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On a fast Arnoldi method for BML-matrices

Bernhard Beckermann, Clara Mertens, and Raf Vandebril

Abstract

Matrices whose adjoint is a low rank perturbation of a rational function of the matrix
naturally arise when trying to extend the well known Faber-Manteuffel theorem [7, 8], which
provides necessary and sufficient conditions for the existence of a short Arnoldi recurrence.
We show that an orthonormal Krylov basis for this class of matrices can be generated by
a short recurrence relation based on GMRES residual vectors. These residual vectors are
computed by means of an updating formula. Furthermore, the underlying Hessenberg matrix
has an accompanying low rank structure, which we will investigate closely.

1 Introduction

In this article we will discuss a new variant of the Arnoldi method applied to a class of sparse
matrices A ∈ Cn×n which allows to compute the first k Arnoldi vectors in complexity O(kn).
We will refer to this class of matrices as BML-matrices, following the fundamental work of
Barth & Manteuffel [2] and Liesen [13] on matrices A whose adjoint is a low rank perturbation
of a rational function of A. More specifically, we assume that

A∗ = p(A)q(A)−1 + FG∗, (1.1)

with p, q polynomials of degree m1 and m2, respectively, and

F = [f1, f2, . . . , fm3 ], G = [g1,g2, . . . ,gm3 ] ∈ Cn×m3

matrices of full column rank. Moreover, it is assumed that the roots of q are simple. By
taking p(z)/q(z) ∈ {z, 1/z}, we see that Hermitian matrices and unitary matrices are BML-
matrices, and the same is true for low rank perturbations of such matrices. Furthermore, if
FG∗ = 0 in (1.1), the matrix A is normal [13]. In what follows we suppose that mj � n,
since these quantities (as well as the sparsity pattern of A) are hidden in the constant of the
above-claimed complexity result.

After k steps of the Arnoldi process with initial vector b one obtains the expression

AVk = VkHk + hk+1,kvk+1e
∗
k, (1.2)

with Vk = [v1,v2, . . . ,vk], v1 = b/‖b‖, vk+1 ∈ Cn and hk+1,k ≥ 0 satisfying V ∗k Vk = Ik and
V ∗k vk+1 = 0. The matrix Hk is upper Hessenberg.

A fast variant of the Arnoldi process will exploit additional structure of the upper Hes-
senberg matrix Hk. For example, to compute the successive vectors vk for Hermitian A we
get a tridiagonal Hk and the Arnoldi process reduces to the Lanczos method. For matrices
A satisfying (1.1), Hk turns out to be a rank structured matrix. In order to specify this
statement, the following definition is introduced.

Definition 1.1. We say that a matrix B ∈ Cn×n is (r, s)−upper-separable with s ≥ 0, if for
all j = 1, 2, . . . , n− |r| it holds that (in Matlab notation)

rank B(1 : j −min(r, 0), j + max(r, 0) : n) ≤ s.

In other words, any submatrix of B including elements on and above the rth diagonal of B is
of rank at most s. The 0th diagonal corresponds to the main diagonal, while the rth diagonal
refers to the rth superdiagonal if r > 0 and to the −rth subdiagonal if r < 0.

1



Before proceeding, we give some comments on Definition 1.1 whose formulation is inspired
by some related well-established definitions. For example, matrices with both B and B∗ being
(0, 1)–upper-separable (and (1, 1)–upper-separable, respectively) are referred to as semisepa-
rable matrices (and quasi separable, respectively) [18, §1.1, §9.3.1]. As a simple example, a
tridiagonal matrix is quasi separable, and its inverse is known to be semiseparable. Matrices
being (1 − s, s)–upper-separable with their adjoint being (1 − r, r)–upper-separable are usu-
ally called (r, s)−semiseparable, while matrices being (1, s)–upper-separable with their adjoint
being (1, r)–upper-separable are called (r, s)−quasi separable [18, §8.2.2 and §8.2.3].

The above statement on the rank structure of Hk can now be made exact. Assume the
Arnoldi process breaks down after N ≤ n iterations, i.e., vN+1 = 0 in (1.2). We will refer to
N as the ‘Arnoldi termination index’ in the rest of the article. In Corollary 3.2 it is shown
that for a BML-matrix A, the underlying Hessenberg matrix HN is (r, s)−upper-separable,
where r and s are functions of mj . However, for a general matrix A, there is no reason for the
underlying Hessenberg matrix to be upper-separable. The upper-separable structure of the
underlying Hessenberg matrix gives rise to the design of a multiple recurrence relation [2,14],
signifying that each new Arnoldi vector can be written as

vk+1 =

k∑
j=k−m3−m2

αk,jAvj +

k∑
j=k−m3−m1

βk,jvj . (1.3)

The smaller the quantities mj in (1.1), the shorter the recurrence relation becomes. In [5] the
same recurrence relations are derived for the class of so called (H,m)-well-free matrices. We
refer to Remark 3.7 for some more details.

In this article we investigate a different version of the recurrence relation (1.3) by rewriting
it in terms of GMRES residual vectors, aiming to overcome some of the numerical problems
which relation (1.3) entails, such as the possibility of a breakdown [14]. It will be shown
how these GMRES residual vectors can be computed progressively by means of an updating
formula. This partially extends the discussion on a progressive GMRES method for nearly
Hermitian matrices as presented by Beckermann & Reichel [4].

The article is organized as follows. Section 2 describes the structure of the unitary factor
Q in the QR-decomposition of a Hessenberg matrix in terms of orthogonal polynomials (the
results in this section are valid for a general matrix A ∈ Cn×n). It is well known that this
unitary factor can be represented as a product of Givens rotations, see e.g., the isometric
Arnoldi process introduced by Gragg [10] and its extension to the class of shifted unitary
matrices by Jagels & Reichel [12]. We will describe these Givens rotations by means of
orthogonal polynomials. Furthermore, links between orthogonal polynomials and the GMRES
algorithm are discussed, leading to an updating formula to compute the GMRES residuals
progressively. In section 3 the upper-separable structure of the Hessenberg matrix related to
the Arnoldi process applied to a BML-matrix is investigated. It is shown how this upper-
separable structure can be generated by the GMRES residual vectors, allowing to construct
a short recurrence relation and an accompanying algorithm. In section 4 we compare our
findings with those presented in [2]. Section 5 discusses some computational reductions that
can be made in case the matrix A is nearly unitary or nearly shifted unitary. Finally, section
6 discusses the numerical performance and stability of the algorithm.

Throughout this article we will make use of the following notation. Vectors are written
in bold face lower case letters, e.g., x,y, and z. The vector ek denotes the kth column of an
identity matrix of applicable order. The standard inner product is denoted as 〈x,y〉 = y∗x,
with ·∗ the Hermitian conjugate. We write ‖ · ‖ for the induced Euclidean norm as well as
the subordinate spectral matrix norm. Matrices are denoted by upper case letters A = (aij),
and Ik denotes the identity matrix of order k. We will frequently express formula (1.2) in the
form

AVk = Vk+1Hk, with Vk+1 := [Vk,vk+1],

where

Ik :=

[
Ik
0

]
∈ C(k+1)×k, Hk :=

[
Hk

hk+1,ke
∗
k

]
= Hk+1Ik ∈ C(k+1)×k,

and Vk = Vk+1Ik, revealing the nested structure of the Arnoldi matrices Vk and Hk.
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2 Towards a progressive GMRES method

Many Krylov space methods and in particular the Arnoldi method can be described in poly-
nomial language which reveals some particular properties, and makes the link to the rich
theory of orthogonal polynomials. For example, from (1.2) one deduces by recurrence on the
degree that, for any polynomial p

p(A)v1 = Vkp(Hk)e1, provided that deg p < k, (2.1)

illustrating that Krylov spaces are intimately related to polynomials. See e.g., [16, §6.6.2]
for the case of Hermitian A. However, polynomial language can be used also for general
matrices [3, §1.3]. In §2.1 we will see that the Arnoldi vectors correspond to a (finite) family
of polynomials which are orthogonal with respect to

〈p, q〉A,v1 = 〈p(A)v1, q(A)v1〉 = (q(A)v1)∗ p(A)v1, (2.2)

a scalar product on the set of polynomials of degree < N , with N the termination index
of the Arnoldi method. The scalar product (2.2) induces a norm ‖ · ‖A,v1 . This implies in
particular the well known fact [16, Proposition 6.7] that Arnoldi vectors are normalized FOM
residuals. In §2.2 we will use polynomial language to give an explicit expression for the Q-
factor in a QR-decomposition of an upper Hessenberg matrix. Such a formula for a unitary
upper Hessenberg matrix is not known in literature, though of course there is a close link with
Gragg’s explicit formula in terms of Givens rotations [10,16, §6.5.3]. This formula will enable
us to deduce in Corollary 2.4 a decay property of the entries of Q far from the main diagonal,
and reveals immediately a rank structure for Q. In §2.3 we recall that GMRES residuals can
be expressed in terms of orthogonal polynomials: we are faced with a well-studied extremal
problem for general orthogonal polynomials. This allows us in §2.4 to establish a well known
link between (normalized) FOM and GMRES residuals [16, §6.5.5], allowing for a recursive
computation of (normalized) GMRES residuals. Such a progressive GMRES implementation
has been discussed before [16, §6.5.3] and [4]. The implementation presented in this article
is inspired by the work of Beckermann & Reichel [4]. Both implementations make use of the
decomposition of Q into a product of Givens rotations, but differ in how to find the angles
of these rotations. We will consider in §2.4 not only FOM and GMRES for systems of linear
equations Ax = b but more generally for shifted systems (A− δI)x = b for some parameters
δ ∈ C. All findings of this section hold for general matrices A.

2.1 Orthogonal polynomials linked to the Arnoldi process

Given an N × N upper Hessenberg matrix HN with positive real entries hk+1,k on the sub-
diagonal. We define polynomials q0, q1, ..., qN−1 recursively through the formula

q0(z) = 1,

qk(z)hk+1,k = zqk−1(z)−
k∑
j=1

qj−1(z)hj,k, if N − 1 ≥ k ≥ 1. (2.3)

Direct computation yields the following well known link with the characteristic polynomials
of the principal submatrices:

qk(z) =
1∏k

i=1 hi+1,i

det(zIk −Hk), (2.4)

showing that qk is of degree k, with positive leading coefficient. In what follows we will write
(2.3) in the form

(q0(z), . . . , qk(z))Hk = z(q0(z), . . . , qk−1(z)), (2.5)

where Hk is the k × k principal minor of HN and N − 1 ≥ k ≥ 1. One deduces from (2.3)
by recurrence on k that qk(HN )e1 = ek+1. Assume we apply the Arnoldi process to a matrix
A ∈ Cn×n, that N ≤ n is the Arnoldi termination index and HN the underlying Hessenberg
matrix. Using (2.1), this implies

vk = qk−1(A)v1, (2.6)
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and thus indeed the qj is the jth orthonormal polynomial with respect to the scalar product
(2.2). Also, from (2.4) we see that the kth FOM iterate for the shifted system (A− δI)x = b
exists if and only if qk(δ) 6= 0, and that in this case the kth FOM residual is given by
qk(A)b/qk(δ), compare with [16, Proposition 6.7].

2.2 The QR-factorization of a Hessenberg matrix

We will derive an explicit formula for the unitary factor in the QR-decomposition of the upper
Hessenberg matrix Hk in terms of the orthonormal polynomials q0, ..., qk. To our knowledge,
such a result is new. It could also be potentially useful for studying the convergence of the
QR-method with shifts.

Let Qk+1(δ) be the unitary factor in the QR-decomposition of Hk − δIk, i.e.,

Qk+1(δ)∗(Hk − δIk) = Rk(δ) :=

[
Rk(δ)

0

]
∈ C(k+1)×k, (2.7)

Rk(δ) an upper triangular matrix with positive real entries on its main diagonal. It is well
known (see, e.g., [16, Subsection 6.5.3]) that Qk+1(δ) can be obtained as a product of Givens
rotations, which are applied to Hk − δIk to annihilate the first subdiagonal. We follow [4],
imposing the matrices Qk+1(δ) to have determinant 1.

Definition 2.1. Let Q1 = [1], and define for k ≥ 1,

Qk+1(δ)∗ = Ωk+1(δ)

[
Qk(δ)∗ 0

0 1

]
, Ωk+1(δ) =

 Ik−1 0 0

0 ck(δ) sk(δ)
0 −sk(δ) ck(δ)

 ,
with sk(δ) ≥ 0 and sk(δ)2 + |ck(δ)|2 = 1, such that (2.7) holds.

Proposition 2.2. Let δ ∈ C, and

σk(z) :=

√√√√ k∑
j=0

|qj(z)|2.

Then the unitary factor Qk+1(δ)∗ is given by

− q0(δ)q1(δ)
σ1(δ)σ0(δ)

σ0(δ)
σ1(δ)

0 · · · · · · 0

− q0(δ)q2(δ)
σ2(δ)σ1(δ)

− q1(δ)q2(δ)
σ2(δ)σ1(δ)

σ1(δ)
σ2(δ)

0

...
...

. . .
. . .

. . .
...

...
...

. . .
. . . 0

− q0(δ)qk(δ)
σk(δ)σk−1(δ)

− q1(δ)qk(δ)
σk(δ)σk−1(δ)

· · · · · · − qk−1(δ)qk(δ)

σk(δ)σk−1(δ)

σk−1(δ)

σk(δ)

(−1)k q0(δ)
σk(δ)

(−1)k q1(δ)
σk(δ)

· · · · · · (−1)k
qk−1(δ)

σk(δ)
(−1)k qk(δ)

σk(δ)


.

Moreover,

sk(δ) =
σk−1(δ)

σk(δ)
and ck(δ) = (−1)k

qk(δ)

σk(δ)
, for k ≥ 1. (2.8)

Proof. We leave it to the reader to check that the candidate for Qk+1(δ)∗ indeed has orthonor-
mal rows. It remains to check the subdiagonal and diagonal entries of Qk+1(δ)∗(Hk − δIk).
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For k ≥ j > ` we find that

e∗jQk+1(δ)∗(Hk − δIk)e`

= − qj(δ)

σj(δ)σj−1(δ)

(
q0(δ), . . . , qj−1(δ), 0, . . . , 0︸ ︷︷ ︸

k+1−j

)(Hk − δIk)e`

+

0, . . . , 0︸ ︷︷ ︸
j

,
σj−1(δ)

σj(δ)
, 0, . . . , 0︸ ︷︷ ︸

k−j

 (Hk − δIk)e`

= − qj(δ)

σj(δ)σj−1(δ)
(q0(δ), . . . , q`(δ)) (H` − δI`)e` = 0,

where the second equality is because of the fact that only the first ` + 1 ≤ j entries of
(Hk − δIk)e` are nonzero and the third equality because of (2.5). Similarly, for k ≥ j = `,

e∗`Qk+1(δ)∗(Hk − δIk)e`

= − q`(δ)

σ`(δ)σ`−1(δ)
(q0(δ), . . . , q`−1(δ), 0, . . . , 0︸ ︷︷ ︸

k+1−`

)(Hk − δIk)e`

+

0, . . . , 0︸ ︷︷ ︸
`

,
σ`−1(δ)

σ`(δ)
, 0, . . . , 0︸ ︷︷ ︸

k−`

 (Hk − δIk)e`

= − q`(δ)

σ`(δ)σ`−1(δ)
(q0(δ), . . . , q`−1(δ))(H` − δI`)e` +

σ`−1(δ)

σ`(δ)
h`+1,`

= − q`(δ)

σ`(δ)σ`−1(δ)
(−q`(δ)h`+1,`) +

σ`−1(δ)

σ`(δ)
h`+1,`

=
h`+1,`

σ`(δ)σ`−1(δ)

(
|q`(δ)|2 + σ`−1(δ)2) = h`+1,`

σ`(δ)

σ`−1(δ)
> 0.

Finally, for k + 1 = j ≥ `,

e∗k+1Qk+1(δ)∗(Hk − δIk)e`

=
(−1)k

σk(δ)
(q0(δ), q1(δ), . . . , qk(δ)) (Hk − δIk) e` = 0,

according to (2.5). To prove (2.8), observe that

Qk+1(δ)∗ = Ωk+1(δ)

[
Qk(δ)∗ 0

0 1

]
,

if and only if by multiplying on the left with

[
ck(δ) sk(δ)
−sk(δ) ck(δ)

]
we transform

[
(−1)k−1 q0(δ)

σk−1(δ)
(−1)k−1 q1(δ)

σk−1(δ)
· · · (−1)k−1 qk−1(δ)

σk−1(δ)
0

0 0 · · · 0 1

]

into  − q0(δ)qk(δ)
σk(δ)σk−1(δ)

− q1(δ)qk(δ)
σk(δ)σk−1(δ)

· · · − qk−1(δ)qk(δ)

σk(δ)σk−1(δ)

σk−1(δ)

σk(δ)

(−1)k q0(δ)
σk(δ)

(−1)k q1(δ)
σk(δ)

· · · (−1)k
qk−1(δ)

σk(δ)
(−1)k qk(δ)

σk(δ)

 ,
the latter being true for ck(δ) and sk(δ) as in (2.8).

Notice that, according to the nested structure of the Hessenberg matrices, Qk+1(δ)∗(Hk+1−
δIk+1) is also upper triangular, but its last diagonal entry given by

(−1)k+1 hk+2,k+1 qk+1(δ)/σk(δ)
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is not necessarily a positive real number. Hence, for obtaining the unitary factor in the unique
QR-decomposition of Hk+1 − δIk+1 we should rescale the last row of Qk+1(δ)∗ as given in
Proposition 2.2 by a phase of modulus 1.

Let us consider the special case of δ = 0 and unitary A as a running example.

Example 2.3. Suppose that δ = 0 and A is unitary. Then AVk = Vk+1Hk and thus Hk has
orthonormal columns, showing that Hk = Qk+1(0)Ik and Rk(0) = Ik. From Proposition 2.2
we get explicit formulas for the entries of Hk, in particular, for unitary A,

hk+1,k =
σk−1(0)

σk(0)
= sk(0), (−1)k−1σk−1(0)h1,k = (−1)k

qk(0)

σk(0)
= ck(0). (2.9)

Furthermore, AVk = Vk+1Qk+1(0)Ik. Therefore,

Avk = Vk+1

[
Qk(0) 0

0 1

] Ik−1 0
0 ck(0)
0 sk(0)

 ek

= Vk+1

[
ck(0)Qk(0)ek

sk(0)

]
= sk(0)vk+1 + (−1)k−1ck(0)ṽk,

with ṽk := 1
σk−1(0)

∑k−1
j=0 qj(0)vj+1. Also, ṽk+1 = sk(0)ṽk + (−1)kck(0)vk+1. Hence, the

orthonormal vectors vk can be constructed using two short recurrence relations:

ṽ1 := v1;
for k = 1, . . . , N − 1 do

z := Avk;
γk := −ṽ∗kz;

σk := (1− |γk|2)1/2;

vk+1 := σ−1
k (z + γkṽk);

ṽk+1 := σkṽk + γkvk+1;

end

Note that γk = (−1)kck(0) and σk = sk(0). The above double recurrence relation is known
as the ‘Isometric Arnoldi algorithm’ designed by Gragg [10].

As a consequence of Proposition 2.2, according to Definition 1.1, we can derive some
statements on the rank structure of the unitary Hessenberg matrix Qk+1(δ), and on a decay
property of its entries.

Corollary 2.4. Qk+1(δ) is (0, 1)-upper-separable1. Moreover, for the submatrix Q̃ of Qk+1(δ)
formed with the first m ≤ k + 1 rows and the last ` ≤ k −m+ 2 columns we have that

‖Q̃‖ = σm−1(δ)/σk−`+1(δ).

Proof. The first statement follows by observing that

Qk+1(δ) =


q0(δ)

...

qk(δ)

 e∗1Qk+1(δ) + Lk+1(δ), (2.10)

with Lk+1(δ) strictly lower triangular, i.e., with zero entries on the main diagonal. This is

a direct consequence of Proposition 2.2. In particular, we deduce that Q̃ is of rank 1. From
Proposition 2.2 it follows that

‖Q̃‖2 =
σm−1(δ)2

σk(δ)2
+

k∑
j=k−`+2

|qj(δ)|2

σj(δ)2σj−1(δ)2
σm−1(δ)2

=
σm−1(δ)2

σk(δ)2
+

k∑
j=k−`+2

σj(δ)
2 − σj−1(δ)2

σj(δ)2σj−1(δ)2
σm−1(δ)2

= σm−1(δ)2

 1

σk(δ)2
+

k∑
j=k−`+2

(
1

σj−1(δ)2
− 1

σj(δ)2

) ,

1This implies that Qk+1(δ) is quasi separable, but in general not semiseparable.
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giving the claimed result.

We end this subsection by observing that Corollary 2.4 immediately implies a rank prop-
erty as well as a decay of entries for resolvents of Hk+1.

Corollary 2.5. Suppose that Hk+1 − δIk+1 is invertible. Then (Hk+1 − δIk+1)−∗ is (0, 1)-
upper-separable.

Moreover, for the submatrix H̃ of (Hk+1 − δIk+1)−∗ formed with the first m ≤ k+ 1 rows
and the last ` ≤ k −m+ 2 columns we have that

‖H̃‖ ≤ ‖(Hk+1 − δIk+1)−1‖σm−1(δ)/σk−`+1(δ).

Proof. Let us write Hk+1 − δIk+1 = Qk+1(δ)R with upper triangular and invertible R. Then

(Hk+1 − δIk+1)−∗ = Qk+1(δ)R−∗

with R−∗ lower triangular of norm ‖(Hk+1 − δIk+1)−1‖. Replacing Qk+1(δ) by (2.10) yields

(Hk+1 − δIk+1)−∗ = (q0(δ), . . . , qk(δ))∗ e∗1(Hk+1 − δIk+1)−∗ + L̃k+1(δ), (2.11)

with L̃k+1(δ) strictly lower triangular; proving the first statement. This implies that

H̃ = (q0(δ), ..., qm−1(δ))∗ e∗1H̃,

and thus ‖H̃‖ = σm−1(δ) ‖e∗1H̃‖. Notice that e∗1H̃ is obtained by multiplying the first row of

Qk+1(δ) with the last ` columns of R−∗. As R−∗ is lower triangular, e∗1H̃ = Q̃R̃, Q̃ a row

vector formed with the last ` entries of the first row of Qk+1(δ) and R̃ the lower-right ` × `
minor of R−∗. Therefore, applying Corollary 2.4 to Q̃ yields

‖e∗1H̃‖ ≤ ||Q̃|| ||R̃|| ≤
σ0(δ)

σk−`+1(δ)
||R−∗||,

which together with ‖H̃‖ = σm−1(δ) ‖e∗1H̃‖ and ‖R−∗‖ = ‖(Hk+1 − δIk+1)−1‖ proves the
second statement.

2.3 The GMRES residual and orthogonal polynomials

We will give some more details on the link between the GMRES residual vectors and orthog-
onal polynomials. More specifically, we will write the GMRES residual vector as a linear
combination of Arnoldi vectors. In the particular case of unitary A, an even nicer relation
arises for the GMRES residual vectors.

In what follows we denote by rk(δ) the kth GMRES residual for the shifted system (A−
δIn)x = b, with starting vector x0 = 0, and denote by wk(δ) := rk(δ)/‖rk(δ)‖ its normalized
version.

Proposition 2.6. The kth GMRES residual for the shifted system (A − δIn)x = b with
starting vector x0 = 0, can be written as

rk(δ) = pk(A)r0(δ), where pk(z) =
1

σ2
k(δ)

k∑
j=0

qj(δ)qj(z). (2.12)

For its normalized version we have

wk(δ) =
rk(δ)

‖rk(δ)‖ =
1

σk(δ)

k∑
j=0

qj(δ)vj+1. (2.13)

Proof. Since we choose as starting vector x0 = 0, we find the initial GMRES residual r0(δ) =
b− (A− δIn)0 = b = v1 ‖b‖. Then we have

rk(δ) = r0(δ)− (A− δIn)Vky, with y = argminy‖r0(δ)− (A− δIn)Vky‖. (2.14)
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Note that r0 − (A− δIn)Vky can be written as pk(A)r0(δ) with pk a polynomial of degree at
most k and pk(δ) = 1. Then rk(δ) = pk(A)r0, pk = p̃k/p̃k(δ), with

p̃k = argminp∈Pk
‖p(A)r0(δ)‖
|p(δ)| = argminp∈Pk

‖p‖A,v1

|p(δ)| , (2.15)

where Pk denotes the set of polynomials of degree at most k, and we use the norm induced
by (2.2). Note that if p(z) =

∑k
j=0 cjqj(z), then ‖p‖2A,v1

=
∑k
j=0 |ck|

2 by orthonormality.
Therefore, the Cauchy-Schwarz inequality yields

‖p‖A,v1

|p(δ)| ≥
1

σk(δ)
, (2.16)

where the minimum is attained for cj = qj(δ). Combining (2.16) and (2.15) we conclude that
(2.12) holds. In particular, ‖rk(δ)‖ = ‖b‖/σk(δ), which together with (2.6) implies (2.13).

Remark 2.7. As σm−1(δ)/σN−`+1 = ||rN−`+1(δ)||/||rm−1(δ)||, we see that the decay rates
in Corollary 2.4 and Corollary 2.5 are linked to the convergence of the GMRES algorithm. If
the GMRES algorithm converges faster, the decay pattern becomes more pronounced.

Remark 2.8. By taking norms in (2.12), we see that for the relative GMRES residual

‖rk(δ)‖
‖r0(δ)‖ =

1

σk(δ)
= min
p∈Pk

‖p(A)b‖
‖b‖|p(δ)| .

More generally, for the decay rates in Corollary 2.4 and Corollary 2.5 for ` ≤ k −m+ 2, we
have

σm−1(δ)

σk−`+1(δ)
≤ min
p∈Pk+2−m−`

‖p(A)wm−1(δ)‖
‖wm−1(δ)‖ |p(δ)| , (2.17)

Let Ω ⊂ C be a simply connected and compact K-spectral set for A; that is, ‖π(A)‖ ≤
K maxz∈Ω |π(z)| for all polynomials π (and hence Λ(A) ⊂ Ω) with δ 6∈ Ω. Also, let ϕ be
a map, mapping C \ Ω conformally onto the exterior of the closed unit disk. Then it can be
shown that the right-hand side of (2.17) can be bounded above by |1/ϕ(δ)|k+2−`−m < 1 times
a modest constant, see, e.g., [16, Chapter 6.11.2] for the case where Ω is an ellipse.

Example 2.9. As in Example 2.3, assume the matrix A is unitary. Given a polynomial p of
degree k, its reversed polynomial p∗ is defined as

p∗(z) := zkp(1/z).

The orthogonal polynomials qk(z) can be expressed as

qk(z) = q∗k(0) argminqmonic of degree k‖q‖A,v1

= q∗k(0) argminq of degree k

‖q‖A,v1

|q∗k(0)| . (2.18)

Note that q∗k(0) is the leading coefficient of qk. As A is unitary, ‖q‖A,v1 = ‖q∗‖A,v1 . Hence,
(2.18) can be rewritten as

qk(z) = q∗k(0)argminq of degree k

‖q∗‖A,v1

|q∗(0)|

Therefore,

q∗k(z) = q∗k(0)argminq∈Pk,q(0)6=0

‖q‖A,v1

|q(0)| . (2.19)

Because of (2.4), q∗k(0) ≥ 0. Also, ‖q∗k‖A,v1 = 1. Combining this with (2.15) and (2.12),
(2.19) yields

q∗k(z) =
1

σk(0)

k∑
j=0

qj(0)qj(z), (2.20)

Therefore, the kth normalized GMRES residual wk(0) of a unitary matrix A can be expressed
as

wk(0) = q∗k(A)v1. (2.21)
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2.4 A progressive GMRES residual formula

By (2.13) we have that the kth normalized GMRES residual satisfies

wk(δ) =
1

σk(δ)

k∑
i=0

qi(δ)vi+1

=
σk−1(δ)

σk(δ)

1

σk−1(δ)

k−1∑
i=0

qi(δ)vi+1 +
qk(δ)

σk(δ)
vk+1

=
σk−1(δ)

σk(δ)
wk−1(δ) +

qk(δ)

σk(δ)
vk+1,

= sk(δ)wk−1(δ) + (−1)kck(δ)vk+1, (2.22)

the last equality following from (2.8). This demonstrates the existence of an updating formula
to compute the residual vectors progressively. This formula can also be derived by means of
the QR-factorization of Hk − δIk, see Proposition 2.2 and [16, Subsection 6.5.3]. The next
result shows that it is not necessary to compute such a factorization for obtaining sk(δ) and
ck(δ), if one is willing to compute the additional scalar product (2.23).

Proposition 2.10. Define τk(δ) = e∗kQk(δ)∗(Hk − δIk)ek. Then

τk(δ) = wk−1(δ)∗(A− δIn)vk(−1)k−1, (2.23)

and

sk(δ) =
hk+1,k√

h2
k+1,k + |τk(δ)|2

and ck(δ) =
τk(δ)√

h2
k+1,k + |τk(δ)|2

. (2.24)

Proof. From Proposition 2.2 and (2.13) it follows that

VkQk(δ)ek = Vk


q0(δ)

...

qk−1(δ)

 (−1)k−1

σk−1(δ)

=
(−1)k−1

σk−1(δ)

k∑
i=1

viqi−1(δ) = (−1)k−1wk−1(δ). (2.25)

Therefore,

τk(δ) = e∗kQk(δ)∗(Hk − δIk)ek

= e∗kQk(δ)∗V ∗k Vk(Hk − δIk)ek

= wk−1(δ)∗(Avk − hk+1,kvk+1 − δvk)(−1)k−1

= wk−1(δ)∗(A− δIn)vk(−1)k−1,

establishing (2.23). We now claim that

wk(δ) ⊥ (A− δIn)vj , for 1 ≤ j ≤ k, (2.26)

which is a direct consequence of (2.14):

rk(δ) = r0(δ)− uk with uk = argminu∈K‖r0(δ)− u‖,

where K = (A− δIn)span{v1, . . . ,vk}.
It remains to prove (2.24). Taking inner products with (A− δIn)vk in all terms of (2.22)

and making use of (2.23) and (2.26), results in

0 = sk(δ)τk(δ)(−1)k−1 + ck(δ)hk+1,k(−1)k. (2.27)

Together with s2
k(δ) + |ck(δ)|2 = 1, this yields (2.24).
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Example 2.11. Let us return to the particular case of δ = 0 and unitary A as discussed
in Examples 2.3 and 2.9. Inserting (2.6) and (2.21) in (2.22) and identifying the underlying
polynomials gives

q∗k(z) = sk(0)q∗k−1(z) + (−1)kck(0)qk(z). (2.28)

Since q∗k−1(z)− q∗k−1(0) is z times a polynomial of degree < k− 1 and q0(z) = 1, we get from
(2.23) that

τk(0) = (−1)k−1 〈zqk−1, q
∗
k−1〉A,v1

= (−1)k−1 q∗k−1(0)〈zqk−1, q0〉A,v1

= (−1)k−1 σk−1(0)h1,k = ck(0)

and hk+1,k = sk(0), where we applied (2.20) and (2.9). Notice that this simplification for
unitary A is in accordance with (2.24). Taking the star operation in (2.28) gives the second
relation

qk(z) = sk(0)zqk−1(z) + (−1)kck(0)q∗k(z). (2.29)

We should mention that, in case of unitary A, the scalar product (2.2) can be written as a
scalar product in terms of a (discrete) measure supported on the unit circle. Thus we have the
whole theory of orthogonal polynomials on the unit circle, and in particular relations (2.28)
and (2.29) are known as the Szegő recurrence relations, a coupled two-term recurrence for
orthonormal polynomials on the unit circle [11, Formula 1.2-1.7].

3 The Arnoldi process for BML-matrices

We will establish a fast variant of the Arnoldi process which is applicable to the class of
BML-matrices as described by formula (1.1). In §3.1 we will use the explicit representation
of (Hk+1 − δIk+1)−∗ in terms of orthogonal polynomials as stated in (2.11) to demonstrate
that the underlying Hessenberg matrix has an upper-separable structure. The assumption on
simple poles makes it possible to easily express generators for the upper-separable structure
in polynomial language. In particular, the GMRES residual vectors, which can be expressed
in terms of orthogonal polynomials by (2.13), are showing up. In §3.2 we will see that the
orthonormal basis vectors (up to a correction term incorporating the low rank perturbation in
(1.1)) can be written as a linear combination of previously computed basis vectors and GMRES
residual vectors. In §3.3 the results from §3.2 and §2.4, enabling to compute the necessary
GMRES residual vectors progressively, will be combined into a new Arnoldi iteration for
BML-matrices.

3.1 Structure formula for BML-matrices

A rank structure revealing formula for BML-matrices will be derived in terms of the orthog-
onal polynomials qk defined in §2.1. This formula (3.3) will be the key for the design of short
recurrence relations in the following subsection. We first show that the BML-structure (1.1)
is inherited by the underlying Hessenberg matrix.

Proposition 3.1. Let A be an invertible matrix satisfying relation (1.1), and denote by N ≤ n
the Arnoldi termination index. Then HN is also a BML-matrix with the same polynomials
p, q and indices m̃1 = m1, m̃2 = m2 and m̃3 ≤ m3. More precisely,

H∗N = p(HN )q(HN )−1 + FNG
∗
N (3.1)

where Fk := V ∗k F and Gk := V ∗k G.

Proof. By definition of N we have AVN = VNHN , i.e., the columns of VN span an invari-
ant subspace of A. By recurrence on the degree one shows that π(A)VN = VNπ(HN ), or
π(HN ) = V ∗Nπ(A)VN , for any polynomial π. Moreover, if π(A) is of full rank, then so is
π(HN ). In particular, since we assume q(A) to be invertible, so is the matrix q(HN ). Hence,
VNq(HN )−1 = q(A)−1VN . This implies that

H∗N − p(HN )q(HN )−1 = V ∗N (A∗ − p(A)q(A)−1)VN

= V ∗NFG
∗VN ,

as claimed in (3.1).
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A combination with Corollary 2.5 gives us the following result.

Corollary 3.2. Let A be a matrix satisfying relation (1.1). Denote by N ≤ n the Arnoldi
termination index, and m := max(0,m1−m2+1). Then HN ∈ CN×N is (m,m2+m3)−upper-
separable. More precisely,

((HN )k,`)`=k+m,...,N =

m2∑
j=1

djqk−1(zj)
((

(HN − zjIN )−∗
)

1,`

)
`=k+m,...,N

+
(

(GNF
∗
N )k,`

)
`=k+m,...,N

, (3.2)

where z1, . . . , zm2 denote the poles of the rational function p(z)/q(z).

Proof. The fact that HN is (m,m2 +m3)−upper-separable is already known from [14]. Below
we give an alternative, more constructive, proof leading to explicit generators for the low rank
part of HN . By assumption, the rational function p/q in (1.1) has simple poles and thus has
the partial fraction decomposition

p(z)

q(z)
=

m2∑
j=1

dj
z − zj

+ π(z),

for some constants zj , dj and a polynomial π of degree m1−m2 (π = 0 if m1 < m2). Replacing
z by HN , taking adjoints and using (3.1) and (2.11) leads to

HN −GNF ∗N − π(HN )∗

=

m2∑
j=1

dj(HN − zjIN )−∗

= LN +

m2∑
j=1

dj
(
q0(zj), . . . , qN−1(zj)

)∗
e∗1(HN − zjIN )−∗, (3.3)

with a strictly lower triangular matrix LN . Finally, according to the upper Hessenberg struc-
ture of HN , the matrix π(HN )∗ has zero entries on and above the mth diagonal, establishing
the upper-separable structure and formula (3.2).

Remark 3.3. The assumption on simple poles is not necessary for HN to have an upper-
separable structure. However, once we drop this constraint, it is not clear whether or not
there exists a link between the generators of the low-rank structure and the GMRES residual
vectors. We refer to [14] for more information on this topic.

Note that Hk for k < N also has an upper-separable structure as it is a leading principal
minor (submatrix) of HN . However, Hk does not satisfy the same matrix equation as HN .

3.2 Short recurrence relations for BML-matrices

We will now derive a short recurrence relation for BML-matrices. To do so, the vector

v′k := Avk − Vk−mGk−mF ∗vk, (3.4)

is introduced, which is equal to Avk up to a correction term induced by the low rank pertur-
bation in (1.1). In [4] it is shown that for nearly Hermitian A, i.e., p(z) = z and q(z) = 1 in
(1.1), the Arnoldi vectors satisfy a three term recurrence relation. More specifically,

v′k = hk−1,kvk−1 + hk,kvk + hk+1vk+1,k, (3.5)

where hk−1,k = v∗k−1v
′
k, hk,k = v∗kv

′
k and hk+1,k = v∗k+1v

′
k are entries of the underlying

Hessenberg matrix. We refer to [4] for a detailed discussion. For a general BML-matrix,
Proposition 3.4 states that v′k is a linear combination of GMRES residual vectors and Arnoldi
vectors, including vk+1. As we will discuss below, this results in a short recurrence relation
which reduces to (3.5) in the specific case of nearly Hermitian matrices and which can be used
to compute the Arnoldi vectors in an efficient way.
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Proposition 3.4. Let A be a matrix satisfying relation (1.1), and denote by N ≤ n the
Arnoldi termination index, and m := max(0,m1 −m2 + 1). Then for m < k ≤ N , the vector
v′k as defined by (3.4) can be written as a linear combination of vj for j = k−m+ 1, ..., k+ 1
and of wk−m−1(zj) for j = 1, ...,m2. More precisely,

v′k =

m2∑
j=1

aj,kwk−m−1(zj) +

k+1∑
j=k−m+1

hj,kvj , (3.6)

for some constants aj,k, hj,k entries of the underlying Hessenberg matrix HN , and m < k ≤ N .

Proof. Notice that by construction,

v′′k := v′k −
k+1∑

j=k−m+1

hj,kvj

lies in the Krylov space spanned by the columns of Vk−m. As a result we have

v′′k = Vk−mV
∗
k−mv′′k = Vk−mV

∗
k−mv′k.

Define

Îk−m :=


Ik−m

0
...
0

 ∈ CN×(k−m).

Then Vk−m = VN Îk−m. Combining the above yields

v′k = v′k − v′′k + Vk−mV
∗
k−mv′k

= v′k − v′′k + Vk−m (V ∗k−mAVN − V ∗k−mGF ∗N ) ek

= v′k − v′′k + Vk−mÎ
∗
k−m (HN −GNF ∗N ) ek.

The vector Î∗k−m (HN −GNF ∗N ) ek ∈ Ck−m consists of the first k−m components of the kth
column of HN −GNF ∗N . As the entries of LN and π(HN )∗ in (3.3) are zero on and above the
mth diagonal, it follows that

Î∗k−m (HN −GNF ∗N ) ek =

m2∑
j=1

dj (q0(zj), ..., qk−m−1(zj))
∗ e1(HN − zjIN )−∗ek,

which by (2.13) can be rewritten as

Vk−mÎ
∗
k−m (HN −GNF ∗N ) ek =

m2∑
j=1

aj,kwk−m−1(zj),

with aj,k := djσk−m−1(zj)e1(HN − zjIN )−∗ek. As a result, v′k can be written as v′k − v′′k ,
a linear combination of vk+1, ...,vk−m+1 (with coefficients being entries of the underlying
Hessenberg matrix), plus a linear combination of wk−m−1(z1), ...,wk−m−1(zm).

Remark 3.5. Proposition 3.4 remains true if we replace wk−m−1(zj) by w`(zj) or/and
Vk−mGk−m by V`+1G`+1 for ` ∈ {k−m−1, k−m, ..., k}. This is the direct result of the observa-
tion that both Vk−mGk−mF

∗vk−V`+1G`+1F
∗vk and wk−m−1(zj)−σ`(zj)/σk−m−1(zj)w`(zj)

are elements of span(vk−m+1, . . . ,v`+1) if ` > k −m− 1 and equal to zero if ` = k −m− 1.
However, choosing ` 6= k−m− 1 causes to lose orthogonality between v′k − v′′k and v′′k and to
loose the link with the entries of the underlying Hessenberg matrix in (3.6).

Next, let us show how the recurrence relation of Proposition 3.4 reduces to the well-known
Szegő recurrence if the matrix under consideration is unitary.

Example 3.6. Let us return to the particular case of δ = 0 and unitary A as discussed in
Examples 2.3, 2.9, and 2.11. Inserting (2.6) and (2.21) in the second Szegő relation (2.29)
leads to

vk+1 = sk(0)Avk + (−1)kck(0)wk(0)

which is exactly the variant with ` = k,m2 = m3 = 1,m1 = m = 0 of Proposition 3.4
discussed in Remark 3.5.
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Remark 3.7. In [5] a class of matrices, called (H,m)-well-free matrices is investigated, and
it is established that these matrices satisfy the recurrence relation (1.3) with m1 = m2,m3 =
0. Briefly described, these matrices form a subset of upper-separable Hessenberg matrices
which satisfy an additional constraint preventing a breakdown in the recurrence relation (1.3).
Intuitively, this additional “well-free” constraint signifies that there are no rank deficiencies
encountered in the low rank part of the upper-separable Hessenberg matrix. The problem of
breakdown is discussed in [2] and [14], where it is overcome by making use of a set of several
multiple recurrence relations instead of the single recurrence relation (1.3), and the use of
an algorithm based on (1.3) which provides a set of column vectors to generate the low rank
structure of the underlying Hessenberg matrix, respectively. We will, however, not need any
well-free constraint to prevent a breakdown in the recurrence relation stated in Proposition 3.4,
as our approach does not impose any limitations on the matrix structure beyond (1.1).

3.3 The algorithm

Algorithm 1, which we will name Fast Arnoldi throughout the text, describes a fast variant
of the Arnoldi algorithm for BML-matrices based on Proposition 3.4. We will give a short
description of each of the components of the algorithm and print the corresponding piece of
pseudocode.

The idea is to make alternate use of the recurrence relations

v′k =

m2∑
j=1

aj,kwk−m−1(zj) +

k+1∑
j=k−m+1

hj,kvj , (3.7)

wk(zj) = sk(zj)wk−1(zj) + (−1)kck(zj)vk+1. (3.8)

The recurrence relation (3.7) is used to compute the next orthonormal basis vector of the
Krylov subspace as a linear combination of previously computed orthonormal vectors as well
as GMRES residual vectors, while the recurrence relation (3.8) is used to update the GMRES
residual vectors once a new orthonormal vector is retrieved. As (3.7) is only valid for k > m,
the first m orthonormal vectors are computed by means of the classical Arnoldi iteration.

Each time the relation (3.7) is employed, the vector v′k is formed, causing products between
vectors and matrices to be computed. The total complexity to compute v′k is O(m3n)+O(n2).

F̂k := v∗kF ; Ĝk−m := v∗k−mG;

G̃ := G̃+ vk−mĜk−m;

v′ := Avk − G̃F̂ ∗k ;

The coefficients aj,k and hj,k in (3.7) are the solution of the least squares problem

v′k = [wk−m−1(z1), . . . ,wk−m−1(zm2),vk−m+1, . . . ,vk+1]



a1,k

...
am2,k

hk−m+1,k

...
hk+1,k


.

Note that vi ⊥ span{wk−m−1(z1), . . . ,wk−m−1(zm2)} for all k−m+1 ≤ i ≤ k+1, allowing to
solve the above least squares problem without knowing vk+1 in advance. To shorten notation
in subsequent discussions, we define Mk := [wk−m−1(z1), . . . ,wk−m−1(zm2)].

Each of the coefficients hj,k are entries of the kth column of the corresponding Hessenberg
matrix and are computed as v∗jv

′
k, which has a computational complexity of O(mn).

for j = k, k − 1, . . . , k −m+ 1 do
hj,k := v∗jv

′; v′ := v′ − hj,kvj ;
end

Next, a QR-decomposition of the matrix Mk is computed, after which the coefficients
a1,k, . . . am2,k are retrieved by back-substitution. The complexity of this operation isO

(
m2

2(n+ 1)
)
.
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Q := [q1, . . . ,qm2 ], R := (ri,j) ∈ Cm2×m2 ,
such that QR = Mk;
for j = m2,m2 − 1, . . . , 1 do

aj,k :=
(
q∗jv

′ −
∑m2
`=j+1 rj,`aj,k

)
/rj,j ;

v′ = v′ − aj,kwk−m−1(zj);

end
hk+1,k = ||v′||; vk+1 := v′/hk+1,k;

Then for each zi, 1 ≤ i ≤ m2, recurrence relation (3.8) is used to update the GMRES resid-
ual vectors, which are all equal to the starting vector v1 at the beginning of the iteration
(k = m + 1). Each time the relation (3.8) is employed, a matrix vector product needs to be
computed. This leads to a total complexity of O(m2n

2).

for j = 1, . . . ,m2 do

τk−m(zj) = (−1)k−m−1wk−m−1(zj)
∗(A− zjIn)vk−m;

sk−m(zj) = hk−m+1,k−m/
√
h2
k−m+1,k−m + |τk−m(zj)|2;

ck−m(zj) = τk−m(zj)/
√
h2
k−m+1,k−m + |τk−m(zj)|2;

wk−m(zj) = sk−m(zj)wk−m−1(zj) + (−1)k−mck−m(zj)vk−m+1;

end

Note that it is numerically more stable if we do not divide by the square root√
h2
k−m+1,k−m + |τk−m(zj)|2 in the computation of sk−m(zj) and ck−m(zj), but instead nor-

malize wk−m(zj) after each iteration (this however, leads to m2 additional scalar products).
If we assume the matrix under consideration is sparse; allowing a computational complexity
of O(n) to compute a matrix vector product; the total complexity to compute the first k
orthonormal Arnoldi vectors can be estimated as O(kn).

Remark 3.8. If the rational function in (1.1) has only one pole, i.e., m2 = 1 in (3.6)
then the order in which the coefficients are determined can be reversed. More precisely, we
can first compute a1,k as wk−m−1(z1)∗v′k and then orthonormalize the resulting difference
v′k − a1,kwk−m−1(z1) against vk−m+1, . . . ,vk to obtain vk+1. This might be of influence on
the numerical performance.
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Data: A ∈ Cn×n with A∗ =
∑m2
j=1 dj(A− zjIn)−1 + π(A), π of degree m1 −m2, F = [f1, . . . , fm3 ],

G = [g1, . . . ,gm3 ] ∈ Cn×m3 , b ∈ Cn, i
Result: Vi+1 = [v1,v2, . . . ,vi+1] ∈ Cn×(i+1)

m := max(0,m1 −m2 + 1);
v1 = b/||b||;
for j = 1, . . . ,m2 do

w0(zj) = v1;
end
for k = 1, . . . ,m do

v′ = Avk;
for j = 1, . . . , i do

hj,k = v∗jv
′; v′ = v′ − hj,kvj ;

end
hk+1,k = ||v′||; vk+1 = v′/hk+1,k;

end

G̃ := 0 ∈ Cn×m3 ;
for k = m+ 1, . . . , i do

F̂k,: := v∗kF ; Ĝk−m,: := v∗k−mG;

G̃ := G̃+ vk−mĜk−m,:;

v′ := Avk − G̃F̂ ∗k,:;
for j = k, k − 1, . . . , k −m+ 1 do

hj,k := v∗jv
′; v′ := v′ − hj,kvj ;

end
Q := [q1, . . . ,qm2 ], R := (ri,j) ∈ Cm2×m2 , such that QR = [wk−m−1(z1), . . . ,wk−m−1(zm2)];
for j = m2,m2 − 1, . . . , 1 do

aj,k :=
(
q∗jv

′ −
∑m2
`=j+1 rj,`aj,k

)
/rj,j ;

v′ = v′ − aj,kwk−m−1(zj);

end
hk+1,k = ||v′||; vk+1 := v′/hk+1,k;
for j = 1, . . . ,m2 do

τk−m(zj) = (−1)k−m−1wk−m−1(zj)
∗(A− zjIn)vk−m;

sk−m(zj) = hk−m+1,k−m/
√
h2
k−m+1,k−m + |τk−m(zj)|2;

ck−m(zj) = τk−m(zj)/
√
h2
k−m+1,k−m + |τk−m(zj)|2;

wk−m(zj) = sk−m(zj)wk−m−1(zj) + (−1)k−mck−m(zj)vk−m+1 ;

end

end
Algorithm 1: The fast Arnoldi method

4 Connection with the Barth-Manteuffel multiple
recurrence relation

The aim of this section is to show how our work is related to that of Barth & Manteuffel
in their article on ‘Multiple recursion conjugate gradient algorithms’ [2]. They introduce an
economical conjugate gradient algorithm for the class of BML-matrices, by making use of
short recurrence relations. We will give a short summary of their findings and discuss both
the differences and similarities with our approach.

To prevent the possibility of a breakdown in their so-called ‘single recurrence relation’
Barth & Manteuffel rewrote it as a set of recurrence relations, that are stated in (4.1)-(4.3).
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p
j+1

= Ap
j
−

j∑
i=j−(`−m)

ti,jp
i
− [q

j0
, . . . ,q

jm−1
]η
j

− [q̂
j0
, . . . , q̂

jκ−1
]µ
j
, (4.1)

q
j+1i

=
(ρ
j+1

)i

p∗
j+1

p
j+1

p
j+1

+ q
ji

for i = 0, . . . ,m− 1, (4.2)

q̂
j+1i

=
(τ j+1)i

p∗
j+1

p
j+1

p
j+1

+ q̂
ji

for i = 0, . . . , κ− 1. (4.3)

Unfortunately, they use different letters, shift indices, and construct an orthogonal, but not
orthonormal basis of the Krylov space. The new normalization comes from the fact that they
consider a Hessenberg matrix which has ones on its first subdiagonal. Their basis vectors
p

0
,p

1
, . . . ,p

N−1
∈ Cn satisfy p

j
/‖p

j
‖ = vj+1. Moreover, they use the integers (`,m, κ, θ)

instead of (m1,m2,m3,m3− 1 +m). Also, as seen in (4.1)-(4.3), two other families of vectors
with double indices are used. For simplicity and consistency we will abbreviate them as

Wk := [q
k0
, ...,q

km2−1
] ∈ Cn×m2 and Ŵk := [q̂

k0
, ..., q̂

km3−1
] ∈ Cn×m3 .

As the reader will see below, to compare our approach with [2], we will not explicitly make
use of (4.1)-(4.3), but instead make use of a mathematical equivalent of (4.1)-(4.3) which is
adapted to our notation and scalings. The original pseudocode used by Barth & Manteuffel
is stated in Algorithm 2.

In [2, Eqn. (4.16)] the authors provide an explicit formula for the entries of the upper
Hessenberg matrix H:

Hj,k = v∗jAvk = ρ∗
j
η
k

+ τ∗jµk, ρj , ηk ∈ Cm2 , µ
j
, τk ∈ Cm3 , (4.4)

for all j = 1, 2, ..., k −m, in which the reader recognizes generators ρ
i
, η
i
, µ
i

and τ i for the
low-rank part of H. Note that, in contrast to [2], we start numbering with i = 1 instead
of i = 0. To be able to use the recurrence relations (4.1)-(4.3) in practice, the generators
ρ
i
, η
i
, µ
i

and τ i need to be known in advance. Therefore, Algorithm 2 is based on a rewritten
form of the recurrence relations (4.1)-(4.3) which enables to compute the orthogonal basis
vectors pi and the generators ρ

i
, η
i
, µ
i

and τ i simultaneously.

We define Wk and Ŵk [2, Eqn. (4.22) and Eqn. (4.23)] as

Wk =

k+1∑
j=1

vjρ
∗
j
∈ Cn×m2 , Ŵk =

k+1∑
j=1

vjτ
∗
j ∈ Cn×m3 , (4.5)

for k = 0, . . . , n − 1, which is the equivalent of (4.2)-(4.3). With a similar reasoning as
in [2, Eqn. (5.3)] it can be proven that

Avk =

k+1∑
j=1

vjHj,k =

k+1∑
j=k−m+1

vjHj,k +Wk−m−1η
k

+ Ŵk−m−1µ
k
, (4.6)

which is mathematically equivalent to (4.1).
Suppose now that the generators as defined in (4.4) are known. Then one can use (4.6)

to compute vk+1 out of vk−m+1, ...,vk,Wk−m−1 and Ŵk−m−1, then use (4.5) to compute

Wk−m, Ŵk−m out of vk−m+1,Wk−m−1 and Ŵk−m−1, and so on. Hence, it remains to find
the generators. Two of them can be computed with an explicit formula [2, Eqn. (4.15) and
(4.13)], namely

µ
k

= F ∗vk, η
k

= (Hj,k)j=1,...,m2 . (4.7)

The vector ρ
j

is obtained [2, Eqn. (4.12)] as the ‘remainder’ in the polynomial division of qj−1

(2.6) by the denominator q (1.1):

qj−1(z) = αj(z)q(z) + (q0(z), ..., qm2−1(z))ρ
j
, (4.8)
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where we observe that ρ1, ..., ρm2 form the canonical basis of Cm2 , and thus V ∗m2
Wk = I. We

may rewrite the remainder in terms of the Lagrange polynomials `h of the roots z1, .., zm2 of
q, leading to

(q0(z), ..., qm2−1(z))ρ
j

=

m2∑
h=1

qj−1(zh)`h(z) or ρ
j

=

m2∑
h=1

qj−1(zh)V ∗m2
`h(A)v1.

Substituting the expression for ρ
j

into (4.5) allows to conclude that

Wk = Mk

 σk(z1)v∗1`1(A)∗Vm2

...
σk(zm2)v∗1`m2(A)∗Vm2

 . (4.9)

Recalling that V ∗m2
Wk = I gives

Wk = Mk

(
V ∗m2

Mk

)−1

, (4.10)

which makes a partial link between (4.6) and Proposition 3.4. In particular, if the ma-
trix A is unitary and no low-rank perturbation is involved, Wk is a multiple of wk(0)
and the Barth-Manteuffel multiple recurrence relation turns out to be equivalent to the
Szegő recurrence relations. The quantities ρ

k+1
are computed recursively [2, Eqn. (5.11)]

by computing all entries of Hk, and by taking remainders after division by q in the re-
lation zqk−1(z) =

∑k+1
j=1 Hj,kqj−1(z), the polynomial translation of the Arnoldi relation

AVk = Vk+1Hk. We refer to lines 6, 8, 12, 25, 27 and 36 of Algorithm 2.
It remains to show how to compute τk−m+1 (after having computed vk+1, ρk−m+1,Wk−m)

and relate the term Ŵk−m−1µ
k

in (4.6) to the term Vk−mGk−mF
∗vk = Vk−mV

∗
k−mGµk of

our short recurrence of Proposition 3.4. In fact, at this place the authors of [2] require an
additional delay in the recurrence (4.6) by replacing m by m′ := m+m3 ≥ m, which is possible
according to (4.4). According to [2, Eqn. (5.2)] and (4.4), the computation of τk−m′+1 is done
by solving the system

τ∗k−m′+1[µ
k−`

]`=0,...,m3−1 = [Hk−m′+1,k−` − ρ∗k−m′+1
η
k−`

]`=0,...,m3−1. (4.11)

We refer to line 16 of Algorithm 2. However, there is a possible problem with this system
which is not discussed in [2]. As noticed after [2, Eqn. (5.2)], it is consistent, but one may
not insure that the matrix is invertible, i.e., we might have several solutions, each of them
being a generator suitable for Hk, but not necessarily for HN . This is a general problem with
computing generators forHN in a recursive manner: there is no guarantee thatm3 = rank(F ∗)
is equal to rank(F ∗VN ), and thus whether the minimal number of generators for HN is equal
to m2 + m3. In addition, at stage k of a recursive computation, it might happen that the
minimal number of generators for Hk is strictly lower, i.e., rank(F ∗Vk) < rank(F ∗VN ), i.e.,
we should have a m3 depending on k. Finally, the matrix of coefficients is just obtained by
picking the last m3 columns of F ∗Vk which might also lower the rank. However, going through
the proof of (4.4) we can derive an explicit formula for τ j . From [2, Eqn. (4.14)] it can be
deduced that

τ j = G∗q(A)αj(A)v1. (4.12)

Combining (4.12) and (4.8), we obtain

τ j = G∗
(
vj − (v1, . . . ,vm2−1)ρ

j

)
= G∗vj −G∗Vm2ρj . (4.13)

Note that (4.13) could be used to compute τk−m+1 without introducing the additional delay
in (4.6). Inserting (4.13) into (4.5) gives the explicit formula

Ŵk−m−1 =

k−m∑
j=1

vj
(
v∗jG− ρ∗jV

∗
m2
G
)

= Vk−mV
∗
k−mG−Wk−m−1V

∗
m2
G.

In the following remark we intend to compare our approach with that of Barth & Man-
teuffel [2].
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Remark 4.1. (a) Both approaches heavily use the fact that a certain upper right part of the
Hessenberg matrix is of rank at most m2 + m3. In other words, one is able to express
Avk as a linear combination of m2 + m3 correction vectors plus a linear combination
of the last m or m′ = m+m3 columns of Vk+1, a kind of corrected “short” recurrence.
Notice however that our recurrence is “shorter” if m3 > 0.

(b) In our approach, m3 correction vectors are explicitly given (the term v′k − Avk) and
can be updated explicitly. They are not necessarily linearly independent. The other m2

correction vectors are identified as GMRES residuals for shifted systems, allowing for
easy updating.

In contrast, Barth & Manteuffel compute explicitly the four sequences of generators of
the low-rank structure of HN , given in (4.4). Notice, however, that at the kth step of
the algorithm one can only deduce generators for Hk and not for HN . As mentioned
above, in order not to be obliged to correct generators found earlier, there should be an
additional assumption on rank(F ∗Vk) not mentioned by the authors. However, there is
a variant of the Barth & Manteuffel approach: instead of using (4.11) requiring a delay
in the recurrence relation (4.6), one can use (4.13), which is not mentioned in [2], to
compute τk−m+1 just after having computed ρ

k−m+1
.

(c) In our approach, for finding the coefficients of the GMRES correction vectors, we suggest
to solve a least square problem, the matrix of coefficients Mk having as columns these
m2 (normalized) GMRES correction vectors. Notice that Mk has full column rank (since
V ∗m2

Mk has), but might be ill-conditioned. Thus standard techniques (SVD dropping
small singular values, or QR decomposition with column pivoting and threshold) can be
applied, where the residual error in solving this least-square problem leads to a loss of
orthogonality for vk+1 of the same order.

In contrast, Barth & Manteuffel suggest one of the missing generators by solving system
(4.11). The computation of the other generator ρ

j+1
is quite involved and requires the

knowledge of the whole jth column of the Hessenberg matrix Hk (which is not necessarily
computed using our approach).

(d) If GMRES is converging fast, we believe that the normalization (4.10) is not appropriate
since

‖V ∗m2
Mk‖ � ‖Mk‖ ≈ 1.

Also the η
k

are very small due to the above-mentioned decay property of the entries of
our Hessenberg matrix.

5 Some special matrices

In this section we give special attention to some classes of matrices where we can slightly
reduce the computational complexity of Algorithm 1. The first class consists of matrices A
which satisfy an equation of the form

A∗ − αA− βI = FG∗, (5.1)

for some α, β ∈ C. This includes the class of normal matrices of which all but m3 eigenvalues
are collinear. We will address this kind of matrices as nearly Hermitian matrices. If α =
1, β = 0 and A is real, this corresponds to the class of nearly symmetric matrices as discussed
in [4]. However, one can easily check that all results derived in [4] are also valid for a matrix
of the form (5.1).

The second class consists of matrices A which satisfy an equation of the form

A∗ − αI − β(A− δI)−1 = FG∗, (5.2)

for some α, β, δ ∈ C. This includes the class of normal matrices of which all but m3 eigenvalues
are concyclic. If δ = 0, we speak of nearly unitary matrices, if δ 6= 0 we speak of nearly shifted
unitary matrices.

The class of matrices satisfying (3.5) or (5.2) include all examples of BML-matrices known
to us which are of practical interest. By this we mean, matrices that are suitably large with
respect to the quantities m1,m2 and m3. More information on matrices satisfying equation
(1.1) can be found in [13].
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5.1 Nearly Hermitian matrices

Assume the matrix A is nearly Hermitian. Then (3.6) reduces to

v′k = hk+1,kvk+1 + hk,kvk + hk−1,kvk−1. (5.3)

Define the vectors p∗k ∈ Cm3 recursively as

p∗k := −sk−1(0)p∗k−1 + ck−1(0)e∗kGk, (5.4)

for k ≥ 2 and p∗1 = G1. By recurrence on k it follows that p∗k = e∗kQk(0)∗Gk. Therefore, in
combination with (2.25),

p∗k = (−1)k−1wk−1(0)∗VkGk. (5.5)

Then (2.23) yields

τk(0) = (−1)k−1wk−1(0)∗Avk

= (−1)k−1wk−1(0)∗(v′k + VkGkF
∗
k ek)

= (−1)k−1wk−1(0)∗v′k + (−1)k−1wk−1(0)∗VkGkF
∗
k ek

= hk,kck−1(0)− hk−1,kck−2(0)sk−1(0) + p∗kF
∗
k ek, (5.6)

the latter equality because of (5.3) and (5.5). Expression (5.6) can now be used to compute
τk(0) instead of (2.23), reducing the computational complexity2.

5.2 Nearly unitary matrices

Assume the matrix A is nearly unitary. Then (3.6) reduces to

v′k = a1,kwk−1(0) + hk+1,kvk+1, (5.7)

where a1,k = wk−1(0)∗v′k and hk+1,k such that vk+1 is of unit length. Again we make use of
the vector p∗k as defined in (5.4). Then because of (5.5), (2.23) yields

τk(0) = (−1)k−1wk−1(0)∗Avk

= (−1)k−1wk−1(0)∗(v′k + VkGkF
∗
k ek)

= (−1)k−1a1,k + p∗kF
∗
k ek. (5.8)

Expression (5.8) can now be used to compute τk(0) instead of (2.23).

5.3 Nearly shifted unitary matrices

Assume the matrix A is nearly shifted unitary. Then (3.6) reduces to

v′k = a1,kwk−2(δ) + hk,kvk + hk+1,kvk+1, (5.9)

where a1,k = wk−2(δ)∗v′k and hk,k, hk+1,k are entries of the corresponding Hessenberg matrix.
From (2.22) we deduce that

v∗k−1wk−2(δ) = (−1)k−2ck−2(δ). (5.10)

Hence, due to (2.22) and (5.9),

wk−2(δ)∗v′k−1 = sk−2(δ)wk−3(δ)∗v′k−1 + (−1)k−2ck−2(δ)v∗k−1v
′
k

= sk−2(δ)a1,k−1 + (−1)k−2ck−2(δ)a1,kv
∗
k−1wk−2(δ)

= sk−2(δ)a1,k−1 + a1,k|ck−2(δ)|2. (5.11)

Finally, we know that
(−1)k−1wk(δ)∗VkGk = sk(δ)p∗k(δ), (5.12)

with p∗k(δ) ∈ Cm3 recursively defined as

p∗k := −sk−1(δ)p∗k−1 + ck−1(δ)e∗kGk, (5.13)

2Expression (5.6) was also proved alternatively By Beckermann and Reichel [4, Proposition 4.2].
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for k ≥ 2 and p∗1 = G1. Making use of (5.10), (5.11) and (5.12), (2.23) yields

τk−1(δ) = (−1)k−2wk−2(δ)∗(A− δIn)vk−1

= (−1)k−2wk−2(δ)∗
(
v′k−1 + Vk−2Gk−2F

∗
k−1ek−1 − δvk−1

)
= (−1)k−2sk−2(δ)a1,k−1 + (−1)k−2a1,k|ck−2(δ)|2

−sk−2(δ)pk−2(δ)∗F ∗k−1ek−1 − δck−2(δ).

As before, the above expression can now be used to compute τk−1(δ) instead of (2.23).

6 Numerical examples

In this section we will compare our fast Arnoldi algorithm with the one of Barth-Manteuel and
classical Arnoldi. We focus especially on the orthogonality of the obtained Arnoldi vectors.
The orthogonality in the forthcoming figures is measured by a method described originally
by Paige [6, 15]. Given V ∗k Vk − I = Uk + U∗k with Uk strictly upper triangular, we define
Sk = (I + Uk)−1Uk. The norm of Sk is used as an orthogonality measure for the columns of
Vk, i.e., ‖Sk‖ ∈ [0, 1] where ‖Sk‖ = 0 when they are orthonormal and ‖Sk‖ = 1 when they are
linearly dependent [15]. To make the fairest possible comparison with the Barth-Manteuffel
algorithm, we implemented their pseudocode as stated in [2] and recalled in Algorithm 2.
However, their pseudocode returns an orthogonal basis, while recurrence relation (3.6) returns
an orthonormal basis. Therefore, we have normalized these vectors first.

We will start in §6.1 and §6.2 by discussing the special case of nearly unitary A (with
δ = 0) and nearly shifted unitary A (with shift δ 6= 0), where we replaced in our BML-Arnoldi
algorithm formula (2.23) for the computation of τk(δ) by the less expensive formulas described
in §5.2, and §5.3, respectively. Subsequently we report in §6.3 about an example of a nearly
Hermitian matrix discussed already in [6].

Quite often there is some correlation between loss of orthogonality between Arnoldi vectors
and convergence of the GMRES residual rk(δ) of the shifted system (A−δI)x = b with starting
vector x0 = 0. This phenomenon is probably related to the decay properties mentioned in
Remark 2.7. We therefore draw in each of the figures below the relative GMRES residual

‖rk(δ)‖
‖r0(δ)‖ =

1

σk(δ)
=

k∏
j=1

sj(δ), (6.1)

the last identity following from (2.8). Notice that the quantities sj(δ) are already computed
in the BML-Arnoldi algorithm in the case m3 = 1 of §6.1 and §6.2, whereas in §6.3 we
have to add the computation of sj(δ), here for δ = 0, following the formulas given in §5.1.
One may understand (6.1) as the recursive computation of the GMRES residuals following
some progressive residual scheme, where the underlying least squares problem is solved by
successive Givens rotations. We will refer to this residual in the forthcoming figures as the
progressive residual. However, due to loss of orthogonality, it might be that these progressive
residuals are badly computed. This is why each time we display also the ”exact” relative
GMRES residual, obtained by computing the kth iterate of GMRES for the shifted system
(A−δI)x = b with starting vector x0 = 0 via the black box routine of Matlab (which does not
use our Arnoldi vectors but recomputes them via full Arnoldi, and solves the least squares
problem via Householder transforms). It turns out that, in all our numerical experiments,
that when both Arnoldi and fast Arnoldi behave well, that the progressive residual and the
GMRES residual exhibit the same convergence history.

All computations were carried out in Matlab R2015a. As a starting vector for the Krylov
subspace we always consider a vector b that has normally distributed random entries with
mean zero and variance one.

6.1 Perturbed diagonal and unitary matrices

We consider 200 × 200 diagonal matrices for which all but m3 eigenvalues lie on a circle.
Clearly, such matrices satisfy equation (1.1) with m1 = m2 = 1. We considered various cases;
for each case we show the eigenvalues of the matrix and a comparison of the orthogonality
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of the computed Arnoldi vectors for classical Arnoldi, Barth-Manteuffel, and the fast Arnoldi
method. The legend is plotted in Figure 1 and is identical for all similar graphs in this section.

1. In the first experiment, see Figure 1, we consider eigenvalues on three quarter of the
unit circle. Clearly the full Arnoldi and fast Arnoldi perform best and in all the tests
we ran the orthogonality of the computed vectors was comparable. Other experiments
revealed that Barth-Manteuffel performed just slightly worse when considering eigenval-
ues distributed over the entire unit circle, the performance of Barth-Manteuffel started
to degrade when segments were excluded from the unit circle. The progressive residual
seems to align almost perfectly with the GMRES residual. We have also tested various
radii and similar conclusions hold when the radius of the circle is changed.

2. In the second experiment, see Figure 2, we have shifted the unit circle in the complex
plane. Barth-Manteuffel seems to have problems with this case, Arnoldi, and the fast
Arnoldi method on the other hand exhibit good accuracy. The progressive residual and
the GMRES residual align again almost perfectly.

3. In a third experiment, see Figure 3, all eigenvalues except for two are located on the unit
circle. In this case Barth-Manteuffel outperforms our code slightly. We note that the
location of the eigenvalues outside the circle does not have a significant impact on the
overall picture of the accuracy. Tests revealed also that if one would shift the midpoint or
exclude eigenvalues out of parts of the circle the fast Arnoldi method would outperform
Barth-Manteuffel.

Overall we can conclude that the Arnoldi method is the most accurate one and the fast Arnoldi
method is also typically quite close. The Barth-Manteuffel algorithm, however, exhibits quick
loss of orthogonality when the circle is shifted or the eigenvalues do not span the entire circle.
Moreover, the progressive residual and the GMRES residual align almost perfectly.

We also considered a real non-normal matrix A which is of the form

A = U + uv∗, (6.2)

for some vectors u and v and a unitary matrix U . Using the Sherman-Morrison formula [9],
equation (6.2) yields

A∗ = A−1 + vu∗ +
U∗uv∗U∗

1 + v∗U∗u
.

Hence,

A∗ = A−1 + FG∗, with F :=
(

v 1
1+v∗U∗uU

∗u
)
, G :=

(
u Uv

)
.

The orthogonality of the computed Arnoldi vectors was examined for a 100×100 matrix A of
the form (6.2) where the unitary matrix U and the vectors u and v are randomly generated.
In this case the orthogonality behaved similar to Figure 1, implying that the fast Arnoldi
behaves similar to Arnoldi and Barth-Manteuffel deteriorates.

6.2 Unitary matrix from Quantum Chromodynamics

We consider a shifted unitary matrix which finds its origin in Quantum Chromodynamics
(QCD) [1]. QCD is the theory which describes the fundamental interaction between quarks,
which are the building blocks of protons and neutrons. This theory makes use of the Neuberger
overlap operator A = ρI + γ sign(Q), where ρ and γ are scalars and Q is the Hermitian
Wilson fermian matrix. As a result the Neuberger overlap operator is a shifted unitary
matrix. To construct the matrix Q a parameter κ and a hopping matrix are needed. We have
selected these parameters equal to the ones from [1], i.e. κ = 0.2809 and as hopping matrix
conf5.0-00.14x4-2600.mtx from the Matrix Market3.

To compute sign(Q), we invoke the software package designed by Arnold, et al., [1], which
makes use of the Zolotarev algorithm [17]. We choose parameters ρ = 2 and γ = 1 for the
Neuberger overlap operator. On the left of Figure 4 we have drawn the eigenvalues of the
Neuberger overlap operator A and observe that the density of the eigenvalues is much higher
on the right than on the left.

3A repository of test data for use in comparative studies of algorithms for numerical linear algebra, featuring
nearly 500 sparse matrices from a variety of applications, as well as matrix generation tools and services.
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Figure 1: The orthogonality, measured by ‖Sk‖ as in [15], of the computed Arnoldi vectors for
classical Arnoldi, Barth-Manteuffel, and the fast Arnoldi, for a matrix having its eigenvalues
randomly distributed over three quarter of the unit circle. The progressive residual as well as the
residual of GMRES are also depicted, we observe an almost identical behavior for both residuals.

The orthogonality of the computed Arnoldi vectors is depicted in Figure 4. Approximately
the first ten iterations of the recurrence relation (3.6) fast Arnoldi and the Barth-Manteuffel
algorithm show comparable accuracy. After that, the orthogonality of the vectors computed
with the Barth-Manteuffel algorithm deteriorates fast at almost the same rate as classical
Arnoldi. Even though the progressive residuals and the GMRES residual align, classical
Arnoldi seems to suffer heavily from loss of accuracy. The fast Arnoldi method clearly out-
performs the other approaches.

6.3 Departure from orthogonality

Beckermann & Reichel [4] proposed a Krylov subspace method for solving a linear system in
which the coefficient matrix is nearly Hermitian. Their method, based on a short recurrence
for generating an orthonormal Krylov basis, is better known as Progressive GMRES, shortly
named PGMRES. For nearly Hermitian matrices, this short recurrence coincides with the
recurrence relation (3.6) described above.

However, Embree, et al., [6] showed how in certain cases the PGMRES method exhibits an
instability which finds its origin in the loss of orthogonality of the computed Arnoldi vectors.
A specific class of examples is described and the corresponding departure from orthogonality
is shown when using the recurrence relation (3.6). In the forthcoming experiments we have
used the algorithm for nearly Hermitian matrices as presented in Section 5.1.
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Figure 2: The orthogonality, measured as in [15], of the computed Arnoldi vectors for classical
Arnoldi, Barth-Manteuffel, and the fast Arnoldi method, for a matrix having its eigenvalues dis-
tributed over a shifted unit circle. The progressive residual as well as the residual of GMRES are
depicted and align nicely. The legend is identical to the one used in Figure 1.

This class of matrices is of the form

A =

 Λ−
Λ+

Z

 , (6.3)

where

Λ− = diag(λ1, . . . , λp), Λ+ = diag(λp+1, . . . , λn−2), Z =

(
0 γ
−γ 0

)
,

with eigenvalues

1. λ1, . . . , λp uniformly distributed in the interval [−β,−α],

2. λp+1, . . . , λn−2 uniformly distributed in the interval [α, β],

3. λn−1, λn = ±γi.
We take two examples from this class and compare the loss of orthogonality of the recur-

rence relation (3.6) as predicted in [6] with the Barth-Manteuffel algorithm. The orthogonality
of the Arnoldi vectors stored in the matrix Vk is depicted in Figure 5.

As seen in Figure 5 recurrence relation (3.6) gives rise to significantly less orthogonal
vectors than the standard Arnoldi iteration. However, it may also be observed that the
Barth-Manteuffel algorithm suffers from the same loss of orthogonality as recurrence relation
(3.6). We see that the loss of orthogonality emerges as soon as the progressive residual vectors
start to differ significantly from the actual GMRES residual, explaining the inaccuracies in
the computed vectors. Figure 6 shows the gradual loss of orthogonality between the vectors.
White stands for a perfect orthogonality, black for complete loss, The colors assigned are, for
100 black (no orthogonality) and for 10−16 white (orthogonal up to machine precision). In
Figure 6 we observe that vj is numerically orthogonal to vk for j, k <= 14, j 6= k, and also at
later stages for |j − k| ≤ 2, as expected from the local reorthogonalization of our algorithm.
However, globally, the orthogonality gets quite quickly lost, as observed already by Embree
et al. [6], who suggested Schur complement techniques to tackle this problem.

We can conclude that in this case both Barth-Manteuffel and fast Arnoldi exhibit a fast
and almost identical loss of orthogonality.

7 Conclusion

An economic variant for the Arnoldi algorithm has been established for matrices whose adjoint
is a low-rank perturbation of a rational function of the matrix. In the process, some aspects
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Figure 3: The orthogonality, measured as in [15], of the computed Arnoldi vectors for classical
Arnoldi, Barth-Manteuffel, and the fast Arnoldi method, for a matrix having all, except two
eigenvalues, on the unit circle. The legend is identical to the one used in Figure 1. The progressive
residual as well as the residual of GMRES exhibit the same behavior.
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Figure 4: The left plot depicts the eigenvalues of the Neuberger operator A = ρI + γ sign(Q),
with ρ = 2 and γ = 1. The right plot shows the accuracy and (progressive) residuals for classical
Arnoldi, Barth-Manteuffel, and the fast Arnoldi algorithms. For the legend we refer to Figure 1.

of the Arnoldi process are described in terms of orthogonal polynomials. This includes an
explicit formula for the unitary factor in the QR-decomposition of a Hessenberg matrix and a
decay property of the entries of this Hessenberg matrix which is related to the convergence of
the GMRES algorithm. Also, the existence of a progressive GMRES residual formula has been
shown, extending the findings of [4]. Furthermore, comparisons are made with the algorithm
described by Barth and Manteuffel [2] for matrices whose adjoint is a low-rank perturbation
of a rational function of the matrix, both theoretically and numerically.
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Data: A ∈ Cn×n, p
0

with A∗qm(A)− p`(A) = QB(A), p` of degree `, pm of degree m and QB(A) of rank κ,

{φ
0
, . . . , φ

κ−1
} basis of the column space of QB(A), θ =

{
κ− 1, if m > `

κ− `+m, if m ≤ ` ,

φ =

{
j − θ + 1, if m > `

min{j − (`−m), j − θ + 1}, if m ≤ ` cp
0

= [ 1 0 . . . 0 ]Tm+1, ρ
0

= [ 1 0 . . . 0 ]Tm

Result: Orthogonal Krylov basis p
0
,p

1
, . . .

for j = 0, . . . , θ − 1 do

p
j+1

= Ap
j
−∑j

i=0 σi,jpj
, σi,j =

p∗
i
Ap

j
p∗
i
p
i

;

if j < m then

cp
j+1

= cAp
j
−∑j

i=0 σi,jcpj
, cAp

j
= [ 0 cp

j ]Tm+1;

if j < m− 1 then

ρ
j+1

= [ 0 . . . 0 1 0 . . . 0 ]Tm;

else

solve

 | | |
cp

0
cp

1
. . . cp

m
| | |

 [ γ0 . . . γm ]T = [ b0 . . . bm ]T for γ, ρ
j+1

=[
− γ0
γm

. . . − γm−1
γm

]
;

end

else
cj = Hm+1,mρ

j
, rAp

j
= c0ρ

0
+ . . .+ cmρ

m
;

ρ
j+1

= rAp
j
−∑j

i=0 σi,jρi
;

end

end
for j = θ, . . . , do

solve [ µ
j

. . . µ
j−κ+1 ]T τ̄j−θ =


p∗
j−θ

Ap
j
− ρ∗

j−θ
η
j

.

.

.
p∗
j−θ

Ap
j−κ+1

− ρ∗
j−θ

η
j−κ+1

 for τ̄j−θ;

q
j−θi

=
(ρ̄
j−θ)i

p∗
j−θpj−θ

p
j−θ

+ q
j−θ−1i

, i = 0, . . . ,m− 1;

q̂
j−θi

=
(τ̄j−θ)i

p∗
j−θpj−θ

p
j−θ

+ q̂
j−θ−1i

, i = 0, . . . , κ− 1;

rq
j−θi

=
(ρ̄
j−θ)i

p∗
j−θpj−θ

ρ
j−θ

+ rq
j−θ−1i

, i = 0, . . . ,m− 1;

rq̂
j−θi

=
(τ̄j−θ)i

p∗
j−θpj−θ

ρ
j−θ

+ rq̂
j−θ−1i

, i = 0, . . . , κ− 1;

if j < m then

p
j+1

= Ap
j
−∑j

i=0 σi,jpj
, σi,j =

p
i
∗Ap

j
p
i
∗p

i
;

cp
j+1

= cAp
j
−∑j

i=0 σi,jcpj
, cAp

j
= [ 0 cp

j ]Tm+1;

if j < m− 1 then

ρ
j+1

= [ 0 . . . 0 1 0 . . . 0 ]Tm;

else

solve

 | | |
cp

0
cp

1
. . . cp

m
| | |

 [ γ0 . . . γm ]T = [ b0 . . . bm ]T for γ, ρ
j+1

=[
− γ0
γm

. . . − γm−1
γm

]
;

end

else

η
j

= [ p∗
0
Ap

j
. . . p∗

m−1
Ap

j ]Tm;

µ
j

= [ φ∗
0
p
j

. . . φ∗
κ−1

p
j ]Tκ ;

y
j+1

= Ap
j
− [ q

j−θ0
. . . q

j−θm−1
]η
j
− [ q̂

j−θ0
. . . q̂

j−θm−1
]µ
j
;

p
j+1

= y
j+1
−∑j

i=φ t̂i,jpi
, t̂i,j =

p∗
i
y
j+1

p∗
i
p
i

;

cj = Hm+1,mρ
j
, rAp

j
= c0ρ

0
+ . . .+ cmρ

m
;

ry
j+1

= rAp
j
−∑m−1

i=0 (η
j
)irq

j−θi
−∑κ−1

i=0 (µ
j
)irq̂

j−θi
;

ρ
j+1

= ry
j+1
−∑j

i=φ t̂i,jρi
;

end

end

Algorithm 2: Barth-Manteuffel algorithm
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