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Abstract

Given a d-dimensional torus map F (z) = Mz + G(z) mod 1, where M is an integer-matrix and

and G is a periodic function, we find conditions on M under which F is semi-conjugate to a linear

torus map, independently of G. We also find a conditions G under which these semi-conjugacies

can be turned into conjugacies. These conditions are satisfied by open sets of torus maps (in the

C1-topology) and therefore describe some asymptotic behavior of trajectories which are stable under

perturbations to the map.
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1 Introduction

Recall that the torus Td is the Cartesian product of d topological circles S1 × . . . × S1, where S1 is

represented as the interval [0, 1] with the endpoints identified. Any continuous torus map F : Td → Td is

of the form shown below.

F (z mod 1) = Mz +G(z) mod 1, (1)

where M is a d × d integer matrix (entries are integer-valued) that we call the winding matrix of F ,

and G : Rd → Rd is a bounded, 1-periodic function, called the periodic part of F . Note that if for all

z ∈ Td, | detM(z)| = m > 0 and if | det dF | > 0, then F is an m-to-1 of the torus, so every point has

exactly m pre-images under F . Any continuous torus map can be separated into a linear and periodic

part as shown above, and is shown in [1], these are unique.

Note. The winding matrix M is also the map F∗ : H1(Td)→ H1(Td) on the first-homology group.

∗Department of Mathematics, University of Maryland, College Park
‡University of Maryland, College Park

1

ar
X

iv
:1

51
2.

03
17

1v
2 

 [
m

at
h.

D
S]

  8
 A

pr
 2

01
6



The following theorem gives some condition under which a torus map F is semi-conjugate to a linear

map on a lower dimensional torus, namely, x 7→ Ax mod 1. SL(d,Z) denotes the set of d × d integer

matrices with determinant ±1 (i.e., SL(d,Z) ). We will use the following assumption.

(A1) There is some S ∈ SL(d,Z) such that S−1MS is in block upper-triangular form, where M is defined

in Eq. 1. Then the top left k × k block will be denoted as A (where k ≤ d). Let W be the subspace

spanned by {e1 . . . , ek}, where ei is the vector with all entries 0 other than the i-th entry, which is 1.

Theorem 1.1 (A semi-conjugacy theorem) Let F : Td → Td be a d-dimensional continuous torus

map of the form (1). Assume (A1). If either of the two conditions hold,

(i) F is invertible and A is a hyperbolic matrix; or

(ii) A is an expanding matrix.

then F is semi-conjugate to the following map on Tk.

θn+1 = Aθn mod 1. (2)

In other words, there is an onto map Φ : Td → Tk such that ΦF (z)) = AΦ(z) mod 1. Moreover, in case

(ii) is satisfied, then for every θ ∈ Tk, Φ−1(θ) intersects every k-dimensional sub-torus of Td parallel to

F . In particular, Φ is onto.

Theorem 1.1 will be proved in Section 2.

Remark - the 1-D case. Consider the case d = 1 and F : S1 → S1 is a degree-m circle map with an

attracting fixed point P . Then F is of the form F (z) = mz+G(z) mod 1 for some m > 1, and by Theorem

1.1, it is semi-conjugate to the expanding circle map below, which has no attractor. The semi-conjugacy

is given by Φ(z mod 1) = lim
n→∞

m−nF n(z) mod 1.

xn+1 = mxn mod 1. (3)

The basin of attraction of P is a countable union of open intervals and each such interval must be mapped

by Φ into points that eventually map into Φ(P ) by the map in Eq. 3. If the basin of P is dense, then

its complement is a Cantor set which is mapped onto S1 by Φ. Hence, this semi-conjugacy can lose some

information about the dynamics while preserving other information.

Remark. Note that if k = d = 1 and F is an expanding map, then the semi-conjugacy is a conjugacy,

a fact that also follows from a theorem by Shub [2].

Remark. The assumption on the matrix M being conjugate to an integer-valued block upper-

triangular matrix cannot be replaced by the assumption that there are eigenvalues not equal to one
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in magnitude. Any monic, integer polynomial is the characteristic polynomial of some integer-valued ma-

trix and the polynomial be irreducible over the ring of integers but have eigenvalues not equal to one in

magnitude. An example is the Lehmer polynomial [3] x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1. It is

known to be irreducible but having two roots different from one in magnitude.

Corollary 1.2 (Semiconjugacy to an expanding circle map) Let F be a d-dimensional continuous

torus map whose winding matrix M has an integer eigenvalue m. Then F is semi-conjugate to the map

in Eq. 3, i.e., there is a map Φ : Td → Td such that ΦF (z)) = mΦ(z) mod 1.

Proof If the winding matrix M has a left eigenvector vLm with integer eigen value m > 1, then this vector

can be used to construct a unit volume tiling of Rd which we describe below. This tiling can be used to

contruct a matrix S ∈ SL(d,Z) from Theorem 1.1 such that k = 1, and A ≡ m, and Corollary 1.2 is

proved.

A tiling of the torus. Given the integer vector vLm ∈ Rd, we can find d linearly independent integer

vectors w1, . . . , wd which satisfy the following.

(i) For each i = 1 . . . , d− 1, wi is perpendicular to vLm.

(ii) The volume of the parallelotope P formed by {w1, . . . , wd} have unit volume.

(iii) φ(z) = 0 on the side of P which contains w1, . . . , wd−1, and is 1 on the opposite face of P .

To see this, first let P be the (d − 1)-hyperplane of vectors perpendicular to vLm. Since vLm is integer

vector, there are d − 1 linearly independent integer vectors perpendicular to vLm. So we can pick d − 1

linearly independent integer vectors w1, . . . , wd−1 in P such that the (d − 1)-dimensional parallelotope

described by w1, . . . , wd−1 has no lattice point in its interior or in the interior of any of its faces. There

are two lattice points away from P which are closest to P . Let wd be the one among them for which

vLm · wd > 0. Let P be the parallelotope described by {w1, . . . , wd}.
Now note that the P has no lattice point in its interior or in the interior of any of its faces. Therefore,

by the d-dimensional Pick’s formula, P has volume 1. Therefore, P forms a periodic tiling of Rd and P

mod Z ∼= Td.

See Fig. 1 for an example when d = 2, k = 1.

Skew-product maps. An important class of maps which have many interesting topological and

measure-theoretic properties and which can be factored as in Corollary 1.2 are “skew product” maps. We

are interested in skew-product maps of the form

F (x, y) = (Ax, Fy(x, y)) mod 1 (in each coordinate). (4)

where x ∈ Tk, y ∈ Td−k, A is a k × k expanding, integer-matrix, and Fy : Td−k → Td−k is continuous.

Note that the map in Eq. 4 is semi-conjugate to the linear torus map in Eq. 2.
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Figure 1: A lift P of T2. Let (u1, u2) := vLm be the left eigenvector of the winding matrix M for which
the integers u1 and u2 are chosen as small as possible; that is, they are relatively prime; that is, we can
choose integers n1 and n2 for which n1u1 + n2u2 = 1. The parallelogram P shown has area 1. The map
(x, y) 7→ (x mod 1, y mod 1) takes the parallelogram P onto the torus in a one-to-one manner – except
on the boundary of the parallelogram. The vector vR1 := (u2,−u1) is a right eigenvector of M and has
eigenvalue 1. Define that φ(z) := vLm · z. Then φ is 0 on the line containing (0, 0) and (u2,−u1) and is 1
on the parallel line containing (n1, n2), and φ is constant on every line parallel to these.

See [4] for a nice overview of skew-product maps and their treatment as random maps or non-

autonomous differential equations. In [5], Kleptsyn and Nalskii, using the viewpoint of stochastic circle

diffeomorphisms, prove the important result that under certain conditions, the orbits of almost every (with

respect to a certain measure) pair of initial conditions on a fiber are asymptotic. Homburg [6] looks at

skew products with expanding circle maps and prove the occurrence of topological mixing for an open

set of maps. The authors of [7] studied the mechanism by which chaos occurs on a certain class of skew-

product maps. Ilyashenko and Negut [8] constructed a family of structurally stable skew product maps

over the Smale-Williams horseshoe in which the attract has arbitrarily low information dimension. Other

features, like the measure of the non-wandering set, and perturbation of skew product systems, has been

in investigated in [9] and [10] respectively.

Recall that two dynamical systems are said to be conjugate if there is a change of coordinates that is

continuous and with a continuous inverse, transforming one dynamical system to the other. This change

of variables is called a conjugacy. We will state and prove two conjugacy results, Theorem 3.1 and

Corollary 3.2, later in Section 3, which provide sufficient conditions under which a torus map is conjugate

to a skew-product map.

2 Proof of Theorem 1.1

By assumption, there is a matrix S ∈ SL(d,Z) such that SMS−1 is in block upper-triangular form.

Such a matrix S corresponds to a change of coordinates in Td, so we will assume that we are working in

these coordinates and M is in the desired form. Then note that W is an invariant subspace of M and
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M |W = A. Let F denote the face of the torus spanned by {e1 . . . , ek}. We will first prove the case when

A is hyperbolic and F invertible, and make some minor modifications to the proof to prove the case when

A is expanding and F not necessarily invertible.

2.1 The case when A is hyperbolic.

Since A is hyperbolic, the subspace W splits into two complementary, invariant subspaces W = W u⊕W s

such that Au := A|W u and As := A|W s are expanding and contracting respectively. Let the dimension of

these spaces be ku and ks respectively. then note that k = ku + ks. Au and As can be viewed as square

matrices of dimension ku, ks respectively.Define

Φ̂u : Rd → W u; Φ̂u(z) := lim
n→∞

A−nu projWuF n(z).

Φ̂u : Rd → W s; Φ̂s(z) := lim
n→∞

AnsprojW sF−n(z).

Claim A. Φ̂u and Φ̂s are well defined and continuous. We will only prove the claim for Φ̂u, as the

proof for Φ̂s is analogous. To prove that the limit exists, we will use the following equation which follows

from the definition of Φ̂u, in which we express Φ̂u as an infinite series.

Φ̂u(z) = projWuz + Σ
k=1,2,...,

A−ku projWuG ◦ F k−1(z) (5)

Since G is 1-periodic, it is uniformly bounded. Since ‖A−1u ‖ < 1 and each of the terms projWuG ◦F k−1(z)

are bounded, the limit Φ̂u(z) exists as an uniform limit, by the Weierstrass M-test (see [11]). Since each

finite sum is a continuous function, by the Uniform Limit Theorem (see [11]), Φ̂u(z) is also continuous.

Claim B. Φ̂u is a semi-conjugacy. Note that Φ̂u◦F̂ (z) = lim
n→∞

A−nu projWuF n+1(z) = Au lim
n→∞

A−n−1u projWuF n+1(z) =

AuΦ̂u(z). A similar result holds for Φ̂s. Therefore, we have proved the following.

For every z ∈ Rd, Φ̂u ◦ F̂ (z) = AuΦ̂u(z), Φ̂s ◦ F̂ (z) = AsΦ̂u(z). (6)

Let Φ̂ : Rd → Rk be the map Φ̂(z) = Φ̂u(z)⊕ Φ̂s(z). Then note that

Φ̂(F (z)) = AuΦ̂u(z) + AsΦ̂s(z) = AΦ̂(z).

Secondly, let ~m ∈ Zd. Then : F (z+ ~m) = M(z+ ~m) +G(z+ ~m) = F (z) +M~m. Applying this formula

n times gives : F n(z + ~m) = F n(z) +Mn ~m.

Similar to Eq. 5, we can write Φ̂(z) as the infinite sum

Φ̂(z) = projW z + Σ
n=1,2,...

[A−nu projWuG(F n−1z)⊕ AnsprojW sG(F n−1z)]
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Φ̂(z + ~m) = projW (z + ~m) + Σ
n=1,2,...

[A−nu projWuG(F n−1(z + ~m))⊕ AnsprojW sG(F n−1(z + ~m))]

= projW z + Σ
n=1,2,...

[A−nu projWuG(F n−1(z + ~m))⊕ AnsprojW sG(F n−1(z + ~m))] + projW ~m

= Φ̂(z) + projW ~m

(7)

Note that projW ~m ∈ Zk. Therefore the map Φ : Td → Tk defined as

Φ(z mod 1) := Φ̂(z) mod 1

is well defined. The map Φ is the desired semi-conjugacy map. This completes the proof of the of Theorem

1.1 for the hyperbolic case.

2.2 The case when A is expanding.

Let projW be the orthogonal projection onto the subspace W . Then

Φ̂(z) := lim
n→∞

A−nprojWF
n(z)

In a manner similar to the hyperbolic case, it can be shown that Φ̂ is well defined, continuous and factors

into a map Φ : Td → Tk which serves as the semi-conjugacy.

To prove that Φ is onto, it is equivalent to prove the analogous statement for Φ̂, namely

Claim C. For every x ∈ Rk, Φ̂−1(x) intersects every k-sub-plane of Td parallel to W . In particular, Φ̂

is onto.

The following inequalities follows from the definition of Φ̂ and will be important for making conclusions

about the fibers of Φ̂. Let ‖G‖0 denote the C0-norm of G, defined as sup
z∈Rd

‖G(z)‖.

For every z ∈ Rd, |Φ̂(z)− projW (z)| ≤ 1

‖A‖ − 1
‖‖‖G‖0 (8)

For every z1, z2 ∈ Rd,
∣∣∣|Φ̂(z1)− Φ̂(z2)| − |projW (z1)− projW (z2)|

∣∣∣ ≤ 2

‖A‖ − 1
‖G‖0 (9)

Proof of Claim C. Let the contrary to this statement be true. Let S be a k-sub-plane of Td parallel to

W . If Φ̂−1(x) does not intersect S, it means that the image Φ̂(S) is bounded in some direction. However,

the image projW (S) is Rk. This leads to a contradiction of Ineq. 8.
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3 When torus maps are conjugate to skew-products.

3.1 Cone structures.

Invariant, expanding cones. The property of “dominating expansion” can be defined on any manifold,

but we will stick to Td. Let e(z) be a smooth k-sub-bundle on Td, i.e., e(z) is a k-dimensional vector

sub-space of the tangent space at the poiont z. Let e⊥(z) be the orthogonal complement of e(z). A

tangent vector v at a point z ∈ Td can be uniquely represented as v = (a, b)e, where a ∈ e(z), b ∈ e⊥(z).

Let v′ = dF (z)v and let the representation of v′ in terms of the vector spaces e(F (z)), e⊥(F (z)) be (a′, b′)e.

We say that there an expanding cone structure centered around e if there are constants K > 1 and

α > 0 such that for every point z, if |b| ≤ α|a|, then,

(i) |b′| ≤ α|a′|, and

(ii) |a′| ≥ K|a|.
We can rephrase that as follows. At every point z ∈ Td, the α-cone, denoted Cα(z) is the set of vectors

v in the tangent space at z such that ‖proje⊥v‖ ≤ α‖projev‖. This cone-structure is said to be invariant,

expanding under F if if for some α > 0 and some K > 1, Cα(F (z)) ⊂ DF (z)(Cα(z)) and if (a′, b′)e =

DF (z)(a, b)e, then |a′| > K||a|. See Fig. 2 for a schematic diagram.

The cone structure is said to be dominated if for each non-zero vector v ∈ e⊥(z), ‖DF (z)v‖ < K‖v‖.
In other words, the expansion is the strongest for vectors within the cone.

Invariant cone systems are in particular, present in hyperbolic systems, as also in various weaker forms

of hyperbolicity like dominated cones [12] and dominated splittings [13]. Note that in non-hyperbolic

systems, the tangent subspaces e and e⊥ are not invariant. Most of techniques used to prove properties in

these different versions of hyperbolicity cannot be extended to the broader class of maps we are interested

in, like maps which are either not diffeomorphisms or without a continuous invariant splitting of the

tangent space.

Definition [conic curve]. A differentiable curve in Rd or in Td is said to be a conic curve if its

tangent vector at every point lies inside the expanding cone at that point on the manifold. Note that the

image of a conic-curve under the map is again a conic curve, with an expansion in length by a factor of

at least K. Also, since W lies inside the expanding cone by assumption (A2), there is a uniform constant

τ > 0 such that for any conic curve of length l joining two points A and B,

|projW (A−B)| ≥ τ l. (10)

Theorem 3.1 below establishes some easily verifiable and satisfiable conditions under which a torus

map is conjugate to F0 in (4). We will assume the following on F .

(A2) there is an invariant, expanding cone-structure centered around the vectors {e1 . . . , ek}.
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Figure 2: Invariant, expanding cones. This figure illustrates an invariant, expanding cone structure for
a torus map F : T2 → T2. For the sake of simplicity, e1 and e2 have been taken to be the unit vector fields
along the X and Y directions of the torus respectively, and α = 1. The triangles drawn in red and green
lie in the tangent spaces at z and F (z) respectively, and pictorially represent part of the cones containing
the vectors {(u, v) | ‖v‖ ≤ ‖u‖ ≤ 1} in their respective spaces. Any vector within the red cone C(z) at z
is mapped into the green cone C(F (z)) at F (z) under the action of DF (z) and also stretched by a factor
of at least K > 1.

(A3) DF is invertible. Such a map is called local diffeomorphism, i.e., every point has a neighborhood

in which the map is a diffeomorphism.

(A4) there is a dominated, invariant, expanding cone-structure centered around the vectors {e1 . . . , ek}.

Theorem 3.1 Let F : Td → Td be a C1 map that satisfies assumptions (A1)-(A3). Then if A is an

expanding matrix, then F is conjugate to a skew-product map of the form (4). Moreover, if (A4) is

satisfied, then the conjugacy map H is differentiable along the Y-direction.

Corollary 3.2 Let M be an integer matrix with an integer eigenvalue m with |m| > 1. Then there is a

constant δ = δ(M) > 0 such that if G : Rd → Rd is a C1, 1-periodic map satisfying ‖G‖C1 < δ, then the

torus map given by F (z) = Mz +G(z) mod 1 is conjugate to a map of the form (4).

Proof The proof of this corollary starts with two observations,

(i)the existence of an expanding cone structure is an open condition in the C1-topology of maps.

(ii) the winding matrix of a torus map is independent of the periodic part G of the map. [See Eq. 1].

Secondly, for the linear torus map given by the winding matrix, namely, M : T2 → T2, there is an

expanding cone structure with K = m, α = ∞, e1 = vm, e2 = v1. Therefore, there is a bound δ > 0

such that if ‖G(y)‖C1 < δ, then the map still retains the same winding matrix and an expanding cone

structure.

Remark. In particular, if M is symmetric in the above Theorem, then setting δ = 0.5(|m|−1) suffices.

Conjugacy results on the torus. Notice that F in Theorem 3.1 is not invertible but an m-fold cov-

ering map. Our conjugacy theorem therefore involves some conditions different from conjugacy theorems

stated about invertible maps in the past. In [14], the authors prove that two ergodic homeomorphisms of
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the torus are conjugate via a measurable conjugacy iff they have the same metric entropy. The conclusions

of our theorem is similar to a theorem by Ilyashenko and Negut in [10], where they prove a structural

stability theorem for invertible step-skew products. Since we consider maps which are not invertible, we

have to rely on a different approach to prove conjugacy. Various other numerical invariants of topological

conjugacies between linear endomorphisms of the torus have been described in [15]. They are a “complete”

system of invariants, i.e., their invariance is necessary and sufficient for topological conjugacy.

3.2 Proof of Theorem 3.1

The conjugacy can be constructed using the map Φ from Theorem 1.1. We begin with a Proposition.

Proposition 3.3 The fibers of Φ, which are the sets Φ−1(θ0) for some θ0 ∈ S1, are topologically Td−1.

Proof To prove this, we will first prove that for every x0 ∈ R, Φ̂−1(x0) is an (d − k)-hypersurface. We

will then use the fact that Φ is a factor of Φ̂ to prove the claim of the theorem.

Claim D. Two distinct points in Φ̂−1(x0) cannot be connected by a conic curve.

To see this, first assume the contrary. So there are distinct points z1, z2 ∈ Φ̂−1(x0) and γ is a conic

curve joining z1 and z2. Then for every n ∈ N, F n(γ) is again a conic curve whose endpoints are

F n(z1) and F n(z2), both lying in the fiber Φ̂−1(Anx0) by Eq. 6. By Ineq. 9, we can conclude that

|projW (F nz1 − F nz2)| ≤ 2
‖A‖−1‖G‖0. Let l be the length of γ. Then the length of F n(γ) is at least Knγ.

By Ineq. 10
2

‖A‖ − 1
‖G‖0 ≥ φ(F nz1 − F nz2)| ≥ lknτ.

This inequality holds for every integer n. But while the left hand side remains bounded, the right hand

side diverges to ∞ as n→∞. This leads to a contradiction, so our assumption of the contrary was false.

So Claim D must be true.

Claim E. Φ̂−1(x0) is an embedded (d− k)-dimensional hyper-plane.

To see this, first note that any straight line parallel to W is a conic curve. Therefore Φ̂−1(x0) intersect

every k-hyperplane parallel to W , by Theorem 1.1. This combined with the above claim implies that

Φ̂−1(x0) intersect every k-hyperplane parallel to W at a unique point. Since Φ̂ is continuous, Φ̂−1(x0) is a

closed set. The set of k-hyperplane parallel to W can be parameterized by Rd−k, therefore Φ̂−1(x0) is the

graph of a continuous map Rd−k 7→ Rd. So Claim E is true.

We can now show that Φ−1(θ0) is a topological (d − k) torus. Let x0 ∈ R be some lift of θ0 under

the projection map proj. Then Φ−1(θ0) is the image under proj of the sets Φ̂−1(x0 + ~n), where ~n ∈ Zk

ranges over all integers. Note that by Eq. 7, these hyper-surfaces are translates of each other by integer

vectors. Therefore, the images under proj of all the hyper-surfaces Φ̂−1(x0 + ~n) is a single (d− k) torus.

This concludes the proof of the proposition.

9



Lemma 3.4 Let H : Rd → Rd be defined as H(z) = (Φ(z), projW⊥z), where projW⊥z is the projection

onto the last d − k coordinates. Then H is a homeomorphism and H ◦ F ◦ H−1 is of the form given in

Eqn. 4.

Proof Since Φ is continuous, H is continuous. We will first prove that H is invertible and then show

that, in fact it is a homeomorphism. Finally, we will show that H gives the desired conjugacy. Since Td

is a compact set and H is continuous, to prove invertibility, it is enough to show that the map is both

one-to-one and onto.

Onto: Let z0 = (x0, y0) ∈ Td, where x0 ∈ Tk, y0 ∈ Td−k. Since the set R := {x ∈ Td : projW⊥z = y0}
is a k-torus parallel to W , by Theorem 1.1, Φ−1(x0) is a topological (d − k)-torus transverse to R and

therefore they intersect at a unique point z. Therefore, H(z) = (x0, y0).

One-to-one: Consider any two inverse images z′ = (x′, y′) and z′′ = (x′′, y′′) of (x0, y0). since

projW⊥(z′ − z′′) = 0 mod 1, z′ − z′′ is parallel to W . However both z′ and z′′ lie on Φ−1(x0), which is

uniformly transverse to all lines parallel to W . This forces z′ = z′′.

Conjugacy: For any (x0, y0) ∈ Td, let (x1, y1) := H−1(x, y), (x2, y2) := F (x1, y1) and (x3, y3) :=

H(x2, y2). To show that H is the desired conjugacy have to show that x3 = mx0 ( mod 1). Note that

x3 = Φ(x2, y2) = Φ ◦ F (x1, y1). By Eqn. 6, x3 = m×Φ(x1, y1). But since (x1, y1) = H−1(x0, y0), Φ(x1, y1)

must be equal to x0. Therefore, x3 = mx0 ( mod 1).

3.3 The fibers of Φ̂

We will now prove that if the dominated, invariant expanding cone condition (A4) is satisfied, then H is

differentiable along the fibres Φ−1(θ), for θ ∈ Tk. It is equivalent to prove that the fibers of Φ̂, which are

the sets Φ̂−1(x) for x ∈ Rk are differentiable, embedded (k − d)-hyperplanes. Before proving that, we will

describe a generalized notion of tangent vectors.

Let λ : (0, 1) → Rd be a continuous curve. Let t0 ∈ (0, 1) and z0 = λ(t0). For every non-zero vector

v ∈ Rd, let v̂ denote the normalized vector v
‖v‖ , where ‖v‖ is the Euclidean norm of v. A unit vector v̂0 will

be called a generalized tangent direction to λ at z0 is there is a sequence (tn)n∈N such that tn → t0,

and if vn denotes the vector λ(tn)− λ(t0), then v̂n → v̂0.

Properties of generalized tangent directions. The following properties of generalized tangent

directions follow immediately from their definition.

1. Since the definition of a generalized tangent direction is a local property, the definition can be

extended to continuous curves in manifolds, like Td.

2. Every curve has at least one generalized tangent direction at each of its points. This is because, the

vectors ûn all lie in the unit sphere Sd−1 of the tangent space at z0. Since this unit circle is compact,
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for any sequence tn → t0 and un := λ(tn)− λ(t0), the vectors ûn will have at least one limit point.

3. Note that an embedded (d − k)-manifold is C1 iff there are exactly (d − k) linearly independent

generalized tangent directions at each of its points.

We will need the following lemma to prove our claim.

Lemma 3.5 Let λ : S1 →M be a continuous curve in a d dimensional manifold M . Let F : M →M be

a local diffeomorphism. Then DF maps each generalized tangent direction of λ into a generalized tangent

direction of F (λ).

Proof Let v̂ be a generalized tangent direction to λ at a point z0 = λ(t0) for some t0 ∈ S1. We will

prove that DF (z0)(v) is along a generalized tangent direction to F (λ) at F (z0). By definition, there is

a sequence tn → t0 such that if vn := λ(tn) − λ(t0), then v̂n → v̂0. Let zn denote the point λ(tn). So

zn = z0 + vn.

Let λ(r0) correspond to the point F (z0), and similarly, λ(rn) = F (λ(tn)), where r0, r1, r2, . . . ∈ S1. Then

note that rn → r0. By the definition of the derivative of a function F , lim
n→∞

‖F (z0+vn)−(F (z0)+Df(z0)vn)‖
‖vn‖ = 0.

Therefore, F (zn) = F (z0 + un)→ F (z0) +DF (z0)vn or F (zn)− F (z0)→ DF (z0)vn.

Therefore, F (zn)−F (z0)
‖F (zn)−F (z0)‖ →

DF (z0)vn
‖DF (z0)vn‖ .

But since vn → v0, we must have that DF (z0)vn → DF (z0)v0 or DF (z0)vn
‖DF (z0)vn‖ →

DF (z0)v0
‖DF (z0)v0‖ .

Therefore, F (zn)−F (z0)
‖F (zn)−F (z0)‖ →

DF (z0)v0
‖DF (z0)v0‖ .

Therefore, DF (z0)v0 must be a generalized tangent direction to the curve F (λ) at the point F (z0).

The proof will be by contradiction. So there is some point z ∈ Φ̂−1(x0) with d − k + 1 linearly

independent generalized tangent directions {v0, . . . , vd−k}. At least one of these vectors is not orthogonal

to e(z), say v0. By Eqn. 6 and Lemma 3.5, {DF nv0, . . . , DF
nvd−k} are mapped into generalized tangent

directions on Φ̂−1(mnx0), since DF is a local diffeomorphism, these directions are independent. Because

(A4) is satisfied, if n is large enough, then DF nv0 ∈ e(F nz), the cone at z. However, it follows from Claim

D in the proof of Proposition 3.3 that a fiber of Φ̂ cannot have a generalized tangent direction lying inside

cone around {e1, . . . , ek}. This leads to a contradiction and completes the proof.
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