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The crossing number of the cone of a graph
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Abstract. Motivated by a problem asked by Richter and by the long
standing Harary-Hill conjecture, we study the relation between the cross-
ing number of a graph G and the crossing number of its cone CG, the
graph obtained from G by adding a new vertex adjacent to all the ver-
tices in G. Simple examples show that the difference cr(CG) − cr(G)
can be arbitrarily large for any fixed k = cr(G). In this work, we are
interested in finding the smallest possible difference, that is, for each
non-negative integer k, find the smallest f(k) for which there exists a
graph with crossing number at least k and cone with crossing number
f(k). For small values of k, we give exact values of f(k) when the prob-
lem is restricted to simple graphs, and show that f(k) = k+Θ(

√
k) when

multiple edges are allowed.

1 Introduction

Little is known on the relation between the crossing number and the chromatic
number. In this sense Albertson’s conjecture (see [2]), that if χ(G) ≥ r, then
cr(G) ≥ cr(Kr), has taken a great interest. Albertson’s conjecture has been
proved [2,4,15] for r ≤ 16. It is related to Hajós’ Conjecture that every r-
chromatic graph contains a subdivision of Kr. If G contains a subdivision of
Kr, then cr(G) ≥ cr(Kr). Thus Albertson’s conjecture is weaker than Hajós’
conjecture, however Hajós’ conjecture is false for any r ≥ 7 [7].

The cone of a graph G is the graph CG obtained from G by adding an apex,
a new vertex that is adjacent to each vertex in G. Many properties of a graph
are automatically transferred to its cone. For example, if G is r-coloring-critical,
then CG is (r + 1)-coloring-critical. During the Crossing Numbers Workshop in
2013, in an attempt to understand Alberston’s conjecture, Richter proposed the
following problem: Given an integer n ≥ 5 and a graph G with crossing number
at least cr(Kn), does it follow that the crossing number of its cone CG is at least
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cr(Kn+1)? There are examples where these two values can differ arbitrarily (for
instance, if G is the disjoint union of K4’s and K5’s). What is less clear is how
close these values can be.

The answer to Richter’s question is positive for the first interesting case when
n = 5: Kuratowski’s theorem implies that the cone of any graph with crossing
number at least cr(K5) = 1 contains a subdivision of CK5 or CK3,3, and each
of these graphs has crossing number at least cr(K6) = 3. Unfortunately, the
answer is negative for the next case, as the graph in Figure 1 shows. This graph
has crossing number 3, and a cone with crossing number at most 6, and this is
less than cr(K7) = 9. This motivated us to investigate the following question.

Problem 1. For each k ≥ 0, find the smallest integer f(k) for which there is a
graph G with crossing number at least k and its cone has cr(CG) = f(k).

Fig. 1. A counterexample to Richter’s question when n = 6.

Note that f(k) can also be defined as the largest integer such that every
graph with cr(G) ≥ k, has cr(CG) ≥ f(k). An upper bound to the function
f(k) is obtained from the graph in Figure 1, by changing the multiplicity of each
edge to r. Any drawing of the new graph has at least 3r2 crossings, and its cone
has crossing number 3r2+3r. This shows that f(k) ≤ k+

√
3k. Our main result

shows that this is close to be best possible.

Theorem 2. Let G be a graph with cr(G) ≥ k. Then cr(CG) ≥ k +
√
k/2.

Thus we have the following:

Corollary 3. For multigraphs we have f(k) = k +Θ(
√
k ).

The paper is organized as follows. Page drawings, a concept intimately re-
lated to drawings of the cone of a graph, are defined in Section 2 and used
throughout the subsequent sections. Although, there seems to be a connection
between 1-page drawings and drawings of the cone, their exact relationship is
much more subtle. Our proofs are instructive in this manner and provide further
understanding of these concepts.

The proof of our main result, Theorem 2 is provided in Section 3. In Section
4, we restrict Problem 1 to the case of simple graphs. To distinguish between
these two problems we use fs(k) instead of f(k). Along this paper, a graph is
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allowed to have multiple edges but no loops; when our graphs have no multiple
edges, then we refer them as simple graphs. We find the smallest values of fs by
showing that fs(1) = 3, fs(2) = 5, fs(3) = 6, fs(4) = 8 and fs(5) = 10. These
initial values may suggest that fs(k) ≥ 2k. However, in Section 5 we show that

fs(k) = k + o(k),

and provide additional justification for a more specific conjecture that

fs(k) = k +
√
2 k3/4(1 + o(1)).

2 Page drawings

In this section we describe a perspective provided from considering page drawings
of graphs, a concept that has been studied in its own and has interesting appli-
cations. The relation between 1- and 2-page drawings has shown to be handy as
it is used in the proofs of Theorems 2 and 7. A more detailed discussion on the
relevant aspects of this section can be found in [3,6,14].

For an integer k ≥ 1, a k-page book consists of k half planes sharing their
boundary line ℓ (spine). A k-page-drawing is a drawing of a graph in which
vertices are placed in the spine of a k-page book, and each edge arc is contained
in one page. A convenient way to visualize a k-page drawing is by means of the
circular model. In this model each page is represented by a unit 2-dimensional
disk, so that the vertices are arranged identically on each disk boundary and each
edge is drawn entirely in exactly one disk. In this work we are only interested in
1 and 2-page drawings, and, to be more precise, in the following problem.

Problem 4. Given a 1-page drawing of a graph G with k crossings, find an upper
bound on the number of crossings of an optimal 2-page drawing of G while
having the order of vertices of G on the spine unchanged.

In other words, if the drawing of G in the plane is such that all the vertices
are incident to the outer-face (which is equivalent to having a 1-page drawing),
what is the most efficient way to redraw some edges in the outer-face to reduce
the number of crossings? For this purpose, we define the circle graph CD of any
1-page drawing D of G as the graph whose vertices are the edges of G, and any
two elements are adjacent if they cross in D. Note that CD depends only on the
cyclic order of the vertices of G in the spine.

A related problem was previously formulated by Kainen in [12], where he
studied the outerplanar crossing number of a graph as the minimum number of
crossings in any drawing of G so that all its vertices are incident to the same face.
Clearly, the crossing number of CG is at most the outer-planar crossing number
of G. Although, Kainen was interested in finding an n-vertex graph that has
the largest difference between its crossing number and its outer-planar crossing
number, for us it will be useful to consider drawings in which the vertices are
incident to the same face.
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Turning a 1-page drawing into a 2-page drawing is equivalent to finding a
bipartition (X,V (CD)\X) of the vertices of CD, each part representing the set of
edges of G drawn in one of the pages. Minimizing the number of crossings in the
obtained 2-page drawing of G is equivalent to maximize the number edges in CD

between X and V (CD) \X . This last problem is known as the max-cut problem,
and if the considered graph CD has m edges, then, a well-known result of Erdős
[8] states that its maximum edge-cut has size more than m/2. Improvements to
this general bound are known (see [9], [10] and a more recent survey [5]). For
our purpose the following bound of Edwards will be useful.

Lemma 5 (Edwards [9,10]). Suppose that G is a graph of order n with m ≥ 1

edges. Then G contains a bipartite subgraph with at least 1
2m+

√
1
8m+ 1

64 − 1
8 >

1
2m edges.

In our context, this result translates to the following observation that we will
use.

Corollary 6. Let D be a 1-page drawing of a graph G with k ≥ 1 crossings.
Then some edges of G can be redrawn in a new page, obtaining a 2-page drawing

with at most 1
2k−

√
1
8k + 1

64 +
1
8 crossings. Such a drawing can be found in time

O(|E(G)| + k).

The proof of Corollary 6 will be provided in the full version.

3 Lower bound on the crossing number of the cone

This section contains the proof of our main result.

Proof (of Theorem 2). Let D̂ be an optimal drawing of the cone CG of G with

apex a, and suppose D̂ has less than k+
√
k/2 crossings. We consider D = D̂|G,

the drawing of G induced by D̂. If we let t to be the number of crossings in D,
then we have

k ≤ t < k +
√
k/2. (1)

For each vertex v ∈ V (G) ∪ {a}, let sv be the number of crossings in D̂

involving edges incident with v. Using that cr(D̂) < k+
√
k/2 and the left-hand

side inequality in (1), we obtain that sa <
√
k/2.

Consider x1,. . . ,xsa , the crossings involving edges incident with a. Since D̂
is optimal, each of these crossings is between an edge incident to a and an edge
in G. Let e1,. . . ,esa be the list of edges in G (we allow repetitions) so that xi is
the crossing between ei and an edge incident with a. We subdivide each edge ei
in D using two points close to the crossing xi, and we remove the edge segment
σi joining these new two vertices, in order to obtain a drawing D0 of a graph G0

with t crossings (see Figure 2).
The obtained drawing D0 has all its vertices incident to the face of D0 con-

taining the point corresponding to the apex vertex a of CG in D̂. For simplicity,
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a

D̂
e1

e2

e3

e4
e5

e6D D0

(a) (b) (c)

Fig. 2. A drawing where the crossed edges are cut.

we may assume that this is the unbounded face of D0. It follows that there exists
a simple closed curve ℓ in the closure of this face, containing all the vertices of
G0. Thus, D0 gives rise to a 1-page drawing of G0 with spine ℓ.

Now construct a new drawing of G as follows:

1. Start with the 1-page drawing D0. Partition the edges of G0 according to
Corollary 6, and draw the edges of one part in page 2 outside ℓ.

2. Reinsert edge segments σ1, . . . , σsa as they where drawn in D, to obtain a
drawing D1 (of a subdivision) of G. These segments do not cross each other,
but they may cross some of the edges of G0 that we placed in page 2 in step
1.

Now we estimate the number of crossings in D1. According to Corollary 6,
after step 1 we obtain a 2-page drawing D0 with less than t/2 −

√
t/8 + 1/8

crossings. After step 2 we gain some new crossings between the added segments
σ1, . . . , σsa and the edges of G0 drawn on page 2 in step 1.

Claim. The number of new crossings between σ1, . . . , σsa and the edges drawn
on page 2 in step 1 is at most (k − 1)/2.

Proof. We may assume that, for each v ∈ V (G), sv <
√
k/2. Otherwise, by

removing v and all the edges incident to v, we obtain a drawing of CG − v
containing a subdrawing of G, in which v is represented as the apex, and this
drawing has less than k crossings, a contradiction.

Let e ∈ E(G) be an edge having ends u, v ∈ V (G). Suppose that ay1,. . .,ayre
are the edges incident to a that cross e in D̂. We may assume that, for every i,
j with 1 ≤ i < j ≤ re, when we traverse e from u to v, the crossing xi = e ∩ ayi
precedes the crossing xj = e∩ ayj . It is convenient to let x0 = u and xre+1 = v.

The edges of G0 included in D[e] are the segments of D[e] − {σ1, . . . , σsa}.
We enumerate these edges as τe0 ,. . . ,τ

e
re , so that τei is included in the xixi+1-arc

of D[e]. Note that τe1 is incident to u, while τre is incident to v.
Let T = {τei : e ∈ E(G) and 0 ≤ i ≤ re} be the set of edges of G0. In

Step 1, when we apply Corollary 2.2 to the edges in D0, we obtain a partition
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T1 ∪ T2 of T . Instead of counting how many crossings are between the segments
in σ1, . . . , σsa and the edges in one of the Ti’s when we redraw Ti in page 2,
we estimate the number m of crossings between σ1, . . . , σsa and the edges in T
when we draw all the crossing edges in T in page 2. This will show that one of
the two parts, either T1 or T2, can be drawn in page 2 creating at most m/2
crossings with the segments σ1, . . . , σsa . To show our claim, it suffices to prove
that m ≤ k − 1, and this is what we do next.

For every point p distinct from a and contained in an edge f incident to a,
the depth h(p) of p is the number of crossings in D̂, contained in the open subarc
of f connecting a to p. When we redraw an edge τei in page 2, we can draw
it so that it crosses at most h(xi) + h(xi+1) segments in σ1, . . . , σsa . Such new
drawing of τei is obtained from letting the segment of τei near to xi follow the
same dual path in D that xi follows to reach a via ayi. Likewise the new end
of τei near xi+1 is defined. The new τei is obtained from connecting the two end
segments of τei inside the face of D containing a.

Let X(a) be the set of crossings involving edges incident to a. For every
x ∈ X(a), there are precisely two elements in T , so that when they are redrawn
in page 2, one of its end segments mimics the arc between x and a inside the
edge including x and a. Each v ∈ V (G) is incident to at most sv edges crossing
in D0. Then, for every v ∈ V (G), there are are most sv edges in T , so that when
we redraw them in page 2, one of their ends mimics the dual path followed by
the edge D̂[xa]. These two observations together imply that

m ≤
∑

x∈X(a)

2h(x) +
∑

v∈V

h(v)sv

< 2
∑

v∈V

(1 + 2 + . . .+ (h(v)− 1)) +
√
k/2

∑

v∈V

h(v)

≤
∑

v∈V

h(v)2 + (
√

k/2)sa ≤
(
∑

v∈V

h(v)

)2

+ k/2

= s2a + k/2 < k.

Because m is an integer less than k, m ≤ k − 1 as desired. ⊓⊔
At the end, we obtained a drawing D1 of (a subdivision of) G with less than

t/2−
√
t/8 + 1/8 + (k − 1)/2 crossings. Using (1) it follows that

cr(D1) <
1

2
(k+

√
k/2)−

√
t/8+1/8+k/2−1/2 = k+

√
k/8−

√
t/8−3/8 < k,

contradicting the fact that cr(D1) ≥ cr(G) ≥ k. ⊓⊔

4 Exact values of the crossing number of the cone for
simple graphs

In this section, we investigate the minimum crossing number of a cone, with the
restriction of only considering simple graphs. We are interested in finding the
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smallest integer fs(k) for which there is a simple graph with crossing number at
least k, whose cone has crossing number fs(k). On one hand, we describe below
a family of simple graphs that shows that fs(k) ≤ 2k. Our best general lower
bound is obtained from Theorem 2. The main result in this section, Theorem 7,
help us to obtain exact values on fs(k) for cases when k is small.

Theorem 7. Let G be a simple graph with crossing number k. Then

(1) if k ≥ 2, then cr(CG) ≥ k + 3;
(2) if k ≥ 4, then cr(CG) ≥ k + 4; and
(3) if k ≥ 5, then cr(CG) ≥ k + 5.

Before proving Theorem 7, we describe a family of examples that is used to
find an upper bound for fs(k), that is exact for the values k = 3, 4, 5. Given
an integer k ≥ 3, the graph Fk (Figure 3) is obtained from two disjoint cycles
C1 = x0 . . . xk−1x0 and C2 = y0 . . . y2k−1y0 by adding, for each i = 0, . . . , k − 1,
the edges xiy2i−2, xiy2i−1, xiy2i, xiy2i+1 (where the indices of the vertices yj
are taken modulo 2k). It is not hard to see that Fk has crossing number k: a
drawing with k crossings is shown in Figure 3. To show that cr(Fk) ≥ k, for i ∈
{0, . . . , k−1}, consider Li, theK4 induced by the vertices in {xi, xi+1, y2i, y2i+1}.
Every Li is a subgraph of a K5 subdivision of Fk, thus, in an optimal drawing
of Fk, at least one of the edges in Li is crossed. This only guarantees that
cr(Fk) ≥ k/2, as two edges from distinct Li’s might be crossed. However, if
an edge from Li crosses an edge ej from some other Lj, then Fk − ej has a K5

subdivision including Li, exhibiting a new crossing in some edge in Li. Therefore,
every Li either has a crossing not involving an edge in another Lj , or there are
least two crossings involving edges in Li. This shows that cr(Fk) ≥ k.

y0

y1

y2

y3

y4

y5

y6

y7

y8

y
2k−3

y
2k−2

y
2k−1

x0

x1

x2

x3

x4

xk−1

Fig. 3. The graph Fk.

The graph shown in Figure 4 has crossing number 2, and its cone has crossing
number 5. This shows that fs(2) ≤ 5. On the other hand, F3, F4, and F5 serve
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as examples to show that fs(k) ≤ 2k for k = 3, 4, 5. These bounds are tight for
2 ≤ k ≤ 5 by Theorem 7.

Fig. 4. A graph with crossing number 2 whose cone has crossing number 5.

Proof (Proof of Theorem 7). Suppose G is a graph with cr(G) = k. Let D̂ be an
optimal drawing of the cone CG, D its restriction to G, and Fa be the face of D
containing the apex a. The vertices of G incident to Fa are the planar neighbors
of a.

Assume that k ≥ 2, and suppose D̂ has exactly k + t crossings. Theorem 2
guarantees that t ≥ 1. Since each edge from a to a non-planar-neighbor introduce
at least one crossing, the apex a has either 0, 1, 2, 3 or 4 non-planar neighbors
(if a has more than 4 non-planar neighbours, then any of the items in Theorem
7 is satisfied).

We start by assuming that a has no non-planar neighbors. In this case, D is
a 1-page drawing of G. Corollary 6 implies that we can obtain a new drawing of
G with less than (k+ t)/2 crossings. Thus (k+ t)/2 > cr(G) = k, which implies
that t ≥ k + 1. In any case of the theorem, this implies the conclusion, thus we
may now assume that a has at least one and at most t non-planar neighbors.

(1) Let us now assume that k ≥ 2 and t ≤ 2.
Suppose a has exactly one non-planar neighbor u. Then cr(D) has at most

k + 1 crossings. At least one edge incident to u is crossed in D, otherwise, all
the crossed edges have ends in Fa, and using Corollary 6, we obtain a drawing
of G with less than (k+1)/2 crossings, contradicting that cr(G) = k. If at least
two crossings in D involve edges incident to u, or if D has k crossings, then by
redrawing u in Fa, and adding all the edges to its neighbors without creating
any crossings, we obtain a drawing of G with less than k crossings. Therefore
D has k + 1 crossings, and exactly k of them involve edges not incident to u.
Again, we apply Corollary 6 to obtain a drawing of G with at most 1

2 (k− 1) < k
crossings (this time we are more careful by setting our two pages in such way
that the edge not incident to u that crosses an edge incident to u is redrawn in
the page contained in Fa).

Finally, suppose a has exactly two distinct non-planar neighbors u and v.
Then, D̂ has k+2 crossings; D has k crossings, and the edges au, av are crossed
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exactly once. Notice that any crossed edge in D is incident to either u or v;
otherwise, we can redraw such edge inside Fa, obtaining a drawing of G with less
than k crossings. Redraw v in D̂[a] (where D̂[a] denotes the point representing

a in D̂); draw the edge uv (if it exists in G) as the arc D̂[au], and draw the
edges from v to its neighbors distinct from u, inside Fa without creating new
crossings. Since every crossing in D involves an edge incident with v, we obtain
a drawing of G with at most one crossing, a contradiction.

(2) Now, suppose that k ≥ 4 and that t = 3.

The case when the apex a has only one non-planar neighbor u is similar to
the above. If at least three crossings in D involve edges incident with u, then
by redrawing u and the edges incident to u in Fa, we obtain a drawing with
less than k crossings, a contradiction. Thus, at most two crossings involve edges
incident to u. We redraw the remaining crossed edges according to Corollary 6
(if there is an edge e that crosses an edge incident to u, in order to remove an
extra crossing, we may choose this new drawing so that e is redrawn in the page
contained in Fa). If 2 crossings involve edges incident to u, then the obtained
drawing has at most k

2 + 1 crossings, where the +1 comes from the fact that
e was drawn in the page contained in Fa. If at most one of the edges at u is
crossed, then the new drawing has at most (k+1)/2 crossings. In any case, since
k ≥ 4, the new drawing has less than k crossings, a contradiction.

Let us now consider the case when the apex has two non-planar neighbors u
and v. In this case, the drawing D has either k or k + 1 crossings, and one of
{au, av}, say au, is crossed only once. Let L be the set of crossed edges in D
that are not incident to u or v. Suppose there are at least two crossings involving
only edges in L. Then, either there are two edges in L that do not cross, or L
has an edge e that crosses two other edges in L. In the former case, we redraw
such pair of edges in Fa; in the latter case, we redraw e in Fa. Any of these
modifications yield a drawing with less than k crossings. Thus, we may assume
that at most one crossing in D involves two edges not incident to u or v. Redraw
v in D̂[a]; draw the edge vu (if such edge exists in G) as D̂[au]; and the remaining
edges from v to its neighbors distinct from u without creating new crossings. The
new drawing of G has at most two crossings: possibly one in D̂[av] and another
between edges in L, a contradiction.

Finally suppose that the apex a has three non-planar neighbors u, v, w.
In this case D has precisely k crossings, and the edges au, av, aw are crossed
exactly once. Observe that any crossed edge in D is incident to one of {u, v, w},
otherwise we can redraw such edge in Fa, obtaining a drawing of G with less
than k crossings.

Let H be the graph induced by {u, v, w}. If, for x ∈ {u, v, w}, dH(x) denotes
the degree of x in H , then at most dH(x) crossings involve edges at x. Otherwise,

by redrawing x in D̂[a]; drawing the edges from x to its neighbors in H by
using the respective edges from a; and, by drawing the remaining edges at x
in Fa without creating new crossings, we obtain a drawing of G with less than
k crossings. So for each vertex x ∈ {u, v, w}, there are at most two crossings
involving edges at x. Hence D has at most three crossings, a contradiction.
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(3) The proof can be found in Apendix A, and it will be included in the full
version of the paper. ⊓⊔

5 Asymptotics for simple graphs

Lastly, we try to understand the behaviour of fs(k) when k is large. The impor-
tant part is the increase of the crossing number after adding the apex, thus we
define

φs(k) = fs(k)− k.

We have proved that φ(k) = f(k)− k ≥ 1
2k

1/2. The term k1/2 is asymptotically
tight in the case when we allow multiple edges. However, it is unclear how large
φs(k) is. This question is treated next.

Theorem 8. φs(k) = O(k3/4).

Proof. Let us consider a positive integer k and let n be the smallest integer such
that cr(Kn) ≥ k. Then G = Kn has a crossing number at least k and its cone is
Kn+1.

To find an upper bound for cr(Kn+1) in terms of cr(Kn), start with a drawing
ofKn with cr(Kn) crossings. Then clone a vertex, that is, place a new vertex very
close to an original vertex, and draw the new edges along the original edges. Each
edge incident to the new vertex cross O(n2) edges, thus the obtained drawing
has cr(Kn) +O(n3) crossings. Therefore

φs(k) ≤ cr(Kn+1)− cr(Kn) ≤ O(n3).

It is known [13] that

3

10

(
n

4

)
≤ cr(Kn) ≤

3

8

(
n

4

)
.

(The constant 3/10 in the lower bound has been recently improved to 0.32025,
see [13] for more information.) Then φs(k) = O(n3) = O(k3/4). ⊓⊔

The Harary-Hill Conjecture [11] states that

cr(Kn) =

{
1
64n(n− 2)2(n− 4), n is even;

1
64 (n− 1)2(n− 3)2, n is odd.

Proposition 9. If the Harary-Hill conjecture holds, then

φs(k) ≤
√
2 k3/4(1 + o(1)).

Proof. As in the proof of Theorem 8, but with a slight twist for added precision,
we take n such that cr(Kn−1) < k ≤ cr(Kn). We also take n1 such that for
k1 = k − cr(Kn−1) we have cr(Kn1−1) < k1 ≤ cr(Kn1

). Let G = Kn−1 ∪Kn1
.
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Then cr(G) = cr(Kn−1) + cr(Kn1
) ≥ k and cr(CG) = cr(Kn) + cr(Kn1+1).

Therefore,

φs(k) ≤ cr(Kn) + cr(Kn1+1)− cr(Kn−1)− cr(Kn1
)

≤ cr(Kn)− cr(Kn−1) + cr(Kn1+1)− cr(Kn1−1).

By inserting the values for the crossing number from the Harary-Hill Con-
jecture, we obtain (the calculation given is for odd n and odd n1, it is similar
when n or n1 is even):

cr(Kn)−cr(Kn−1) =
1
64 ((n−1)2(n−3)2−(n−1)(n−3)2(n−5)) = 1

16n
3(1+o(1))

and

cr(Kn1+1)− cr(Kn1−1) =
1
64 ((n1 + 1)(n1 − 1)2(n1 − 3)

−(n1 − 1)(n1 − 3)2(n1 − 5))

= 1
8n

3
1(1 + o(1)).

Noticing that k = 1
64n

4(1+o(1)) and k1 = 1
64n

4
1(1+o(1)) = O(n3) because k1 ≤

cr(Kn)− cr(Kn−1), we conclude that n3
1 = O(n9/4) = o(k3/4) and henceforth

φs(k) ≤ 1
16n

3(1 + o(1)) + 1
8n

3
1(1 + o(1)) =

√
2 k3/4(1 + o(1)).

⊓⊔

The above proof works even under a weaker hypothesis that cr(Kn) = αn4+
βn3(1 + o(1)), where α and β are constants. This would imply that φs(k) =
O(k3/4). Our conjecture is that (9) gives the precise asymptotics.

Conjecture 10. φs(k) =
√
2 k3/4(1 + o(1)).

A reviewer noted that this asymptotic is matched when the graph we are
considering is dense.

Remark 11. Let G be a graph with n vertices, m edges, cr(G) = k and such that
m ≥ 4n. If m = Ω(n2), then cr(CG) ≥ k +Ω(k3/4).

The details will be provided in the full version.

Summary

To put the results of this paper into context, let us overview some of the motiva-
tion and some of directions for future work. The starting point of this paper was
an attempt to understand Albertson’s conjecture. The results of the paper (and
their proofs) show that the crossing number behavior when adding an apex ver-
tex is intimately related to 1-page drawings, but the exact relationship is quite
subtle. There is some evidence that the minimal increase of the crossing number
when an apex is added should be achieved with very dense graphs, close to the
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complete graphs. Our Conjecture 10 entails this problem. Although very dense
graphs have fewer vertices than sparser graphs with the same crossing number
and thus need fewer connections to be made from the apex to their vertices,
their near optimal drawings are far from 1-page drawings and therefore more
crossings are needed. The full understanding of this antinomy would shed new
light on the Harary-Hill conjecture.

Finally, it is worth pointing out that neither exact nor approximation algo-
rithm is known for computing the crossing number of graphs of bounded tree-
width. Adding an apex to a graph increases the tree-width of the graph by 1, thus
understanding the crossing number of the cone is an important special case that
would need to be understood before devising an algorithm for general graphs of
bounded tree-width.
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A Appendix: Proof of part (3) of Theorem 7

In this section we complete the proof of Theorem 7 by showing that if cr(G) = k
and k ≥ 5, then cr(CG) ≥ k + 5.

Proof. Suppose G is a graph with cr(G) = k. Let D̂ be an optimal drawing of
the cone CG, D its restriction to G, and Fa be the face of D containing the
apex a. The vertices of G incident to Fa are the planar neighbors of a. If u is a
non-planar neighbor of a, then we let sau to be the number crossings involving
the edge au in D̂.

Assume that k ≥ 5, and suppose D̂ has less than k+5 crossings. By part (2)

of Theorem 4.1 we know that cr(D̂) = k + 4. Suppose that cr(D) = k + t. Let
N denote the set of non-planar neighbors of a. As we did before, we split into
cases depending on the size of N .

If the apex a has only planar neighbors, then, applying Corollary 6, we can
obtain a drawing with less than k+4

2 < k crossings, a contradiction. Thus |N | ≥ 1.
We need the following observation.

Claim. If u ∈ N , then the following holds:

(i) At most 4− sau crossings in D involve edges incident to u.
(ii) The number of crossing in which both edges involved are incident to some

vertex in N is at most 2|N | − ⌈s/2⌉.

Proof. (i) If there are more than 4− sau crossings involving edges at u, then we

redraw u in the place of D̂[a], join u to its neighbors using the corresponding
edges from a to V (G). This is a drawing with less than

k + 4− s− (4− sau) + s− sau = k

crossings, a contradiction.
(ii) From (i), we know that for each u ∈ N , there are at most 4−sau crossings

in D involving edges at u. Let us count the number of pairs (u, x) where u ∈ N
and x is a crossing involving an edge incident with u. By (i), the number of such
pairs is at most

∑

u∈N

(4 − sau) = 4|N | − s. (2)

This in particular implies (ii). ⊓⊔

Case 1. The apex a has exactly one planar neighbor.

From Item (i) in the previous Claim, we know that there are at most 4 − s ≤ 3
crossings involving edges incident with u ∈ N . So at least k crossings involve
crossing pairs that are not incident to u. We apply Corollary 6 to redraw some
crossing edges not incident with u in Fa, and we are careful by choosing our
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two pages so that we draw one edge crossing an edge at u (if such edge exists)
in Fa to remove an extra crossing. Then we obtained a drawing with at most
k + 4− s− (k2 + 1

2 )− 1 < k crossings.

Case 2. The apex a has two non-planar neighbors.

Let us define t = 4 − s for brevity. Then 0 ≤ t ≤ 2. Let X be the set of
crossings involving an edge not incident to a vertex in N , and EX be the set of
crossing edges not incident to any vertex in N . We claim that |X | ≤ t.

This is easy to see when t = 0, as if |X | ≥ 1, then there is an edge in EX that
we can redraw in Fa to obtain a drawing with less than k crossings. Suppose that
t = 1. If |X | ≥ 2, then, either there is an edge e ∈ EX including two crossings,
or there is a pair of edges in EX that are not crossed. In the former case we
redraw e in Fa, in the latter we redraw the pair in Fa, to obtain a drawing with
less than k crossings.

Finally, suppose that t = 2. Any edge in EX is involved in at most 2 crossings,
otherwise we could redraw it in Fa to obtain a drawing with less than k crossings.
If |X | ≥ 3, then, either there is an edge e ∈ EX crossed twice and an edge f ∈ EX

not crossing e, or every edge in EX is crossed at most once. In the former case,
we redraw e and f in Fa, in the latter, for each crossing in X we pick an edge
EX involved in the crossing and redraw it in Fa. In any case we obtain a drawing
of G with less than k crossings. Therefore |X | ≤ 2.

In any case we know that |X | ≤ t ≤ 2, and by Item (ii), the number of
crossings in D is at most

2 + t/2 + |X | ≤ 2 + 3t/2 ≤ 5.

Since cr(G) ≥ 5, we have that cr(D) = 5, |X | = t = 2, and EX 6= ∅. However,
if we redraw any edge from EX in Fa, we obtain a drawing of G with less than
5 crossings.

Case 3. The apex a has three non-planar neighbors.

In this case cr(D) is either k or k + 1, so t = 0 or t = 1. The argument given in
the previous case shows that there are at most t crossings involving an edge not
incident to a vertex inN . Using Item (ii), we know thatD has at most 4+t/2+|X |
crossings, where X is defined as in the previous case. Since cr(D) ≥ 5, this shows
that D has exactly 5 crossings, and that |X | = 1. In particular cr(D) = k and
thus t = 0, which contradicts that |X | ≤ t.

Case 4. The apex has four non-planar neighbors.

In this case s = 4, cr(D) = k and say = 1 for every y ∈ N . Let N =
{u, v, w, x}. Note that each crossing edge is incident to a vertex in N . By Item
(i), there are at most 3 crossings involving edges incident to a fixed vertex in N ,
and by (ii), cr(D) ≤ 6. Moreover, the count (2) in the proof of (ii) shows that
cr(D) = 5 if there is an edge with both ends in N that is involved in a crossing.

Let H be the graph induced by N . We will split into two cases depending on
whether D[H ] is a crossing K4 or not.
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Subcase 1 D[H ] is not a crossing K4.

If H = K4, then D[H ] is a planar K4. This implies that there is a 3-cycle
composed of vertices in N , separating a fourth vertex in N from a, and this
contradicts that say = 1 for every y ∈ N . Therefore, there is a pair of vertices
in H , say u and v, with uv /∈ E(G).

If, for y ∈ N , dH(y) denotes the degree of y in H , then at most dH(y)

crossings involve edges at a. Otherwise, by redrawing y in D̂[a]; drawing the
edges from y to its neighbors in H by using the respective edges from a; and,
by drawing the remaining edges at y in Fa without creating new crossings, we
obtain a drawing of G with less than k crossings. Since dH(u), dH(v) ≤ 2 and

dH(w), dH(x) ≤ 3, cr(D) is at most
(∑

y∈N dH(y)
)
/2 = 5. Because cr(D) ≥ 5,

this implies that cr(D) = 5, dH(u) = dH(v) = 2 and that dH(w) = dH(x) = 3.
This also shows that for each y ∈ N , the number of crossings involving edges
at y is exactly dH(y). Also note that none of the edges in H are crossed, as
otherwise, at least three of the four vertices involved in some crossing belong to
N , and a refined version of our previous counting would exhibit that D has at
most 4 crossings.

Let H ′ be the drawing induced by N ∪{a}. Our previous observations imply
that the drawing of D[H ′] is isomorphic to the drawing of the cone of a planarly
drawn K4 minus one edge, where the apex is drawn in the face bounded by
the 4-cycle of K4 − e, and the edges incident to the apex connect directly to
the boundary of the 4-cycle. Moreover, the only crossings of H ′ in D̂, are those
between the edges at a and the boundary of Fa in D. This restricted drawing
of H ′ implies that the ends of a crossing pair of edges have exactly one element
in {u, v}, exactly one element in {w, x}, and none of the two edges has both
ends in N . However, this is not possible, as there are 4 crossings involving edges
incident to one of u or v, while there are 6 crossings involving edges incident to
one of w or x.

Subcase 2 D[H ] is a K4 with a crossing.

Suppose that uv and wx is the crossing pair in D[H ], and that × is the
crossing between uv and wx. Following the same argument given in the previous
case, it is easy to see that for every y ∈ N , there are exactly 2 crossings distinct
from × involving edges at y; cr(D) = 5; if H ′ is graph is induced by N ∪ {a},
then its drawing D[H ′] is isomorphic to the drawing of the cone of a crossing
K4, where the apex is drawn in the face bounded by the 4-cycle of the K4, and
the edges incident to the apex connect directly to the boundary of the 4-cycle;
and, the only crossings of D̂ in H ′, distinct from ×, are those between the edges
at a and the boundary of Fa in D.

The restrictions on H ′ show that the ends of a crossing pair of edges distinct
from uv and wx, have exactly one element in {u, v}, exactly one element in
{w, x}, and none of the two edges has both ends in N .

The boundary walk of Fa contains a cycle C that in D̂ separates a from
N . There are two internally disjoint subarcs α and β of D[C] connecting the
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crossings between D[C] and each of aw and ax. We label α and β so that α
includes the crossing between D[C] and au, and β includes the crossing between
D[C] and av. The restrictions imposed by the crossings in H ′ imply that all the
neighbors of u not in N are contained in α, and likewise the neighbors of v not
in N are contained in β.

We obtain a drawing of G with 4 crossings as follows. Redraw u in the place
of D̂[a]; join a to each of w and x using the corresponding edges from a to each
of w and x. Draw the edges from u to its neighbors not in N without creating
new crossings. Now redraw v near u in the face bounded by β and the two
segments of the new uw, ux edges. Connect v to each of w and x by following
arcs near the new uw, ux edges. Connect v to the rest of its neighbors without
creating new crossings. Since cr(G) ≥ 5 and this drawing has 4 crossings, this is
a contradiction.

In any case we obtained a contradiction. Thus cr(CG) ≥ k + 5 when k ≥ 5.
⊓⊔
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