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On Lipschitz continuous optimal stopping boundaries

Tiziano De Angelis∗ & Gabriele Stabile†
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Abstract. We obtain a probabilistic proof of the local Lipschitz continuity for the optimal
stopping boundary of a class of problems with state space [0, T ]×R

d, d ≥ 1. To the best of our
knowledge this is the only existing proof that relies exclusively upon stochastic calculus, all the
other proofs making use of PDE techniques and integral equations. Thanks to our approach we
obtain our result for a class of diffusions whose associated second order differential operator is
not necessarily uniformly elliptic. The latter condition is normally assumed in the related PDE
literature.
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1 Introduction

In this work we deal with optimal stopping problems of the form

v(t, x) = sup
0≤τ≤T−t

E

[∫ τ

0
h(t+ s,Xx

s )ds+ 1{τ<T−t}f(t+ τ,Xx
τ ) + 1{τ=T−t}g(X

x
τ )

]
(1.1)

where E denotes the expectation operator. For d ≥ 1 and d′ ≥ 1, given a suitable R
d-valued

function µ and a d× d′ matrix σ, the process X ∈ R
d follows the dynamic

Xx
t = x+

∫ t

0
µ(Xx

s )ds + σBt, t ≥ 0,

with B a R
d′-valued Brownian motion. The main focus of our study is the analysis of the

regularity of the optimal stopping boundary, i.e. the boundary of the set in [0, T ) × R
d where

v = f .
Under mild assumptions on µ, f , g and h we provide a probabilistic representation of the

gradient of v. The latter is used, along with more technical requirements on f , g and h, to prove
that the optimal stopping boundary may be expressed in terms of a locally Lipschitz continuous
function b : [0, T ] × R

d−1 → R. One of the main features in our work is that we do not assume
uniform non-degeneracy of the diffusion so that standard results based on PDE theory cannot
be easily applied.

It is well known that optimal stopping theory goes hand in hand with the theory of free
boundary problems in PDE and the question of regularity of optimal stopping boundaries (free
boundaries) has been the object of intensive study. The one dimensional case d = 1 attracted
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the interest of several mathematicians who developed approaches ranging from probability to
analysis. Early contributions to the topic were made in [22], [26] and [37], among others.
In [22] and [37] it was proven that the free-boundary b is differentiable in the open interval
(0, T ) for a certain class of problems involving one-dimensional Brownian motion or solutions of
one-dimensional SDEs with regular coefficents. Other papers employing PDE methods are for
example [7], [32], where infinite differentiability of the free boundary in the Stefan problem is
proved, and [17] where C1 regularity of the boundary is obtained for a certain class of variational
problems. The study of the optimal boundary of the American put option is perhaps one of the
most renowned examples in this field and for an overview of existing results one may refer to
[1], [3], [8], [9], [15], [18], [21] [24], and [29] among others. Finally it is worth recalling that a
thorough discussion of analytical methods for free boundary problems on [0, T ] × R related to
the heat operator may be found in the monograph [6] (see also [16, Ch. 8]). In the latter, as well
as in several of the above references, the first step in the analysis of the regularity of the free
boundary is to prove that it is Lipschitz continuous or at least Hölder continuous with constant
α > 1/2.

There is also a large body of literature addressing similar questions in higher dimensions.
Accounting in full for these results is a difficult task and it falls outside the reach of our work.
However for our purposes it is interesting to recall the following fact: Lipschitz regularity for the
free boundary of certain Stefan problems (with d ≥ 1) can be upgraded to C1,α regularity for
some α ∈ (0, 1) and eventually to C∞ regularity, under suitable technical conditions. Detailed
derivations of this informal statement may be found in the monographs [5] and [27] and references
therein (see also [25] for the study of American options written on several assets and with convex
payoff).

In the literature on optimal stopping the vast majority of papers studying problems of the
form (1.1) with d = 1 addresses the question of continuity of the boundary without looking at
higher regularity (of course with the exception of the works mentioned above; see [11] for some
results and further references). Moreover, even the question of continuity becomes difficult to
handle for d > 1. In the case of d = 2 and T = ∞, specific examples were addressed in [13] and
[19], while a more complete answer was recently provided in [30].

Notably, Shreve and Soner [34, 36] address a problem of singular stochastic control which is
equivalent to one of optimal stopping of the form (1.1), and characterise the optimal boundary
as a real-valued, Lipschitz continuous function on [0, T ]×R

d−1, d ≥ 1. In their work they employ
the equivalence between the problem of singular control and the one of optimal stopping, and
study the latter purely by means of PDE methods similar to those in [2]. Regularity of the free
boundary is used in [34, 36] to obtain a classical solution to a variational problem with gradient
constraint related to the singular control problem. It is worth mentioning that the same authors
had previously shown C2 regularity for the optimal boundary of a two-dimensional singular
control problem on an infinite time horizon [35]. However in the setting of [35] we are not aware
of any direct link to an optimal stopping problem and therefore it is harder to draw a parallel
with our work.

From the above discussion we learn that a reasonable attempt towards the study of regularity
for optimal boundaries in optimal stopping theory should start form establishing their Lipschitz
continuity. Of course this can be achieved in several instances by the PDE methods illustrated
in the references above but instead we aim at finding a fully probabilistic approach. Under
assumptions similar to those adopted in [34, 36], our work not only serves the purpose of bridging
the PDE literature and the probabilistic one but it also contributes new results.

One of our main contributions is to prove that for d > 1 local Lipschitz continuity of the
optimal boundary can be obtained without requiring uniform ellipticity of the operator σσ⊤

(see Theorems 4.11 and 4.12, and Example 2 in Section 5). Relaxing this requirement makes it
difficult to apply standard PDE results (including [5] and [27]) and the methods used in [34, 36]
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are no longer valid. In the special case d = 1 (see Theorem 4.3) we are able to localize the
assumptions made in [34, 36] and in particular the one relative to the running cost, i.e. our
function h. Such relaxation allows us to apply our results to a wider class of examples than
the one previously covered. For instance we can apply them in problems of irreversible capacity
expansions where the running profit is expressed by a Cob-Douglas-type production function
(see, e.g. [10] and Example 1 in Section 5). A more detailed comparison between our setting
and the one in [34, 36] is provided in Remark 4.13.

We also notice that our functional (1.1) allows a rather generic time-space dependence of the
functions f , g and h, while at the same time the dynamic of X allows state dependent drifts
and correlations between the driving noises (i.e. σ is not necessarily diagonal). For d = 1 a
generic time dependence of f and h makes it extremely hard and often impossible to establish
monotonicity of the optimal boundary as a function of time. The latter is normally a key feature
in the study of the boundary’s continuity. One advantage of our approach is that instead we do
not need such monotonicity to establish Lipschitz continuity (see [14] for a recent application in
actuarial context). Moreover if the boundary is Lipschitz then v ∈ C1([0, T ) × R) (see Remark
4.5).

Our method consists of two main steps which we can formally summarise as follows. In
the first step we find a probabilistic representation of the time/space derivatives of the value
function. The latter is then used in the second step along with the implicit function theorem to
obtain bounds on the gradient of the optimal boundary. Notice that, while the second step is
somehow in line with ideas in [36], the first step is entirely new.

It is important to remark that despite the technical assumptions that we make, one of the
main contributions of our work is the methodology. As it is often the case in optimal stopping
and free boundary problems, in order to be able to give general results, one has to impose
fairly strong conditions on the problem data. However, when considering specific examples it is
possible to find ways around the technicalities and still apply the same methods. This is indeed
true also for the theory that we are developing here and in Section 5 we provide some examples
of such extensions.

The rest of the paper is organised as follows. In Section 2 we provide a rigorous formulation
of the problem outlined in (1.1) along with the standing assumptions. In Section 3 we obtain a
probabilistic representation formula for the gradient ∇xv and for bounds on the time derivative
∂tv (see Theorem 3.1). Some other technical estimates are performed before passing to Section
4. In the latter we finally give our main results regarding existence of a locally-Lipschitz con-
tinuous optimal boundary for problem (1.1). This result is given under three different sets of
assumptions: in Theorem 4.3 for d = 1 and in Theorems 4.11 and 4.12 for d ≥ 2. In Section 5
we show some applications of our results and their extensions in specific examples.

2 Setup and problem formulation

Consider a complete probability space (Ω,F ,P) equipped with the natural filtration F := (Ft)t≥0

generated by a R
d′-valued Brownian motion (Bt)t≥0. Assume that F is completed with P-null

sets and let X ∈ R
d evolve according to

Xx
t = x+

∫ t

0
µ(Xx

s )ds + σBt, t ≥ 0, (2.1)

where µ ∈ C1(Rd;Rd) with sub-linear growth and σ is a d× d′ matrix. We denote by 〈· , ·〉 the
scalar product in R

d and by ‖ · ‖d the Euclidean norm in R
d. Notice that σσ⊤ is assumed to be

non-negative but not necessarily uniformly elliptic. This means that it may exist ξ ∈ R
d such

that 〈σσ⊤ξ, ξ〉 = 0.
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Throughout the paper we will often use Pt,x( · ) = P( · |Xt = x) and Px = P0,x, so that
Et,xf(Xs) = Ef(Xt,x

s ), s ≥ t, for any function f which is Borel-measurable and integrable. With
no loss of generality we will assume Ω = C([0, T ];Rd) so that t 7→ ω(t) is the canonical process
and θ· the shifting operator such that θsω(t) = ω(t+ s).

For T ∈ (0,+∞) we consider optimal stopping problems of the form

v(t, x) = sup
0≤τ≤T−t

E

[∫ τ

0
h(t+ s,Xx

s )ds+ 1{τ<T−t}f(t+ τ,Xx
τ ) + 1{τ=T−t}g(X

x
τ )

]
(2.2)

where f , g and h are real-valued with f ∈ C1,2([0, T ]×R
d), h ∈ C1,1([0, T ]×R

d) and g ∈ C2(Rd).
In the infinite horizon case, i.e. T = +∞, we consider

v(t, x) = sup
τ≥0

E

[∫ τ

0
h(t+ s,Xx

s )ds+ f(t+ τ,Xx
τ )

]
(2.3)

with f and h as above and, according to [33, Ch. 3], we set

1{τ=+∞}f(t+ τ,Xx
τ ) := lim sup

s→∞
f(s,Xx

s ), P-a.s.

In what follows conditions at T for the terminal value g(XT ) are understood to hold only
for T < +∞ and can always be neglected for T = +∞. From now on we assume that for all
(t, x) ∈ [0, T ] × R

d it holds

E

[ ∫ T−t

0
|h(t+ s,Xx

s )|ds+ |g(Xx
T−t)|+ sup

0≤s≤T−t
|f(t+ s,Xx

s )|
]
< +∞. (2.4)

Moreover, if T = +∞ then we also assume

lim sup
s→∞

f(t+ s,Xx
s ) = lim

s→∞
f(t+ s,Xx

s ) = 0, P-a.s. (2.5)

Both assumptions are fulfilled in the examples of Section 5.

Remark 2.1. Notice that the dynamic (2.1) and the optimisation problem (2.2) are general
enough to include for example models involving geometric Brownian motion and Ornstein-
Uhlenbeck.

To avoid further technicalities we also assume that v is a lower semi-continuous function.
Often such regularity (or even continuity) is easy to check in specific examples (e.g., those in
Section 5). There also exist mild sufficient conditions that guarantee lower semi-continuity of v
in more general settings (see for instance [33, Ch. 3]. See also Remark 2.10 and eq. (2.2.80) in
[31, Ch.I, Sec. 2]).

The continuation set C and the stopping set S are given by

C := {(t, x) ∈ [0, T )× R
d : v(t, x) > f(t, x)} (2.6)

S := {(t, x) ∈ [0, T ) × R
d : v(t, x) = f(t, x)} ∪ ({T} × R). (2.7)

From standard optimal stopping theory we know that, in our setting, (2.4) and lower semi-
continuity of v are sufficient for the optimality of

τ∗(t, x) = inf {s ∈ [0, T − t] : (t+ s,Xx
s ) ∈ S} (2.8)

provided that f(T, x) ≤ g(x), if T < +∞ (see [31, Ch. I, Sec. 2, Cor. 2.9]). For the infinite
horizon case notice that if Pt,x(τ∗ < +∞) < 1, then there is no optimal stopping time and τ∗ is a
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(optimal) Markov time (according to the terminology in [33, Ch. 3, Thm. 3]). However methods
used in the next sections work for both finite and infinite values of τ∗ thanks to (2.5).

For arbitrary (t, x) ∈ [0, T ]× R
d let

Ys := v(t+ s,Xx
s ) +

∫ s

0
h(t+ u,Xx

u )du.

Since v is lower semi-continuous and using standard results in optimal stopping (see [31, Ch. I,
Sec. 2, Thm. 2.4]) we have that (Ys)0≤s≤T−t is P-a.s. right-continuous and

Ys is a supermartingale for s ∈ [0, T − t], (2.9)

Ys∧τ∗ is a martingale for s ∈ [0, T − t]. (2.10)

Notice in particular that since Y is right-continuous then the process s 7→ v(t + s,Xx
s ) is P-

a.s. right continuous as well. As a note of caution we remark that if T = +∞ then (2.9) continues
to hold on [0,+∞] because Y is a uniformly integrable super-martingale thanks to (2.4) (see,
e.g. [33, Thm. 9, Ch. 1]). Instead, (2.10) only holds on [0,∞).

We denote by L the infinitesimal generator associated to X and in particular we have

LF (x) =
1

2

d∑

i,j=1

(σσ⊤)i,j
∂2F

∂xi∂xj
(x) +

d∑

i=1

µi(x)
∂F

∂xi
(x), F ∈ C2(Rd;R). (2.11)

For future frequent use we also introduce the following notation

m(t, x) := (∂tf + Lf) (t, x) and n(x) := Lg(x). (2.12)

Since µ ∈ C1(Rd;Rd) then the flow x 7→ Xx is differentiable ([28], Chapter V.7). Here we
denote the initial point in (2.1) by x = (x1, . . . , xd), the i-th component of Xx by Xx,i, the
partial derivative with respect to xk by ∂k = ∂

∂xk
, and the derivative of Xx with respect to

the initial point xk by ∂kX
x = (∂kX

x,1, . . . ∂kX
x,d). We define the process ∂Xx as a d × d

matrix with entries ∂kX
x,j for j, k = 1, . . . d and the maps t 7→ ∂kX

x,j
t are P-a.s. continuous

with dynamics given by

∂kX
x,j
t =δj,k +

∫ t

0

d∑

ℓ=1

∂ℓµj(X
x
s )∂kX

x,ℓ
s ds = δj,k +

∫ t

0
〈∇xµj(X

x
s ), ∂kX

x
s 〉ds. (2.13)

In what follows we also assume that for any compact K ⊂ R
d it holds

sup
x∈K

E

[
sup

0≤t≤T
‖∂kX

x
t ‖

2
d

]
< +∞ for all k = 1, . . . d. (2.14)

The next will be a standing assumption throughout the paper

Assumption 2.2 (Regularity f, g, h.). For any compact K ⊂ [0, T ]×R
d, there exists cK > 0

such that for all (t, x) ∈ K we have

E

[∫ T−t

0
‖∇xh(t+ s,Xx

s )‖
2
d ds+ sup

0≤s≤T−t
‖∇xf(t+ s,Xx

s )‖
2
d + ‖∇xg(X

x
T−t)‖

2
d

]
≤ cK ,

E

[∫ T−t

0
|∂th(t+ s,Xx

s )|
2ds+ sup

0≤s≤T−t
|∂tf(t+ s,Xx

s )|
2 + |h(T,Xx

T−t) + n(Xx
T−t)|

2

]
≤ cK .

It is important to remark that Assumption 2.2 and (2.14) are used in Theorem 3.1 in order to
pass limits under expectations, thanks to uniform integrability. Therefore, in specific examples
one can expect to find weaker sufficient conditions that allow this step in the proof.
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3 Properties of the value function

In this section we provide useful bounds for the gradient of the value function v and some other
technical results. These are obtained by often using the following condition

(A1) Terminal value. If T < +∞ we have g(x) ≥ f(T, x).

Before stating the next theorem it is useful to introduce the functions

v(t, x) = E

[ ∫ τ∗

0
∂th(t+ s,Xx

s )ds (3.1)

+ 1{τ∗<T−t}∂tf(t+ τ∗,X
x
τ∗)− 1{τ∗=T−t}

(
h(T,Xx

T−t) + n(Xx
T−t)

) ]

and

v(t, x) = E

[ ∫ τ∗

0
∂th(t+ s,Xx

s )ds + 1{τ∗<T−t}∂tf(t+ τ∗,X
x
τ∗) (3.2)

− 1{τ∗=T−t}

(
|h(T,Xx

T−t) + n(Xx
T−t)|+ |∂tf(T,X

x
T−t)|

)]
.

Theorem 3.1. Assume condition (A1). Then the value function v is locally Lipschitz continuous
on [0, T ] × R

d and for a.e. (t, x) we have

∂kv(t, x) =E

[ ∫ τ∗

0
〈∇xh(t+ s,Xx

s ), ∂kX
x
s 〉ds (3.3)

+ 1{τ∗<T−t}〈∇xf(t+ τ∗,X
x
τ∗), ∂kX

x
τ∗〉+ 1{τ∗=T−t}〈∇xg(X

x
T−t), ∂kX

x
T−t〉

]

and

v(t, x) ≤ ∂tv(t, x) ≤ v(t, x). (3.4)

Proof. Step 1. (Spatial derivative). Here we show that v(t, ·) is locally Lipschitz and (3.3) holds
for a.e. x ∈ R

d and each given t ∈ [0, T ] (notice that the null set where v(t, ·) is not differentiable
may a priori depend on t). First we obtain bounds for the left and right derivative of v(t, ·).

Fix (t, x) ∈ [0, T ] × R
d and take ε > 0. For an arbitrary k we denote for simplicity

xε = (x1, . . . xk + ε, . . . xd), and consider the processes Xxε = (Xxε,1, . . . . . . Xxε,d) and Xx =
(Xx,1, . . . Xx,d). We remark that all components of the vector process Xxε are affected by the
shift in the initial point.

We denote by τ = τ∗(t, x) the optimal stopping time (independent of ε) for the problem with
initial data (t, x). Using such optimality we first obtain

v(t, xε)− v(t, x)

≥E

[∫ τ

0
(h(t+ s,Xxε

s )− h(t+ s,Xx
s )) ds+ 1{τ<T−t} (f(t+ τ,Xxε

τ )− f(t+ τ,Xx
τ ))

]

+ E
[
1{τ=T−t}

(
g(Xxε

T−t)− g(Xx
T−t)

)]
.

Dividing both sides of the above expression by ε and recalling Assumption 2.2 and (2.14) we
can pass to the limit as ε→ 0 and use dominated convergence to conclude that

lim inf
ε→0

v(t, xε)− v(t, x)

ε

≥E

[∫ τ

0
〈∇xh(t+ s,Xx

s ), ∂kX
x
s 〉ds + 1{τ<T−t}〈∇xf(t+ τ,Xx

τ ), ∂kX
x
τ 〉

]
(3.5)

+ E
[
1{τ=T−t}〈∇xg(X

x
T−t), ∂kX

x
T−t〉

]
.
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To obtain a reverse inequality, pick δ > 0 and denote xδ = (x1, . . . xk − δ, . . . xd) and X
xδ =

(Xxδ ,1, . . . Xxδ,d). Since τ is optimal in v(t, x) and sub-optimal in v(t, xδ) we have

v(t, x)− v(t, xδ)

≤E

[∫ τ

0
(h(t+ s,Xx

s )− h(t+ s,Xxδ
s )) ds+ 1{τ<T−t} (f(t+ τ,Xx

τ )− f(t+ τ,Xxδ
τ ))

]

+ E
[
1{τ=T−t}

(
g(Xx

T−t)− g(Xxδ
T−t)

)]
.

Dividing both sides by δ, taking limits and using dominated convergence again we obtain

lim sup
δ→0

v(t, x)− v(t, xδ)

δ

≤E

[∫ τ

0
〈∇xh(t+ s,Xx

s ), ∂kX
x
s 〉ds + 1{τ<T−t}〈∇xf(t+ τ,Xx

τ ), ∂kX
x
τ 〉

]
(3.6)

+ E
[
1{τ=T−t}〈∇xg(X

x
T−t), ∂kX

x
T−t〉

]
.

Now, (3.5) gives a lower bound for the right derivative with respect to xk whereas (3.6)
provides an upper bound for the corresponding left derivative. If x is a point of differentiability
of v(t, ·) then (3.5) and (3.6) imply that (3.3) holds at that point. It remains to show that v(t, ·)
is locally Lipschitz so that a.e. x ∈ R

d is a point of differentiability.
With the same notation as above let τε = τ∗(t, xε) be optimal for the problem with initial

data (t, xε). By analogous arguments to those used previously and using Assumption 2.2 and
(2.14) we find

v(t, xε)− v(t, x)

≤E

[∫ τε

0
(h(t+ s,Xxε

s )− h(t+ s,Xx
s )) ds+ 1{τε<T−t}

(
f(t+ τε,X

xε
τε )− f(t+ τε,X

x
τε)
)]

+ E
[
1{τε=T−t}

(
g(Xxε

T−t)− g(Xx
T−t)

)]
≤ c(t, x)ε, (3.7)

for some c(t, x) > 0, which is uniform for (t, x) on a compact. Notice also that for the last
inequality we have used

∥∥Xxε
τε −Xx

τε

∥∥
d
≤ ε ·

∑

k

sup
0≤s≤T

‖∂kX
z
s ‖d

by the mean value theorem, with suitable z ∈ R
d such that ‖z − x‖d ≤ ε.

The estimate in (3.7) and (3.5) imply |v(t, xε) − v(t, x)| ≤ ĉ(t, x)ε, for some other constant
ĉ(t, x) > 0 which can be taken uniform over compact sets. Symmetric arguments allow to prove
also that |v(t, xδ)− v(t, x)| ≤ ĉ(t, x)δ, with xδ as in (3.6).

Step 2. (Time derivative). Here we show that t 7→ v(t, x) is locally Lipschitz and (3.4) holds
for a.e. t ∈ [0, T ] and each given x ∈ R

d. We start by providing bounds for the left and right
derivatives of v( · , x).

Fix (t, x) ∈ [0, T ]×R
d and let ε > 0. Then letting τ = τ∗(t, x) optimal for the problem with

initial data (t, x) we notice that τ is admissible for the problem with initial data (t−ε, x). Using
(2.9) and (2.10) we obtain the following upper bound.

v(t, x)− v(t− ε, x) ≤ E

[ ∫ τ

0
(h(t+ s,Xx

s )− h(t− ε+ s,Xx
s )) ds

+ v(t+ τ,Xx
τ )− v(t− ε+ τ,Xx

τ )
]
. (3.8)
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Now we notice that since v ≥ f on [0, T ]×R
d and v = f in S, by right continuity of v(t+ ·,Xx

· )
one has

v(t+ τ,Xx
τ )− v(t− ε+ τ,Xx

τ ) ≤ f(t+ τ,Xx
τ )− f(t− ε+ τ,Xx

τ ) on {τ < T − t}

v(t+ τ,Xx
τ )− v(t− ε+ τ,Xx

τ ) ≤ g(Xx
T−t)− v(T − ε,Xx

T−t) on {τ = T − t}.

Moreover from (2.2) we also have

v(T − ε,Xx
T−t) ≥EXx

T−t

[∫ ε

0
h(T − ε+ s,Xs)ds+ g(Xε)

]

=g(Xx
T−t) + EXx

T−t

[∫ ε

0
(h(T − ε+ s,Xs) + n(Xs)) ds

]
.

Collecting the above estimates and using the mean value theorem we conclude

1

ε
(v(t, x) − v(t− ε, x))

≤E

[∫ τ

0
∂th(t− ε′s + s,Xx

s )ds + 1{τ<T−t}∂tf(t− ε′′τ + τ,Xx
τ )

]
(3.9)

− Ex

[
1{τ=T−t}EXT−t

[
1

ε

∫ ε

0
(h(T − ε+ s,Xs) + n(Xs)) ds

]]

for ε′s and ε′′τ in [0, ε]. Letting ε→ 0 and using Assumption 2.2 we get

lim sup
ε→0

v(t, x) − v(t− ε, x)

ε
(3.10)

≤E

[ ∫ τ

0
∂th(t+ s,Xx

s )ds+ 1{τ<T−t}∂tf(t+ τ,Xx
τ )
]

− E

[
1{τ=T−t}

(
h(T,Xx

T−t) + n(Xx
T−t)

) ]
.

To prove a reverse inequality we notice that τ ∧ (T − t− ε) is admissible for the problem with
initial data (t+ ε, x), so that by using (2.9) and (2.10) and arguing as above we obtain

v(t+ ε, x) − v(t, x)

≥E

[ ∫ τ∧(T−t−ε)

0
(h(t+ ε+ s,Xx

s )− h(t+ s,Xx
s )) ds− 1{τ>T−t−ε}

∫ τ

T−t−ε
h(t+ s,Xx

s )ds
]

+ E

[
1{τ≤T−t−ε} (f(t+ ε+ τ,Xx

τ )− f(t+ τ,Xx
τ ))
]

+ E

[
1{τ>T−t−ε}

(
g(Xx

T−t−ε)− v(t+ τ,Xx
τ )
) ]
. (3.11)

We can collect the two terms with the indicator of {τ > T − t − ε}, use iterated conditioning
and the martingale property (2.10) to get

E

[
1{τ>T−t−ε}

(
g(Xx

T−t−ε)− v(t+ τ,Xx
τ )−

∫ τ

T−t−ε
h(t+ s,Xx

s )ds

)]

=E

[
1{τ>T−t−ε}

(
g(Xx

T−t−ε)− E

[
v(t+ τ,Xx

τ ) +

∫ τ

T−t−ε
h(t+ s,Xx

s )ds
∣∣∣FT−t−ε

]) ]

=E

[
1{τ>T−t−ε}

(
g(Xx

T−t−ε)− v(T − ε,Xx
T−t−ε)

) ]
.
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To estimate the last term we argue as follows

v(T − ε,Xx
T−t−ε)

= ess sup
0≤σ≤ε

EXx
T−t−ε

[∫ σ

0
h(T − ε+ s,Xs)ds + 1{σ<ε}f(T − ε+ σ,Xσ) + 1{σ=ε}g(Xε)

]

=ess sup
0≤σ≤ε

EXx
T−t−ε

[∫ σ

0
h(T − ε+ s,Xs)ds + g(Xσ) + 1{σ<ε} (f(T − ε+ σ,Xσ)− g(Xσ))

]

=g(Xx
T−t−ε)

+ ess sup
0≤σ≤ε

EXx
T−t−ε

[ ∫ σ

0
(h(T − ε+ s,Xs) + n(Xs)) ds+ 1{σ<ε}

(
f(T,Xσ)− g(Xσ)

)

− 1{σ<ε}

∫ T

T−ε+σ
∂tf(u,Xσ)du

]
.

Using that f(T, x) ≤ g(x) by condition (A1), we get

v(T − ε,Xx
T−t−ε)

≤g(Xx
T−t−ε) (3.12)

+ ess sup
0≤σ≤ε

EXx
T−t−ε

[ ∫ σ

0
(h(T − ε+ s,Xs)+n(Xs)) ds+

∫ T

T−ε+σ
|∂tf(u,Xσ)|du

]

≤g(Xx
T−t−ε) + EXx

T−t−ε

[ ∫ ε

0
|h(T − ε+ s,Xs) + n(Xs)|ds

]

+ EXx
T−t−ε

[ ∫ ε

0
sup
r≤ε

|∂tf(T − ε+ s ∧ (ε− r) + r,Xr)|ds
]
.

Plugging the estimates above inside (3.11) we then obtain

1

ε
(v(t+ ε, x)− v(t, x))

≥E

[∫ τ∧(T−t−ε)

0
∂th(t+ ε′s + s,Xx

s )ds+ 1{τ≤T−t−ε}∂tf(t+ ε′′τ + τ,Xx
τ )

]

− Ex

[
1{τ>T−ε−t}EXT−t−ε

[1
ε

∫ ε

0
|h(T − ε+ s,Xs) + n(Xs)|ds

]]

− Ex

[
1{τ>T−ε−t}EXT−t−ε

[1
ε

∫ ε

0
sup
r≤ε

|∂tf(T − ε+ s ∧ (ε− r) + r,Xr)|ds
]]

for suitable ε′s and ε′′τ in [0, ε]. Taking limits as ε→ 0 we conclude

lim inf
ε→0

v(t+ ε, x) − v(t, x)

ε
(3.13)

≥E

[ ∫ τ

0
∂th(t+ s,Xx

s )ds + 1{τ<T−t}∂tf(t+ τ,Xx
τ )
]

− E

[
1{τ=T−t}

(
|h(T,Xx

T−t) + n(Xx
T−t)|+ |∂tf(T,X

x
T−t)|

) ]
.

So far we have established a lower bound for the right-derivative and an upper bound for
the left-derivative of v(·, x). Hence (3.4) holds for all t ∈ [0, T ] at which v(·, x) is differentiable,
thanks to (3.10) and (3.13). Next we prove that v( · , x) is indeed locally Lipschitz so that (3.4)
holds for a.e. t ∈ [0, T ] and each given x ∈ R

d.
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Let us set τε := τ∗(t − ε, x) and notice that τε ∧ (T − t) is admissible for the problem with
initial data (t, x). Therefore arguing as in (3.11) we get

v(t, x)− v(t− ε, x)

≥E

[ ∫ τε∧(T−t)

0
(h(t+ s,Xx

s )− h(t− ε+ s,Xx
s )) ds− 1{τε>T−t}

∫ τε

T−t
h(t− ε+ s,Xx

s )ds
]

+ E

[
1{τε≤T−t}

(
f(t+ τε,X

x
τε)− f(t− ε+ τε,X

x
τε)
) ]

+ E

[
1{τε>T−t}

(
g(Xx

T−t)− v(t− ε+ τε,X
x
τε)
) ]
. (3.14)

Repeating step by step the arguments that follow (3.11) we obtain

1

ε
(v(t, x) − v(t− ε, x))

≥E

[∫ τε∧(T−t)

0
∂th(t− ε′s + s,Xx

s )ds + 1{τε≤T−t}∂tf(t− ε′′τε + τε,X
x
τε)

]

− Ex

[
1{τε>T−t}EXT−t

[1
ε

∫ ε

0
|h(T − ε+ s,Xs) + n(Xs)|ds

]]

− Ex

[
1{τε>T−t}EXT−t

[1
ε

∫ ε

0
sup
r≤ε

|∂tf(T − ε+ s ∧ (ε− r) + r,Xr)|ds
]]
,

with ε′s and ε′′τε in [0, ε]. Using Assumption 2.2 and the above expression it is clear that we can
find c(t, x) > 0, which is uniform for (t, x) in a compact and such that v(t, x) − v(t − ε, x) ≥
−c(t, x) ε. The latter, together with (3.10) imply that |v(t, x) − v(t − ε, x)| ≤ ĉ(t, x)ε for some
other ĉ(t, x) > 0 which is uniform on compact sets. A symmetric argument can be used to obtain
an analogous bound for |v(t+ ε, x)− v(t, x)| and therefore v( · , x) is indeed locally Lipschitz.

Step 3. (Lipschitz property). To complete the proof it only remains to observe that, com-
bining results in step 1 and 2 above, we obtain that v is locally Lipschitz on [0, T ]×R

d. Hence,
it is differentiable for a.e. (t, x) ∈ [0, T ]× R

d and (3.3) and (3.4) hold a.e. as claimed.

Remark 3.2. It is important to notice that the results of Theorem 3.1 hold in the same form
when considering a state dependent diffusion coefficient σ(x) in (2.1), provided that σij ∈
C1(Rd;R). Indeed the proof remains exactly the same as we have never used the specific form
of the dynamics of X in (2.1).

There is a simple and useful corollary to the theorem

Corollary 3.3. Assume T < +∞. Let condition (A1) and one of the two conditions below hold

(i) g(x) = f(T, x), x ∈ R
d,

(ii) ∃ c > 0 such that h(T, x) + n(x) ≥ −∂tf(T, x)− c, for x ∈ R
d.

Then for a.e. (t, x) ∈ [0, T ]× R
d and τ∗ = τ∗(t, x) we have

∂tv(t, x) ≤ E

[∫ τ∗

0
∂th(t+ s,Xx

s )ds+ ∂tf(t+ τ∗,X
x
τ∗)

]
+ cP(τ∗ = T − t) (3.15)

where c = 0 if (i) holds.
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Proof. Under (ii) the claim is trivial since ∂tv ≤ v and recalling (3.1). Under (i) instead, we
notice that (3.8) in the proof of Theorem 3.1 may be bounded as follows

v(t, x) − v(t− ε, x) ≤E

[ ∫ τ

0
(h(t+ s,Xx

s )− h(t− ε+ s,Xx
s )) ds

+ v(t+ τ,Xx
τ )− v(t− ε+ τ,Xx

τ )
]

≤E

[ ∫ τ

0
(h(t+ s,Xx

s )− h(t− ε+ s,Xx
s )) ds

+ f(t+ τ,Xx
τ )− f(t− ε+ τ,Xx

τ )
]
.

Then dividing by ε and taking limits as ε→ 0 we obtain (3.15), thanks to Assumption 2.2.

Before concluding the section we provide two simple technical lemmas which will be useful
in the next section.

Lemma 3.4. For k = 1, . . . d one has P-almost surely

sup
0≤t≤T

‖∂kX
x
t ‖

2
d ≤ 2 exp


2T

∫ T

0

d∑

j=1

‖∇xµj(X
x
s )‖

2
dds


 . (3.16)

Proof. By using |a+ b|2 ≤ 2(|a|2 + |b|2) and Hölder inequality applied to (2.13) we get

‖∂kX
x
t ‖

2
d =

d∑

j=1

(
δj,k +

∫ t

0
〈∇xµj(X

x
s ), ∂kX

x
s 〉ds

)2

≤2


1 + T

d∑

j=1

∫ t

0
‖∇xµj(X

x
s )‖

2
d‖∂kX

x
s ‖

2
dds


 .

An application of Gronwall’s inequality concludes the proof.

Lemma 3.5. Let q : Rd → R be Borel-measurable and with growth

|q(x)| ≤ q0(1 + ‖x‖pd) (3.17)

for some q0 > 0 and p ≥ 1. Assume ‖µ(x)‖d ≤ C for all x ∈ R
d and a given constant C > 0.

Then for T < +∞ and any stopping time τ ∈ [t, T ] we have

Et,x

[
1{τ=T}q(Xτ )

]
≤ K (1 + ‖x‖pd)(T − t)−1

Et,x(τ − t), (t, x) ∈ [0, T ]× R
d (3.18)

where K > 0 depends only on q0, d, p, C and T .

Proof. Using polynomial growth and Hölder inequality, and by letting c > 0 be a constant that
changes from line to line, we get

Et,x

[
1{τ=T}q(Xτ )

]

≤cEt,x

[
1{τ=T}

(
1 + ‖Xτ‖

p
d

)]

≤cEt,x

[
1{τ=T}

(
1 + ‖x‖pd +

∥∥∥∥
∫ τ

t
µ(Xs)ds

∥∥∥∥
p

d

+ ‖σ(Bτ −Bt)‖
p
d

)]

≤c
(
(1 + ‖x‖pd)Pt,x(τ = T ) + Et,x

[
1{τ=T}(τ − t)p

]

+
√

Pt,x(τ = T )

√
Et,x

[
‖σ(Bτ −Bt)‖

2p
d

] )

≤c
(
(1 + ‖x‖pd)Pt,x(τ = T ) +

√
Pt,x(τ = T )

√
Et,x

[
(τ − t)p

] )
.
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Finally, by using Markov inequality

Pt,x(τ = T ) = Pt,x(τ − t ≥ T − t) ≤ (T − t)−p
Et,x [(τ − t)p] (3.19)

we obtain

Et,x

[
1{τ=T}q(XT )

]

≤c
(
(1 + ‖x‖pd)(T − t)−1

Et,x(τ − t) + 1
(T−t)p/2

Et,x

[
(τ − t)p

] )

≤c
(
1 + ‖x‖pd + (T − t)p/2

)
(T − t)−1

Et,x(τ − t).

It is now immediate to obtain (3.18).

4 Properties of the optimal boundary

In order to analyse the shape of the continuation set and later on the regularity of its boundary
we need to restrict our assumptions. In particular in the following we will often need

(A2) Terminal value. If T < +∞ we have ∂1g(x) ≥ ∂1f(T, x).

(B) Drift. For k = 2, . . . , d it holds µk(x) = µk(x2, . . . xd), hence ∂1X
x,k ≡ 0 and from (2.13)

∂1X
x,1
t = 1 +

∫ t

0
∂1µ1(X

x
s )∂1X

x,1
s ds. (4.1)

(C) Spatial monotonicity for m+ h. Let ∂1f ∈ C1,2([0, T ]×R
d) so that m(t, x) in (2.12)

is continuously differentiable with respect to x1. Assume also that

∂1(h+m)(t, x) ≥ 0, for (t, x) ∈ [0, T ]× R
d, (4.2)

and that for any compact K ⊆ [0, T ]× R
d we have

sup
(t,x)∈K

E

[∫ T−t

0
|∂1m(t+ s,Xx

s )|
2ds

]
< +∞.

Condition (B) allows a tractable expression for ∂1X
x,1 (see (4.1)), which together with condition

(C) provide a simple way of determining the shape of the continuation region (see the next
proposition).

Proposition 4.1. Assume conditions (A1), (A2), (B) and (C). Then the stopping region is
characterised by a free boundary

b : [0, T ] × R
d−1 → R ∪ {±∞} (4.3)

such that

S = {(t, x1, x2, . . . xd) ∈ [0, T ]× R
d : x1 ≤ b(t, x2, . . . xd)} (4.4)

Proof. In order to prove the claim it is sufficient to show that ∂1(v − f)(t, x) ≥ 0. The latter
indeed implies

(t, x1, x2, . . . xd) ∈ S =⇒ (t, x′1, x2, . . . xd) ∈ S for all x′1 ≤ x1.
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The task is relatively easy thanks to (3.3). Notice that ∂1X
x = (∂1X

x,1, 0, . . . 0) due to
condition (B) and

∂1X
x,1
t = exp

(∫ t

0
∂1µ1(X

x
s )ds

)
.

Then, using that ∂1g(x) ≥ ∂1f(T, x) due to condition (A2), for a.e. (t, x) ∈ [0, T ]× R
d we get

∂1v(t, x) =E

[ ∫ τ∗

0
∂1h(t+ s,Xx

s )∂1X
x,1
s ds+ 1{τ∗<T−t}∂1f(t+ τ∗,X

x
τ∗)∂1X

x,1
τ∗

+ 1{τ∗=T−t}∂1g(X
x
T−t)∂1X

x,1
T−t

]
(4.5)

≥E

[ ∫ τ∗

0
∂1h(t+ s,Xx

s )∂1X
x,1
s ds+ ∂1f(t+ τ∗,X

x
τ∗)∂1X

x,1
τ∗

]
.

Now an application of Dynkin’s formula gives

E
[
∂1X

x,1
τ∗ ∂1f(t+ τ∗,X

x
τ∗)
]

=∂1f(t, x) + E

[ ∫ τ∗

0
e
∫ s
0
∂1µ1(Xx

u)du (∂t∂1f + L(∂1f) + ∂1µ1∂1f) (t+ s,Xx
s )ds

]

=∂1f(t, x) + E

[ ∫ τ∗

0
e
∫ s
0
∂1µ1(Xx

u)du∂1m(t+ s,Xx
s )ds

]

where we have used the easily verifiable equality ∂1m(t, x) = (∂t∂1f + L(∂1f) + ∂1µ1∂1f) (t, x).
Plugging the last expression in (4.5) and rearranging terms gives

∂1(v − f)(t, x) ≥ E

[ ∫ τ∗

0
e
∫ s
0
∂1µ1(Xx

u )du ∂1(h+m)(t+ s,Xx
s )ds

]
≥ 0 (4.6)

thanks to (4.2).

Remark 4.2. It should be clear that a completely symmetric result holds if (4.2) is replaced
by ∂1(h + m) ≤ 0 and similarly one assumes ∂1g(x) ≤ ∂1f(T, x). In such case arguments
analogous to the ones employed to prove Proposition 4.1 may be instead used to prove that
S = {(t, x1, x2, . . . xd) ∈ [0, T ]× R

d : x1 ≥ b(t, x2, . . . xd)}.

If (4.2) holds, then for each (t, x2, . . . xd) ∈ [0, T ]× R
d−1 we can define

γ(t, x2, . . . xd) := inf{x1 ∈ R : (h+m)(t, x) > 0} (4.7)

with γ(t, x2, . . . xd) = +∞ if the set is empty. It follows from standard arguments that the set

R := {(t, x) ∈ [0, T ]× R
d : x1 > γ(t, x2, . . . xd)}

is contained in C. Obviously if d = 1 then γ is a function of time only.
In the next sections we state the results concerning regularity of the optimal boundary.

4.1 Lipschitz boundary for d = 1

Here we prove Lipschitz continuity of b in the case d = 1 and for that we are going to need

(D) Bounds I. Let f ∈ C2,3([0, T ] ×R) so that m ∈ C1([0, T ]× R). There exists c > 0 such
that ∂t(h +m)(t, x) ≤ c(1 + ∂1(h +m)(t, x)) for (t, x) ∈ [0, T ] × R and, for any compact
K ⊆ [0, T ]× R, we have

sup
(t,x)∈K

E

[∫ T−t

0
|∂tm(t+ s,Xx

s )|
2ds

]
< +∞.
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We would like to remark that some of the assumptions we make for the proof below may be
relaxed when the structure of f, g, h and µ is known explicitly. This fact will be illustrated in
Example 1 in Section 5. Notice also that in this setting σ ∈ R

d′ and σσ⊤ = ‖σ‖2d′ . In what
follows I denotes the closure of a set I.

Theorem 4.3. Assume that d = 1 and σσ⊤ > 0. Assume (A1), (A2), (C), (D) and, if T < +∞,
either (i) or (ii) from Corollary 3.3. Assume further that ∂1µ(x) > −µ for some µ > 0 and
there exists an interval I := (t1, t2) with I ⊂ [0, T ) and such that

(i) γ := supt∈I γ(t) < +∞ (see (4.7));

(ii) there exists r ∈ (γ,+∞) and αr > 0 such that ∂1(h+m)(t, x) = ∂x(h +m)(t, x) ≥ αr for
(t, x) ∈ I × (−∞, r).

Then, for any ε > 0 there is Kε > 0 such that b is (bounded) Lipschitz on [t1 + ε, t2 − ε] with
Lipschitz constant Kε.

First we need a technical lemma, whose proof will be given after that of the theorem.

Lemma 4.4. Under the same assumptions as in Theorem 4.3 we have

(a) for any t′1 < t′2 such that [t′1, t
′
2] ⊆ I it holds

(
(t′1, t

′
2)× R

)
∩ S 6= ∅;

(b) limx→−∞(v − f)(t, x) = 0 for all t ∈ I.

Proof of Theorem 4.3. We provide a full proof only for T < +∞ but the same arguments
hold for T = +∞ up to simple minor changes. We set w := v − f and we use the notation ∂x
in place of ∂1 and µ′(x) := ∂xµ(x).

In this setting the diffusion is uniformly non degenerate. Therefore, letting U be an open
rectangle in the (t, x)-plane whose closure U is contained in C, and denoting its parabolic bound-
ary by ∂PU , we have that v ∈ C1,2(U) ∩ C(U) is the unique classical solution of the boundary
value problem

∂tu+ Lu = 0, on U and u|∂PU = v|∂PU . (4.8)

For a proof of this standard result one can consult the proof of Theorem 2.7.7 in [20]. In
particular, we will use below that ∂xv and ∂tv are continuous in C (away from the boundary).

The free boundary b is the zero-level set of w. Since ∂xw ≥ 0 (see (4.6)), w is continuous
and (b) in Lemma 4.4 holds, we can find δ > 0 sufficiently small so that the equation w(t, x) = δ
has a solution x = bδ(t) > −∞ for all t ∈ I. Further, by assumption (ii) we have ∂xw(t, x) > 0
in [I × (−∞, r)] ∩ C. Therefore the δ-level set of w is locally given by a function bδ ∈ C(I).
Moreover bδ(t) > b(t) for all t ∈ I (this trivially holds if b(t) = −∞ for some t ∈ I).

On I the family (bδ)δ>0 decreases as δ → 0 so that its limit b0 exists (possibly equal to −∞).
The mapping t 7→ b0(t), is upper semi-continuous (on the extended real line), as decreasing limit
of continuous functions, and b0(t) ≥ b(t). Since w(t, bδ(t)) = δ it is clear that taking limits as
δ → 0 we get w(t, b0(t)) = 0 and therefore b0(t) ≤ b(t) so that we conclude

lim
δ→0

bδ(t) = b(t) for t ∈ I. (4.9)

Since v is continuously differentiable in C and for all t ∈ I it holds (t, bδ(t)) ∈ C with
∂xw(t, bδ(t)) > 0, then the implicit function theorem gives

b′δ(t) = −
∂tw(t, bδ(t))

∂xw(t, bδ(t))
, t ∈ I. (4.10)
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Now we aim at showing that for arbitrary ε > 0, letting Iε := (t1 + ε, t2 − ε) we have

bδ is bounded from below on Iε, uniformly in δ and (4.11)

there exists Kε > 0 such that |b′δ(t)| ≤ Kε on Iε uniformly in δ. (4.12)

If (4.11)–(4.12) hold, then by Ascoli-Arzelà’s theorem we can extract a sequence (bδj )j≥1

such that bδj → g uniformly on Iε as j → ∞, where g is Lipschitz continuous with constant Kε.
Uniqueness of the limit implies g = b on Iε and therefore b is (bounded) Lipschitz on Iε with
constant Kε.

The rest of the proof will be devoted to verifying (4.11)–(4.12) or equivalently to finding a
uniform bound for bδ on Iε and a uniform bound for

|b′δ(t)| =
|∂tw(t, bδ(t))|

∂xw(t, bδ(t))
for t ∈ Iε.

The proof is divided in steps.

Step 1. (Upper bound for b(t)). Due to (i) we have b(t) < r for t ∈ I for r as in (ii).

Step 2. (Lower bound for b(t) and b′(t)). For any (t, x) ∈ [0, T ] × R and any stopping time
τ ∈ [0, T − t] we have

∂tf(t, x) = E

[
∂tf(t+ τ,Xx

τ )−

∫ τ

0
∂tm(t+ s,Xx

s )ds

]
. (4.13)

Take (t, x) ∈ [0, T ) × R and τ∗ = τ∗(t, x). Using (3.15), condition (D), (4.6) and µ′(x) ≥ −µ we
easily obtain

∂tw(t, x) ≤E

[ ∫ τ∗

0
∂t(h+m)(t+ s,Xx

s )ds
]
+ c′ P(τ∗ = T − t)

≤c

(
(1 + (T − t)−1)E[τ∗] + E

[ ∫ τ∗

0
∂x(h+m)(t+ s,Xx

s )ds
])

(4.14)

≤c
(
(1 + (T − t)−1)E[τ∗] + eµ(T−t)∂xw(t, x)

)

where c and c′ are constants and in the second line we have also used Markov inequality as in
(3.19). Using (4.14) in (4.10) gives us a lower bound for b′δ of the form

b′δ(t) ≥ −C

(
1 +

ϕ(t, bδ(t))

∂xw(t, bδ(t))

)
for t ∈ I (4.15)

where ϕ(t, x) := E[τ∗(t, x)] = Et,x[τ∗ − t]. Next we want to find a bound for (ϕ/∂xw)(t, bδ(t)).
Recalling (4.6) we denote ŵ the function

ŵ(t, x) = Et,x

[∫ τ∗

t
e
∫ s
t
µ′(Xu)du∂x(h+m)(s,Xs)ds

]
(4.16)

so that ŵ(t, x) ≤ ∂xw(t, x). It is important to notice that

ŵr := inf
t∈I

ŵ(t, r) > 0 (4.17)

since the segment [t1, t2] × {r} is strictly above the optimal boundary and ∂x(h +m) > 0 in a
neighborhood of the segment (see also Lemma 4.6).

Fix t ∈ Iε/2 = (t1+ε/2, t2−ε/2) and, to simplify notation, set xδ := bδ(t) and τδ := τ∗(t, xδ).
Let

τr := inf{s ≥ t : (s,Xs) /∈ (t1, t2)× (−∞, r)} Pt,xδ
-a.s. (4.18)
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and notice that τr < T , Pt,xδ
-a.s. since I ⊂ [0, T ). Tower property of conditional expectation

and (4.16) give

ŵ(t, xδ)

=Et,xδ

[ ∫ τr∧τδ

t
e
∫ s
t
µ′(Xu)du∂x(h+m)(s,Xs)ds+ 1{τr<τδ}

∫ τδ

τr

e
∫ s
t
µ′(Xu)du∂x(h+m)(s,Xs)ds

]

=Et,xδ

[ ∫ τr∧τδ

t
e
∫ s
t µ′(Xu)du∂x(h+m)(s,Xs)ds

+ 1{τr<τδ}e
∫ τr
t µ′(Xu)duEt,xδ

(∫ τr+τδ◦θτr

τr

e
∫ s
t µ′(Xu)du∂x(h+m)(s,Xs)ds

∣∣∣Fτr

)]
,

where we recall that θ· is the shift operator on the canonical space. Strong Markov property
gives

ŵ(t, xδ)

=Et,xδ

[ ∫ τr∧τδ

t
e
∫ s
t µ′(Xu)du∂x(h+m)(s,Xs)ds

+ 1{τr<τδ}e
∫ τr
t µ′(Xu)duEτr ,Xτr

(∫ τδ

τr

e
∫ s
τr

µ′(Xu)du∂x(h+m)(s,Xs)ds
)]

(4.19)

=Et,xδ

[ ∫ τr∧τδ

t
e
∫ s
t µ′(Xu)du∂x(h+m)(s,Xs)ds+ 1{τr<τδ}e

∫ τr
t µ′(Xu)duŵ(τr,Xτr )

]
.

For ŵ we therefore have the following lower bound

ŵ(t, xδ) ≥ C ′
(
Et,xδ

[
αr(τδ ∧ τr − t) + 1{τr<τδ}ŵ(τr,Xτr)

])
(4.20)

with C ′ = e−µT . The same argument applied to ϕ gives

ϕ(t, xδ) = Et,xδ

[
(τδ ∧ τr − t) + 1{τr<τδ}ϕ(τr,Xτr )

]
. (4.21)

Now from (4.21) and (4.20), and by noticing that 0 ≤ ϕ(t, x) ≤ T we obtain

0 ≤
ϕ(t, xδ)

∂xw(t, xδ)
≤
ϕ(t, xδ)

ŵ(t, xδ)

≤
1

C ′αr
+

Et,xδ

[
1{τr<τδ}ϕ(τr,Xτr )

]

C ′
(
Et,xδ

[
αr(τδ ∧ τr − t) + 1{τr<τδ}ŵ(τr,Xτr )

])

≤Cr

(
1 +

Pt,xδ
(τr < τδ, τr < t2) + Pt,xδ

(τr < τδ, τr = t2)

Et,xδ

[
αr(τδ ∧ τr − t) + 1{τr<τδ}ŵ(τr,Xτr )

]
)
, (4.22)

where Cr := (α−1
r ∨ T )/C ′. Since t ∈ Iε/2 = (t1 + ε/2, t2 − ε/2) we have

Pt,xδ
(τr < τδ, τr < t2)

Et,xδ

[
αr(τδ ∧ τr − t) + 1{τr<τδ}ŵ(τr,Xτr )

]

≤
Pt,xδ

(τr < τδ, τr < t2)

Et,xδ

[
1{τr<τδ}∩{τr<t2}ŵ(τr, r)

] ≤ Pt,xδ
(τr < τδ, τr < t2)

ŵrPt,xδ
(τr < τδ, τr < t2)

≤
1

ŵr
(4.23)

by using that 1{τr<t2}Xτr = r and recalling (4.17). Similarly, for t ∈ Iε/2, we have

Pt,xδ
(τr < τδ, τr = t2)

Et,xδ

[
αr(τδ ∧ τr − t) + 1{τr<τδ}ŵ(τr,Xτr )

]

≤
Pt,xδ

(τr < τδ, τr = t2)

Et,xδ

[
1{τr<τδ}∩{τr=t2}αr(τδ ∧ τr − t)

] ≤ 1

αr(t2 − t)
≤

2

αrε
. (4.24)
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Now plugging the last two estimates back into (4.22) and recalling (4.15) we finally conclude

b′δ(t) ≥ −C
(
1 + Cr

(
1 + ŵ−1

r + 2(αrε)
−1
))

=: −βε,r for all t ∈ Iε/2. (4.25)

Thanks to (a) in Lemma 4.4 we can find t0 ∈ I, arbitrarily close to t1 and such that
|b(t0)| < ∞. So with no loss of generality we assume t0 = t1 + ε/2 and b(t0) > −∞. Since the
bound in (4.25) is uniform in δ, then (4.9) implies that b(t) ≥ b(t0)− βε,r|t− t0| for all t ∈ Iε/2
and proves (4.11). Hence, there exits rε < r such that b(t) ∈ (rε, r) for all t ∈ Iε/2. This fact
will be used in the next step of the proof.

Step 3. (Upper bound for b′(t)). It remains to find an upper bound for b′δ on Iε which is
uniform in δ. For that it is convenient to denote

g̃(x) := |h(T, x) + n(x)|+ 2|∂tf(T, x)| for x ∈ R. (4.26)

and recall that ∂tv(t, x) ≥ v(t, x) given in (3.2). Using again (4.13) we immediately find

∂tw(t, x) ≥ w(t, x) := E

[∫ τ∗

0
∂t(h+m)(t+ s,Xx

s )ds− 1{τ∗=T−t}g̃(X
x
T−t)

]
(4.27)

for (t, x) ∈ [0, T ] × R. Now, for t ∈ Iε we set

τ ′r := inf{s ≥ t : (s,Xs) /∈ (t1 + ε, t2 − ε/2) × (−∞, r)} Pt,xδ
-a.s., (4.28)

and, using the strong Markov property as in step 2 above, we find

w(t, xδ) = Et,xδ

[∫ τ ′r∧τδ

t
∂t(h+m)(s,Xs)ds+ 1{τ ′r<τδ}w(τ

′
r,Xτ ′r )

]
. (4.29)

Since b(t) ∈ [rε, r] for t ∈ Iε/2 then under Pt,xδ
we have Xs ∈ [rε, r] for all s ∈ (t, τ ′r ∧ τδ) and

therefore there exists νε > 0 such that ∂t(h +m)(s,Xs) ≥ −νε for all s ∈ (t, τ ′r ∧ τδ). On the
other hand, from the definition of w in (4.27) and properties of ∂t(h+m) and g̃ (see Assumption
2.2) it also follows

wr,ε := sup
t∈I

|w(t, r)|+ sup
x∈[rε,r]

|w(t2 − ε/2, x)| <∞. (4.30)

In conclusion, from (4.29) we have

w(t, xδ) ≥ −νεEt,xδ

[
(τδ ∧ τ

′
r − t)

]
− wr,εPt,xδ

(τ ′r < τδ). (4.31)

Using (4.19) with τr replaced by τ ′r we obtain (4.20) with τr replaced by τ ′r. Hence, recalling
(4.10), for t ∈ Iε we have

b′δ(t) ≤
νεEt,xδ

[(τδ ∧ τ
′
r − t)] + wr,εPt,xδ

(τ ′r < τδ)

C ′
(
Et,xδ

[
αr(τδ ∧ τ ′r − t) + 1{τ ′r<τδ}ŵ(τ

′
r,Xτ ′r )

])

≤
1

C ′

(
νε
αr

+
wr,εPt,xδ

(τ ′r < τδ)

Et,xδ

[
αr(τδ ∧ τ ′r − t) + 1{τ ′r<τδ}ŵ(τ

′
r,Xτ ′r )

]
)
. (4.32)

The last term on the right-hand side above may be estimated by using the same arguments as
in (4.23) and (4.24), upon noticing that the argument in (4.24) carries over to this case since for
t ∈ Iε we have 1{τ ′r<τδ}∩{τ ′r=t2−ε/2}(τδ ∧ τ

′
r − t) ≥ ε/2.

Therefore we conclude

b′δ(t) ≤ C ′
r

(
1 + 2(αrε)

−1 + ŵ−1
r

)
(4.33)

where C ′
r = [(νε/αr) ∨ wr,ε]/C

′. Now (4.33) and (4.25) imply (4.12) and the proof is complete.
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Proof of Lemma 4.4. We set w := v− f and use the notation ∂x in place of ∂1. By a simple
application of Dynkin’s formula we can write w as

w(t, x) = E

[∫ τ∗

0
(h+m)(t+ s,Xx

s )ds + 1{τ∗=T−t}

(
g(Xτ∗)− f(t+ τ∗,X

x
τ∗)
)]
. (4.34)

For future reference we notice that under (ii) of Theorem 4.3 we have γ ∈ C1(I) by the implicit
function theorem, since (h+m)(t, γ(t)) = 0. Therefore

γ := inf
t∈I

γ(t) > −∞.

Step 1. Here we prove (a) by contradiction. Assume that we can find t′1 < t′2 in I such that(
(t′1, t

′
2)× R

)
∩ S = ∅. Fix t ∈ (t′1, t

′
2), take x ≤ γ and define

ργ(t, x) := inf{s ≥ 0 : Xx
s ≥ γ} ∧ (t′2 − t).

By assumption we have τ∗(t, x) ≥ (t′2 − t), hence τ∗(t, x) ≥ ργ(t, x), P-a.s. Recall that (h +
m)(s, y) ≤ 0 for y ≤ γ(s), s ∈ [0, T ] and notice that

(h+m)(s, y) =(h+m)(s, γ)−

∫ γ

y
∂x(h+m)(s, z)dz ≤ −αr(γ − y), (4.35)

thanks to (ii) in Theorem 4.3, for s ∈ I and y ≤ γ. Denote ργ = ργ(t, x). Similarly to, e.g.,
(4.19), we can use the tower property of conditional expectation and strong Markov property in
(4.34), along with (4.35). This gives

w(t, x) =E

[∫ ργ

0
(h+m)(t+ s,Xx

s )ds + w(t+ ργ ,X
x
ργ )

]

≤− αrE

[∫ ργ

0

(
γ −Xx

s

)
ds

]
+ wγ , (4.36)

where wγ := supt≤s≤t′
2
w(s, γ) < +∞, since w is continuous, and we used that w(t+ ργ ,X

x
ργ ) ≤

wγ since ∂xw ≥ 0 by (4.6). Finally, letting x ↓ −∞ we reach a contradiction because ργ(t, x) ↑
(t′2 − t) and the first term in the last expression of (4.36) goes to −∞.

Step 2. Here we prove (b). Pick any t ∈ I. From the previous step we know that we can find
t′ ∈ I with t′ > t such that |b(t′)| < +∞. In particular, this implies that {t′}× (−∞, b(t′)] ⊆ S.
Now, for x ≤ γ ∧ b(t′) let

ρ′γ(t, x) := inf{s ≥ 0 : Xx
s ≥ γ ∧ b(t′)}

and notice that ρ′γ(t, x)∧ τ∗(t, x) is smaller than the first time the process (t+ s,Xx
s ) leaves the

the set [t, t′)× (−∞, γ ∧ b(t′)). Hence, ρ′γ(t, x) ∧ τ∗(t, x) ≤ (t′ − t), P-a.s.
Using the tower property of conditional expectation and strong Markov property in (4.34),

we obtain

w(t, x) =E

[∫ ρ′γ∧τ∗

0
(h+m)(t+ s,Xx

s )ds + w(t+ ρ′γ ∧ τ∗,X
x
ρ′γ∧τ∗

)

]

≤E

[
1{ρ′γ<τ∗}w(t+ ρ′γ ,X

x
ρ′γ
)
]
,

where we have also used that (h +m)(s, y) ≤ 0 for y ≤ γ(s), and 1{τ∗≤ρ′γ}
w(t + τ∗,X

x
τ∗) = 0,

P-a.s. Next we notice that

{ρ′γ < τ∗} = {ρ′γ < τ∗, ρ
′
γ < t′ − t}
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because {ρ′γ < τ∗, ρ
′
γ ≥ t′−t} = ∅. Moreover, we recall that w(t+ρ′γ ,X

x
ρ′γ
) ≤ supt≤s≤t′ w(s, γ) =:

w′
γ < +∞ as ∂xw ≥ 0, by (4.6). Then we obtain

w(t, x) ≤w′
γP
(
ρ′γ(t, x) < t′ − t

)
= w′

γP
(

sup
0≤s≤t′−t

Xx
s > γ ∧ b(t′)

)
.

Letting x→ −∞ gives us (b), as claimed.

Remark 4.5. One can use local Lipschitz continuity of t 7→ b(t) and the law of iterated logarithm
to show that τ∗ is actually equal to the first time X goes strictly below the boundary, i.e., for all
(t, x) ∈ [0, T ) × R, it holds P-a.s.

inf{s ≥ 0 : Xx
s ≤ b(t+ s)} ∧ (T − t) = inf{s ≥ 0 : Xx

s < b(t+ s)} ∧ (T − t).

This is an important fact that can be used to prove that (t, x) 7→ τ∗(t, x) is continuous P-a.s.,
and it is zero at all boundary points, hence implying v ∈ C1,1([0, T ) × R) (see for example [12,
Sec. 5 and 6]).

4.2 Lipschitz boundary for d ≥ 2

Lipschitz regularity for optimal boundaries when d ≥ 2 requires slightly stronger assumptions
on the functions f, g, h and µ which, however, are in line with those originally used in [36]. We
give the result under two different sets of assumptions, namely conditions (F) and (G) below.
The main difference between the two is that in (F) we do not need a positive lower bound for the
quantity ∂1(h+m) but we need to compensate by imposing stronger bounds on the remaining
quantities. Under conditions (G) we have a uniform lower bound on ∂1(h +m) so that other
inequalities may be relaxed.

One should compare (G) to the assumptions in [36] and notice that we are in a similar
setting (see also Remark 4.13 below for further details). We stress here that our theorems below
do not require uniform ellipticity of the operator σσ⊤ and therefore could not be obtained by
PDE methods employed in [36]. We illustrate an application of our results and methodology in
Example 2 of Section 5, which addresses the case of a degenerate diffusion.

The main idea of the proofs below is again to use the implicit function theorem as in the
case of d = 1 (Theorem 4.3). However here we cannot rely upon continuity of ∇xv and ∂tv due
to the lack of uniform ellipticity of the parabolic operator ∂t + L and therefore the arguments
from Theorem 4.3 do not carry over. To overcome this additional difficulty we provide some
notation and some technical lemmas, and throughout the section we use

(E) Regularity ∂tm and ∂km. Let f ∈ C2,3([0, T ] × R
d) so that m ∈ C1([0, T ] × R

d). For
any compact K ⊆ [0, T ]× R

d we have

sup
(t,x)∈K

E

[∫ T−t

0
|∂km(t+ s,Xx

s )|
2 + |∂tm(t+ s,Xx

s )|
2ds

]
< +∞.

From now on we denote w := v − f . An application of Dynkin formula to f(t,Xt) gives

w(t, x) = sup
0≤τ≤T−t

E

[∫ τ

0
(h+m)(t+ s,Xx

s )ds + 1{τ=T−t}

(
g(Xx

T−t)− f(T,Xx
T−t)

)]
. (4.37)

For k = 1, . . . d we introduce the functions

w◦
k(t, x) :=E

[ ∫ τ∗

0
〈∇x(h+m)(t+ s,Xx

s ), ∂kX
x
s 〉ds

+ 1{τ∗=T−t}〈∇x

(
g(Xx

T−t)− f(T,Xx
T−t)

)
, ∂kX

x
T−t〉

]
(4.38)
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and in particular under condition (B) we notice that

w◦
1(t, x) =E

[ ∫ τ∗

0
∂1(h+m)(t+ s,Xx

s )∂1X
x,1
s ds

+ 1{τ∗=T−t}∂1
(
g(Xx

T−t)− f(T,Xx
T−t)

)
∂1X

x,1
T−t

]
. (4.39)

Thanks to Theorem 3.1 we have ∂1w = w◦
1 almost everywhere and therefore under condition

(A1), for a.e. (t, x) ∈ [0, T ]× R
d, we also have

∂1w(t, x) ≥ E

[ ∫ τ∗

0
∂1(h+m)(t+ s,Xx

s )∂1X
x,1
s ds

]
. (4.40)

In analogy with (3.1) and (3.2) we also introduce

w(t, x) :=E

[∫ τ∗

0
∂t(h+m)(t+ s,Xx

s )ds− 1{τ∗=T−t}

(
(h+ ∂tf)(T,X

x
T−t) + n(Xx

T−t)
)]

(4.41)

w(t, x) :=E

[∫ τ∗

0
∂t(h+m)(t+ s,Xx

s )ds− 1{τ∗=T−t}

∣∣(h+ ∂tf)(T,X
x
T−t) + n(Xx

T−t)
∣∣
]
. (4.42)

The next technical lemma will be used in the proofs of Proposition 4.10 below.

Lemma 4.6. Let O be a bounded open set in [0, T ] × R
d and K ⊂ O ∩ C a compact. Then if

(A2) and (B) hold, and ∂1(h+m) is continuous and strictly positive on O, we have

inf
(t,x)∈K

w◦
1(t, x) > 0 (4.43)

Proof. Letting τ0 := inf{s ≥ t : (s,Xs) /∈ O ∩ C}, Pt,x-a.s., we easily obtain from (4.39), (A2)
and (B) that

w◦
1(t, x) ≥ cOEt,x [τ0 − t] (4.44)

for some cO > 0 only depending on O. Choose now an arbitrary function ψ ∈ C2([0, T ] × R
d)

such that ψ(·) ≥ 1 on the complement of O∩C (denoted (O∩C)c) and ψ(·) ≤ 1
2 on K. With no

loss of generality Lψ(·) ≤ c′O on O for some c′O > 0 since ψ ∈ C2(O) and O is bounded. Then
by an application of Dynkin formula, for any (t, x) ∈ K we obtain

Et,x [τ0 − t] =Et,x

[∫ τ0

t
dt

]
≥

1

c′O
E

[∫ τ0

t
Lψ(s,Xs)dt

]

=
1

c′O
(Et,x [ψ(τ0,Xτ0)]− ψ(t, x)) ≥

1

2c′O
(4.45)

where the final inequality uses that Pt,x [(τ0,Xτ0) ∈ (O ∩ C)c] = 1 so that ψ(τ0,Xτ0) ≥ 1, while
ψ(t, x) ≤ 1

2 on K. Plugging (4.45) in (4.44) concludes the proof.

From now on we let
c : [0, T ] × R

d−1 → R

be a given arbitrary function. The next lemma is an application of the chain rule and its proof
is omitted.

Lemma 4.7. Assume that c is differentiable at (t, x2, . . . xd) and denote

c := (c(t, x2, . . . xd), x2, . . . xd).
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Then under condition (B) we have P-a.s.

∂t(X
c,1
s ) = ∂tc(t, x2, . . . xd)∂1X

x,1
s |x=c (4.46)

∂k(X
c,1
s ) = ∂kc(t, x2, . . . xd)∂1X

x,1
s |x=c + ∂kX

x,1
s |x=c, (4.47)

∂k(X
c,j
s ) = ∂kX

x,j
s |x=c, and ∂t(X

c,j
s ) = 0 (4.48)

for all s ∈ [0, T ] and all k, j ≥ 2.

Notice that (4.48) holds because the j-th component of Xx, with j ≥ 2, is not affected by
changes in the initial point x1 = c(t, x2, . . . xd) of the first component Xx,1, due to condition
(B). With a slight abuse of notation we are often going to use ∂kX

c,j = ∂kX
x,j |x=c when no

confusion shall arise. For future reference we also give a straightforward corollary.

Corollary 4.8. Let G ∈ C1,1([0, T ] × R
d) and F ∈ C1(Rd), then under the assumptions of

Lemma 4.7 and with the same notation we have P-a.s., for all s ∈ [0, T − t],

∂

∂t
G(t+ s,Xc

s) =∂tG(t+ s,Xc
s) + ∂1G(t+ s,Xc

s)∂1X
x,1|x=c∂tc(t, x2, . . . xd),

∂

∂xk
F (Xc

s) =〈∇xF (X
c
s), ∂kX

x
s |x=c〉+ ∂1F (X

c
s)∂1X

x,1
s |x=c∂kc(t, x2, . . . xd).

The next lemma provides useful bounds which will be then employed to prove the main
theorems below.

Lemma 4.9. Let conditions (A1), (A2), (B) and (E) hold. Assume that c is differentiable at
(t, x2, . . . xd) and denote

c := (c(t, x2, . . . xd), x2, . . . xd),

c+t,ε := (c(t+ ε, x2, . . . xd), x2, . . . xd),

c−t,ε := (c(t− ε, x2, . . . xd), x2, . . . xd),

c+k,ε := (c(t, x2, . . . xk + ε, . . . xd), x2, . . . xk + ε, . . . xd),

c−k,ε := (c(t, x2, . . . xk − ε, . . . xd), x2, . . . xk − ε, . . . xd),

for k = 2, . . . d. Then for any k ≥ 2 we have

lim sup
ε→0

w(t, c) − w(t, c−k,ε)

ε
(4.49)

≤w◦
1(t, c)∂kc(t, x2, . . . xd) + w◦

k(t, c) ≤ lim inf
ε→0

w(t, c+k,ε)− w(t, c)

ε
.

Moreover we also have

lim sup
ε→0

w(t, c) − w(t− ε, c−t,ε)

ε
≤w◦

1(t, c)∂tc(t, x2, . . . xd) + w(t, c), (4.50)

lim inf
ε→0

w(t+ ε, c+t,ε)− w(t, c)

ε
≥w◦

1(t, c)∂tc(t, x2, . . . xd) + w(t, c). (4.51)

Proof. The proof relies on Lemma 4.7 and on arguments similar to those used to prove Theorem
3.1. Denote τ = τ∗(t, c) and let us consider the first inequality in (4.49). Notice that τ is optimal
for w(t, c) and sub-optimal for w(t, c−k,ε) for ε > 0. Therefore we may estimate

w(t, c) − w(t, c−k,ε) ≤E

[∫ τ

0

(
(h+m)(t+ s,Xc

s)− (h+m)(t+ s,X
c−k,ε
s )

)
ds

]

+ E

[
1{τ=T−t}

(
g(Xc

T−t)− g(X
c−k,ε
T−t) + f(T,X

c−k,ε
T−t)− f(T,Xc

T−t)

)]
.
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Dividing by ε, taking limits as ε → 0 and using Corollary 4.8 and (2.14) we obtain the first
inequality in (4.49) upon recalling the definitions of w◦

1 and w◦
k.

A symmetric argument may be applied to obtain the second inequality in (4.49). This time
we notice that τ is sub-optimal for w(t, c+k,ε) for ε > 0 so that

w(t, c+k,ε)− w(t, c) ≥E

[∫ τ

0

(
(h+m)(t+ s,X

c+k,ε
s )− (h+m)(t+ s,Xc

s)

)
ds

]

+ E

[
1{τ=T−t}

(
g(X

c+k,ε
T−t)− g(Xc

T−t) + f(T,Xc
T−t)− f(T,X

c+k,ε
T−t)

)]

holds. Dividing by ε and passing to the limit the claim follows thanks to Corollary 4.8.
For (4.50) we repeat arguments similar to those that led to (3.9) in step 2 of the proof of

Theorem 3.1. These give

w(t, c) − w(t− ε, c−t,ε)

≤E

[∫ τ

0

(
(h+m)(t+ s,Xc

s)− (h+m)(t− ε+ s,X
c−t,ε
s )

)
ds

]

+ E

[
1{τ=T−t}

(
ĝ(Xc

T−t)− ĝ(X
c−t,ε
T−t)

)]

− Ec−t,ε

[
1{τ=T−t}EXT−t

(∫ ε

0
[(h+ ∂tf)(T − ε+ s,Xs) + n(Xs)]ds

)]
,

where we have set ĝ(x) := g(x) − f(T, x) to simplify the notation. Now dividing both sides of
the above expression by ε, letting ε→ 0 and using Corollary 4.8 we get (4.50).

Similar arguments hold for (4.51) and following step 2 in the proof of Theorem 3.1, using
that ĝ ≥ 0, we have

w(t+ ε, c+t,ε)− w(t, c)

≥E

[∫ τ∧(T−t−ε)

0

(
(h+m)(t+ ε+ s,X

c+t,ε
s )− (h+m)(t+ s,Xc

s)

)
ds

]

+ E

[
1{τ>T−t−ε}

(
ĝ(X

c+t,ε
T−t−ε)− ĝ(Xc

T−t−ε)

)]

− Ec

[
1{τ>T−t−ε}EXT−t−ε

(∫ ε

0
|(h+ ∂tf)(T − ε+ s,Xs) + n(Xs)|ds

)]
.

Finally, dividing by ε and passing to the limit we get (4.51) thanks to Corollary 4.8.

Under the assumptions of Proposition 4.1 we have ∂1w ≥ 0 almost everywhere and therefore,
for each δ > 0, and for fixed (t, x2, . . . xd), the equation w(t, ·, x2, . . . xd) = δ has at most a unique
solution which we denote by bδ(t, x2, . . . xd).

The next proposition states that bδ is Lipschitz whenever finite and provides an important
representation of its gradient at the points of differentiability. Below we use U for the closure
of a set U .

Proposition 4.10. Assume conditions (A1), (A2), (B), (C) and (E). Fix (t̂, x̂2, . . . x̂d) ∈ (0, T )×
R
d−1 and assume that there exists an open bounded neighbourhood U of (t̂, x̂2, . . . x̂d) and numbers

−∞ < b < b < +∞ such that

b < b(t, x2, . . . xd) < b for (t, x2, . . . xd) ∈ U , (4.52)

∂1(h+m)(t, x1, x2, . . . xd) > 0 for (t, x2, . . . xd) ∈ U and x1 ∈ [b, b]. (4.53)
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Then there exists δU > 0 such that bδ is Lipschitz in U for all δ ∈ (0, δU ]. Moreover, for all
k ≥ 2, and for a.e. (t, y) ∈ U we have

∂kbδ(t, y) = −
w◦
k(t, bδ(t, y), y)

w◦
1(t, bδ(t, y), y)

, (4.54)

−
w(t, bδ(t, y), y)

w◦
1(t, bδ(t, y), y)

≤ ∂tbδ(t, y) ≤ −
w(t, bδ(t, y), y)

w◦
1(t, bδ(t, y), y)

. (4.55)

Proof. From now on we denote

Ub := {(t, x) : x1 ∈ (b, b), (t, x2, . . . xd) ∈ U}.

Since U b is compact and w is continuous, then there exists δU > 0 sufficiently small and such
that bδ is bounded on U for all δ ≤ δU , due to (4.52). With no loss of generality we then assume
that bδ(t, y) ∈ (b, b) for (t, y) ∈ U and all δ ≤ δU . Next we show Lipschitz regularity of bδ.

For all (t, y) ∈ U the map x1 7→ w(t, x1, y) is Lipschitz (Theorem 3.1). Then it is differentiable
with ∂1w(t, x1, y) > 0, for a.e. x1 such that (t, x1, y) ∈ C∩Ub, by (4.40) and (4.53). It follows that
for all (t, y) ∈ U the mapping x1 7→ w(t, x1, y) is strictly increasing on (b(t, y), b) and therefore
a version of the implicit function theorem (see [23]) implies that bδ is continuous in U .

For ε ∈ R we denote bεδ := bδ(t̂, x̂2 + ε, x̂3, . . . x̂d) and b
0
δ = bδ. With no loss of generality we

assume that (t̂, bεδ, x̂2 + ε, x̂3 . . . x̂d) and (t̂, b0δ , x̂2, x̂3 . . . x̂d) lie in Ub. Since bδ ∈ C(U) and we are
interested in small ε, there is again no loss of generality in assuming that

ζ 7→ (t̂, bεδ, x̂2 + ζ, x̂3, . . . x̂d), η 7→ (t̂, η, x̂2, . . . x̂d)

lie in a compact K ⊂ Ub ∩ C, for ζ ∈ (0, ε) and η ∈ (bδ ∧ b
ε
δ, bδ ∨ b

ε
δ) .

Using that w is Lipschitz in Ub (see Theorem 3.1), for ε ∈ R we have

0 =w(t̂, bεδ, x̂2 + ε, x̂3, . . . x̂d)− w(t̂, bδ , x̂2, . . . x̂d)

=w(t̂, bεδ, x̂2 + ε, . . . x̂d)− w(t̂, bεδ, x̂2, . . . x̂d) + w(t̂, bεδ, x̂2, . . . x̂d)− w(t̂, bδ, x̂2, . . . x̂d)

=

∫ ε

0
∂2w(t̂, b

ε
δ , x̂2 + ζ, x̂3, . . . x̂d)dζ +

∫ bεδ

bδ

∂1w(t̂, ζ, x̂2, . . . x̂d)dζ. (4.56)

Then, using Lemma 4.6 with O = Ub, we have ∂1w ≥ cK,δ > 0 on K for a suitable constant cK,δ

depending on K and δ. From the last expression in (4.56) we get

∣∣∣∣
∫ ε

0
∂2w(t̂, b

ε
δ, x̂2 + ζ, x̂3, . . . x̂d)dζ

∣∣∣∣ =
∣∣∣∣
∫ bεδ

bδ

∂1w(t̂, ζ, x̂2, . . . x̂d)dζ

∣∣∣∣ ≥ cK,δ|b
ε
δ − bδ|

and using that |∂2w| ≤ c′U a.e. on Ub for a suitable constant c′U (see Theorem 3.1), we conclude

|bεδ − bδ| ≤ c′U/cK,δ · |ε|. (4.57)

The same argument may be repeated for the remaining variables xk, k ≥ 3, and for t. Then,
for any (t′, x′) := (t′, x′2, . . . x

′
d) and (t, x) := (t, x2, . . . xd) belonging to a small ball in U , we have

|bδ(t
′, x′)− bδ(t, x)| ≤ c′′δ (|t− t′|+ ‖x− x′‖d−1) (4.58)

for a suitable constant c′′δ which depends on the small ball as well. This proves that bδ is locally
Lipschitz in U , hence it is differentiable almost everywhere therein.

Next we obtain probabilistic bounds for the gradient of bδ. For ε > 0 we adopt the notation
of Lemma 4.9. To simplify the exposition we set c := (bδ(t, x2, . . . xd), x2, . . . xd), so that c±k,ε and
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c±t,ε have the same meaning as in Lemma 4.9 but with bδ(·) instead of the function c(·). Recall

that bδ ∈ (b, b) on U . Then, for all k ≥ 2

δ = w(t, c) = w(t, c−k,ε) = w(t, c+k,ε) = w(t− ε, c−t,ε) = w(t+ ε, c+t,ε). (4.59)

Hence by (4.49)–(4.51) we obtain that if bδ is differentiable at (t, x2, . . . xd), then

∂kbδ(t, x2, . . . xd) = −
w◦
k(t, bδ(t, x2, . . .), x2, . . . xd)

w◦
1(t, bδ(t, x2, . . .), x2, . . . xd)

(4.60)

−
w(t, bδ(t, x2, . . .), x2, . . . xd)

w◦
1(t, bδ(t, x2, . . .), x2, . . . xd)

≤ ∂tbδ(t, x2, . . . xd) ≤ −
w(t, bδ(t, x2, . . .), x2, . . . xd)

w◦
1(t, bδ(t, x2, . . .), x2, . . . xd)

. (4.61)

Since bδ is differentiable almost everywhere in U then (4.54) and (4.55) follow.

Using the bounds obtained for ∂tbδ and ∇xbδ we can now prove the main theorems of this
section. In what follows T may be infinite unless stated otherwise. The first theorem uses the
next condition.

(F) Bounds II. For (t, x) ∈ [0, T ]× R
d there exists c > 0 such that

d∑

j=1

|∂j(h+m)(t, x)|+ |∂t(h+m)(t, x)| ≤ c ∂1(h+m)(t, x), (4.62)

and if T < +∞ then also

|h(T, x) + n(x)|+ 2|∂tf(T, x)|+

d∑

j=1

|∂j(g(x) − f(T, x))| ≤ c ∂1(g(x) − f(T, x)). (4.63)

Now we can state the theorem and give its proof.

Theorem 4.11 (Statement under (F)). Assume that d ≥ 2 and conditions (A1), (A2), (B),
(C), (E) and (F) hold. Assume also that the bound

∑d
j=1 ‖∇xµj(x)‖d ≤ c holds for all x ∈ R

d

and for some c > 0.
If there exists (t̂, x̂2, . . . x̂d) and an open bounded neighbourhood U of the point such that

(4.52) and (4.53) hold then b is Lipschitz on U .

Proof. We provide a full proof only for T < +∞ but the same arguments hold for T = +∞ up
to simple minor changes.

The main idea of this proof is to show that

‖∂tbδ‖U,∞ +

d∑

k=2

‖∂kbδ‖U,∞ ≤ c (4.64)

for a uniform c > 0. Here ‖ · ‖U,∞ is the usual L∞(U) norm and we are going to use the
expressions for w◦

k, w and w (see (4.38)–(4.42)) to find bounds in (4.54) and (4.55) (notice that
the latter hold in the a.e. sense).

Recalling (3.16), the fact that ∂1µj(x) = 0 for j > 1 due to (B), and the bounds in (F) it is
not hard to verify that (4.38) gives

|w◦
k(t, x)| ≤ β0w

◦
1(t, x), (t, x) ∈ [0, T ]× R

d (4.65)
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for all k = 2, . . . d, and a suitable β0 > 0 which is independent of t, x and k. Similarly, using the
bounds (F) in (4.41)–(4.42) we can find β1 > 0 such that

max{|w|, |w|}(t, x) ≤ β1w
◦
1(t, x), (t, x) ∈ [0, T ]× R

d. (4.66)

Now we argue as in the proof of Theorem 4.3 and since |b| < +∞ on U we can find δU > 0
sufficiently small and such that w(t, · , x2, . . . xd) = δ has a solution x1 = bδ(t, x2, . . . xd), which
is finite in U for all δ ≤ δU . Then bδ is Lipschitz in U by Proposition 4.10. Moreover from
(4.54), (4.55) and (4.66) we obtain, for a.e. (t, y) ∈ U

|∂tbδ(t, y)| ≤
max{|w|, |w|}(t, bδ(t, y), y)

w◦
1(t, bδ(t, y), y)

≤ β1 (4.67)

and from (4.65)

|∂kbδ(t, y)| =
|w◦

k(t, bδ(t, y), y)|

w◦
1(t, bδ(t, y), y)

≤ β0, k = 2, . . . d. (4.68)

As in the proof of Theorem 4.3 (see (4.9)) we have pointwise convergence bδ ↓ b as δ → 0 and
therefore, by using again Ascoli-Arzelà’s theorem, we conclude that bδ → b uniformly on U .
Hence b is Lipschitz on U .

For the next theorem we are going to use a different technical condition.

(G) Bounds III. There exists c1, c2 > 0 such that

∂1(h+m)(t, x) ≥ c1 (4.69)

d∑

j=1

|∂j(h+m)(t, x)|+ |∂t(h+m)(t, x)| ≤ c2 [1 + ∂1(h+m)(t, x)] (4.70)

for (t, x) ∈ [0, T ] × R
d. Moreover, if T < +∞, at least one of the two conditions below

holds:

(a) for (t, x) ∈ [0, T ]× R
d it holds

|h(T, x) + n(x)|+ 2|∂tf(T, x)|

+
d∑

j=1

|∂j(g(x) − f(T, x))| ≤ c2 [1 + ∂1(g(x) − f(T, x))] ; (4.71)

(b) for some p ≥ 1 and for all (t, x) ∈ [0, T ] × R
d it holds

d∑

j=1

|∂j(g(x) − f(T, x))| ≤ c2 [1 + ∂1(g(x) − f(T, x))] , (4.72)

|h(T, x) + n(x)|+ |∂tf(t, x)| ≤ c2(1 + ‖x‖pd). (4.73)

Now we can state the theorem and provide its proof.

Theorem 4.12 (Statement under (G)). Assume that d ≥ 2 and conditions (A1), (A2), (B),
(C), (E) and (G) hold. Let

∑d
j=1 ‖∇xµj(x)‖d ≤ c hold true for all x ∈ R

d and a given c > 0

and, if T < +∞ and only (b) of (G) holds, assume also ‖µ(x)‖d ≤ c for x ∈ R
d.

If there exists (t̂, x̂2, . . . x̂d) and an open bounded neighbourhood U of the point such that
(4.52) holds, then b is Lipschitz on U .
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Proof. We provide a full proof only for T < +∞ but the same arguments hold for T = +∞ up
to simple minor changes.

The idea of the proof is the same as in the previous theorem. Recalling (3.16), the fact that
∂1µj(x) = 0 for j > 1 due to (B), and the bounds in (G) it is not hard to verify that (4.38) gives

|w◦
k(t, x)| ≤β0 (Et,x(τ∗ − t) + Pt,x(τ∗ = T ) + w◦

1(t, x)) (4.74)

≤β0(1 + (T − t)−1)Et,x(τ∗ − t) + β0w
◦
1(t, x), (t, x) ∈ [0, T ] × R

d

for all k = 2, . . . d, and a suitable β0 > 0 which is independent of t, x and k. Notice that the
second inequality is just an application of Markov inequality (see (3.19)).

For the bounds on w and w we treat separately the case in which condition (a) of (G) holds
and (b) of (G) holds. Starting with the former and recalling (4.41)–(4.42) it is not hard to show
that there exists a constant β1 > 0 such that for all (t, x) ∈ [0, T )× R

d

max{|w|, |w|}(t, x)

≤Et,x

[∫ τ∗

t
|∂t(h+m)(s,Xs)|ds + 1{τ∗=T} |(h+ ∂tf)(T,XT ) + n(XT )|

]

≤β1 (Et,x(τ∗ − t) + Pt,x(τ∗ = T ) +w◦
1(t, x))

≤β1(1 + (T − t)−1)Et,x(τ∗ − t) + β1w
◦
1(t, x). (4.75)

Under condition (b) instead we use Lemma 3.5 to get

Et,x

[
1{τ∗=T} |(h+ ∂tf)(T,XT ) + n(XT )|

]
≤ β′1(1 + ‖x‖pd)(T − t)−1

Et,x(τ∗ − t)

for some β′1 > 0, while the estimate for the running cost ∂t(h + m) is the same as in (4.75).
Therefore we can find again β1 > 0 such that, for (t, x) ∈ [0, T ) × R

d

max{|w|, |w|}(t, x)

≤β1
[
1 + (1 + ‖x‖pd)(T − t)−1

]
Et,x(τ∗ − t) + β1w

◦
1(t, x). (4.76)

We notice that thanks to (G) we also have

w◦
1(t, x) ≥ cEt,x(τ∗ − t), (t, x) ∈ [0, T ]× R

d.

To show the Lipschitz property let bδ be the δ-level set of w and let us find bounds for (4.54)
and (4.55). In particular for a.e. (t, y) ∈ [0, T ) ×R

d−1 we estimate

|∂tbδ(t, y)| ≤
max{|w|, |w|}(t, bδ(t, y), y)

w◦
1(t, bδ(t, y), y)

≤β1 +
β1
c

[
1 + (1 + ‖(bδ , y)‖

p
d)(T − t)−1

]
, (4.77)

with (bδ , y) := (bδ(t, y), y) for simplicity of notation, and

|∂kbδ(t, y)| =
|w◦

k(t, bδ(t, y), y)|

w◦
1(t, bδ(t, y), y)

≤ β0 +
β0
c
(1 + (T − t)−1) (4.78)

for k = 2, . . . d. The rest of the proof follows by letting δ ↓ 0 and using Ascoli-Arzelà’s theorem
as in the proof of Theorem 4.3.

Remark 4.13. The last two theorems above work under weaker technical conditions on f , g and
h than those imposed in [36]. It is worth drawing a precise parallel between the two contributions
and it is important to notice that some inequalities are reversed just because [36] considers a
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problem of optimal stopping with minimisation of costs, and in which the stopping set lies above
the continuation set.

As for the notation, [36] takes a state-independent obstacle, i.e. f(t, x) = f(t), and a different
ordering of the space coordinates. Indeed our ∂k(h+m)(t, x) should be associated to hn,n+1−k(t, x)
in [36] for k = 1, . . . n. Similarly our ∂k(g(x)− f(T, x)) corresponds to gn,n+1−k(x) of [36]. The
setting we adopted in Theorem 4.12, with (G) using the specifications in (b), is more general
than the setting in [36]; in particular conditions in (2.2) of [36] imply our (4.69)–(4.70) and
(4.72). The polynomial growth (4.73) is the same as in [36] and the requirement gn(x) ≤ f(0)
of [36] corresponds to our g(x) ≥ f(T, x).

Finally we notice that results in [36] are obtained for µ(x) ≡ 0 and σ = diag 1 in (2.1).

5 Some examples and further extensions

Here we illustrate a couple of applications of our results to problems studied in the literature
on stochastic control [10], [13]. The Lipschitz regularity of the free boundary in such problems
is new and was not discovered in [10] and [13]. In all the examples below it is not difficult to
check that the standing assumptions (2.4), (2.5), (2.14) and Assumption 2.2 hold.

Example 1. Here we consider a problem of optimal stopping arising in connection with one of
irreversible investment (see [10]), under a Cobb-Douglas type production function. The state
space is [0, T ]× R and the optimisation problem reads (see (3.15) and Section 4 in [10])

v(t, x) = sup
0≤τ≤T−t

E

[
−

∫ τ

0
e−rs−(1−α)Xx

s ds− c1e
−rτ

1{τ<T−t} − c2e
−rτ

1{τ=T−t}

]
(5.1)

where r > 0, α ∈ (0, 1), c1 ≥ c2 ≥ 0 and

Xx
t = x+ µt+ σBt, x ∈ R.

Notice that, due to discounting, in this example we must replace the infinitesimal generator L
by L − r, which corresponds to the diffusion X killed at the constant rate r. In this setting we
have

h(x) = −e−(1−α)x, f(x) = −c1, g(x) = −c2, m(x) = rc1, n(x) = rc2,

∂t(h+m) = 0, ∂x(h+m)(x) = (1− α)e−(1−α)x.

Here we want to use Theorem 4.3 and we start by noticing that conditions (A1), (A2), (C) and
(D) hold. Moreover, the curve γ (see (4.7)) is simply given by

γ(t) = γ = (1− α)−1 ln(1/rc1),

so that (i) of Theorem 4.3 holds. As for (ii) it is immediate to check that for any x0 > γ one has
∂x(h+m) ≥ (1−α)e−(1−α)x0 for x ≤ x0. It only remains to check the requirements of Corollary
3.3. If c2 = c1 then (i) in the latter corollary holds and therefore we have

Proposition 5.1. For c1 = c2 Theorem 4.3 is true for problem (5.1).

We notice that (ii) in Corollary 3.3 is too strong in this setting and can never be verified.
Moreover, in [10] they consider c1 > 0 and c2 = 0, so that the assumptions of Corollary 3.3
do not hold. However, as already mentioned, the key point in our method is the probabilistic
representation for the bounds of ∂tv and ∂xv. In particular, the explicit nature of problem (5.1)
allows us to refine (3.2) and this turns out to be sufficient to prove Lipschitz regularity of b. In
what follows we achieve this task.
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Proposition 5.2. If c1 > 0 and c2 = 0 then b is Lipschitz on [0, T ).

Proof. First notice that (3.3) and (3.1) give

∂xv(t, x) = (1− α)E

[∫ τ∗

0
e−rs−(1−α)Xx

s ds

]
(5.2)

and

v(t, x) = e−r(T−t)
E

[
1{τ∗=T−t}e

−(1−α)Xx
T−t

]
. (5.3)

For the lower bound of ∂tv we follow the proof of Theorem 3.1 up to (3.11), which now reads

v(t+ ε, x)− v(t, x) ≥− E

[
1{τ>T−t−ε}

(
e−rτv(t+ τ,Xx

τ ) +

∫ τ

T−t−ε
e−rsh(Xx

s )ds

)]

=− E

[
1{τ>T−t−ε}e

−r(T−t−ε)v(T − ε,Xx
T−t−ε)

]
≥ 0

since v ≤ 0 by (5.1). Since ∂tv exists at all points of C, the above gives ∂tv ≥ 0.
The latter is useful in estimating b′δ in (4.10). In fact we immediately obtain (noticing that

here ∂tv = ∂tw and ∂xv = ∂xw)

0 ≥ b′δ(t) ≥ −
v(t, bδ(t))

∂xv(t, bδ(t))
. (5.4)

To estimate the right-hand side of the above we observe that

e−(1−α)Xx
t =

dP̃

dP

∣∣∣
Ft

ϑ(t, x)

with

dP̃

dP

∣∣∣
Ft

:= e(α−1)σBt−
1
2 (α−1)2σ2t and ϑ(t, x) := e(α−1)(x+µt+

1
2 (α−1)σ2t).

Using the new probability measure in (5.2) and (5.3) we get

0 ≥ b′δ(t) ≥ −
ϑ(T − t, x)P̃(τ∗ = T − t)

(1− α)Ẽ
[∫ τ∗

0 e−rsϑ(s, x)ds
] ≥ −

(T − t)−1ϑ(T − t, x)Ẽ[τ∗]

(1− α)ϑ(t, x) Ẽ[τ∗]
(5.5)

by using Markov inequality in the numerator and setting ϑ(t, x) := inf0≤s≤T−t e
−rsθ(s, x). Hence

we conclude

0 ≥ b′δ(t) ≥ −
(T − t)−1ϑ(T − t, x)

(1− α)ϑ(t, x)

Example 2. Now we consider a multi-dimensional problem which arises in connection with
irreversible investment with stochastic prices and demand (see [13]). The state variables are
(t, x, y, z) ∈ [0, T ] × R

3 and we treat separately the case T < +∞ and T = +∞. The problem
is degenerate because there is no dynamics in the z direction (however a dynamic with no
Brownian part could be included without altering our analysis). This can also be seen as a
family of problems depending on a parameter z. The most interesting feature is that we can
prove Lipschitz continuity of the boundary also with respect to the parameter z.
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The optimisation problem reads

v(t, x, y, z) = sup
0≤τ≤T−t

E

[∫ τ

0
e−rs(z −Xx

t )dt− e−rτY y
τ

]
(5.6)

where r > 0. It is worth mentioning that the running cost above corresponds to taking c(x, z) =
1
2 (x − z)2 in the control problem studied by [13]. As discussed in the latter paper, this choice
is very natural in that context (see Remark 2.5 in [13]). Notice also that the form of the
payoff prevents a dimensionality reduction, hence also the infinite horizon case T = +∞ is truly
2-dimensional and parameter dependent.

A typical application of this model is for electricity generation in presence of renewable
sources. Here X is associated to a stochastic demand net of generation from renewables, and
Y to the stochastic spot price of electricity. The variable Z is related to the level of production
capacity from conventional generation. In this model both demand and price can take negative
values, which is consistent with real market observations. We consider three different cases to
illustrate our methodology in full.

Example 2-(a). Let us start with a finite-horizon problem with simple dynamics. Let T < +∞
and

Xx
t = x+ αt+ βBt and Y y

t = y + µt+ σWt (5.7)

where α, β, σ, µ are constants while B and W are (possibly correlated) Brownian motions.
Again we are in presence of a killing at a rate r and therefore we use L− r instead of L. We

have

h(x, z) = z − x, f(y) = g(y) = −y, m(y) = n(y) = ry − µ,

∂t(h+m) = 0, ∂x(h+m)(x, y, z) = −1, ∂z(h+m)(x, y, z) = 1, ∂y(h+m)(x, y, z) = r.

Considering ∂1 = ∂y, it is immediate to check that Proposition 4.1 holds and we have

S = {(t, x, y, z) : y ≤ b(t, x, z)}.

Finiteness of the boundary was proved in [13] for the infinite horizon case, and therefore holds
as well for T < +∞. Moreover all assumptions of Theorem 4.12 hold under condition (b) of
(G). Hence we have

Proposition 5.3. For T < +∞ and with the dynamics (5.7), Theorem 4.12 is true for problem
(5.6).

Example 2-(b). Let T = +∞ and the dynamic of (X,Y ) be

Xx
t = x+ α

∫ t

0
(ζ −Xx

s )ds + βBt and Y y
t = y + µt+ σWt (5.8)

where α, β, σ, µ, ζ are constants while B and W are (possibly correlated) Brownian motions. In
this setting we assume a mean reverting dynamic for the demand. For the finiteness of (5.6)
and to guarantee (2.5) we pick r > α. We have

h(x, z) = z − x, f(y) = g(y) = −y, m(y) = n(y) = ry − µ,

∂t(h+m) = 0, ∂x(h+m)(x, y, z) = −1, ∂z(h+m)(x, y, z) = 1, ∂y(h+m)(x, y, z) = r.

As in case (a) above, taking ∂1 = ∂y, we see immediately that Proposition 4.1 holds and we have

S = {(x, y, z) : y ≤ b(x, z)}. (5.9)

Now Theorems 4.11 and 4.12 hold, because both conditions (F) and (G) hold due to infinite
horizon (hence the unbounded drift for X is admissible). So we have
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Proposition 5.4. For T = +∞ and with the dynamics (5.8), Theorems 4.11 and 4.12 are true
for problem (5.6).

Example 2-(c). Here we want to consider non-negative prices and this will require to adapt our
methods as we did in Example 1. Let T = +∞ and the dynamic of (X,Y ) be

Xx
t = x+ α

∫ t

0
(ζ −Xx

s )ds+ βBt and Y y
t = y + µ

∫ t

0
Y y
s ds+ σ

∫ t

0
Y y
s dWs, (5.10)

where α, β, σ, µ, ζ are constants while B and W are independent Brownian motions. We take
r > α ∨ µ to guarantee finiteness of the value function and (2.5).

To fit in the framework of (2.1) we must consider the new state variable π := ln y so that a
new process Πt can be defined as

Y y
t = exp{π + (µ − σ2

2 )t+ σWt} =: exp{Ππ
t }

In the state variables (x, π, z) we have

h(x, z) = z − x, f(π) = g(π) = −eπ, m(π) = n(π) = (r − µ)eπ, ∂t(h+m) = 0,

∂x(h+m)(x, π, z) = −1, ∂z(h+m)(x, π, z) = 1, ∂π(h+m)(x, π, z) = (r − µ)eπ.

Now the stopping set reads S = {(x, π, z) : π ≤ b(x, z)} and the boundary is finite. It was shown
in [13] that w := v + eπ is differentiable in x and π inside the continuation region. Moreover,
with a slight abuse of notation, we also define ∂zw := w◦

3 (see (4.38)).

Proposition 5.5. For T = +∞ and with the dynamics (5.10) we have b Lipschitz on R
2.

Proof. For (x, π, z) ∈ R
3 let τ∗ = τ∗(x, π, z) for simplicity. From (3.3) and (4.38) we get

∂xw(x, π, z) = −E

[∫ τ∗

0
e−(r+α)tdt

]
, ∂πw(x, π, z) = (r − µ)Ẽ

[∫ τ∗

0
e−(r−µ)tdt

]
(5.11)

∂zw(x, π, z) = E

[∫ τ∗

0
e−rtdt

]
(5.12)

where the measure P̃ is defined by

d P̃

dP

∣∣∣
Ft

:= eσWt−
σ2

2 t, t ≥ 0. (5.13)

The crucial observation now is that, while the dynamic of X is unaffected by the change of
measure (due to the independence of B and W ) the dynamic of Π under P̃ becomes

Ππ
t = π + (µ+ σ2

2 )t+ σW̃t

where W̃t =Wt − σt is the new Brownian motion under P̃.
Now, if on (Ω,F ,P) we define

Π̃π
t = π + (µ+ σ2

2 )t+ σWs

and τ̃∗ := inf{t ≥ 0 : Π̃π
t ≤ b(Xx

t , z)}, then we immediately see that

Law(Xx,Ππ|P̃) = Law(Xx, Π̃π|P) and Law(τ∗|P̃) = Law(τ̃∗|P).
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Moreover by comparison principles for SDEs we have that Π̃π
t ≥ Ππ

t , P-a.s. for all t ≥ 0 and
therefore we get τ̃∗ ≥ τ∗, P-a.s., and

Ẽ

[∫ τ∗

0
e−(r−µ)tdt

]
= E

[∫ τ̃∗

0
e−(r−µ)tdt

]
≥ E

[∫ τ∗

0
e−(r−µ)tdt

]
(5.14)

Using (5.11)–(5.14) and setting τ∗ = τ∗(x, bδ(x, z), z) for simplicity, we find a uniform bound
for ∇bδ for any δ > 0, that is

|∂zbδ(x, z)| =

∣∣∣∣
∂zw(x, bδ(x, z), z)

∂πw(x, bδ(x, z), z)

∣∣∣∣ ≤ (r − µ)−1 E
[∫ τ∗

0 e−rtdt
]

E
[∫ τ∗

0 e−(r−µ)tdt
] ≤ 1

r − µ

|∂xbδ(x, z)| =

∣∣∣∣
∂xw(x, bδ(x, z), z)

∂πw(x, bδ(x, z), z)

∣∣∣∣ ≤ (r − µ)−1E
[∫ τ∗

0 e−(r+α)tdt
]

E
[∫ τ∗

0 e−(r−µ)tdt
] ≤

1

r − µ
.

Thus taking δ → 0 we find that b is Lipschitz as claimed.
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