
A LAGRANGIAN GAUSS–NEWTON–KRYLOV SOLVER FOR 
MASS- AND INTENSITY-PRESERVING DIFFEOMORPHIC IMAGE 
REGISTRATION

ANDREAS MANG* and LARS RUTHOTTO†

*Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, 
Texas, USA. (AM is now with the Department of Mathematics at the University of Houston)

†Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia, USA

Abstract

We present an efficient solver for diffeomorphic image registration problems in the framework of 

Large Deformations Diffeomorphic Metric Mappings (LDDMM). We use an optimal control 

formulation, in which the velocity field of a hyperbolic PDE needs to be found such that the 

distance between the final state of the system (the transformed/transported template image) and 

the observation (the reference image) is minimized. Our solver supports both stationary and non-

stationary (i.e., transient or time-dependent) velocity fields. As transformation models, we 

consider both the transport equation (assuming intensities are preserved during the deformation) 

and the continuity equation (assuming mass-preservation).

We consider the reduced form of the optimal control problem and solve the resulting 

unconstrained optimization problem using a discretize-then-optimize approach. A key contribution 

is the elimination of the PDE constraint using a Lagrangian hyperbolic PDE solver. Lagrangian 

methods rely on the concept of characteristic curves. We approximate these curves using a fourth-

order Runge-Kutta method. We also present an efficient algorithm for computing the derivatives of 

the final state of the system with respect to the velocity field. This allows us to use fast Gauss-

Newton based methods. We present quickly converging iterative linear solvers using spectral 

preconditioners that render the overall optimization efficient and scalable. Our method is 

embedded into the image registration framework FAIR and, thus, supports the most commonly 

used similarity measures and regularization functionals. We demonstrate the potential of our new 

approach using several synthetic and real world test problems with up to 14.7 million degrees of 

freedom.
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1. Introduction

In this paper, we present efficient numerical methods for diffeomorphic image registration in 

the framework of Large Deformation Diffeomorphic Metric Mapping (LDDMM) [65, 23, 

9]. We use an optimal control formulation similar to the one in [11, 12, 10, 48, 50, 49]. Here, 

the task is to find a smooth velocity field v such that the distance between two images (or 

densities),  (the template image) and ℛ (the reference image), is minimized, subject to 

some regularization norm for v and a transformation model, given by a hyperbolic partial 

differential equation (PDE) that models the deformation of . We consider the transport 
equation (assuming intensities are related at corresponding points) and the continuity 
equation (assuming that mass is preserved) as constraints. The connection to traditional 

image registration formulations [53, 54] is that a sufficiently smooth velocity field v gives 

rise to a diffeomorphism y via the method of characteristics. Vice versa, representing 

diffeomorphisms through velocity fields has been used for efficient statistical analysis; see, 

e.g., [3].

Solving the variational problem associated with LDDMM is, in theory, known to yield a 

diffeomorphic transformation y if v is sufficiently smooth [23, 65, 9]. Although, the theory 

of diffeomorphic registration using LDDMM is well explored [52, 70, 71], efficient 

numerical optimization is not. Until recently [5, 39, 48, 50, 49] mostly first-order 

optimization methods were used; see, e.g., [9, 67, 17, 58]. A key component in LDDMM is 

the numerical method for solving the hyperbolic PDE. Hyperbolic PDE solvers can be 

roughly divided into Eulerian (in which the density is discretized at the same locations for 

each time point) and Lagrangian (in which the grid moves over time along the characteristic 

curves) solvers; see also [45, 25, 46]. Intermediates are Semi-Lagrangian (SL) methods, 

which follow the velocity for a short time step and then estimate the density at fixed points. 

In this work, we use a Lagrangian solver.

It is well known that explicit Eulerian methods for hyperbolic PDEs require the size of the 

time step to be sufficiently small to ensure numerical stability. The maximal admissible time 

step size depends on the accuracy of the spatial discretization and the magnitude of the 

velocities. In optimal control problems, like ours, the velocity field v is not known a priori 

and, thus, it is difficult to come up with an efficient and stable choice of the time step. SL 

and Lagrangian solvers are explicit methods that, unlike explicit Eulerian methods, are 

stable without a restriction on the maximal admissible time step size. One drawback of SL 

methods is their memory requirements. For efficient derivative (or sensitivity) computations 

in Gauss–Newton type optimization schemes, we have to store intermediate images [51]. 

Further, SL methods require a repeated interpolation of the initial image and may therefore 

introduce severe dissipation if implemented naively.1 As we will see, Lagrangian methods 

1We note, that interpolation errors and numerical diffusion can be minimized, by, e.g., applying high-order interpolation schemes 
and/or evaluating the interpolation on a finer grid; this is costly.
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require only one image interpolation at the final time. Secondly, derivatives of the 

Lagrangian solver can be obtained efficiently, without storing intermediate variables. A 

feature of SL and Lagrangian methods is that they can be easily modified to solve intensity- 

and mass-preserving problems, since the characteristic curves coincide.

The key idea of our work is to use a discretize-then-optimize strategy based on a Lagrangian 

hyperbolic PDE solver to efficiently solve the reduced formulation of the PDE-constrained 

optimization problem arising in LDDMM. We show that Lagrangian methods lead to a finite 

dimensional optimization problem that can be solved using an inexact Gauss–Newton 

method. Our PDE solver requires numerical computation of the characteristic curves. We 

use a fourth-order Runge–Kutta (RK4) method to numerically approximate the 

transformation y that is associated with a, in general non-stationary, velocity field v. As we 

show, derivatives of the transformation with respect to v can be derived analytically and 

computed efficiently. Due to the hyperbolic nature of the PDE, the derivatives can be 

represented as sparse matrices; the procedure can be paralellelized: characteristics starting at 

different points can be computed independently. Given these characteristics, the hyperbolic 

PDEs can be solved by a single interpolation step (for the advection equation) or the 

particle-in-cell method (for the continuity equation).

1.1. Contributions

• We propose a discretize-optimize method for solving LDDMM using a 

Lagrangian hyperbolic PDE solver. Our scheme is based on an RK4 method to 

approximate the characteristic curves and we derive an efficient algorithm for 

computing the derivative of the solver with respect to the velocities.

• The storage requirement of our method is independent on the number of time 

steps used in the numerical solver. Also, the Hessian of the objective function 

can be build explicitly at moderate costs, which is useful, e.g., to accelerate 

matrix-vector products. In this work, we use and numerically study the 

convergence of spectral preconditioners to iteratively solve the Gauss–Newton 

system.

• We extend the LDDMM framework to mass-preserving registration, which has 

been proved to be an adequate model for many relevant biomedical applications 

involving with density images, e.g., in [16, 59, 21, 30, 61].

• We derive a flexible framework supporting both stationary and non-stationary 

velocity fields. Our methods are embedded into the FAIR framework [54]. This 

allows us to consider different regularization norms and distance measures. Our 

implementation is freely available as an add-on to FAIR at: https://github.com/

C4IR/FAIR.m/tree/master/add-ons/LagLDDMM

• We provide detailed numerical experiments on four different data sets that 

demonstrate the flexibility and effectiveness of our method. We show that our 

prototype implementation is competitive to state-of-the-art packages for 

diffeomorphic image registration [15, 60]. We study registration quality for 
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synthetic benchmark problems and real-world applications leading to 

optimization problem with up to 14.7 million degrees of freedom.

1.2. Related Work

We limit this review to work closely related to ours. For a general insight into the area of 

image registration, its applications, and its formulation we refer to [53, 54, 63]. Our work 

builds upon the LDDMM framework described in [23, 65, 9], which is based on the 

pioneering work on velocity-based fluid registration described in [20]. We adopt an optimal 

control point of view; we also do not directly invert for the transformation y but for its 

velocity v. We arrive at a hyperbolic PDE-constrained optimization problem. We refer to 

[31, 43, 41, 13] for a general introduction into optimal control theory and developments in 

PDE-constrained optimization. Related optimal control formulations for diffeomorphic 

image registration can, e.g., be found in [11, 12, 38, 10, 17, 48, 50, 49, 51]. Other 

formulations for velocity-based diffeomorphic image registration are described in [4, 66, 5]. 

Our work also shares characteristics with optical flow formulations [11, 12, 17]. Our 

formulation for mass-preserving registration problems is related to the Monge–Kantorovich 

functional arising in optimal mass transport [10, 35].

Most work on large deformation diffeomorphic image registration still considers first-order 

methods for numerical optimization (see, e.g., [6, 7, 8, 11, 9, 38, 44, 17, 67]); the exceptions 

are [5, 48, 50, 49, 66]. First-order schemes for numerical optimization do in general require 

a larger number of iterations than Newton type optimization schemes.2 The work in [5] uses 

geodesic shooting and estimates the initial value of a non-stationary velocity field that 

parameterizes the diffeomorphism y. Other approaches that reduce the size of the 

optimization problem are based on stationary velocity fields; see, e.g., [40, 47, 50, 49, 51].

PDE-constrained optimization commonly requires a repeated solution of the forward 

problem. Thus, the design of an efficient forward solver is critical. The approaches described 

in [10, 17, 48, 50, 49, 38] are based on an Eulerian formulation. They employ explicit high-

order schemes [11, 12, 48, 50, 38, 58], which suffer from a restriction on a maximally 

admissible time step, implicit schemes [10], or explicit SL schemes [49, 51, 17]. The latter 

were originally proposed in the context of weather prediction [64]. They are a hybrid 

between Lagrangian and Eulerian schemes, and unconditionally stable. SL schemes have 

been used in the context of Lagrangian formulations for diffeomorphic image registration (to 

compute the characteristics) [9, 40]. Conditionally stable schemes require small time steps, 

which can result in a significant amount of memory that needs to be allocated to store the 

time-space fields necessary to evaluate the gradient or Hessian. This makes a direct 

application of these type of methods to large-scale 3D problems challenging. One remedy is 

to turn to parallel architectures and use sophisticated checkpointing schemes in time to 

reduce the amount of memory that has to be allocated; see, e.g., [1]. Implicit schemes 

typically suffer from severe numerical diffusion. The same is true for straightforward 

implementations of SL schemes. Pure Lagrangian schemes for diffeomorphic image 

2We note that in LDDMM most implementations use a gradient descent scheme in the Sobolev space induced by the regularization 
operator (dual space). This leads to a significant speedup compared to standard gradient descent approaches. However, it has been 
demonstrated experimentally that Gauss–Newton–Krylov methods are superior [48].
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registration have been described in [6, 7, 8]. The time integration for computing the 

characteristics in [6, 7, 8] is based on a first-order explicit scheme.

What sets our work apart is the numerical solver and the generalization of our formulation to 

both the transport and the continuity equation. Most existing works on optimal control 

formulations for diffeomorphic image registration consider an optimize-then-discretize 

approach [17, 48, 50, 49, 51]. We use a discretize-then-optimize strategy instead.3 Similar to 

[48], we describe a method that can handle stationary and non-stationary velocity fields. Our 

numerical scheme is, likewise to [6, 7, 8], based on a purely Lagrangian approach. We 

consider a reduced formulation of the PDE-constrained optimization problem arising in 

LDDMM, i.e., we eliminate the hyperbolic PDE constraint (state equation) from the 

variational problem. We use a Lagrangian solver to parameterize the final state in terms of 

the velocity. In doing so we avoid many of the complications we reviewed above: our 

method is unconditionally stable, limits numerical diffusion, and does not require the storage 

of multiple space-time fields for the evaluation of the gradient or Hessian operators. The 

work in [6, 7, 8] uses first-order information for numerical optimization and a first-order 

accurate explicit time integrator to compute the characteristic. We use a fourth-order, explicit 

RK scheme instead. We derive expressions for the exact derivative of the characteristics. We 

arrive at a Gauss–Newton–Krylov scheme that—combined with an efficient iterative linear 

solver—yields an approximate solution within a few iterations, and has an overall 

algorithmic complexity of (n log(n)), where n is the dimension of the discretized velocity 

field (i.e., the number of unknowns).

2. Mathematical Formulation

We describe the variational optimal control formulation of the LDDMM problem next. We 

denote the image domain by Ω ⊂ ℝd, where d ∈ {2, 3} represents the spatial dimension. We 

assume that the template and the reference image, denoted by : Ω → ℝ and ℛ: Ω → ℝ, 

are compactly supported on Ω and continuously differentiable. Given these two images, the 

task of image registration is to find a plausible transformation y : Ω → ℝd so that the 

transformed template image  ∘ y becomes similar to the reference image ℛ [54]. The 

definitions of plausibility, similarity, and the transformation model depend on the context; 

see [54, 53, 63] for examples. Many relevant applications, e.g., in medical imaging, require 

that plausible transformations are diffeomorphic, i.e., smooth mappings with a smooth 

inverse. One framework that contains the most commonly used definitions of these three 

terms within the medical imaging application domain is LDDMM [23, 65, 9]. The 

variational optimal control formulation of the LDDMM problem can, in general format, be 

stated as follows: min

(2.1)

3Advantages and disadvantages of these two techniques are discussed, e.g., in [31].
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where  is a distance (or similarity) measure,  is a regularizer (smoother), v : Ω×[0, 1] → 
ℝd is the sought after velocity field, and u : Ω × [0, 1] → ℝ is a time series of images. In an 

optimal control context, v is commonly referred to as the control variable and u as the state 
variable. Here, α > 0 is a regularization parameter that balances between minimizing the 

image distance and the smoothness of the velocity field (and consequently controls the 

properties of the resulting transformation). In the current work, we assume that α is chosen 

by the user and refer to [36, 34, 68] for some works on automatic selection of the 

parameters.4

In this work, we assume that the constraint , which describes the transformation model, is 

given either by the advection (also called transport) equation

(2.2)

or the continuity equation

(2.3)

The former assumes intensity values are preserved during the transformation; the latter 

preserves the overall mass of the image. The choice of the transformation model depends on 

the application. Intensity preservation is commonly used, e.g., for registration of medical 

images acquired from different subjects [56]. Mass-preservation has been successfully used, 

e.g., for motion correction in position emission tomography (PET) [21, 30] or artifact 

correction of magnetic resonance imaging (MRI) [16, 61].

The models in (2.2) and (2.3) can be used to establish point-to-point correspondences 

between the template and the reference image. One way of showing this is the method of 

characteristics [46, 24]. To better illustrate this, we consider the advection equation (2.2), for 

which the intensity u is constant along the characteristics. This means that, for all y0 ∈ Ω and 

t ∈ [0, 1], it holds that u(y(v, y0, 0, t), t) =  (y0) where the characteristic curve t ↦ y(v, y0, 
0, t) satisfies

(2.4)

Similarly, the characteristics can be traced backwards in time to compute the state at some 

point y1 ∈ ℝd at t = 1. The position of the point is given by t ↦ y(v, y1, 1, t), which satisfies 

4Examples for an automatic selection of the regularization parameter in the context of image registration can, e.g., be found in [33, 
48].
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(2.4) with final time condition y(v, y1, 1, 1) = y1. Clearly, both operations are inverse to one 

another. That is, for all x ∈ ℝn it holds that y(v, y(v, x, 0, 1), 1, 0) = x, i.e., a composition of 

both maps yields identity.

Note that (2.2) through (2.4) involve a non-stationary (i.e., time-dependent) velocity field v. 

This is a key assumption in the original LDDMM formulation [9]. To make the problem 

computational tractable it is, however, often assumed that v is stationary (stationary velocity 
field based registration) [3, 4, 40, 50, 51, 57].5 The numerical framework we propose in this 

paper can efficiently handle both stationary and non-stationary velocities. As demonstrated 

in our numerical experiments in Sec. 4.2, the stationary model is less flexible in that we can 

only invert for a subset of the deformation maps living on the manifold of diffeomorphisms. 

Our experiments also suggest that stationary velocity fields are adequate for registration 

problems involving two topologically similar images, yielding little to no difference in the 

recovered deformation map [4, 40, 48]. However, using non-stationary velocity fields may 

become critical in applications involving large and highly nonlinear transformations and/or 

the registration of time series of images with large motion between time frames (e.g., 

typically seen in tracking or optical flow problems).

2.1. Regularization functionals

Due to the ill-posedness of the image registration problem, the literature on regularization in 

image registration is rich; see, e.g., [53, 27, 54, 63] for extensive overviews. It is established 

that the existence and regularity of a diffeomorphic map y depends on the smoothness of the 

velocity field v as well as the smoothness of the images ℛ and  [23, 65, 50, 17]. Modeling 

the images as functions of bounded variation, H3-regularity [17] is required (assuming that v 
is divergence free). For continuous images we can relax the H3-regularity to an H2-regularity 

[9] or—under additional assumptions on the divergence of v—even to an H1-regularity [17].
6 Most implementations for LDDMM consider an H2-norm for  in (2.1) (or an 

approximation based on a Gaussian kernel within a gradient descent scheme in the Sobolev 

space induced by the regularization norm); see, e.g., [5, 9, 40].

In our framework, we regard the regularizer as a modular component that can be replaced or 

extended. In practical applications we control the regularization parameter by monitoring the 

Jacobian in an attempt to generate transformations that are diffeomorphic (in a discrete 

setting) and yield high-fidelity (low mismatch) results. In our numerical examples, we 

consider H1- and H2-seminorms as regularization models. These type of regularization 

models are also referred to as diffusive or curvature regularizers in the context of traditional 

variational image registration formulations [26, 53, 54], respectively. Assuming that v is 

non-stationary, we have

5Another strategy to reduce the computational burden is to invert for an initial momentum [67] that encodes the trajectory of the 
diffeomorphism.
6We use interpolation and padding of the discrete image data to obtain continuously differentiable and compactly supported functions 
(see Sec. 3).
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and

respectively. Regularization of stationary velocity fields is along the same lines, by simply 

dropping the time integration in the above equations. Our formulation can also be extended 

to enforce smoothness in time, as also done in [11].

3. Numerical Methods

In this section, we describe a discretize-then-optimize approach for solving the variational 

problem (2.1). We eliminate the hyperbolic PDE constraints (2.2) and (2.3) using 

Lagrangian methods. We then describe the discretization of the objective functional itself. 

Following [54], we consider a multilevel Gauss–Newton method that allows us to efficiently 

solve the discrete optimization problem. Finally, we give some details about our 

implementation as an extension to the FAIR toolbox [54].

Assume, for simplicity, that the domain Ω = (0, 1)d is divided into a regular mesh of m cells 

of edge length h = 1/m along each coordinate direction. We use interpolation and padding of 

the discrete image data to obtain continuously differentiable and compactly supported 

functions. We approximate integrals in (2.1) by a midpoint quadrature rule, which requires 

evaluating the final state on the cell-centered points, xc ∈ ℝd·md
, of the grid. Without loss of 

generality, we assume that the velocity field v is discretized on the same mesh. However, the 

domain size and number of cells can be varied in practice. The discrete velocity field, 

denoted by v ∈ ℝn, is discretized in time at the nodes of a regular grid with nt cells and in 

space at cell-centered grid points. The total number of unknowns is n = (nt + 1) · d · (md).

3.1. Lagrangian Methods for Hyperbolic PDEs

Lagrangian methods exploit the fact that solutions to hyperbolic PDEs evolve along 

characteristic curves [46, 24]. These methods are Lagrangian in the sense that the transport 

of the density is referred to in the moving coordinate system. Lagrangian methods typically 

consist of two steps: First, the characteristics are computed numerically. Then, in a second 

step, the final image (or density) is computed. While the characteristic curves are identical 

for the advection and the continuity equation, the computation of the second part is not.

Step 1 (Computing the Characteristics)—Here, we describe our implementation for 

computing the characteristic curve passing through a given point. The velocity field v : Ω × 
[0, 1] → ℝd is known and represented by the coefficients v ∈ ℝn. We solve (2.4) using an 

RK4 method with N equidistant time steps of size Δt = ±1/N; the sign of the time step 
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depends on whether the characteristics are computed forward or backward in time. Note that 

the number of time steps N for the RK4 method and the number of cells nt in the space-time 

grid do not necessarily have to be equal. The former is a parameter of the numerical solver 

and controls the accuracy of the characteristics. The latter is a modeling parameter and 

ultimately controls the search space for the transformation y.

Our choice of an RK4 scheme is motivated by accuracy considerations for computing the 

characteristics. For simplicity, we illustrate the concept of integrating v based on a first-order 

forward Euler scheme. The derivation of our RK4 scheme is along the same lines; it is 

outlined in Algorithm 1.

Let x ∈ ℝd·np be the coordinates of the start (or end) points of the characteristics, e.g., the 

cell-centers of a regular mesh. Introducing the (time-dependent) transformation y : ℝn × 
ℝd·np × [0, 1]2 → ℝd·np, and imposing the initial condition y(v, x, 0, 0) = x, we compute

(3.1)

where tk = kΔt are the time points and I interpolates the velocity field v at the transformed 

points y. In our experiments, we use a bi- or trilinear interpolation model in space and a 

linear interpolation model in time, applied separately to each component of the velocity field 

v. We found by experimentation that using low-order interpolation schemes for the 

(smoothness regularized) velocity fields is sufficiently accurate for our numerical scheme to 

yield high-fidelity results in practical applications. We note that the interpolation is a 

modular component; it can be replaced by (computationally more expensive) higher-order 

methods. Notice, that the positions at previous time steps, y(v, x, 0, 0), … , y(v, x, 0, tk−1), 

do not enter the computation in (3.1); the memory requirements of our numerical scheme are 

independent of the number of time steps N. The end points of the characteristics are then 

y(v, x, 0,1), which, if x = xc, can also be interpreted and visualized as a deformed regular 

grid.

Step 2 (Solving the hyperbolic PDE)—While solutions to both the transport and the 

continuity equations evolve along the same characteristics, the steps for computing the 

transported quantity at t = 1 vary. Thus, we discuss both cases separately. An illustration of 

both schemes can be found in Fig. 3.1.

Transport equation: Considering the transport equation (2.2), we compute the intensities of 

the advected image  on the deformed cell-centered grid xc by following the characteristics 

backwards in time. This yields

(3.2)

MANG and RUTHOTTO Page 9

SIAM J Sci Comput. Author manuscript; available in PMC 2018 September 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Algorithm 1

RK4 method for computing the characteristics y and the derivative dvy.

Input: Discrete (non-stationary) velocity field v ∈ ℝn, start points of characteristics x ∈ ℝd·np, number of time steps N

Set: y ← x, dvy ← 0, Δt ← 1/N.

for k = 0, 1, … , N − 1 do

 compute v1 ← I(v, y, 0, tk) (spatio-temporal vector field interpolation) and set y1 ← y + (Δt/2)v1

 compute v2 ← I(v, y1, 0, tk+1/2) and set y2 ← y + (Δt/2)v2

 compute v3 ← I(v, y2, 0, tk+1/2) and set y3 ← y + (Δt/2)v3

 compute v4 ← I(v, y3, 0, tk+1)

 if derivative required then

  D1 ← dvI(v, y, 0, tk) + dyI(v, y, 0, tk) dvy

  D2 ← dvI(v, y1, 0, tk+1/2) + dyI(v, y1, 0, tk+1/2) (dvy + (Δt/2)D1)

  D3 ← dvI(v, y2, 0, tk+1/2) + dyI(v, y2, 0, tk+1/2) (dvy + (Δt/2)D2)

  D4 ← dvI(v, y3, 0, tk+1) + dyI(v, y3, 0, tk+1) (dvy+ΔtD3)

  dvy ← dvy + (Δt/6) (D1 + 2D2 + 2D3 + D4)

 end if

 y ← y + (Δt/6) (v1 + 2v2 + 2v3 + v4)

end for

Output: end of characteristics, y ∈ ℝd·np, and (if required) gradient, dvy ∈ ℝn×d·n

In general, y(v, xc, 1, 0) does not coincide with a grid point; the intensity has to be computed 

by interpolation. In our numerical experiments we use a bi- or tri-linear interpolation model 

and regularized cubic approximation methods provided in FAIR to obtain the intensity 

values of the deformed image; see [54] for implementation details and other common 

choices.

Continuity equation: To solve the continuity equation (2.3) we consider the Particle-In-Cell 
(PIC) method that pushes mass along the characteristics forward in time; see, e.g., [18]. For 

a given grid point y0 ∈ ℝd, we introduce a particle with its mass given by the intensity value 

 (y0). Then, we follow the trajectory of the particle along the characteristic to its final 

point y1 := y(v, y0, 0, 1). In general, y1 does not coincide with a grid point. We obtain the 

value of the final state in a given cell by integrating the mass of all particles whose support 

intersects the cell. Equivalently, we compute the final density by splitting the mass of each 

particle among the cells adjacent to its final location. Ideally, the particles are represented by 

Dirac delta functions. In practice, we consider bi- or tri-linear hat functions of a certain 

isotropic width δ > 0 as proposed in [18].

Using the push-forward matrix F, which has also been used in [29], this process can be 

written as

(3.3)
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In the following, we construct the push-forward matrix in a way that ensures mass-

preservation at the discrete level for any choice of δ and h. For ease of presentation, we 

describe the procedure for the one dimensional case (d = 1). The derivation extends to tensor 

meshes in higher dimensions in a straightforward way under the assumption that the basis 

functions are piecewise polynomials in the coordinate directions. Let us assume that for j = 

1, 2, … , m particles are located at the cell-centered points  and their respective 

mass is given by u0,j =  (xj ). The particles are advected to the points yj = y(v, xj, 0, 1). For 

some δ > 0 the particles are represented by the shifted basis functions

for each j = 1, 2, … , np. The mass of u(·, 1) contained in the ith interval [xi, xi+1] is given by

(3.4)

where Bδ denotes an anti-derivative of bδ and is given by

Repeating the process outlined in (3.4) for all i = 1, 2, … , m yields the discrete transformed 

density, which is summarized in (3.3). Note that our scheme is mass-preserving at the 
discrete level by design since exact integration is performed. In other words: the columns in 

F sum to one regardless of the choices for δ and h. Also note that F is sparse. The level of 

sparsity depends on the ration between δ and h. If we choose np = m, δ = h, and xj = h(j 
+ 1/2), it is easy to see that F is the transpose of the linear interpolation matrix [29]. Thus, 

the relation between (3.2) and (3.3) mirrors the adjoint relation between the continuity and 

the advection equation.

3.2. Optimization

Using the Lagrangian methods outlined above we parametrize the final state in terms of the 

velocities, which we denote by u1(v). We eliminate the state equation from the variational 

problem (2.1) and—upon discretization—obtain the finite-dimensional unconstrained 

problem min
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(3.5)

where D and S are discrete versions of the distance measure  and regularizer  in (2.1). As 

an example, we consider the squared L2-distance functional. We note, that this is a modular 

building block of our formulation; for other choices we refer to [54]. Using a midpoint rule, 

the discrete distance measure—also known as the sum-of-squared-differences (SSD)—reads

(3.6)

To enable a Gauss–Newton optimization, we compute the derivative of the objective 

function. Using the chain rule we obtain

where the derivative of the distance measure with respect to the final state u1 is for (3.6) 

given by

We again refer to [54] for the derivatives for other distance measures. The derivative of the 

regularizer can be written as

Here, B is a discretization of the spatial or spatio-temporal derivative operator. Similarly, the 

approximated Hessian is given by

where In ∈ ℝn×n denotes the identity matrix and γ > 0 is a small constant to ensure positive 

semi-definiteness. In our numerical experiments we use γ = 0.01. The Hessian of the 

distance measure is given by
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Next, we compute the derivative of the mapping v ↦ u1(v). We first consider the advection 

equation. Using the chain rule to differentiate (3.2) we obtain

The first term in the product is an image gradient evaluated at the end points of the 

characteristic curves. It is computed by differentiating the interpolation model; see [54] for 

details. The second term is the derivative of the endpoint of the characteristic curve with 

respect to v. How we compute this derivative is explained below. For the continuity equation 

(3.3) we obtain

The first term can be computed by differentiating the terms in (3.4), for which Fij > 0, with 

respect to the end points of the characteristic curves. Notice that this also implies that dy 

(F(y(v, xc, 0, 1))) is at least as sparse as the push-forward matrix.

We now present an efficient way for computing the derivative of the end point of the 

characteristics with respect to the velocity field. Since we use explicit time stepping schemes 

the derivative can be computed recursively alongside the computation of the characteristics. 

For example, if we use the forward Euler method in (3.1) we have dvy(v, xc, 1, 0) = 0; we 

obtain

for all k = 0, 1, … , N − 1. The derivatives of the interpolation scheme, dvI and dyI, are 

computed as described in [54]. Notice that we do not need dvy(v, x, 1, tk) in subsequent time 

steps. Thus, in practice, we update it directly. It is straightforward to extend this procedure to 

other explicit methods, such as the RK4 scheme used in our experiments; see Algorithm 1 

for details. We emphasize that neither intermediate transformations nor intermediate state 

variables need to be stored to compute the derivative. Therefore, the storage requirement is 

essentially independent of the number of time steps N used to compute the characteristics. 

This is different to the methods described in [9, 48, 50, 51], which require storing at least 

one time-dependent scalar field to evaluate the gradient or Hessian operator.

We use a standard inexact Gauss–Newton–Krylov method for solving the finite-dimensional 

optimization problem. We use the implementation and stopping conditions described in [54]. 

As to be expected, the computationally most challenging task is the computation of the 
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search direction. Let vi denote the velocity field at the ith iteration. Given vi we obtain the 

search direction δv by solving

(3.7)

The next iterate vi+1 is computed via vi+1 = vi +μδv; an Armijo linesearch is performed to 

determine the step size μ (see, e.g., [55]).

We solve the symmetric and positive definite linear system in (3.7) via a Cholesky 

factorization or, for large-scale problems, via iterative methods such as the conjugate 

gradient (CG) method [42]. The convergence of iterative methods depends on the clustering 

of the eigenvalues of H, which can be improved by appropriate preconditioning [62]; 

yielding a preconditioned CG (PCG) method. For the examples considered in this paper, the 

Hessian of the regularizer is block diagonal with d blocks corresponding to a discretized 

second- or fourth-order differential operator. Since the Hessian of the regularizer is of 

higher-order as compared to the Hessian of the distance term, we exploit the structure of A = 

B⊤B for preconditioning. Given that the velocity is discretized on a regular mesh in space 

and time, A is a structured matrix and can be written as a sum of Kronecker products of 

Toeplitz-plus-Hankel matrices. Thus, its pseudo-inverse can be computed efficiently using 

the Discrete Cosine Transform (DCT) [37]. In addition to the preconditioners available in 

FAIR (such as multigrid or Jacobi) we also provide an option to use A+ γIn as 

preconditioner; a common choice in PDE-constrained optimization problems [48, 2].

The optimization problem in (3.5) is known to be non-convex. To limit the risk of being 

trapped in a local minimum, we use a multilevel strategy similar to the one described in [54]. 

First, we solve (3.5) with a coarse discretization for the distance, regularizer, and velocities, 

and then refine the solution and use it as a starting guess for the optimization problem 

obtained on the next level. We continue this procedure until we reach a sufficiently fine 

discretization level, which depends on the application at hand. In addition to improving 

robustness, the scheme often leads to an overall reduction of computation time.

3.3. Implementation

We have implemented our method in MATLAB as an extension to the 2011 version of the 

FAIR toolbox described in [54]. This allows us to exploit all distance measures, interpolation 

kernels, and numerical schemes provided in FAIR. A pseudocode of the RK4 method used 

to compute the characteristics and the derivative of the end point with respect to the velocity 

field v is given in Algorithm 1. It can be seen that both the characteristics and the gradient 

are computed in one sweep over all time points. The characteristic and the gradient can be 

updated in each step. This makes the memory requirements independent of the number of 

time steps N used to compute the characteristics; the size of dvu1(v) is n × md. The gradient 

matrix is sparse. Its columns will have non-zero entries only in rows associated with discrete 

velocities in close proximity to the characteristic curve; we will demonstrate this 

experimentally; see Fig. 4.2.
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The reduced memory requirement is a significant improvement over existing Eulerian or 

Semi-Lagrangian methods. These require storing (or recomputing) the transported images or 

characteristics for each time step [9, 48, 50, 51]. The Lagrangian method proposed here, 

requires only the allocation of the transformed grid, which is independent of the number of 

time steps for the forward or adjoint solves. Further, it is possible to adapt the time step used 

for computing the characteristics, e.g., depending on the complexity of the trajectory.

4. Numerical Experiments

In this section, we demonstrate the potential of our solver based on two- and three-

dimensional synthetic and real world problems of varying complexity. We compare our 

prototype implementation to tailored and highly optimized state-of-the-art packages for 

diffeomorphic image registration. For mass-preserving registration we consider the 

VAMPIRE package [30]. For large deformation diffeomorphic registration we consider the 

hyperelastic registration model originally described in [15, 60].

4.1. General Setup

As stopping criteria for the Gauss–Newton optimization, we use standard settings provided 

in FAIR. The maximum number of inner iterations for the PCG method is set to 50; the 

tolerance for the relative residual is set to 0.1. We use a spectral preconditioner.7 The 

benchmark methods employ a hyperelastic regularization model, for which effective 

preconditioning is more challenging; see, e.g., [15, 60]. Here, we use a matrix-free 

implementation of a Jacobi-PCG solver. Problem-specific parameters, such as the number of 

time points to represent velocity fields, times steps in the RK4 method, the image domain, 

the number of multi-level steps, or the padding of the domain used to represent the velocity 

field, are described in the respective subsections. We perform all our experiments on a ×68 

compute node with 40 Intel(R) Xeon(R) CPU E5-2660 processors running at 2.60GHz with 

a total of 256GB of memory.

We consider H1 (diffusive) and/or H2 (curvature) regularization models throughout our 

experiments. We emphasize that, as we have already pointed out in Sec. 2.1, theoretical 

considerations require imposing H2-regularity on v in order to guarantee that v gives rise to a 

diffeomorphic map y (see, e.g., [9]). Our argument for also considering an H1 regularization 

model is that, in practice, we can control the weight α by monitoring det ∇y to ensure that 

the discretized map y is indeed a diffeomorphism. We also note that the regularization is a 

modular block of our formulation. If theoretical requirements are of concern, one can switch 

to H2 regularity.

4.2. 2D C-Shape

We consider the classical test case of registering a C-shaped object to a disc as initially 

proposed by Christensen [20]. We study registration quality and performance. We compare 

our results to the hyperelastic registration method described in [15, 60]. We also study the 

convergence for different types of preconditioners for this problem.

7Since the regularization operator corresponds to a block diagonal matrix whose 4 · 2 blocks are discretizations of a 2D Laplacian, its 
pseudo inverse can be computed efficiently using DCTs (see Sec. 3.2).
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Experimental Setup—The test data is taken from FAIR and consists of two binary image 

data with 128 × 128 pixels on the image domain Ω = (0, 1)2. To build a continuously 

differentiable image model from the binary image data, we use the moments-regularized 

cubic B-spline interpolation with an experimentally tuned smoothing parameter of θ = 0.1; 

see [54] for details. Since the image modality is comparable in both images, we use the SSD 

distance measure in (3.6) to assess image similarity.

• LDDMM: We model the velocity field on a padded domain (−0.5, 1.5)2 to reduce 

boundary effects. We use the diffusion regularizer with an empirically 

determined weight of α = 400; we set γ = 0. We compare results for a stationary 

velocity model to those obtained for a non-stationary velocity model with nt = 2 

time intervals. We use a three-step multilevel strategy and discretize the domain 

for the velocities using regular meshes with 322, 642, and 1282 cells, 

respectively. The characteristics are computed using an RK4 method with N = 3 

time steps. We assess registration quality and the impact of different 

preconditioning techniques (no preconditioning, Jacobi preconditioning, 

Symmetric Gauss Seidel, and spectral) on the convergence of the PCG method 

used to approximately solve (3.7). For the convergence study, we only consider 

the coarsest discretization level (32 × 32 cells). The structure of the Hessian 

depends on the current velocity estimate. We compare the convergence of the 

PCG method at the first and final Gauss–Newton iteration. We consider an H1 

regularization model. We report results for a stationary and a non-stationary 

velocity field (nt = 2). In each case, we aim to solve the linear system up to a 

relative error of 10−10 and set the maximum number of iterations to 250.

• Hyperelastic Registration [15]: We use the default parameters provided in FAIR 

to solve this problem. The values for the regularization are empirically chosen 

and set to α1 = 100 for the length α2 = 0 for the area, and α3 = 18 for the volume 

regularizer. We employ a five-step multilevel strategy, where the transformation 

is discretized on meshes with 82, 162, 322, 642, and 1282 cells.

Observations—For the proposed method with a stationary velocity model we require 16, 

4, and 4 Gauss–Newton iterations per level with a total runtime of roughly 6 seconds. Using 

the non-stationary velocity model we require 25, 3, and 3 iterations per level and a runtime 

of about 12 seconds. For the hyperelastic registration approach 30, 17, 6, 7, and 3 iterations 

are performed on each resolution level. The total computational time is about 35 seconds.

We visualize the results in Fig. 4.1. As can be seen in Fig. 4.1, the proposed methods deliver 

transformed template images that are qualitatively similar to the reference image (small 

residual). Both methods result in diffeomorphic transformations as judged by the values of 

the determinant of the Jacobian. As to be expected, the range of the relative volume change 

is considerably larger for the proposed methods (det ∇y(v, x, 1, 0) ∈ [0.05, 20.58] and det 

∇y(v, x, 1, 0) ∈ [0.16, 14.25] for the stationary and non-stationary field, respectively) as 

compared to the hyperelastic registration (det ∇y ∈ [0.34, 5.88]). This is due to the fact that 

the hyperelastic registration model explicitly controls and penalizes volume change. 

Comparing the estimated stationary and non-stationary velocity fields shows that for the 
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latter the estimate changes considerably in time. Also, it should be noted that the registration 

quality is slightly better for the non-stationary approach (smaller range for the Jacobians and 

a reduction of the distance measure of 99.48% vs. 97.85%, respectively).

We show the results of the experimental evaluation of different preconditioning techniques 

in Fig. 4.2. The number of non-zero elements in the Hessian increases from the first to the 

final iteration for both regularizers. This is due to the fact that particles travel a longer 

distance through the domain. The performance of the preconditioner deteriorates in the final 

iteration for all preconditioners. We observe a similar behavior for the hyperelastic 

formulation (see [60]). We can observe that we need fewer iterations for the stationary case 

to reach the tolerance; we invert for fewer unknowns, which results in a smaller linear 

system that needs to be solved. The proposed spectral preconditioner displays the best rate 

of convergence amongst the considered schemes for preconditioning the Hessian; we use it 

for all our experiments. We note that we have performed the same study for the curvature 

regularization (results not included in this study). We observed a similar behavior.

4.3. 2D Mass-Preserving Registration

We consider an academic test problem for mass-preserving registration. We compare our 

method against the VAMPIRE toolbox for mass-preserving registration [30].

Experimental Setup—The test data is designed to mimic the contraction of a tissue 

containing a fixed amount of tracer. The data is obtained by subtracting two Gaussians with 

different standard deviations. The mass is exactly equal, but in the reference image it is 

concentrated in a smaller region so that the image overall appears brighter. The image 

domain is (−5, 5)2 and the full resolution is 256 × 256. For all experiments we use a four-

level multi-level strategy with resolutions 322, 642, 1282, and 2562, respectively. A 

continuous image model is built using bi-linear interpolation and the SSD distance measure 

is used to quantify image similarity.

• MP-LDDMM: As in the previous example the velocity field is modeled on a 

padded spatial domain (−5.4, 5.4)2 to reduce boundary effects. We use nt = 1 for 

the spatial discretization of the velocity. The characteristics are approximated 

using N = 2 time steps for the RK4 method. The push-forward matrices are build 

from bilinear basis functions whose width equals the cell size. We use the 

diffusion regularizer with weight α = 1000 and γ = 1E−2. We compare results 

for a stationary and a non-stationary velocity field.

• VAMPIRE: We use the default parameters for the hyperelastic regularizer (α1 = 

10, 000 for the length-, α2 = 0 for the area, and α3 = 100 for the volume 

regularizer).

Observations—Registration results are visualized in Fig. 4.3. For the MP-LDDMM using 

a stationary velocity model, we perform 4, 2, 1, and 1 iterations per resolution level. The 

total computation time is about 4 seconds. Using the non-stationary velocity model we 

require 5, 2, 2, and 2 iterations and require a computation time of about 8 seconds. For 
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VAMPIRE we perform 5, 2, 2, and 1 iterations on the respective levels. The time-to-solution 

is approximately 12 seconds.

Both methods also yield comparable results in terms of data misfit as well as the final 

transformation. This is not only confirmed qualitatively by visual inspection of the 

transformed template image and the deformed grids, but also quantitatively: The volume 

change introduced by the transformation obtained using the proposed methods (det ∇y(v, x, 

1, 0) ∈ [0.89, 2.33] and det ∇y(v, x, 1, 0) ∈ [0.67, 2.54] for a stationary and a non-stationary 

velocity model, respectively) is comparable to the one obtained using VAMPIRE (det ∇y ∈ 
[0.76, 2.40]). The largest improvement in image similarity (with respect to the SSD) is 

achieved for the MP-LDDMM method with a non-stationary velocity (distance reduction of 

99.98% vs. 97.43%) although—in contrast to the previous experiment—it should be noted 

that the estimated velocities are very similar for both approaches.

4.4. 3D Cardiac PET

We consider a 3D mass-preserving registration problem of registering systolic and diastolic 

cardiac PET data of a mouse heart. The data is provided in FAIR.8 The image domain is Ω = 

(0, 32)3 with a resolution of 403 grid points. The results are illustrated in Fig. 4.4. We use a 

three-level multi-level strategy with resolutions 103, 203, and 403, respectively, for all 

approaches. On the finest level, the number of unknowns is 384 000.

Experimental Setup

• MP-LDDMM: The velocity field is modeled on the same domain as the image 

data and the same number of cells is used for spatial discretization. We will only 

consider the non-stationary case, here. We use nt = 1 time intervals for the 

velocity (which results in two discretization points for the velocity v). We use an 

RK4 method to compute the characteristics with N = 2 time steps. The push-

forward matrix is build using tri-linear hat functions, with a width that 

corresponds to the voxel size of the image data. We use the diffusion regularizer 

with regularization weight α = 100 and γ = 1E−2.

• VAMPIRE: We use α1 = 100 for the length regularizer, α2 = 10 for the area 

regularizer, and α3 = 100 for the volume regularizer. We use the same number of 

multi-resolution levels.

Observations—For MP-LDDMM the optimization scheme performs 9, 3, and 3 iterations 

on the respective levels. The time-to-solution is about 36 seconds. For VAMPIRE we require 

5, 4, and 3 iterations on the respective levels. The total runtime is about roughly 74 seconds. 

Both schemes yield qualitatively almost identical results. The residual differences between 

the transformed template image and the reference image is small. Overall, our current 

prototype implementation of a Gauss–Newton–Krylov method for LDDMM is competitive 

with VAMPIRE in terms of the runtime. We expect to be able to drastically reduce the 

runtime in near future. For the hyperelastic registration most time is spent on determining 

8We thank the European Institute for Molecular Imaging (EIMI) and SFB 656, University of Münster, Germany for contributing the 
image data.
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the search direction, which requires solving an ill-conditioned linear system; see also [60]; a 

reduction in runtime for this scheme is much more difficult.

4.5. 3D Brain Registration

Experimental Setup—The data is taken from the NIREP repository [19]. We consider the 

datasets na02 (template image) and na01 (reference image) for our experiments. The grid 

size for these images is 256 × 300 × 256. We downsample these images to a size of 128 × 

150 × 128 voxels to make the problem computationally tractable for our prototype and the 

reference implementation. The image domain is defined to be Ω = (0, 20) × (0, 23.4375) × 

(0, 20). We use SSD as distance measure and a multi-level strategy with 3 resolution levels 

(32 × 38 × 32, 64 × 75 × 64, and 128 × 150 × 128). The number of unknowns is 7 372 800 

for the finest level.

We evaluate registration performance based on overlap measures evaluated for the label 

maps associated with the images. The data comes with 32 labels for gray matter regions 

[19]. We simplify the presentation of our results by only considering the union of these 

labels to evaluate the performance of our method. We use the Dice coefficient as a measure 

for registration quality, which has an optimal value of 1. We use a nearest-neighbor 

interpolation model to transform the label maps with the computed y to avoid any additional 

thresholding.

We limit the evaluation of the determinant of the Jacobian to the foreground (i.e., the brain) 

in the reference image. We identify this foreground by thresholding; we consider intensities 

with a value of 0.05 and larger as foreground. We slightly extend this mask by smoothing it 

with a Gaussian kernel of width 2h. A second thresholding step defines the final brain mask 

used for the evaluation of the Jacobians.

• Proposed (LDDMM): The velocity field is modeled on a slightly larger domain 

than the image domain to reduce boundary effects; we choose Ωv = (−1, 21)×(−1, 

24.4375)×(−1, 21). We consider stationary and non-stationary velocities v. We 

use nt = 1 time intervals for the non-stationary case (which results in two 

discretization points for the velocity v). We use an RK4 method with N = 5 time 

steps to compute the characteristics. The push-forward matrix is build using tri-

linear hat functions, with a width that corresponds to the voxel size of the image 

data. We consider the curvature (H2) and the diffusive (H1) regularization model. 

We study registration performance (data mismatch and extremal values of the 

Jacobians det ∇y) as a function of the regularization weight α. Once we have 

found the velocity v, we compute the transformation y we use to evaluate the 

performance of our method using N = 20 time steps. We experimentally found 

that a shift of γ = 0 and γ = 1E−2 yields the optimal rate of convergence for the 

diffusive and the curvature regularization model, respectively. We set the 

tolerance for the optimization to tolJ = 5E−2. We use a relative tolerance of 1E−1 

for the PCG method; we limit the number of Krylov iterations to 50.

• Hyperelastic registration: We experimentally found that regularization weight of 

α1 = 100 (length regularizer), α2 = 10 (surface regularizer), and α3 = 100 
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(volume regularizer) yields high data fidelity (good mismatch) and well behaved 

Jacobians. We use this setting throughout our experiments. We set the tolerance 

for the optimization to tolJ = 1E − 3.

Observations—We show exemplary results for the registration in Fig. 4.5. We report 

results for the quantitative evaluation in Table 4.1. An illustration of the velocities can be 

found in Fig. 4.6.

All methods yield high fidelity results with diffeomorphic transformations and well behaved 

Jacobians. We achieve the best Dice score for a diffusive regularization model for α = 300 

(run #13 in Table 4.1) and a non-stationary velocity field. This is the only run, for which we 

outperform the hyperelastic approach. The results for the curvature regularization model do 

not vary significantly when switching from a stationary to a non-stationary formulation; we 

obtain similar extremal values for the Jacobians and similar Dice values. This is different for 

the diffusive regularization model. We obtain slightly better values for the Dice coefficient 

with similar extremal values for the Jacobian.

If we consider a stationary velocity field we can reduce the time-to-solution by a factor of 

two compared to the hyperelastic approach. These findings are consistent for both 

regularization approaches (runs #2 to #8 in Table 4.1). If we turn to non-stationary velocity 

fields, our current implementation of the curvature regularization model is no longer 

competitive in terms of time-to-solution. For a diffusive regularization model we are, 

however, still slightly faster than the hyperelastic approach (runs #13 to #15 in Table 4.1) 

despite an increase of the number of unknowns by a factor of 2 (we use nt = 1, which results 

in two discretization points for the velocity).

We need, for instance, 5, 3, and 3 iterations for the individual levels for the stationary case 

and a diffusive regularization model (α = 400; run #6 in Table 4.1). For each iteration we 

require 22, 23, 24, and 24 PCG iterations (level 1), 22, 25, and 27 PCG iterations (level 2), 

and 27, 29, and 29 PCG iterations (level 3), respectively. The stationary case and a curvature 

regularization model (α = 50; run #4 in Table 4.1) requires 5, 3, and 2 iterations, with 7, 11, 

17, 16, and 16 PCG iterations (level 1), 20, 36, 50 PCG iterations (level 2), and 50, and 50 

PCG iterations (level 3), respectively. The hyperelastic regularization approach converges 

after 7, 6, and 5 iterations per level.

The results in Fig. 4.5 suggest that all methods yield comparable residual differences after 

registration. However, we can, likewise to the former experiments, observe drastic 

differences in the Jacobians. The hyperelastic regularization allows us to better control the 

Jacobians (the values range from 4.51E−1 to 1.86). If this control is indeed of importance in 

practical applications remains to be seen. Notice, that we can either add hard constraints on 

the divergence of the velocity to our formulation [48, 50] or constraints on det ∇y to enable 

such control.

The projections of the velocity fields in Fig. 4.6 show significant differences between the 

stationary and the non-stationary case for the curvature regularization model. We can also 

observe large differences in the appearance of the velocity fields in time for the non-
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stationary case. This is different for the diffusive regularization model. The stationary and 

non-stationary velocities do not differ significantly. The differences in time for the non-

stationary case are also less pronounced. We can also observe that the energy for both 

components of the non-stationary velocity field is quite similar (as judged by the values for 

the ℓ2-norm reported in Fig. 4.6). This is true for both regularization models. As to be 

expected we obtain much smoother velocities for the curvature regularization model.

5. Summary and Conclusion

In this paper, we propose efficient numerical algorithms based on Lagrangian hyperbolic 

PDE solvers to efficiently solve the reduced formulation of the PDE-constrained 

optimization problem arising in LDDMM. Our formulation can be used for classical, 

intensity-preserving, registration but also extends the LDDMM framework to mass-

preserving registration problems. We consider an optimal control formulation and propose 

an efficient discretize-then-optimize approach amendable for standard Gauss–Newton 

methods. The key idea of our approach is to eliminate the hyperbolic PDE constraint using a 

Lagrangian method with an explicit time integration of the characteristics. Our formulation 

can handle both stationary and non-stationary velocity fields efficiently. We present 

economical schemes for analytically computing its derivatives. A main advantage of our 

method over existing solvers is that derivatives of the solution to the hyperbolic PDE with 

respect to the velocity field can be explicitly constructed. This leads to an overall memory 

requirement that is independent of the number of time steps used for solving the PDE. This 

is a significant advantage over most existing work, which in general require the storage (or 

re-computing) of spatio-temporal state and adjoint fields or the transformation.

We studied registration performance considering different synthetic and real-world 

problems. We made the following observations:

• Our results are competitive in terms of both time-to-solution and inversion 

quality (mismatch) compared to state-of-the-art packages for diffeomorphic 

image registration across a wide range of applications, which includes mass-

preserving and intensity-preserving registration problems.

• Our spectral preconditioner yields a good performance. However, the rate of 

convergence deteriorates when switching from stationary to non-stationary 

velocities. Designing a more effective preconditioner for these cases is an item of 

future work.

• We could observe differences between the stationary and non-stationary 

formulation in terms of the reconstruction accuracy. This especially becomes 

apparent for the classical problem of registering a C-shaped object to a disc [20]. 

In this example a considerable improvement can be achieved using a small 

number of time discretization points for the velocity. In general, increasing the 

number of time points enriches the space of transformations, however, it also 

increases the complexity of the optimization problem.

• Since y appears explicitly in our formulation, we can control det ∇y by adjusting 

the regularization weight α (additional comments can be found below). We have 
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considered H1- and H2-regularization norms. While theoretical considerations do 

require (more than) H2-regularity on v to guarantee that a diffeomorphic map y 
exists [9], we could demonstrate our numerical scheme allows us to ensure that 

the final map y is diffeomorphic at a discrete level, even for H1-regularity. 

However, we note that we consider the regularization as a modular building 

block. If theoretical requirements are of concern, one can switch to H2-regularity.

In theory, solutions to the variational optimal control problem are guaranteed to be 

diffeomorphic (under the assumption of sufficient regularity of v). However, as compared to 

other diffeomorphic registration approaches that control and thus guarantee invertibility of 

the discrete transformation such as [32, 15], it is more difficult to ensure this for discrete 

solutions to the optimal control problems. An inaccurate approximation of the characteristics 

may cause characteristics to cross and thus lead to non-diffeomorphic transformations. This 

problem is also inherent in other numerical implementations of LDDMM. Therefore, we 

recommend monitoring volume changes induced by the transformation to adapt the number 

of time steps and/or smoothness parameter. In our method, the end points of the 

characteristics correspond to a deformed grid, which can be analyzed or even regularized 

using techniques described in [32, 15]. Monitoring volume changes via Jacobian 

determinants can also be done in Eulerian or SL methods, in which the transformation is 

generally not computed [48, 50].

In this paper, we optimize over the velocity field v instead of optimizing over the final 

transformation y, a strategy that has become predominantly used in many practical 

applications. Optimizing for the velocity allows us to use a fairly simple quadratic 

regularization model while still (in theory) ensuring invertibility of the resulting 

transformation. In the discrete setting, the grid might have foldings, depending on the 

regularization parameter and/or the accuracy of the time integration. This can be seen as a 

drawback compared to image registration methods that use invertibility constraints or 

nonlinear regularizers directly acting on the transformation. However, these regularizers are 

very challenging both in theory and in practice; see, e.g., [60]. Another feature of more 

complicated regularization models such as, e.g., the elastic regularization proposed in [28, 

14, 22, 69, 15] is that they are motivated based on physical principles. The notion of 

plausibility of a transformation y is for these type of regularization models not only limited 

to the prerequisite that y is a diffeomorphism; it is based on bio-mechanical considerations. 

Thus, while achieving a very good similarity of the final images, the obtained transformation 

might not be plausible in all applications. However, a similar argument can be made for 

elasticity-based regularizers unless true material properties are known and incorporated into 

the regularization. Another approach to integrate bio-physical priors into diffeomorphic 

registration is to include more complicated state equations that model the bio-physics of a 

system under investigation; an example in the context of large deformation diffeomorphic 

image registration is the incorporation of incompressibility constraints [48, 50]. This, 

likewise to more sophisticated regularization norms, introduces additional parameters, and 

as such makes an automated calibration of the method to unseen data more difficult.

Some limitations of the current method will be addressed in future work. First, for mass-

preserving registration, the width of the particle kernels may be adjusted locally depending 
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on the spacing of particles after transformation [18]. Computing the distance to the closest 

neighbor is expensive, however, in our framework the Jacobian determinant is available and 

can be used to detect relative changes in the density of particles. Second, we will investigate 

locally adaptive time stepping schemes for computing the characteristics that account for the 

complexity of the velocity fields.
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Fig. 3.1. 
Illustration of Lagrangian methods for solving linear hyperbolic PDEs. In both cases, the 

characteristic curves (indicated by a blue line) are computed starting from a grid point x. 

Left: The advection problem is solved by traveling along the characteristics backwards in 

time to the non-grid point y(v, x, 1, 0). The associated image intensity is computed by 

interpolating the intensities of the adjacent cells. Right: The continuity equation is solved by 

pushing the mass  (x) from x along the characteristics to the non-grid point y(v, x, 0, 1) 

and then distributing  (x) among the cells adjacent to y(v, x, 0, 1).
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Fig. 4.1. 
2D registration results for an academic benchmark problem also considered in [20]. First 

column visualizes test data and the remaining images visualize registration results for 

hyperelastic registration [15] (first row) and the proposed method with H1-regularization and 

stationary (second row) and non-stationary (third row) velocity models. It can be seen that 

the proposed methods improves the similarity between the reference and the transformed 

template image without foldings of the grid. However, the ranges of the relative volume 

change is considerably larger. It is also evident that the non-stationary velocity model 

improves the registration result and comparing the estimated velocity fields (right column) 

shows substantial differences of the velocity estimates.
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Fig. 4.2. 
Sparsity pattern and PCG convergence plots at first and final Gauss–Newton iteration for the 

2D test problem on a coarse mesh (m = [32, 32]). We compare the the stationary (left) and 

non-stationary (right) diffusion regularizer. In both cases the number of non-zero elements in 

the Hessian grows between the iterations since particles move farther through the domain. In 

all four cases we compare the convergence of different PCG schemes (no preconditioning, 

Jacobi, Symmetric Gauss Seidel, and spectral preconditioning). It can be seen that the 

problems at the final iteration are, in this example, more difficult to solve, however, the 

spectral preconditioner outperforms the other choices.
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Fig. 4.3. 
2D mass-preserving registration for an academic test problem. The image data is generated 

by subtracting two Gaussian kernels with different standard deviations; the data is designed 

to have equal mass. The reference image (top) and the template image (bottom) are shown in 

the left column. We compare the VAMPIRE method (first row) [30] to the proposed mass-

preserving LDDMM with stationary (middle row) and non-stationary velocity model 

(bottom row). For all three methods, we visualize the transformation, the transformed 

template, and the relative volume change. For the LDDMM methods we also visualize the 

velocity. Comparing the results in the middle and bottom row, it can be seen that the 

underlying transformation is rather simple; it can be well represented using a stationary 

velocity field.
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Fig. 4.4. 
3D mass-preserving registration of diastolic and systolic PET images of a mouse heart. We 

display the input data in the first row (left: reference image; right: template image; from left 

to right: axial, coronal and sagittal view). The deformed template images are shown in the 

left column (middle row: VAMPIRE; bottom row: proposed method). The relative volume 

change is shown in the right column (middle row: VAMPIRE; bottom row: proposed 

method). The color bars to the right illustrate the color coding and provide the range of the 

Jacobian fields.
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Fig. 4.5. 
Exemplary results for a 3D intensity-preserving registration problem based on MRI datasets 

of the human brain. The data is taken from the NIREP repository. We show (from left to 

right) an axial, coronal, and sagittal view of the reference image (dataset na01), the template 

image (dataset na02), and the residual differences between these two images in the top row. 

The results correspond to those reported in Table 4.1. We report results for a map based 

approach with a hyperelastic regularization model (second row: run #1 in Table 4.1; α1 = 

100 (length regularizer), α2 = 10 (surface regularizer), and α3 = 100 (volume regularizer)) 

[15], and for the proposed method for a non-stationary velocity field (third row: curvature 

regularization model; α = 10; run #10 in Table 4.1; bottom row: diffusive regularization 

model; α = 300; run #13 in Table 4.1). For each of these methods we show (from left to 

right) an axial, a coronal, and a sagittal view of the deformed template image, a map for the 

relative volume change, and the residual differences between the transformed template 

image and the reference image after registration. We also display the color bar and the 

maximal and minimal values for the maps for the relative volume change.
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Fig. 4.6. 
Illustration of the obtained velocity fields for the registration of 3D brain imaging data. We 

show the velocities for the curvature (left; α = 10; runs #2 and #10 in Table 4.1) and the 

diffusive regularization model (right; α = 300; runs #6 and #13 in Table 4.1). We report the 

ℓ2-norm of the velocity field below each individual figure.
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Table 1.1

Commonly used symbols and abbreviations.

DCT discrete cosine transform

FAIR Flexible Algorithms for Image Registration [54]

LDDMM large deformation diffeomorphic metric mapping

MRI magnetic resonance imaging

PDE partial differential equation

PET positron emission tomography

PIC particle-in-cell (method)

SSD sum-of-squared-differences

ℛ(x) reference/fixed image

 (x) template image (image to be registered)

PDE constraint

distance or similarity measure

regularization model (smoother)

α regularization weight

x spatial coordinate; x ∈ Ω

Ω spatial domain; Ω ⊂ ℝd

v(x, t) velocity field

u(x, t) transported image intensities

y(x) transformation/mapping

N number of time steps for computing the characteristic

n number of unknowns (i.e., the dimension of the discretized velocity field)

nt number of cells in space-time grid

I interpolation operator

∇ gradient operator

∇· divergence operator

∂t time derivative
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