● ●●●● ●● ●● ●●● ●● ●●● ● ●●● ●

● ●● ●● ●● ●●● ●● ●● ● ●●●● ●●●● ● ●● ●● ● ●● ●

● ● ● ●● ●●●●● ●●●●●● ● ● ●●●●●● ●●

0.6 0.7 0.8 0.9 1.0

Score

●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●● ●●● ●●●● ●● ●●●●●●●●●●● ●●

●●●● ●●●● ●●● ●●●●●●●●●●●●●●● ●● ●●● ●●●●●●●●●●●●

0 50 100 150 200

Iterations until Termination

●●●

●● ●● ●●● ●● ●●●● ●●●● ● ●● ●

●● ●●● ● ●● ●● ● ●● ●● ●● ● ●●● ● ●●● ●● ●● ●● ● ●● ● ●●● ●●● ●●●●● ●● ●● ● ●● ● ●●●●● ● ●●● ●● ● ● ● ●●●●●

● ● ●● ●●●●● ●● ●●● ● ● ●● ●●●●●● ●● ●● ● ● ●● ●● ●● ●●● ●● ●●● ●● ●● ● ●●● ● ● ●●●●● ●

0.970 0.975 0.980 0.985 0.990

Fit
CPRAND−MIX CPRAND CP−ALS(R) CP−ALS(H)

(a) Noise η = 1%

● ●● ● ●●● ● ●● ● ●●● ● ●●● ●● ●● ●●●● ● ●●● ● ●●● ●● ●●● ● ●●

●●● ●●● ●● ●●●●●● ●●●●●●● ●●● ●● ●●●● ●● ●● ●

●●● ● ●● ●● ●● ●● ●●● ●●● ●●●● ●● ●●●●●●●● ●● ●● ●●● ●● ●●● ●●●● ●● ● ●●●

0 2 4 6 8 10
Time (s)

0.2 0.4 0.6 0.8 1.0
Score

●●● ● ●●● ●● ●●● ●● ●●● ●●● ●● ●● ●● ●●●● ● ●● ●● ●● ●●●●● ● ●●● ●●●● ●●

●●● ●●● ●● ●●●● ●● ●●●● ●●● ●●● ●●● ● ●● ● ●● ●● ● ●● ● ●●●

●●● ●● ● ●● ● ●● ● ●●● ● ● ●● ● ●● ●●● ●●● ●●●●● ●●●● ●●●●●● ●●● ●●●● ● ●● ● ●● ● ● ●● ●●

0 50 100 150 200
Iterations until Termination

●●●●●●

●●● ● ●●●●● ●●●●● ●●● ●●●● ●●● ●●● ● ●●●● ●●● ●●●● ●●●●● ●●●● ●●●●●●●●● ●●●●●●●●

●● ● ●

● ●●● ●● ●● ●● ●

0.86 0.87 0.88 0.89 0.90
Fit

CPRAND−MIX CPRAND CP−ALS(R) CP−ALS(H)
(b) Noise η = 10%

Fig. 6. Results on 200 synthetic tensors of size 400× 400× 400 with Rtrue = 5 and collinearity
C ∈ { 0.5, 0.9 } in the factors. We stop when the number of iterations exceeds 200, the fit stagnates
|Ft − Ft−1| ≤ 10−4, or the fit exceeds a preset threshold Ft ≥ 1− 1.2η. Each of the four methods is
tested with target ranks R ∈ { 5, 6 } and three random starts, except for CP-ALS (H) which as the
one fixed start. We report results from all starts (2000 in all). For CPRAND and CPRAND-MIX,

we use P̂ = 214 random entries to check convergence and the number of row samples in the least
squares solve is S = 80 for R = 5 and S = 108 for R = 6.

17

● ● ●●●● ●●● ● ●●● ● ●●● ● ●●● ●● ● ●●● ●●●● ●

●●●●●●●

0 10 20 30 40 50 60

Time (s)

●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●

● ● ●● ●● ● ●●● ●● ●●●●● ● ●●● ●●

●● ●●● ●● ●●●● ●● ●●● ●● ● ●●● ●●●● ● ●● ● ●● ●●● ●●●●● ●●

● ● ●●● ● ●●●● ●● ● ● ●● ●

0.96 0.97 0.98 0.99 1.00

Score

● ●●●●● ●● ●● ●●● ● ●●● ● ●●● ●● ● ●●● ● ●●● ● ●

● ●● ● ● ●

0 50 100 150 200

Iterations until Termination

●●● ● ● ●● ●● ●●●●

●● ● ●●●●● ● ●●● ●●● ●●● ●● ●●●●●●●● ● ● ●●● ● ● ●●● ● ● ●● ●

● ●● ●●● ●●● ● ●●●●● ● ●● ●

0.980 0.982 0.984 0.986 0.988 0.990

Fit
CPRAND−MIX CPRAND CP−ALS(R) CP−ALS(H)

(a) Noise η = 1%

● ●●● ●● ●● ●● ●●● ●● ● ●● ●●●●● ●●●● ● ●● ●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●

●●●●●●● ●●●●●●●●●●●● ●●●●●●

0 2 4 6 8

Time (s)
0.2 0.4 0.6 0.8 1.0

Score

● ●● ●● ●●●● ●● ● ●● ●●●● ●● ● ●● ●●●●● ●●●● ●●● ● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●● ●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●● ●● ●●●●●●● ● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●

●● ●● ● ●●● ●● ●●●●● ●●●

0 50 100 150 200

Iterations until Termination

●

●● ●● ● ● ● ● ●●●●● ● ● ●●● ●● ● ● ●●● ●● ●●●●●●● ●●● ●●●●●● ● ● ●●● ●●●●●● ● ●●● ●●●● ● ● ●●● ●●● ●●● ● ●● ●●●● ●● ●●● ● ●

● ●●●

0.865 0.875 0.885 0.895

Fit
CPRAND−MIX CPRAND CP−ALS(R) CP−ALS(H)

(b) Noise η = 10%

Fig. 7. Results on 200 synthetic tensors of size 90×90×90×90 with Rtrue = 5 and collinearity
C ∈ { 0.5, 0.9 } in the factors. We stop when the number of iterations exceeds 200, the fit stagnates
|Ft − Ft−1| ≤ 10−4, or the fit exceeds a preset threshold Ft ≥ 1− 1.2η. Each of the four methods is
tested with target ranks R ∈ { 5, 6 } and three random starts, except for CP-ALS (H) which as the
one fixed start. We report results from all starts (2000 in all). For CPRAND and CPRAND-MIX,

we use P̂ = 214 random entries to check convergence and the number of row samples in the least
squares solve is S = 80 for R = 5 and S = 108 for R = 6.

For each possible combination of tensor order/size, collinearity, and noise level
(listed in Table 1), we generate 50 synthetic tensors. In Figures 6 and 7, we show
box plots comparing CPRAND and CPRAND-MIX with random initialization versus
CP-ALS with HOSVD (H) and random (R) initialization. The box plots show a box
that indicates the 25th-75th quartiles, and the median is indicated by a vertical line
inside the box. Outliers are displayed as circles. Each subfigure shows the results

18

on 100 distinct tensors, i.e., fixed order/size and noise level with 50 tensors each for
C ∈ { 0.5, 0.9 }. We test each method with R ∈ { 5, 6 }. For random initialization, we
have three starting points. Therefore, each row in the box plot is the result of 600
runs for CPRAND, CPRAND-MIX, and CP-ALS (R) and 200 runs for CP-ALS (H).
For each trial we measure the time, number of outer iterations, fit, and score at
termination.

First, we consider the quality of the solutions in terms of the fit (always in the
range [0, 1]), i.e., the objective function being maximized. This is shown in the lower
right plot of each subfigure, and we report the true final fits even if approximate fits
are used in the algorithm. The median fits are essentially identical, with a maximum
difference of 0.006. The CP-ALS (R) has the highest variance in the fit since it is
highly dependent on the quality of the starting point. The CPRAND and CPRAND-
MIX have less variance in their fits. In general, the CPRAND methods are much less
sensitive to starting point — so much so that we do not even include results using the
HOSVD initialization.

Second, because these problems are synthetic, we know the true underlying factors
and so can use the score from (18), with 1.00 being a perfect match. The scores are
shown in the upper right plot of each subfigure. We note that we see little difference
between CPRAND and CPRAND-MIX in terms of quality because these artificially
generated problems do not have high coherence. At low noise (1%), the methods all
do well, with medians above 0.97 for CPRAND, CPRAND-MIX, and CP-ALS(H) in
Figure 6a and above 0.99 for all methods in Figure 7a. We see a striking difference,
however, at the 10% noise level. The medians for CPRAND and CPRAND-MIX
are above 0.85, whereas CP-ALS are below 0.73 in Figure 6b. Similarly, medians
for CPRAND and CPRAND-MIX are above 0.92, whereas CP-ALS are below 0.89
in Figure 7b. We contend that the randomized methods are more robust because
they avoid the problem of overfitting to noise thanks to the randomization. This is
evidenced by the fact that all methods achieve similar fit but the randomized methods
tend to achieve better score.

Third, we look at the number of iterations, shown in the lower left plot of each
subfigure. The median number of iterations for the randomized methods are always
higher than CP-ALS (H), since it has the advantage of a good starting point. This
is because the randomized methods generally make less progress per iteration. With
the exception of CP-ALS (H), every method hit the maximum number of iterations
(200) at least once.

Fourth, we consider runtime, where we expect to get the most benefit. This are
shown in the upper left plot of each subfigure. In the low noise (1%) case, we see an
improvement in median runtime of 10X for CPRAND versus CP-ALS (R) in Figure 6a
and 30X for the same pair in Figure 7a. The cost of the preprocessing for CPRAND-
FFT means it may be about 3X slower than CPRAND without mixing, depending on
the number of iterations. In the high noise (10%) case, the difference in time is less
dramatic, but we have the improvement in scores discussed above.

In summary, the synthetic results suggest that the CPRAND and CPRAND-MIX
methods produce solutions that are at least as good and sometimes much better than
CP-ALS in terms of quality (fit and score). Moreover, the randomized algorithms are
at least as fast as the standard methods and sometimes much faster.

4.3. COIL Data Set. COIL-100 is an image-recognition data set that contains
images of objects in different poses [27] and has been used previously by Zhou, Ci-
chocki, and Xie [43] as a tensor decomposition benchmark. The problem is set up as

19

Table 2
CPRAND-MIX speedup and accuracy on COIL tensor of size 128× 128× 3× 7200. Reporting

median runtimes over five trials with random starting points, R = 20 components, P̂ = 214 entries
for approximate fit, and varying number of samples S. Speedup compared against median runtime
of CP-ALS over five trials with random starting points.

Samples (S) Speedup Fit
400 8.38 0.674
450 7.98 0.676
500 6.63 0.677
550 7.29 0.678
600 4.75 0.680
650 4.73 0.680
700 4.77 0.680
750 4.52 0.681
800 3.70 0.682
850 4.90 0.678
900 4.95 0.679
950 4.22 0.682

1000 2.84 0.684
CP-ALS 1.00 0.686

follows. There are 100 different object classes, each of which is imaged from 72 differ-
ent angles. Each image is sized to 128× 128 pixels in three color channels (RGB). If
we discard the ground truth, we have a 128×128×3×7200 tensor of size 2.8GB. The
irregular dimensions and large size of the data make for an interesting CP benchmark.

In our experiment, we compare the runtimes of CP-ALS (R) and CPRAND-MIX.
Unlike the synthetic experiments, this experiment required mixing to converge for
a reasonable number of samples. We use R = 20 factors. We ran five trials of
CP-ALS and terminated when the change in fit went below 10−4. This yielded a
median runtime of 204 seconds and a fit of 0.686. For CPRAND-MIX, we terminate
when the fit fails to improve for five consecutive iterations and vary the number of
samples (S). For each S, we run five trials with random starting points. We compute
the approximate fit for CPRAND-MIX with sample size P̂ = 214. We vary S and
show the results in Table 2. The fits are very close to the fit obtained by CP-ALS,
with speedups as high as 8×. The speedup does not decrease monotonically with
S, since differences in the number of iterations to converge may have some impact.
Nevertheless, increasing the number of samples increases the cost per iteration and
thus reduces the overall speedup on average.

4.4. Hazardous Gases. Vervliet and De Lathauwer [40] demonstrate their ran-
domized block sampling approach for CP on a hazardous gas classification task [39],
so we compare on the same dataset. The data comes from 899 experiments (actually
900 experiments, but one is omitted) where one of three different hazardous gases
(carbon monoxide, acetaldehyde, or ammonia) is released into a wind tunnel and its
concentration is measured across 72 sensors for 25,900 time steps. We use the exact
same preprocessing script as Vervliet and De Lathauwer [40]: missing values are in-
terpolated and the data is normalized, cropped, and centered. The resulting tensor
of size 25,900× 72× 899 requires 13.4 GB storage. The first mode corresponds to the
25,900 time steps, the second mode corresponds to the 72 sensors, and the third mode
corresponds to the 899 experiments. We compute the CP decomposition with R = 5
(as in [40]). We run CP-ALS with both random (R) and HOSVD (H) initialization.
Due to the size of the tensor, we run CPRAND without mixing, using random ini-
tialization, a sample size of S = 1000 rows per least squares solve, and using P̂ = 214

20

Table 3
Results over ten trials on a 25,900× 72× 899 tensor representing experiments with three haz-

ardous gases. We use R = 5 factors, and stop when the fit stagnates, i.e., |Ft − Ft−1| ≤ 10−4 for
CP-ALS, or when estimated fit fails to improve after 10 iterations of CPRAND. For CPRAND, we
use P̂ = 214 random entries to check convergence and S = 1000 row samples in each least squares
solve. We run k-means on three columns of the experiment factor matrix with a target of three
clusters. Using the k-means output we report the median proportion of 899 experiments that are
misclassified (according to which hazardous gas was used).

Method Median Time (s) Median Fit Median Classification Error
CPRAND 53.6 0.715 0.61%
CP-ALS (H) 578.4 0.724 0.67%
CP-ALS (R) 204.7 0.724 0.67%

entries for the stopping condition. The ALS methods terminate when change in fit
goes below 10−4 (i.e., |Ft−Ft−1| ≤ 10−4), and CPRAND terminates when estimated
fit fails to improve after ten iterations. We run 10 trials each of CPRAND and CP-
ALS(R), and a single trial of CP-ALS(H). The median run times are listed in Table 3,
and we can see that the median time for CPRAND is less than one minute. CPRAND
was nearly 4× faster than CP-ALS(R) and achieves roughly the same classification
error. CPRAND is 10× faster than CP-ALS(H), which incurs a high initialization
cost. We cannot compare runtimes with Vervliet and De Lathauwer [40] since they
are on a different computational architecture, but they report a runtime of less than
three minutes for their method, which is in the same ballpark.

We next consider the quality of the decomposition. Vervliet and De Lathauwer
manually selected three factors (column vectors) from the experiment factor matrix
and used those to classify the experiments according to which of the three gases was
released. We do a similar experiment, except rather than choosing the three vec-
tors manually, we tried all ten (five choose three) possible choices of three vectors
and report on the best one. The rows of this sub-factor matrix can then be thought
of as three-dimensional points. We run k-means on these points and measure the
classification error, which is the percentage of the 899 experiments that are misclassi-
fied. For each trial we performed a single run of k-means with random initialization.
The median fits and classification errors over all trials are shown in Table 3. Both
ALS methods achieve a median classification error of 0.67% (6 misclassified), while
CPRAND achieves a marginally better classification error of 0.61% (5.5 misclassified)
despite a slightly lower fit value. For comparison, Vervliet and De Lathauwer [40] re-
port classification errors of 0.3–0.8% for 100 runs of their randomized block sampling
approach, with the addition of a specialized step criteria; without the specialized step,
their performance degrades to 5% error.

We visualize the factors computed by CPRAND in Figure 8. It is easy to see
that the results can be used to classify the gases. For instance, the first factor clearly
separates the purple gas from the green and red. Similarly, the fourth factor clearly
separates red from the green and purple. The fifth factor is the smallest magnitude
and appears to be a “noise” factor.

5. Related Work. Vervliet and Lauthauwer present a stochastic gradient de-
scent (SGD) algorithm for CP that samples blocks from the original tensor to update
corresponding blocks of the factor matrices [40]. This approach is similar in spirit to
CPRAND, but takes an altogether different approach to the randomization. They use
contiguous samples in the block updates and finer control over step sizes. They also
update only a portion of each factor matrix in each iteration. An interesting contrast

21

Fig. 8. Visualization of the five factors from the 25900 × 72 × 899 hazardous gas tensor, as
computed by CRAND. The factors are sorted by magnitude, from largest at the top to smallest at the
bottom. The magnitude is reflected in the sensor factors (left). The time (middle) and experiment
(right) factors are normalized to unit norm. The three gas types are color-coded in the experiments
factors. All factors in the same mode are plotted on the same y-scale, and the dashed line is zero.

between the two methods can be seen by comparing the factors that are computed in
the example from subsection 4.4. Our factors are shown in Figure 8. The time factors
are much smoother than the factors pictured in [40]. Since the block method updates
only a small subset of each factor at a time, we conjecture that this may explain the
blockiness of the solution. Vervliet and Lauthauwer [40] also propose an inexpensive
stopping condition based on Cramer-Rao bounds, but these require some additional
knowledge about the noise level. Another framework that draws from SGD is Flexi-
FaCT, which targets coupled tensor decompositions for parallel computation [7].

Cheng et al. have recently applied a leverage score-based sampling to the least-
squares step of the sparse CP decomposition by showing how leverage scores of an
unfolded tensor can be estimated by the leverage scores of the factor matrices [10].
This approach is similar to the way that we bound the coherence of Khatri-Rao
products. Reynolds et al. also use randomization within CP-ALS, specifically for the
case of rank reduction, where the input to the algorithm is already in CP format [32].
They use randomization to improve the conditioning of the individual least squares
problems in order to compute better overall approximations. The randomization
makes each iteration of their method more costly, but they observe faster convergence
(and overall running time) than ALS for ill-conditioned problems.

Wang et al. have applied sketching methods to orthogonal tensors with provable
guarantees [41]. Song et al. show that this sketch can be computed without reading
the entire tensor (in sublinear time) under certain conditions [36].

An alternative to sketching is to compress the tensor using lossy methods be-
fore computation. Zhou and Cichocki examine the effectiveness of performing a CP
decomposition on a compressed representation of the data using the lossy Tucker de-
composition to produce a smaller problem size [43]. ParCube [29] compresses the
original tensor by directly sampling and performs a decomposition on the result.

6. Conclusion. We have provided an example of the power of randomized meth-
ods in the context of CP decompositions for dense tensors. As discussed in the related
work (section 5), a few approaches have been recently proposed. Ours is a unique

22

approach that focuses on the least squares subproblem. The advantage of this ap-
proach is that we can leverage existing theory and methodology. Specifically, we have
a practical implementation, using MATLAB and the Tensor Toolbox, that efficiently
employs randomized least squares in the context of CP-ALS.

The least squares subproblems have a special structure that allows for very ef-
ficient solution; however, this still requires formation of the Khatri-Rao matrix and
multiplication with the matricized tensor, which is the primary computational bottle-
neck. In our implementation of the randomized approach, we entirely avoid forming
the Khatri-Rao matrix and so greatly reduce the expense of the least squares solve.
We refer to this method as CPRAND.

It is oftentimes a good idea to apply an FJLT to the least squares problem to
ensure incoherence. We explain how this can be done in a preprocessing step rather
than for every least squares solve. Assuming that we use an FFT in the FJLT, we
have to reverse part of the transformation for each linear solve. However, we need only
apply the inverse transform to the small sampled matrix at trivial cost. We refer to
this method as CPRAND-MIX. A small disadvantage of the FFT is that it transforms
a real-valued problem to be complex-valued, doubling the memory requirement. The
computational cost difference, however, is negligible. On the other hand, we could
use a real-valued transform, but these proved to be slower than the FFT in MATLAB
with no improvement in the quality of the CP decomposition.

Checking the stopping condition is also a significant expense. This is based on
the fit of the model to the original data and so requires forming the Khatri-Rao
matrix, an expense we avoid in the least squares solves. We employ another type of
randomization in this case, based on using just a subsample of the tensor entries for
comparison. Assuming the errors are i.i.d. and drawn from a finite distribution, then
we can approximate the model fit error with reasonable accuracy and substantially
reduced cost, so we employ this stopping condition in our randomized algorithms.

We have demonstrated the benefits of CPRAND and CPRAND-MIX in both
synthetic and real data experiments, including large-scale tensors of up to 13 GB in
size. The randomized methods are overall much faster than CP-ALS for equivalent
quality decompositions. Moreover, the CPRAND methods are much less sensitive to
the initial guess. We conjecture that the randomization prevents getting stuck in a
local minimum caused by overfitting the noise. The CPRAND-MIX is more expensive
to initialize (requiring the application of an FFT in each mode) but has the advantage
of ensuring coherence. We found that mixing was critical for good performance on
the COIL-100 dataset in subsection 4.3 but unnecessary for the hazardous gas dataset
subsection 4.4. The expense of the mixing is roughly equivalent to computing the
HOSVD initialization.

Stopping conditions present an interesting dilemma for any randomized method.
Since each subproblem is now solved inexactly, the fit is no longer monotonically
increasing. In particular, it is difficult to detect when improvement has stagnated.
If we know the amount of noise in advance, we can terminate once the desired fit is
achieved. However, this assumes not only that we know the noise but also that our
model is good in the sense that the data has inherent multilinear structure and the
rank is known. Instead, we propose a modification of the standard stagnation metric:
track the best fit and stop when it fails to improve for more than, say, ten iterations.

Although there is some theory on the number of samples required for least squares
as in (9), they are impractical for most implementations. We lack a rigorous way of
estimating a good sample size. In practice, we have found that a small multiple of R
is sufficient, i.e. 10–100 times R. Clearly, more theoretical work to justify this choice

23

is needed.
Since the CP fitting problem is non-convex, CP-ALS cannot guarantee global

optimality. This is unchanged for randomized methods. Moreover, as mentioned
above, we do not even have a guarantee of improving the objective function at each
step. However, our experimental results indicate that randomized methods are more
robust to the starting point, so this is a potential advantage and perhaps a topic for
future research.

Many lines of future research remain, in addition to those mentioned above. As
discussed in subsection 3.2.1, the most expensive part of CPRAND is extracting the
random fibers from the dense tensor (i.e., memory operations), so we may consider
both algorithmic adjustments or specialized implementations to alleviate that expense.
We would also like to compare directly to other improved methods for computing
CP, such as those in [30, 40]. Another topic of investigation is to prove that the
mixing operator we develop in subsection 3.3 is an FJLT. An obvious extension is
consideration of sparse tensors. In the sparse case, we never form the Khatri-Rao
matrix (see [5]), so the bottlenecks are different. We note that our mixing process
would convert the sparse tensor to a dense one, so we suspect a non-uniform sampling
scheme without mixing (as in [10]) will be more effective for sparse data. These
sketching methods also naturally extend to out-of-core algorithms, and may even be
used to increase scalability in distributed memory. Finally, it is natural to consider
application of randomization to other decompositions such as Tucker [38], tensor train
[28], or functional tensor decompositions [11, 17].

Acknowledgment. We thank Nico Vervliet for generously sharing his scripts to
preprocess the hazardous gases experiment data used in subsection 4.4. We would
like to thank Alex Williams for the CP decomposition visualization script used to
create Figure 8. This material is based upon work supported by the Sandia Truman
Postdoctoral Fellowship and the U.S. Department of Energy, Office of Science, Office
of Advanced Scientific Computing Research, Applied Mathematics program. Sandia
National Laboratories is a multi-mission laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy’s National Nuclear Security Administration under contract
DE–AC04–94AL85000.

REFERENCES

[1] E. Acar, C. A. Bingol, H. Bingol, R. Bro, and B. Yener, Multiway analysis of epilepsy
tensors, Bioinformatics, 23 (2007), pp. i10–i18, doi:10.1093/bioinformatics/btm210.

[2] N. Ailon and B. Chazelle, Approximate nearest neighbors and the fast Johnson-
Lindenstrauss transform, in Proceedings of the Thirty-eighth Annual ACM Symposium on
Theory of Computing, STOC’06, ACM, 2006, pp. 557–563, doi:10.1145/1132516.1132597.

[3] H. Avron, P. Maymounkov, and S. Toledo, Blendenpik: Supercharging LAPACK’s
least-squares solver, SIAM J. Scientific Computing, 32 (2010), pp. 1217–1236,
doi:10.1137/090767911.

[4] B. W. Bader and T. G. Kolda, Algorithm 862: MATLAB tensor classes for fast algo-
rithm prototyping, ACM Transactions on Mathematical Software, 32 (2006), pp. 635–653,
doi:10.1145/1186785.1186794.

[5] B. W. Bader and T. G. Kolda, Efficient MATLAB computations with sparse and factored
tensors, SIAM J. Sci. Comput., 30 (2007), pp. 205–231, doi:10.1137/060676489.

[6] B. W. Bader, T. G. Kolda, et al., Matlab tensor toolbox (Version 2.6). Available online,
February 2015, http://www.sandia.gov/∼tgkolda/TensorToolbox/.

[7] A. Beutel, P. P. Talukdar, A. Kumar, C. Faloutsos, E. E. Papalexakis, and
E. P. Xing, FlexiFaCT: Scalable flexible factorization of coupled tensors on Hadoop.,
in Proc. SIAM Intl. Conf. Data Mining, SDM’14, SIAM, 2014, pp. 109–117,

24

http://dx.doi.org/10.1093/bioinformatics/btm210
http://dx.doi.org/10.1145/1132516.1132597
http://dx.doi.org/10.1137/090767911
http://dx.doi.org/10.1145/1186785.1186794
http://dx.doi.org/10.1137/060676489
http://www.sandia.gov/~tgkolda/TensorToolbox/

doi:10.1137/1.9781611973440.13.
[8] E. Candès and B. Recht, Exact matrix completion via convex optimization, Commun. ACM,

55 (2012), pp. 111–119, doi:10.1145/2184319.2184343.
[9] J. Carroll and J.-J. Chang, Analysis of individual differences in multidimensional scaling

via an n-way generalization of “Eckart-Young” decomposition, Psychometrika, 35 (1970),
pp. 283–319, doi:10.1007/BF02310791.

[10] D. Cheng, R. Peng, I. Perros, and Y. Liu, SPALS: Fast alternating least
squares via implicit leverage scores sampling, in Advances in Neural Infor-
mation Processing Systems (NIPS) 30, 2016, http://papers.nips.cc/paper/
6436-spals-fast-alternating-least-squares-via-implicit-leverage-scores-sampling.pdf.

[11] M. Chevreuil, R. Lebrun, A. Nouy, and P. Rai, A least-squares method for sparse low rank
approximation of multivariate functions, SIAM/ASA Journal on Uncertainty Quantifica-
tion, 3 (2015), pp. 897–921, doi:10.1137/13091899X.

[12] J. H. Choi and S. Vishwanathan, DFacTo: Distributed factorization of tensors, in Ad-
vances in Neural Information Processing Systems (NIPS) 27, Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K. Weinberger, eds., Curran Associates, Inc., 2014, pp. 1296–
1304, http://papers.nips.cc/paper/5395-dfacto-distributed-factorization-of-tensors.pdf.

[13] F. Cong, Q.-H. Lin, L.-D. Kuang, X.-F. Gong, P. Astikainen, and T. Ristaniemi, Tensor
decomposition of EEG signals: A brief review, Journal of Neuroscience Methods, 248
(2015), pp. 59–69, doi:10.1016/j.jneumeth.2015.03.018.

[14] I. Davidson, S. Gilpin, O. Carmichael, and P. Walker, Network discovery via constrained
tensor analysis of fMRI data, in KDD’13: Proceedings of the 19th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, ACM, 2013, pp. 194–202,
doi:10.1145/2487575.2487619.

[15] D. L. Donoho and X. Huo, Uncertainty principles and ideal atomic decomposition, IEEE
Trans. Inf. Theor., 47 (2006), pp. 2845–2862, doi:10.1109/18.959265.

[16] P. Drineas, M. W. Mahoney, S. Muthukrishnan, and T. Sarlós, Faster least squares
approximation, Numerische Mathematik, 117 (2011), pp. 219–249, doi:10.1007/s00211-010-
0331-6.

[17] A. A. Gorodetsky, S. Karaman, and Y. M. Marzouk, Function-train: A continuous ana-
logue of the tensor-train decomposition, 2015, arXiv:1510.09088v2 [math.NA].

[18] R. A. Harshman, Foundations of the PARAFAC procedure: Models and conditions for an
“explanatory” multi-modal factor analysis, UCLA Working Papers in Phonetics, 16 (1970).

[19] F. L. Hitchcock, The expression of a tensor or a polyadic as a sum of products, J. Math.
Phys, 6 (1927), pp. 164–189, doi:10.1002/sapm192761164.

[20] R. Jaffé, K. M. Cawley, and Y. Yamashita, Applications of excitation emission matrix
fluorescence with parallel factor analysis (EEM-PARAFAC) in assessing environmental
dynamics of natural dissolved organic matter (DOM) in aquatic environments: A review,
in Advances in the Physicochemical Characterization of Dissolved Organic Matter: Im-
pact on Natural and Engineered Systems, vol. 1160 of ACS Symposium Series, American
Chemical Society (ACS), 2014, pp. 27–73, doi:10.1021/bk-2014-1160.ch003.

[21] W. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space,
in Conference in Modern Analysis and Probability (New Haven, Conn., 1982), vol. 26
of Contemporary Mathematics, American Mathematical Society, 1984, pp. 189–206,
doi:10.1007/BF02764938.

[22] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Review, 51
(2009), pp. 455–500, doi:10.1137/07070111X.

[23] J. Li, C. Battaglino, I. Perros, J. Sun, and R. Vuduc, An input-adaptive and in-place
approach to dense tensor-times-matrix multiply, in Proc. of the ACM/IEEE Conference
on Supercomputing (SC ’15), Austin, TX, USA, 2015, doi:10.1145/2807591.2807671.

[24] K. Maruhashi, F. Guo, and C. Faloutsos, MultiAspectForensics: Pattern mining on large-
scale heterogeneous networks with tensor analysis, in 2011 International Conference on
Advances in Social Networks Analysis and Mining (ASONAM), IEEE, 2011, pp. 203–210,
doi:10.1109/asonam.2011.80.

[25] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, New
York, NY, USA, 1995.

[26] K. R. Murphy, C. A. Stedmon, D. Graeber, and R. Bro, Fluorescence spec-
troscopy and multi-way techniques. PARAFAC, Analytical Methods, 5 (2013), p. 6557,
doi:10.1039/c3ay41160e.

[27] S. Nene, S. Nayar, and H. Murase, Columbia Object Image Library (COIL-100), Tech.
Report CUCS-006-96, Columbia University, 1996.

[28] I. V. Oseledets, Tensor-train decomposition, SIAM Journal on Scientific Computing, 33

25

http://dx.doi.org/10.1137/1.9781611973440.13
http://dx.doi.org/10.1145/2184319.2184343
http://dx.doi.org/10.1007/BF02310791
http://papers.nips.cc/paper/6436-spals-fast-alternating-least-squares-via-implicit-leverage-scores-sampling.pdf
http://papers.nips.cc/paper/6436-spals-fast-alternating-least-squares-via-implicit-leverage-scores-sampling.pdf
http://dx.doi.org/10.1137/13091899X
http://papers.nips.cc/paper/5395-dfacto-distributed-factorization-of-tensors.pdf
http://dx.doi.org/10.1016/j.jneumeth.2015.03.018
http://dx.doi.org/10.1145/2487575.2487619
http://dx.doi.org/10.1109/18.959265
http://dx.doi.org/10.1007/s00211-010-0331-6
http://dx.doi.org/10.1007/s00211-010-0331-6
http://arxiv.org/abs/1510.09088v2
http://dx.doi.org/10.1002/sapm192761164
http://dx.doi.org/10.1021/bk-2014-1160.ch003
http://dx.doi.org/10.1007/BF02764938
http://dx.doi.org/10.1137/07070111X
http://dx.doi.org/10.1145/2807591.2807671
http://dx.doi.org/10.1109/asonam.2011.80
http://dx.doi.org/10.1039/c3ay41160e

(2011), pp. 2295–2317, doi:10.1137/090752286.
[29] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, ParCube: Sparse parallelizable

tensor decompositions., in Machine Learning and Knowledge Discovery in Databases (Eu-
ropean Conference, ECML PKDD 2012), vol. 7523 of Lecture Notes in Computer Science,
Springer, 2012, pp. 521–536, doi:10.1007/978-3-642-33460-3 39.

[30] A.-H. Phan, P. Tichavský, and A. Cichocki, Fast alternating LS algorithms for high order
CANDECOMP/PARAFAC tensor factorizations, Trans. Sig. Proc., 61 (2013), pp. 4834–
4846, doi:10.1109/TSP.2013.2269903.

[31] M. Rajih, P. Comon, and R. A. Harshman, Enhanced line search: A novel method to acceler-
ate parafac, SIAM Journal on Matrix Analysis and Applications, 30 (2008), pp. 1128–1147,
doi:10.1137/06065577.

[32] M. J. Reynolds, A. Doostan, and G. Beylkin, Randomized alternating least squares for
canonical tensor decompositions: Application to a PDE with random data, SIAM Journal
on Scientific Computing, 38 (2016), pp. A2634–A2664, doi:10.1137/15M1042802.

[33] V. Rokhlin and M. Tygert, A fast randomized algorithm for overdetermined linear
least-squares regression, Proceedings of the National Academy of Sciences, 105 (2008),
pp. 13212–13217, doi:10.1073/pnas.0804869105.

[34] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and
C. Faloutsos, Tensor decomposition for signal processing and machine learning, 2016,
arXiv:1607.01668 [stat.ML].

[35] S. Smith, N. Ravindran, N. Sidiropoulos, and G. Karypis, SPLATT: Efficient and parallel
sparse tensor-matrix multiplication, in Proceedings of the 29th IEEE International Parallel
& Distributed Processing Symposium, IPDPS, 2015, doi:10.1109/IPDPS.2015.27.

[36] Z. Song, D. P. Woodruff, and H. Zhang, Sublinear time orthogonal tensor decomposition,
in Advances in Neural Information Processing Systems (NIPS) 30, 2016, https://papers.
nips.cc/paper/6495-sublinear-time-orthogonal-tensor-decomposition.pdf.

[37] G. Tomasi and R. Bro, A comparison of algorithms for fitting the PARAFAC
model, Computational Statistics & Data Analysis, 50 (2006), pp. 1700–1734,
doi:10.1016/j.csda.2004.11.013.

[38] L. R. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika, 31
(1966), pp. 279–311, doi:10.1007/BF02289464.

[39] A. Vergara, J. Fonollosa, J. Mahiques, M. Trincavelli, N. Rulkov, and R. Huerta,
On the performance of gas sensor arrays in open sampling systems using inhibitory sup-
port vector machines, Sensors and Actuators B: Chemical, 185 (2013), pp. 462 – 477,
doi:10.1016/j.snb.2013.05.027.

[40] N. Vervliet and L. De Lathauwer, A randomized block sampling approach to canonical
polyadic decomposition of large-scale tensors, IEEE J. Sel. Top. Signal Process., 10 (2016),
pp. 284–295, doi:10.1109/JSTSP.2015.2503260.

[41] Y. Wang, H.-Y. Tung, A. J. Smola, and A. Anandkumar, Fast and guar-
anteed tensor decomposition via sketching, in Advances in Neural Information
Processing Systems (NIPS) 28, 2015, pp. 991–999, http://papers.nips.cc/paper/
5944-fast-and-guaranteed-tensor-decomposition-via-sketching.pdf.

[42] D. P. Woodruff, Sketching as a tool for numerical linear algebra, Found. Trends Theor.
Comput. Sci., 10 (2014), pp. 1–157, doi:10.1561/0400000060.

[43] G. Zhou, A. Cichocki, and S. Xie, Decomposition of big tensors with low multilinear rank,
2014, arXiv:1412.1885 [cs.NA].

26

http://dx.doi.org/10.1137/090752286
http://dx.doi.org/10.1007/978-3-642-33460-3_39
http://dx.doi.org/10.1109/TSP.2013.2269903
http://dx.doi.org/10.1137/06065577
http://dx.doi.org/10.1137/15M1042802
http://dx.doi.org/10.1073/pnas.0804869105
http://arxiv.org/abs/1607.01668
http://dx.doi.org/10.1109/IPDPS.2015.27
https://papers.nips.cc/paper/6495-sublinear-time-orthogonal-tensor-decomposition.pdf
https://papers.nips.cc/paper/6495-sublinear-time-orthogonal-tensor-decomposition.pdf
http://dx.doi.org/10.1016/j.csda.2004.11.013
http://dx.doi.org/10.1007/BF02289464
http://dx.doi.org/10.1016/j.snb.2013.05.027
http://dx.doi.org/10.1109/JSTSP.2015.2503260
http://papers.nips.cc/paper/5944-fast-and-guaranteed-tensor-decomposition-via-sketching.pdf
http://papers.nips.cc/paper/5944-fast-and-guaranteed-tensor-decomposition-via-sketching.pdf
http://dx.doi.org/10.1561/0400000060
http://arxiv.org/abs/1412.1885

	1 Introduction
	2 Background and Definitions
	2.1 Matrix and Tensor Background
	2.2 Randomized Least Squares and Sketching

	3 Algorithms
	3.1 CP-ALS
	3.1.1 Cost

	3.2 CPRAND
	3.2.1 Cost
	3.2.2 Coherence in CPRAND

	3.3 CPRAND-MIX
	3.3.1 Cost

	3.4 Stopping Criteria

	4 Experiments
	4.1 Computational Time
	4.2 Synthetic Data
	4.3 COIL Data Set
	4.4 Hazardous Gases

	5 Related Work
	6 Conclusion
	References

