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QUADRATIC GROWTH CONDITIONS FOR CONVEX MATRIX
OPTIMIZATION PROBLEMS ASSOCIATED WITH SPECTRAL
FUNCTIONS

YING CUI¥, CHAO DING', AND XINYUAN ZHAO?

Abstract. In this paper, we provide two types of sufficient conditions for ensuring the quadratic
growth conditions of a class of constrained convex symmetric and non-symmetric matrix optimization
problems regularized by nonsmooth spectral functions. These sufficient conditions are derived via
the study of the C2-cone reducibility of spectral functions and the metric subregularity of their
subdifferentials, respectively. As an application, we demonstrate how quadratic growth conditions
are used to guarantee the desirable fast convergence rates of the augmented Lagrangian methods
(ALM) for solving convex matrix optimization problems. Numerical experiments on an easy-to-
implement ALM applied to the fastest mixing Markov chain problem are also presented to illustrate
the significance of the obtained results.
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1. Introduction. The quadratic growth condition is an important concept in
optimization. It is closely related to the metric subreqularity and calmness of set-
valued mappings (see Section 2 for definitions), and the existence of error bounds.
From different perspectives, the study of the metric subregularity and the calmness
of set-valued mappings plays a central role in variational analysis, such as nonsmooth
calculus and perturbation analysis of variational problems. We refer the reader to
the monograph by Dontchev and Rockafellar [17] for a comprehensive study on both
theory and applications of related subjects. See also [31, 18, 24, 37, 25, 26, 43] and
references therein for recent advances.

Instead of considering general set-valued mappings, in this paper, we mainly fo-
cus on the solution mappings of convex matrix optimization problems. It is known
from [1] that for convex problems, the metric subregularity of the subdifferentials of
the essential objective functions (or the calmness of the solution mappings) can be
equivalently characterized by the corresponding quadratic growth conditions. This
connection motivates us to study the sufficient conditions for ensuring the latter prop-
erties. Beyond their own interests in second order variational analysis, the quadratic
growth conditions can be employed for deriving the convergence rates of various first
order and second order algorithms, including the proximal gradient methods [39, 58],
the proximal point algorithms [50, 40, 36, 37] and the generalized Newton-type meth-
ods [22, 19, 42].

The convex matrix optimization problems concerned in our paper take the fol-
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lowing form:

I}I{lé% O(X) :=h(FX)+{C,X)+0(X)

(1)
st. AXeb+ Q,

where X is either the rectangular matrix space R™"*™ (n < m) or the symmetric
matrix space S”, C' € X and b € R® are given data, F : X —» R? and A : X — R® are
two linear operators, h : R? — (—o0, +-00] is convex and continuously differentiable
on dom h, which is assumed to be a nonempty open convex set, § : X — (—00, +00] is
a proper closed convex function and Q < R¢ is a given convex polyhedral cone. The
dual of problem (1), in its equivalent minimization form, is given by

i v S):=4 — b h*(—w) + 0%(—S
@ s ey W0, 8) = 00 (y) = by) o+ HF(—w) + 07(=5)
s.t. A*y + Frw+ S =C,

where dgx(-) is the indicator function over the dual cone Q*, A* and F* are the
adjoint of the linear operators A and F, respectively, and h* and 0* are the corre-
sponding conjugate functions of h and 6. Problems of form (1) constitute a large class
of convex matrix optimization problems with extensive applications in many fields,
such as matrix completion, rank minimization, graph theory and machine learning.
The (possibly nonsmooth) function 6 in the objective can be used for imposing differ-
ent properties to the decision variable X. Frequently used examples of # include the
indicator function over the positive semidefinite (PSD) cone in semidefinite program-
ming [59], the nuclear norm function (i.e., the sum of all singular values of a matrix)
in matrix completion problems [8, 9, 45], the spectral norm function (i.e., the largest
singular value of a matrix) in matrix approximation problems [61, 28, 57], and the
matrix Ky Fan k-norm (1 < k < n) function (i.e., the sum of k largest singular values
of a matrix) in fastest mixing Markov chain problems [7, 6].

The functions # in the aforementioned examples belong to a special class of func-
tions, called spectral functions [33, 35]. Specifically, they can be formulated either in
the form of

(3) 0(X)=yg(c(X)), XeX R™™ with n <morS")

with the function g : R" — (—o0,+m] being proper closed convex and absolutely
symmetric, or in the form of

(4) 0(X) = g(MX)), XeS§"

with the function g : R® — (—o0, +0] being proper closed convex and symmetric.
Here o(X) denotes the vector of singular values for any given X € X with the compo-
nents 01(X) = 02(X) > ... = 0,(X) = 0 being arranged in the non-increasing order,
and A(X) denotes the vector of eigenvalues for any given X € S™ with the components
M(X) = M(X) = ... = A\, (X) also being arranged in the non-increasing order. In
particular, for the indicator function over the PSD cone 6(-) = ds» (-), the correspond-
ing symmetric function g is the indicator function over the positive orthant R’} , and
for the matrix Ky Fan k-norm function 6(-) = | - | (%), the corresponding absolutely
symmetric function g is the sum of k largest absolute components of a given vector.

In this paper, we concentrate on the study of sufficient conditions for guarantee-
ing the quadratic growth conditions for problem (1) and problem (2) associated with
spectral functions (3) or (4). The sufficient conditions obtained in this work are of two
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types. One is based on the “no-gap” second-order sufficient conditions [5] of problems
(1) and (2), under the C2-cone reducibility assumption of spectral functions. The other
is through the bounded linear regularity of a collection of sets, whose intersection ex-
actly gives the optimal solutions, under the metric subregularity assumption of the
subdifferential mappings of spectral functions. The latter type has been used in [64]
for studying the error bound of unconstrained convex matrix optimization problems,
and in [12] for discussing the metric subregularity of the set-valued mappings aris-
ing from constrained semidefinite programming. Moreover, we show that the C2?-cone
reducibility of spectral functions, as well as the metric subregularity of their subd-
ifferential mappings, can be justified by the corresponding properties of underlying
(absolutely) symmetric functions. These results are also of their own interests as they
provide tools for verifying these two fundamental variational properties of the non-
polyhedral spectral function 6 through the possibly polyhedral (absolutely) symmetric
function g. In particular, for all the aforementioned examples, these two properties
with respect to ¢ hold automatically due to their piecewise linear structures.

To illustrate the usefulness of our derived results, we investigate the fast conver-
gence rates of the augmented Lagrangian method (ALM) for solving problem (2) under
the quadratic growth conditions. Our motivation of this part stemmed from the highly
promising numerical results of the ALM incorporated with the semismooth Newton-
CG algorithm for solving large scale convex matrix problems [63, 32, 10, 62, 38]. We
extend the results in the current literatures on the rates of the ALM for solving convex
optimization problems [49, 40] and show that the (super)linear convergence rates of
the ALM may still be valid even if problem (1) admits multiple solutions.

The remaining parts of this paper are organized as follows. In the next section, we
introduce some preliminary knowledge from variational analysis in formulations and
proofs of the main results. In Section 3, we establish the quadratic growth conditions
of problem (1) (or problem (2)) under the assumptions that either g (or g*) is C2-cone
reducible or dg (or dg*) is metrically subregular. Section 4 is devoted to an application
of the quadratic growth conditions for the convex matrix optimization problems, that
is, we establish the asymptotic (super)linear convergence rates of the ALM under
the quadratic growth conditions. In Section 5, we conduct numerical experiments on
solving fastest mixing Markov chain problems to demonstrate the derived fast rates
of the ALM. We conclude our paper and make some comments in the final section.

2. Notation and preliminary. Let U and V be two finite dimensional real
Euclidean spaces. For any v € U and p > 0, we define the ball B,(u) := {ve U] |v —
ul]| < p}. Let D = U be a set. For any u € D, the tangent cone of D at u is defined by
Tp(u) := {d€ U |3u" — u with u* € D and t* | 0 such that (u* —u)/tF — d}. We
let dp () to be the indicator function over D, i.e., dp(x) =0if z € D, and dp(x) = «©
ifx¢ D. If D < U is a convex set, we use ri (D) to denote its relative interior. For a
given closed convex set D € U and u € U, define IIp(u) := argmin{|d — u|| | d € D}
and dist(u, D) := mingep ||d — ul|. Let @ < {1,...,n} and B < {1,...,m} be two index
sets. For any Z € R™*™, we write Z; to be the i-th column of Z and Z,s to be
the |a| x |8] sub-matrix of Z obtained by removing all the rows of Z not in « and
all the columns of Z not in 8. For any z € R", we denote Diag(z) as the n x n
diagonal matrix whose i-th diagonal entry is z; for i = 1,2,...,n. For any Z € R"*",
we denote diag(Z) as the column vector consisting of all the diagonal entries of Z
being arranged from the first to the last. For a given proper closed convex function
p: U — (—oo,+00], we use domp to denote its effective domain, epip to denote
its epigraph, p* to denote its conjugate and dp to denote its subdifferential, as in
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standard convex analysis [48]. We also use Prox, to denote the proximal mapping of
p.

For a given positive integer n, let O™ be the set of all n x n orthogonal matrices.
For any X € X, let Ox(X) be the set of paired orthogonal matrices satisfying the
singular value decomposition, i.e.,

Ox(X) = {(U,V)e 0" x O™ | X = U[Diag(c(X)) 0]VT} if X =R»>™,
“ = (0 V) €07 x 07 | X = UDiag(o(X))VT} if X = S,

To distinguish with the above sets of singular vectors, we use Ogn (X) to denote the
set of orthogonal matrices satisfying the eigenvalue decomposition of a given matrix
X eSS ie.,

Osn(X) = {PeQ" | X = PDiag(\(X))P"}.

The following lemma regarding the upper Lipschitz continuity of singular vectors
and eigenvectors is given in [16, Proposition 7] and [55, Lemma 4.3], respectively.

LEMMA 1. (i) Let X € X. Then there exist constants € > 0 and k > 0 such that
for any X € B.(X) and any (U, V) € Ox(X), there exists (U,V) € Ox(X) such that

U, V) = (U, V)] < k| X = X].

(i) Letz € S". Then there exist constants € > 0 and k > 0 such that for any
X € B.(X) and any P € Osn(X), there exists P € Osn(X) such that

|P—P| < k|X - X].

A function g : R™ — (—0, +0] is said to be symmetric if g(x) = g(Qz) for any
x € R™ and any permutation matrix ¢ € R™*™, and is said to be absolutely symmetric
if g(z) = ¢g(Qx) for any x € R™ and any signed permutation matrix @ € R**" (i.e.,
an n x n matrix each of whose rows and columns has one nonzero entry which is
+1). The following two propositions, which are taken from [33, 34, 35|, provide the
formulas for the conjugate and the subdifferentials of spectral functions. In particular,
part (ii) in Proposition 2 generalizes the characterization of the subdifferentials for
the orthogonally invariant norms in [60].

PROPOSITION 2. Let g : R™ — (—o0, +00] be a proper closed convex and absolutely
symmetric function.

(i) The conjugate function g* is absolutely symmetric and (goo)* = g*oo.

(i) Let X € X have the singular value o(X) in domg. Let W € X. Then W €
(goo)(X) if and only if o(W) € dg(a(X)) and there exists (U, V) € Ox(X) nOx(W).
In fact, (g 0 0)(X) = {U[Diag(u) 0]V" | € 2g(a(X)), (U,V) € Ox(X)}.

PROPOSITION 3. Let g : R™ — (—o0, +0] be a proper closed convex and symmet-

ric function.

(i) The conjugate function g* is symmetric and (go A\)* = g* o \.

(i) Let X € S™ have the eigenvalue A(X) in domg. Let W € S™. Then W € d(goA)(X)
if and only if A\(W) € 0g(\N(X)) and there exists P € Osn(X) N Ogn (W). In fact,
(g 0 \)(X) = {PDiag(u)P" | p€ dg(A(X)), P € Osn(X)}.

Let G : U 3V be a set-valued mapping. The graph of G is defined as gph G :=
{(u,v) eUxV | ve G(u)} and the inverse mapping of G is defined as G~1(v) = {u €
U |ve G(u)} for any v € V. The following definition of metric subregularity is taken
from [17, Section 3.8(3H)].
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DEFINITION 4. Let U and V be two finite dimensional Fuclidean spaces. A set-
valued mapping G : U 3V is called metrically subregular at @ for v (with modulus k)
if (u,v) € gph G and there exist constants § > 0, ¢ > 0 and k > 0 such that

dist(u, G71()) < kdist(0, G(u) N Bs(9)) Yue B.(q).

It is known that (see, e.g., [17, Theorem 3H.3]) for any set-valued mapping G :
U =3V and any (@,?) € gph G, the mapping G is metrically subregular at @ for v if
and only if G! is calm at ¥ for 4, i.e., there exist constants ' > 0, &’ > 0 and &' > 0
such that
G (v) nBs(a) € G D) + K|lv— 0By Vv e B (),

where By is the unit ball in U.

The equivalence between the quadratic growth condition of a proper closed convex
function and the metric subregularity of its subdifferential has first been proved in [1,
Theorem 3.3] in Hilbert spaces and then been extended in [2, Theorem 2.1] to Banach
spaces. We will restrict our attention to this equivalence in Euclidean spaces.

PROPOSITION 5. Suppose that p : U — (—o0, +00] is a proper closed convex func-
tion. Let (Z,0) € U x U satisfy (T,v) € gph dp. Then dp is metrically subreqular at T
for v if and only if there exist constants k > 0 and § > 0 such that

(5) p(x) = p(Z) + B,z — ) + kdist?(z, (Op) (7)) Ve Bs(Z).

Specifically, if (5) holds with constant k, then Op is metrically subregular at T for v
with modulus 1/k; conversely, if Op is metrically subregqular at T for v with modulus
k', then (5) holds for all k € (0,1/(4x)).

The following C2-cone reducible property is adopted from [5, Definition 3.135] and
is needed in our subsequent discussions.

DEFINITION 6. Let @ < U be a pointed convex closed cone (a cone is said to be
pointed if z € Q and —z € Q implies that z = 0). The closed convex set K €V is said
to be C2-cone reducible at X € K to the cone Q, if there exist an open neighborhood
W C V of X and a twice continuously differentiable mapping Z : W — U such
that: (i) 2(X) = 0 € U; (ii) the derivative mapping Z'(X) : V — U is onto; (iii)
KW ={XeW]|ZE(X)e Q}). We say that K is C*-cone reducible if K is C*-cone
reducible at every X € K.

Based on the above definition, we say a proper closed convex function p : U —
(—o0,00] is C2-cone reducible at u € domp if epip is C2-cone reducible at (u,p(u)).
Moreover, p is said to be C2-cone reducible if it is C2-cone reducible at every u € dom p.

We recall the following definition of bounded linear regularity (see, e.g., [3]).

DEFINITION 7. Let Dy, Do, ..., Ds < U be closed convex sets for some positive
integer s. Suppose that D := Dy n Ds n ... n Dy is non-empty. The collection
{D1, Ds,...,Ds} is said to be boundedly linearly regular if for every bounded set B <
U, there exists a constant k > 0 such that

dist(z, D) < xmax {dist(z, Dy),dist(z, D), ...,dist(z, Ds)} VxeB.

The property of bounded linear regularity can be implied by the standard constraint
qualification, as stated in the following proposition [4, Corollary 3].

PROPOSITION 8. Let D1, Ds,...,Ds € U be closed convex sets for some positive
integer s. Suppose that Dy, Ds, ..., Dy, are polyhedral sets for some so € {0,1,...,s}.
Then a sufficient condition for {D1, Da,...,Ds} to be boundedly linearly regular is

1=1,2,...,80 1=s0+1,...,s
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Finally, for any function p : U — (—00, +0], we use p* (u;d) and pi(u; d) to
denote the lower and upper directional epiderivatives of p at u € U along the direction
deU,i.e.,

td') —
tl0 t
d'—d

and

4 J—
pi(u;d) = sup {liminf p(u+tad’) = p(u) } ,

{tayea (4 tn

where A denotes the set of all positive real sequences {p,} converging to 0 [5, Section
2.2.3]. If p is a closed convex function, then we know from [5, Proposition 2.58] that
b (u;+) = pi(u; -) for any u € domp, i.e., p is directionally epidifferentiable with the
directional epiderivative p*(u;-). Furthermore, if p!(u;d) is finite for u € domp and

d € U, we define the lower second order directional epiderivative of p by for any w € U,

plu+td + $t2w') — p(u) — tp*(u; d)
1

p

Y(usd,w) = lir%(i)nf

’

w/ —w

3. The quadratic growth conditions for convex matrix optimization
problems. For notational simplicity, we write Z := R® x R? x X and for any y € R,
we R and S € X, we write Z = (y,w, S). The Lagrangian function [ associated with
problem (2) takes the form of

0(2,X) = U(Z) + (X, A*y + Fru+ S —C), (Z,X)eZxX.
Let ¢ : X — (—o0, 0] be the essential objective function of problem (1), i.e.,

d(X) ifAXeb+ Q,

400 otherwise,

(6) 9(X) := — inf I(Z, X) = { VXeX.

Denote the set-valued mapping 7y : X = X associated with ¢ as
(7) To(X) = 06(X), X eX.

Let Qp € X and Qp S Z be the optimal solution sets of the primal problem (1)
and the dual problem (2), respectively, both being assumed to be nonempty. Let
Mp(Z) € X be the set of Lagrangian multipliers associated with Z € Qp for problem
(2), i.e., X € Mp(Z) if and only if (X, Z) = (X, 7y, w,S) solves the following KKT

system:
« 0e AX — b+ Nox(y), 0€ FX — dh*(~w), 0e X — d0*(—S),
0=C— (A*y+ F*w + 9),
for (Z,X) € Z x X, where Ng«(y) denotes the normal cone of Q* at y € Q* as in

standard convex analysis [48]. It can be easily checked that if (X,Z) € X x Z is a
solution to the above KKT system, then (X, ) solves the following inclusion problem:

9)

0eC — A%y + F*Vh(FX) + 06(X),
(X,y) € X x R°.

0e AX — b+ Nox(y),



We write M p(X) S R® as the set of Lagrangian multipliers § associated with X € Qp,
i.e., § € Mp(X) if and only if (X, ) satisfies (9).

Let Fp and Fp be the sets of all feasible points for problem (1) and problem (2),
respectively, i.e.,

Fp={XeX|AX €b+Q}, Fp={Z€Z|A*y+F*w+S=C, ye Q*}.

The quadratic growth condition is said to be satisfied at an optimal solution X € Qp
for problem (1) if there exist constants d§, > 0 and , > 0 such that

(10) O(X) = O(X) + kp dist*(X,Qp) VX € Fp nBs, (X).

Similarly, the quadratic growth condition is said to be satisfied at Z € Qp for problem
(2) if there exist constants 4 > 0 and k4 > 0 such that

(11) U(Z) = U(Z) + kg dist*(Z,Qp) VZeFpnBs,(Z).

The constants k, in (10) and k4 in (11) are called the quadratic growth modulus with
respect to the problem (1) and (2), respectively.

The lemma below, which is a direct application of Proposition 5 to the essential
objective function ¢ in (6), reveals the relationship between the metric subregularity
of Ty in (7) at an optimal solution for the origin and the quadratic growth condition for
problem (1). An analogous result regarding the dual problem (2) can be established
in the same fashion.

LEMMA 9. The following two properties are equivalent to each other:

(a) The quadratic growth condition (10) holds at X € Qp for problem (1).

(b) The set-valued mapping Ty is metrically subregular at X € Qp for the origin.
Specifically, if (10) holds with quadratic growth modulus k,, then Ty is metrically sub-
reqular at X for the origin with modulus 1/kp; conversely, if Ty is metrically subregular
at X for the origin with modulus «,, then (10) holds for any k, € (0,1/(4k7)).

In the following two subsections, we shall study two types of sufficient conditions
for ensuring the primal quadratic growth condition (10) and the dual quadratic growth
condition (11), respectively. One is under the C2-cone reducibility assumption of g
(g*), the other is under the metric subregularity assumption of dg (dg*).

3.1. Sufficient conditions under the C2-cone reducibility. When the spec-
tral function @ in problem (1) is C2-cone reducible, one can derive the conditions for
guaranteeing the quadratic growth condition (10) by employing the second order suf-
ficient conditions of convex composite optimizations (see [5, Section 3.4.1] for details).
In general, it may be difficult to check the C2-cone reducibility of matrix functions.
Our first result is to show that the C?-cone reducibility of the spectral function  can
be verified via its underlying (absolutely) symmetric function g.

PROPOSITION 10. Let g : R™ — (—o0, +] be a proper closed convex and abso-
lutely symmetric function. Let 6 : X — (—o0, +0] be the spectral function associated
with g as in (3). For any X € dom @, if the function g is C?-cone reducible at o(X),
then the function 0 is C%-cone reducible at X.

Proof. We first introduce some notations. Denote the nonzero distinct singular
values of X by 7; > ... > 7, > 0, where r is a positive integer. Define the index sets

a:={i|o;(X)=7, 1<i<n}lforl=1...;r,a41=b:={i]|0(X)=0, 1<
i<njand c:={n+1,...,m}. We write X(X) = Diag(c(X)) for any X € X and
Y. = Diag(c(X)).



Let [ € {1,...,7+ 1} be arbitrary but fixed. Since the singular value function o(-)
is globally Lipschitz continuous, one can obtain from [16, Proposition 5] that there
exists an open neighborhood A of X such that the following functions ¢ : N' — R"*"
and V; : NV — R™*™ are well-defined:

(12)  U(X):= D U(X)U(X)", Wi(X) = D Vi(X)WVi(X)T, XeN,

1€Eay 1€ay

where (U(X), V(X)) € Ox(X). That is, for any X € N, the function values (X ) and
V,(X) are independent of the choices of the orthogonal pairs (U(X), V(X)) € Ox(X).
By the relationship between the singular value decomposition of any X € X and

. _ . . 0 X
the eigenvalue decomposition of its extended symmetric counterpart [ X7 ],

one can derive from [16, Proposition 8] that the mappings U (-) and V() are twice
continuously differentiable on A/

To proceed, let us first consider the case that X = [i 0]. For any X € NV, let
L;(X) and R;(X) be the left and right singular vector spaces corresponding to the
single values {¢;(X) : ¢ € a;}. Obviously the spaces spanned by the columns of U (X)
and V;(X) coincide with £;(X) and R;(X), respectively. Now we show that if X is
sufficiently close to X, the columns of U;(X) are the bases of £;(X). In fact, for any
X € N, the i-th column of U;(X) is given by

Ur;(X)
U(X)): = ZUij(X) : , iea.
Jea Unj(X)

Let ¢ = (q1,-..,qja)" € RI%! be the vector such that Dica, G(UI(X)); = 0. Since
the columns of U(X) among the index set a; are linearly independent, we see that
q is the solution of the linear system Uy,q,(X)g = 0. Recall that X = [i 0]. Then
by [16, (31) in Proposition 7], for all X sufficiently close to X, there exists Q; € Q%!
such that U,,q,(X) = Q1 + O(|X — X|). Thus, the matrix Uy,q,(X) is invertible,
which further implies that ¢ = 0 and the columns of (X)) are linearly independent.
Consequently, by shrinking N if necessary, we have that for any X € A, the columns
of Uj(X) are the bases of £;(X). By using the similar arguments, one can also derive
that the columns of V;(X) are the bases of R;(X). Applying the Gram-Schmidt
orthonormalization procedure to the columns of ¢;(X) and V;(X) for X € N/, we can
obtain two matrices M, (X) € R**I| and N,, (X) € R™*l“! such that the columns
of M,,(X) are the orthogonal bases of £;(X) and the columns of N, (X) are the
orthogonal bases of R;(X). For X sufficiently close to X and two positive integers
LU e{l,...,r+1} with [ # I, it holds that 0;(X) # 0;(X) for i € ; and j € ay,
implying that the matrices M(z) = [My, (X) -++ Mo, (X) M,,,,(X)] € R™" and
N(z) = [Noy(X) -+ No(X) Ng,,,(X)] € R™™ are orthogonal and satisfy the
following singular value decomposition

X =MX)[2(X) 0]N(X)T.
Thus, we have

(X(X))aga, forli=1,...,m
[2(X)p, 0] forl=r+1.
8

Mo, (X)X N, (X) = {



Take M,, : N — R™*lal and No : N — R™*l@l a5 two matrix mappings. Since
M,, and N,, are twice continuously differentiable on N, the mappings defined by
My, (X)TXN,,(X) for any X € N are also twice continuously differentiable on N
Moreover, one can derive from [16, (31) in Proposition 7] that for any X € N,

O(IX - X|)_ O(IX - X|)_
Mo, (X) = | Lo+ O(IX = X[?) |, Na(X) = | lja +O(|X = X|?)
o(|x - X1) o(lx - X1)

Denote H := X — X. For any X € N, we deduce

Sara, + Hayay + O(|H|?) forl=1,...,r,

) an 073050 = L " ey =y

For the general case, let (T, V) € Ox(X) be fixed. Then U XV = [T 0] +
UT(X — X)V. Denote H = UT(X — X)V. Therefore, replacing X by UTXVJH the
previous arguments, we know that there exists an open neighborhood A of X such
that the mapping

=T 7771 77 T —
D) { M, (U XV)TU XVN,, (U XV) forl=1,...,

7 — S

Mo, (U XV)TU XVN,,, (U XV) fori=r+1, Xen,
E(Darey forl= 1,07
[B(X)p 0] forl=r+1,

is twice continuously differentiable on N. In particular, we have

— b forl=1,...,r
14 D X — jlal ) P
(14) 1X) {[Ebb 0]=0 forl=r+1.

Moreover, the equation (13) implies that for any X € N,

Heypay + O(|X = X|) forl=1,...,r,

15 DulX) = Bi(X) = { [Hy Hp] +O(|X —X[?) forl=r+1

Let £ = §(X) and N/ < R be any open neighborhood of £ and W := N x N".
Define the mapping =: W — R" x R by
2(X,t) := (diag(D1(X)), ..., diag(D, (X)), diag(D,4+1(X)),t), (X,t)e N x N".

It then follows from (14) that epi@ "W = {(X,t) e W | E(X,t) € epig} and Z(X, 1) =
(o(X),t). Moreover, (15) implies that for any (H,7) € X x R sufficiently close to the
origin,

E(X + H, 1+ 7) - E(X,1) = (diag(Haya,), - - - diag(Ha, 1 10,.4,),7) + O (H,7)[%).
Thus, the derivative Z/(X,f) : X x R - R" x R of = at (X, ) is given by
E/(X,8)(H,7) = (diag(Haya, ) - - - , diag(Ha,q,), diag(Hy),7), (H,7) € X x R.
Obviously Z/(X, ) is onto. Since epi g is C?-cone reducible at (o(X),#), we know from

[52, Proposition 3.2] that epi@ is also C2-cone reducible at (X,#). The proof is thus
completed. 0



For spectral functions 6 associated with symmetric functions g in the form of
(4), we have the following analogous conclusion. Its proof can be derived similarly to
Proposition 10 by replacing all the singular value decompositions in the arguments
with the eigenvalue decompositions. We omit the details here.

PROPOSITION 11. Let g : R® — (—o0, +o] be a proper closed convex and sym-
metric function. Let 0 : S* — (—o0, +0] be the spectral function associated with g as
in (4). Then for any X € dom @, if the function g is C*-cone reducible at \(X), then
the function 6 is C%-cone reducible at X.

REMARK 1. It is known that the convex polyhedral sets are C2-cone reducible [5,
Ezample 3.139]. Hence, Propositions 10 and 11 imply that the class of C*-cone re-
ducible spectral functions is rich. In particular, they cover the results in [5, Example
3.140] and [13, Proposition 4.3] about the C*-cone reducibility of the indicator func-
tion over the PSD cone and the matriz Ky Fan k-norm function, respectively.

Let X € Qp with Mp(X) # &. The critical cone of problem (1) at X is given
by

) — AH € TQ(-AX 7b)7 He 7:iom9(X)7
Cp(X) = {HEX ‘ (F*Vh(FX) + C,H) + 64(X; H) = 0 }

Similarly, let Z € Qp with Mp(Z) # . If h* is twice continuously differentiable,

then the critical cone of problem (2) at X is given by
A*Hy + F*H, + Hs =0,
' Hy € TQ* (g)a _HS € %omG*L_S)
{=b, H,) = (Vh*(—=w), Hy) + (6*)*(—=5; —Hg) = 0

AN (H 7H1U3HS)
Cp(2) := Y c7
Now we are ready to present the main result of this subsection.

THEOREM 12. Let 0 be a spectral function in the form of (3) (or (4)). Let X
be an optimal solution to problem (1) with Mp(X) # . Assume that the following
three conditions hold:

(a) the function h is twice continuously differentiable on domh;

(b) the function g is C?-cone reducible at o(X) (or M(X));

(c) the “no-gap” second order sufficient condition holds at X for problem (1), i.e.,
for any H & Cp(X)\{0},

sup {<fH, VEFX)FH)) = 6 ) (C — A5+ f*Vh(fX))} >0,
JEMp(X) ’
where qﬁE“Y’H)C) is the conjugate function of ¢ yy(*) := 0 (X H,-).
Then the quadratic growth condition (10) holds at the unique optimal solution X for
problem (1).

Proof. By applying Proposition 10 (Proposition 11) to condition (b), one can
obtain the C2-cone reducibility of the spectral function # at X. Thus, we know from
[5, Proposition 3.136] that epi 6 is second order regular at (X, (X)) (see [5, Definition
3.85] for the definition of second order regular). Then the conclusion of Theorem 12

follows from [5, Theorem 3.109], directly. ]
REMARK 2. The explicit expressions of QSTY H)() in condition (c) for 6 = (581()
can be found in [53] and for 6 = || ) can be found in [14]. Under the assumptions of

Theorem 12, the point X is in fact the unique optimal solution of problem (1). Thus,
the quadratic growth condition (10) at X can be equivalently stated as the existence
of constants 6, > p and k, > 0 such that
(16) P(X) = 0(X)+ 5, |[X —X|> VXeFpnBs, (X).

10



In the following, we also provide an analogous result to Theorem 12 regarding the
dual quadratic growth condition (11). By taking into account Proposition 2(i) and
Proposition 3(i), one can derive the proof in a similar manner.

THEOREM 13. Let 0 be a spectral function in the form of (3) (or (4)). Let Z be
an optimal solution for problem (2) with Mp(Z) # &. Assume that the following
three conditions hold:

(a) the function h* is twice continuously differentiable on dom h*;

(b) the function g* is C*-cone reducible at a(—S) (or A(—=S));

(c) the “no-gap” second order sufficient condition holds at Z for problem (2), i.e., for
any (Hy,, H,,, Hs) € Cp(Z)\{0},

(17) _swp {CH, VAR (o) Hy) = 0 ()} >0,
XEMD(Z)

where ¢Z‘§,HS)(~) is the conjugate function of 1z 4 () = (6*)%(~S; —Hs, ).

Then the quadratic growth condition (11) holds at the unique optimal solution Z for
problem (2).

3.2. Sufficient conditions under the metric subregularity of subdiffer-
entials. As discussed in Remark 2, the assumptions given in Theorem 12 (or Theorem
13) imply the uniqueness of the optimal solution for problem (1) (or problem (2)).
In this subsection, we shall study the quadratic growth conditions from a different
perspective. Our goal here is to provide sufficient conditions for this subject when the
underlying problems admit multiple solutions. For this purpose, we first study the
metric subregularity of the subdifferential of a spectral function 6.

PROPOSITION 14. Let g : R™ — (—o0, +m] be a proper closed convex and abso-
lutely symmetric function. Let 6 : X — (—o0, +00] be the spectral function associated
with g as in (3). Consider any point (X, W) € gph d0. If the subdifferential mapping
dg is metrically subregular at o(X) for o(W), then the subdifferential mapping 00 is
metrically subregular at X for W.

Proof. Since dg is assumed to be metrically subregular at o(X) for o(W), there
exist constants § > 0, ¢ > 0 and kg > 0 such that

(18)  dist(u, (0g) " (a(W))) < ko dist(a(W), dg(uv) N Bs(a(W))) VueB.(o(X)).

To establish the metric subregularity of 08 at X for W, it suffices to show that there
exists a constant x > 0 such that

(19) dist(X, (00) 1 (W)) < & dist(W,00(X) nBs(W)) VX e B.(X).

Consider any X € B.(X). If 00(X) n Bs(W) = ¢, the above inequality holds auto-
matically. Thus, we only need to consider those X such that 00(X) n Bs(W) # &.

Let W € 060(X) n Bs(W) be arbitrarily given. By Proposition 2 and the globally
Lipschitz continuity of the singular value function o(-), we see that

(20) a(W) € dg(a(X)) nBs(a(W)).

Moreover, Proposition 2 also implies that there exists an orthogonal pair (U,V) €
Ox(X) n Ox(W), that is,

X = U[Diag(c(X)) 0]V? and W = U[Diag(o(W)) 0]VL.
11



Observe that (dg)~(a(W)) = dg*(o(W)) is a nonempty closed convex set [48, Theo-
rem 23.2]. Let ux = Il 51, 7)) (0(X)), the projection of o(X) onto (dg)~ Lo (W)).
We deduce from (18) and (20) that

lo(X) = ux| = dist(o(X), (99) " (o(W))) < ol|o(W) — a(W)[| < rio|[W — W]

By shrinking 0 if necessary, we know from Lemma 1(i) that there exist k1 > 0 and

(U,V) € Ox(W) such that

(21) U, V) = (U, V)] < | W = W].

Define X = U[Diag(ux) O]VT (which is not necessarily a singular value decomposition
of X). Then X € (00)~1(W) by Proposition 2. Consequently,

dist(X, (66)"1(W)) < | X — X| = |U[Diag(o(X)) 0]V" — U[Diag(ux) 0]V |
< |U[Diag(o (X)) 0]V'" — U[Diag(o(X)) 0]V | + o(X) — ux]
< (JU =T+ |V = Vo)) + lo(X) - ux]
< 21 [W = W (|o(X)] + &) + ro|W — W[ < s [ W — W],

where k = 2k1(||o(X)[ +€) + k0. Since the above inequality is true for any X € B.(X)
and any W € 00(X) n Bs(W), the inequality (19) then follows. 0

By using a similar approach, we can establish an analogous conclusion to Proposi-
tion 14 regarding the metric subregularity of the subdifferential of a spectral function
associated with a symmetric function in the form of (4).

PROPOSITION 15. Let g : R" — (—o0,+0] be a proper closed conver and sym-
metric function. Let 0 : S — (—o0, +0] be the spectral function associated with g as
in (4). Let (X, W) € gph 0. If the subdifferential mapping 0g is metrically subregular
at \(X) for X(W), then the subdifferential mapping 00 is metrically subregular at X
for W.

Proof. One can derive the proof by replacing the singular value decompositions
in the proof of Proposition 14 with the eigenvalue decompositions, and then applying
Proposition 3 and Lemma 1(ii) accordingly instead of Proposition 2 and Lemma 1(i).
For brevity, we omit the details here. 0

REMARK 3. Recall that a set-valued mapping is said to be piecewise polyhedral if
its graph is the union of finitely many polyhedral sets. In his Ph.D thesis, Sun [56]
shows that a proper closed convex function p is piecewise linear-quadratic if and only
if Op is piecewise polyhedral, which is also equivalent to p* being piecewise linear-
quadratic (see also [51, Theorem 11.14, Proposition 12.30]). Moreover, a fundamental
result of Robinson about the local upper Lipschitz continuous property of the polyhedral
mapping [47] implies that for any convex piecewise linear-quadratic function p and any
point (x,w) € gph dp, (dp)~! = Op* is metrically subregular at x for w. Thus, the
subdifferential of the spectral function 0 is metrically subregular at any X € dom @ for
any W € 00(X) if the underlying function g is a convex piecewise linear-quadratic
function. Particular examples of such g include the sum of k largest absolute compo-
nents of a given vector and the indicator function over a convex polyhedral set. Thus,
Proposition 14 and Proposition 15 cover the results in [64, Proposition 11] and [11,
Theorem 2.4] for the metric subregularity of the subdifferentials of the nuclear norm
function and of the indicator function over the PSD cone, respectively; see also [12,
Proposition 3.3] for the metric subregularity of the latter subdifferentials.
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REMARK 4. For a possibly nonconvex function p : R" — (—o0, +m], one can
define its subdifferential mapping dp as in [5, (2.227) and (2.229)]. For any x € R™,
op(x) defined in this way is always a closed and convex set. In fact, all the assertions
in Proposition 2 and Proposition 3 are originally established under the more general
nonconver settings in [33, 35]. Hence, one can extend the results in Proposition 1/
and Proposition 15 to nonconvex functions g and 6 with no difficulty.

Now we come back to discuss the second type of sufficient conditions for the
quadratic growth conditions of problem (1) and problem (2). It is a well known fact
that if the function h is strongly convex on any convex compact subset of dom h, the
value FX is invariant over X € Qp (see, e.g., [41]). Hence, the following values are
well-defined for any X € Qp:

(22) E:=FX, 7:=F*VhFX)+C.
We denote the set Vp := {X € X | FX = ¢} and two mappings Gb,G% : R® — X as
Gp(y) = (00) " (A*y —17), Gh(y):={XeX [0 AX b+ Nox(y)}, yeR"
By the KKT condition (9), it is easy to obtain that
Qp =VrnGp(H) nGH(H) ¥y Mp(X).

Similarly, if A* is assumed to be strongly convex in the dual problem (2), the value
w is invariant over all Z = (y,w,S) € Qp. We denote the set Vp :={Z e Z | A*y +
F*w + S = C} and three mappings Gh,G%,G3 : X — Z as

GL(X):={Z€Z|0e AX —b+ Ngx(y)}, G5(X):={Z€Z |w=w},
GH(X):={ZeZ|0eS+d(X)}, XeX

By the KKT condition (8), we have
Qp =VpnGH(X)nGH(X)nGH(X) VX eMp(2).

The following theorem presents conditions for ensuring the quadratic growth con-
ditions for problem (1), under the metric subregularity of the subdifferential of the
(absolutely) symmetric function g.

THEOREM 16. Let 0 be a spectral function in the form of (3) (or (4)). Let X be
an optimal solution for problem (1) with Mp(X) # &. Assume that the following
three conditions hold:

(a) the function h is strongly convex on any compact subset of dom h;

(b) for any v € dg(c(X)) (or dg(N(X))), the mapping g is metrically subregular at
a(X) (or N(X)) for v;

(c) the collection of sets {Vp,g},(g),g,%(g)} is boundedly linearly regular for some
Y€ MP(X) . -

Then the quadratic growth condition (10) holds at X for problem (1).

Proof. Applying the results of Proposition 14 to the function § = g o o or Propo-
sition 15 to the function § = g o A, we see that for any S € 00(X), the mapping 00
is metrically subregular at X for S under condition (b). Then the conclusion follows
from [12, Theorem 3.1] directly. o

The remaining issue is how to verify assumption (c) in Theorem 16. By invoking
Proposition 8, we arrive at the following results.

13



PROPOSITION 17. The collection of sets {Vp,Gp(),Go(Y)} is boundedly linearly
regular for some i € Mp(X) under one of the following two conditions:
(a) GL(Y) is a polyhedral set;

(b) there exists X € Qp such that X € ri (GH(D))-

Proof. By Proposition 8 and the facts that Vp and G5(y) are polyhedral sets,
we directly get the conclusion under assumption (a). If assumption (b) holds, then
Vp N 1i(Gh(7)) N Gh(§) # &, and the conclusion also follows. o

Below we make several comments regarding the assumptions imposed in Propo-
sition 17. Firstly, let us illustrate condition (a) by several examples.

e Example 1: (X) = | X||2 for any X € R" (the vector 2-norm). Then 06~!(X)
is a polyhedral set for any X € R™ [58, 64] and the condition (a) automatically
holds.

e Example 2: 0(X) = g (X) for any X € S". Then condition (a) is equivalent
to rank(A*y — 7)) = n — 1 [12, Proposition 3.2].

e Example 3: (X) = | X||(4) for any X € X. Then in order for G5 (i) to be a
polyhedral set, we either have that |A*y — 7|« < k and 09(A*y —7) < 1, or
[A*y — 7]« = k, o2(A*y —7) < 1 and 7,,(A*y —7) > 0. This result can be
obtained via the characterization of d| - |4y in [61, 44].

Condition (b) in Proposition 17 can be viewed as the strict complementarity condition
for the generalized equation 0 € —X + 00(A*y — 7)) at (X,¥). In particular, one can
find characterizations of this property for 0(-) = ds» () in [5, Example 4.79] and for
0(-) = || - Ik in [14]. Tt is worth to mention that in order to satisfy assumption (c) in

Theorem 16, it suffices for problem (1) to admit a KKT point ()A( ,J) possessing the
partial strict complementarity condition with respect to the spectral function #. The
X here can be different from the reference point X.

We can also establish sufficient conditions for the quadratic growth condition (11)
of the dual problem (2).

THEOREM 18. Let 0 be a spectral function in the form of (3) (or (4)). Let Z be
an optimal solution for problem (2) with Mp(Z) # &. Assume that the following
three conditions hold:

(a) the function h* is continuously differentiable on dom h*, which is assumed to be
a nonempty open convex set, and h* is also strongly convex on any compact subset of
dom h*;

(b) for any w € dg*(a(S)) (or dg*(A(S))), the mapping dg* is metrically subregular
at a(S) (or X(S)) for w;

(c) the collection of sets {Vp,GhH(X),G5(X),G5(X)} is boundedly linearly regular
for some X € Mp(Z).

Then the quadratic growth condition (11) holds at Z for problem (2).

Before proceeding to the next section, we mention that when A, b and Q are
vacant in problem (1) and & is taken to be a least square function 1| - —d|? for some
given d € R, the problem (1) reduces to

1
(23) min §|\FX—CZ|\2+<C,X>+9(X),
and the corresponding dual is given by
1
(24) min§\|w—dH2 +0%(=S), st. Frw+S=C.

Obviously problem (24) has a unique optimal solution. Denote it as (w, S). Suppose
14



that 0 is given by (3) and g* is C? cone reducible at —c(S), then the quadratic
growth condition for the dual problem (24) always holds at (w, S) by Theorem 13.
However, certain conditions need to be imposed to the primal form (23) for deriving
its quadratic growth condition, like the one given in Theorem 12 or Theorem 16.
Examples for the failure of the quadratic growth condition of problem (23) without
any additional assumption can be found in [64], where 6 is taken to be the nuclear
norm function.

4. Fast convergence rates of the ALM. In recent years, lots of progress
has been achieved in solving large scale semidefinite programming (SDP) and non-
symmetric matrix optimization problems regularized by the nuclear norm and the
spectral norm [63, 32, 10, 62, 38]. The central idea of these works is to combine
the ALM and the semismooth matrix-valued function theory. In this section, we
demonstrate that under the derived quadratic growth conditions in Theorem 12 and
Theorem 16, the iteration sequence generated by the ALM enjoys fast convergence
rates. This part of work is motivated by a recent paper [12] on discussing the asymp-
totic (super)linear convergence rates of the ALM for solving the composite SDP.

Recall that we denote the variable Z = (y,w,S) for any y € R¢, w € R? and
S € X, and the space Z = R® x R? x X. Let ¢ > 0 be a positive parameter. For any
Z €Z and X € X, the augmented Lagrangian function associated with problem (2) is
given by

(25) LJ(Z,X):=1Z,X)+ (c/2)|A*y + F*w + S — C|*.

Let k > 0. Given a sequence of scalars ¢ 1 ¢y < o0 and a starting point X° € X, the
(k 4+ 1)-th iteration of the ALM is given by

{ Z¥ ~ argminges {(k(Z) == Le, (2, X*)},

(26) Xk+1 = xk + ck(A*yk“ 4 Frpktl L gk+1 _ C),

k=0

Our approach for deriving the convergence rates of the ALM is based on the
observation by Rockafellar that the ALM is a special implementation of the inexact
dual proximal point algorithm (PPA) for solving convex optimization problems [49].
Specifically, let Py := (Z + ¢,T5) ", where Z is the identity mapping in X and 75, is
the set-valued mapping given in (7). Consider the PPA

(27) XM~ Py(XP)

to be executed with the following stopping criteria:

(A) X —P(XF)| <en, ern=0, Yl ek <o,

(B) XM= PuXM) | < XE = XF =0, Xilome < o

Then the relationship between the iteration sequences generated by the ALM in (26)
for solving problem (2) and by the PPA in (27) for solving problem (1) is demonstrated
in the following proposition. We prove this proposition by adapting the proofs in [49,
Proposition 6] to our settings.

PROPOSITION 19. Given X* € X, ZF+1 = (yF+1 wh+1 Sk+1) e 7 and a positive
parameter ci for some k = 0. Let ( and Py be given by (26) and (27). Denote
XFHL = XF 4o (AFyP L+ Frh+l 4 SF+L — C). Then

(28) | X5 — P(X7)|2/(2ex) < G(Z7HY) — inf ¢
15



Proof. Firstly, it is known from [48, Theorem 37.3] that for any ¢ > 0 and X € X

inf L.(Z,X) = infmax{l(Z, X) — 1/(20)| X — X|?}
Z Z Xex

(29) = maxinf{i(Z, X) —1/(20)]X - X[*}
= %w@) —1/(20]X — X},

where ¢ is the essential objective function of problem (1) defined by (6). By taking
into account the definition of Py in (27), we see that

Le (ZFF1 X)) = ir%chk(Z, X) = ¢(Pu(X*)) = 1/(2¢1)| Pe(X*) = X|? VX eX

and
inf Lo, (2, X%) = 9(PL(X")) — 1/(2e0) | PL(X¥) — XH2

In view of the above two inequalities, we know that for any X € X,

Cr(ZFH1) —inf ¢,

Le, (ZF+1 XF) — inf Le, (Z, X*)

Lo (ZFH1 X)) —(XPH - XF X — XFY/ep — inf Le, (Z, Xk
G(Pe(X*)) = 1/(2¢k) | P(X*) = X[? = (XM = XF, X — XF) /ey
—(P(Pr(X"¥)) = 1/(2e1) [ P (X*) — X*[?)

= (AP(X") = XML X = XF) — | X = XF)?)/(2ck).

\%

Then (28) can be established by taking X = P(X*) — X**! + X* in the above
inequality. O

It follows from the above proposition that the sequence of multiplies {X*} gen-
erated by the ALM for solving problem (2), if adopted the following two stopping
criteria,

(A/) Ck(Zk+1) — inf Ck < 5%/2Ck, €k = 07 ZZC:O €k < 0O,
(B CGe(ZM1Y) —inf G < (n/2e0) |XFH = XPI2, e =0, X me < oo,

can be taken as the iterates generated by the inexact PPA for solving problem (1)
with the stopping criteria (A) and (B), respectively. This fact allows us to study the
convergence rates of the ALM via the rates of the inexact PPA.

In [50], Rockafellar established the convergence rates of the inexact PPA under
the Lipschitz continuity of ’7;_1 at the origin. This assumption, which automatically
requires the uniqueness of the optimal solution of problem (1), has been relaxed by
Luque with an error bound type condition [40, (2.1)]. Luque’s condition is known to
be satisfied if 74 is a polyhedral mapping [47]. When 74 is non-polyhedral, to check
Luque’s condition may be difficult, especially for the case that 7;71(0) is unbounded.
In [12], this condition is further relaxed by the metric subregularity of the operator 7,
at some optimal point for the origin. Based on Proposition 19 and [12, Theorem 4.1],
we can prove the global and local (super)linear convergence of the ALM for solving
matrix optimization problem (1).

THEOREM 20. Assume that the optimal solution set Qp to problem (1) is non-
empty. Denote U* be the optimal value of ¥ for problem (2). Let {(Z*, X*)} be an
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infinite sequence generated by the ALM in (26) with stopping criterion (A’), where
ZF = (y*,wk, S*). Then, the whole sequence {X*} is bounded and converges to some
X% e Qp, and the sequence {Z*} satisfies for all k =0,

(30) JA*gFHE 4+ Frobtt 4 GEH — O = M| XM - X >0,

(31) W(ZE) = 0% < Gu(ZMFY) — inf G + (1/26) (JXF[* — [ X5F2).

Moreover, if problem (2) has a non-empty bounded solution set, then the sequence {Z*}
s also bounded, and all of its accumulation points are optimal solutions to problem

(2).
If the quadratic growth condition (10) holds at X* for the origin with modulus
Kp > 0, then under criterion (B'): there exists k = 0 such that for all k = k,

(32) dist (X**1, Qp) < 6, dist (X, Qp),

where
Or = (e + 2m)(L—me) ™" with g, = 1/4/1 + 22,
Ok = 0 = 1/4 /1 + 2 k2 (0 = 0if ey = 0).

In addition, the following inequalities hold regarding the R-(super)linear convergence
rate of dual feasibility and dual objective value:

(33a) AR 4 Frh Tt 4 SEHL O < 7t dist(X*, Qp),
(33b) W(ZF) — U < 72 dist (X", Qp),
where

= (1 —mp)™t = 1L = /ey,

T (| X5 = XF| + [ XM+ | XP)) /2 — 73 = | X% /exo,

(1L =72 =0if cop = 0).

2.
Tg -

Proof. The assertions in the first paragraph of Theorem 20 can be obtained from
[49, Theorem 4] and [12, Theorem 4.2]. From Lemma 9 we know that if the quadratic
growth condition (10) holds at X for the origin with modulus &, > 0, then Ty is
metrically subregular at X® for the origin with modulus 1/k,. Thus, the inequality
(32) follows from Proposition 19 and [12, Theorem 4.1]. Finally, one can establish
the inequalities (33a) and (33b) by adapting the proofs in [12, Theorem 4.2] to our
settings with no difficulty. ]

Theorem 20 shows that under the quadratic growth condition of problem (1), the
primal iteration sequence {X*} generated by the ALM converges Q-(super)linearly,
while the dual feasibility and objective value converge at least R-(super)linearly. Per-
haps more importantly, the Q-(super)linear rate constant ) of the sequence {X*}
could be much smaller than 1. For example, the rate @) shall be around v/2/2 when
the penalty parameter c;, approaches 1/k,. This distinctive feature makes the ALM
very attractive. Numerical experiments conducted in the next section will demon-
strate this point.
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5. Numerical experiments. In this section, we conduct numerical experiments
for the ALM on solving the fastest mixing Markov chain (FMMC) problem [6, 7] in
order to illustrate its fast convergence rates. Let G = (V,€) be a connected graph
with vertex set V = {1,...,n} and edge set £ € V x V. Label the edges by l = 1,...,d.
For any y € ®?, denote A*y = Zld:l y E® | where if the edge | connects two vertices
iand j (i # j), then EZ(J[) = EJ(? =1, El(f) = EJ(? = —1 and all other entries of E(")
are zero. Let B € R™*? be the vertex-edge incidence matrix defined by

ie{l,...,n}and je {1,...,d}.

B — 1 if edge [ incident to vertx ¢,
71 0 otherwise.

The corresponding FMMC problem can be equivalent written in terms of the opti-
mization variables y € R%, z € R"*¢ and P € S" as
min [P ) + (5R1+d (%)

(34) = _
st. —A*y+P=1,, By+z=E¢,

where |- [[(2) is the Ky Fan 2-norm in 8", B = IdB e RF+dxd and & = (0,e,)7" €

R+, One can easily see that problem (34) is in the form of (2) by taking the variable
Sin (2) as (P, 2), the set Q% = {0} = R?, the function 8% = |-|(2) X dpn+a, the constant
+

b = 0 and the linear operator F* = 0. Therefore, we can adopt the ALM discussed
in the last section for solving problem (34).

5.1. Solving the subproblems of the ALM. Given the penalty parameter
¢ > 0, the augmented Lagrangian function of problem (34) takes the form of

Lo(P,z,y, X1, X2) = | P2 + 5Ri+d(z) +{(Xy,—A*y+P—1I,)+{(Xy,By+z—¢€)
+5|l - A*y+ P—L|* + §|By + z — ¢|?,

where (P, z,y, X1, X2) € S* x R"T x R? x §" x R"*4, As discussed in Section 4, the
ALM for solving problem (34) takes the following iteration:

(PRHL 2Ry ) ~ argmin{(i (P, 2,y) := Le, (P, 2, y, XT, X5)},
(X{C+1’X§+1) _ (Xf,Xé) + ck(—A*yk+1 + Pk+1 _Imﬁyk-!—l + Zk+1 _ é)

for a sequence of scalars cp 1 ¢y < 00 with & = 0. Obviously, the major computa-
tional cost of the above framework comes from obtaining approximate solutions of the
subproblems.

We shall adopt the semismooth Newton-CG method to solve the subproblems as
in [63, 10, 62, 38]. Denote, for any k£ > 0 and y € R%,

Pk(y) = PrOXH-H<2)/Ck (A*y + I’I’L - Xf/Ck), Zk(y) = HRi+d(_Ey +ée— XQ/CIC)'
Then (]3, Z,9) € argmin (i (P, z, y) if and only if

j e argmin{¢(y) == G(Pe(y), 2 (), y)}. P =Pu(y), 2= z(y).

The function & is continuously differentiable with the gradient given by (see, e.g.,
[30]):

VEr(y) = Alls (e (A*y + 1) = XE) + B Hyera (e (B — &) + X5),
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where B* < S™ is the unit ball associated with the dual norm | - H’(“Q), ie.,
B* = {X eS"[| X[ <1} = {XeS"|[X]|2 <1, [X[« <2}

Since g« (-) is a matrix spectral operator defined in [15], its strong semismoothness
then follows from [20, Proposition 7.4.7] and [13, Theorem 3.12]. Thus, V¢ is strongly
semismooth as it is the composition of strongly semismooth functions [21, 54]. This
allows us to develop a semismooth Newton-CG method for solving the nonlinear
equation VE&i(-) = 0. For the implementation and the convergence analysis of the
semismooth Newton-CG method, the interested reader may refer to [63, 10] for details.

5.2. Easy-to-verify stopping criteria. The stopping criteria (A’) and (B’)
can be difficult to execute due to the involvement of the unknown values inf (5. For
the practical implementation and numerical considerations, here we provide easy ways
to verify these two criteria in this subsection. This part is inspired by the work done
in [12] on the implementation of the ALM for solving the convex SDP problems.

Note that the dual of problem (34) is given by

(3 ) max <I, X1> - <é,X2>
5 _
st. AX;—B X, =0, X; e B*, X,e R

For any k > 0, denote the concave function f;, : S* x R"*¢ — (—c0, +0) as
- 1 k|2 k)2
Ji(X) =<1, X1) — (&, X2) — E(l\Xl = X717+ X2 = X507),

where X := (X1, X) € S" x R"+4,
ASSUMPTION 1. Assume that there exists X = (X1, X2) such that

A)?l _ET)?Q = 0, )21 € int (B*)7 )?2 € R1+d.
Let F be the feasible set of problem (35), i.e.,
F o= {(X1,X5) eS" x R"™ | AX; — B' X, = 0, X; € B*, X, e R"*%},

It is known from [4, Theorem 7] that under Assumption 1, there exists a positive
constant fi such that

(36) |X —Tp(X)| < a1+ [X[)r(X) VX eS" xR,
where
=T
T’(X) = HAXl - B XQH + HXl — HB*(Xl)H + HX2 — HR1+d(X2)H

for any X = (X1,X5) € S x R*"*4. Let {ex} and {n.} be two positive summable
sequences for k > 0. Consider the following two stopping criteria:

Cr(EFHh) — fro(XFHY) < e /(2ek),

(A//) . -
(L X e < min {1, P e,
GeEH1) - FuXHH1) < LK — XHI2/(2en),

(8"

14 | XFHL )Xk <min{17nk} XFHL Xk,

The following proposition can be derived in the same fashion as in [12, Proposition
4.3].
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PROPOSITION 21. Suppose that Assumption 1 holds. Let i be given by (36).
Suppose that for some k = 0, (XF, X5) € S* x R"*4 is not an optimal solution
to problem (35). Let {¢¥7};50 1= {(P*9,2%9,y*9)} ;20 be any sequence such that
Ce(€F7) — inf ¢ For any j =0, let

XM= (X7, X57) = (XF, XE5) + cp(—A*y™T + PMI — I, By*i + 277 — ).

Then there exist j4 = 0 and jg = 0 such that (A”) and (B") are satisfied by some
(€kda XFIa) and (€98 X*I8) respectively. Moreover,

(37) Go(€994) — inf G, < (1 i ;;ﬁ) 2/(261)
and
B Gle ) —intGos (14 o) RIXS - X 20

Proposition 21 indicates that stopping criteria (A’) and (B’) can be executed via
the easy-to-verify criteria (A”) and (B”), respectively.

5.3. Numerical examples. To illustrate that the fast convergence rates of the
ALM are fundamentally different from the linear convergence rates of first order meth-
ods, we also solve the problems by using an alternating direction method of multi-
pliers (ADMM) of Glowinski and Marroco [27] and Gabay and Mercier [23]. Let
(y°, X7, X9) € R? x B* x RT*? be an initial point. The (k + 1)-th iteration (k > 0)
of the ADMM is given by

(pkﬂ, Zk“) = arg min {LC(P7Z,yk,X{€7X§)} )
yF*+1 = arg min {Lc(PkH,ZkHay?vaXg)}’

(XEF XE) = (X5 XE) 4 re(—ARyF*L 4 PRV L By g ),
where 7 € (0, 1+2\/5) is the step-length.
In the numerical experiments, the accuracy of an approximate KKT solution
(P, z,y,X1,X2) is measured by the relative residual of the primal infeasibility, the
dual infeasibility and the duality gap:

n = max{ny, N4, ngap}y

where

|—A*y+P—I,|+|By+z—¢| | max{—z0}]
= max - =
TIp a{ T T, [ +el e P ’

=T
[AX1—B~ Xo| [Xa—Tx (X)) | max{—X5,0}]
= Imax —
d {1+HAH+HBH’ Xl 0 X

_ Pl =T, X1)+<{e,X2) |
Mleap = TP+ T X1)—E X2y |
We shall terminate both the ADMM and the ALM when 1 < 10~ with the maximum
number of iterations set at 25,000 for the ADMM and 100 for the ALM, respectively.
All our numerical results are obtained from a workstation running on a 64-bit Windows
Operating System having 12 cores with Intel Xeon E5-2680 processors at 2.50GHz and
128 GB memory. We have implemented the algorithms in Matlab version 9.0. The
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tested graphs are taken from the SuiteSparse Matrix Collection http://www.cise.ufl.
edu/research/sparse/matrices/.

In our implementation of the ADMM, the step-length 7 is set to be 1.618. For
the implementation of the ALM, we first run the ADMM to generate a starting point:
if the point generated by the ADMM satisfies n < 10~* or if the ADMM reaches
the number of 200 iterations, the algorithm is switched to the ALM iterations. The
stopping criterion (B”) discussed in Section 5.2 is adopted in order to achieve the fast
convergence rates.

Table 1: The performance of the ALM and the ADMM for solving the FMMC
problems. The computational time is in the format of “hours:minutes:seconds”.

iteration n time
problem d;n ALM | ADMM ALM| ADMM ALM | ADMM
cage 2562 ; 366 6;6;200 | 1925 0.0-7 ] 9.1-7 05 | 37
G3 19176 ; 800 32;57;88 | 599 3.0-7 | 8.3-7 1:37 | 1:21
G6 9665 ; 800 30;44;145 | 989 8.5-7 | 9.6-7 1:09 | 1:52
G15 4661 ; 800 31;51;200 | 6122 3.4-8 | 7.7-7 1:05 | 11:27
G46 9990 ; 1000 30;44;134 | 1619 5.6-7 | 9.9-7 1:34 | 5:33
Gb4 5916 ; 1000 22;62;200 | 8928 7.7-719.9-7 2:23 | 27:16
G43 9990 ; 1000 24;96;90 | 2073 2.9-719.3-7 2:37 | 6:03
delaunaynl10 3056 ; 1024 | 61;359;200 | 25000 6.8-9 | 7.2-5 10:25 | 1:04:29
G22 19990 ; 2000 31;46;56 | 2918 2.3-8 1 9.9-7 5:57 | 41:31
G24 19990 ; 2000 | 41;296;200 | 6808 2.7-719.9-7 53:57 | 1:38:37
G26 19990 ; 2000 29;87;200 | 2954 1.4-719.9-7 16:15 | 42:18
minnesota 3303 ; 2642 25;24;123 | 258 0.0-10 | 9.1-7 6:27 | 6:29
G48 6000 ; 3000 40;79;200 | 9470 9.2-719.2-7 19:39 | 4:40:08
G49 6000 ; 3000 25;38;200 | 7488 6.6-7 | 8.5-7 10:58 | 3:36:58
G50 6000 ; 3000 26;42;74 | 6370 4.8-8 | 7.8-7 9:36 | 2:59:34
USpowerGrid 6594 ; 4941 | 27;120;200 | 25000 1.4-7 | 1.0-5 3:11:22 | 56:47:18

In Table 1, we report the numerical results obtained by the ALM and the ADMM
in solving various instances of the FMMC problem (34). The three numbers in the
iteration column of the ALM represent the number of outer ALM iterations, the
number of inner semismooth Newton-CG iterations and the number of the iterations
for generating a starting point, respectively. The fast convergence rates of the ALM
can be observed clearly from the very small number of outer iterations. We can also
observe from Table 1 that for very easy problems such as cage, G3 and G6, the ADMM
can also be efficient. This is because the ADMM may also converge linearly under a
KKT-type error bound condition [29]. However, this error bound condition is more
restrictive than either the primal or the dual second order growth condition for matrix
optimization problems. For such examples, see, e.g., [12, Example 1]. Moreover, even
if the ADMM possesses the linear convergence, the linear rate constant can be very
close to 1 for difficult instances, regardless of the value of the penalty parameter ¢ [29].
These two inherent drawbacks of the ADMM may explain why it does not perform
as good as the ALM for the difficult problems listed in Table 1. In particular, for
the instance USpowerGrid, the ALM solves the problem in about 3 hours, while the
ADMM is not able to achieve the required accuracy within 25,000 iterations after
more than 56 hours.
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6. Conclusion. The quadratic growth conditions play a central role in the study
of optimization problems, both for perturbation theory and for convergence analysis
of optimization algorithms. In this paper, we establish two types of sufficient condi-
tions for ensuring the quadratic growth conditions for a wide class of convex matrix
optimization problems associated with spectral functions. One type is based on the
“no-gap” second order sufficient conditions of matrix optimization problems, under
the C2-cone reducibility of spectral functions. The other type is through the bounded
linear regularity of a collection of sets, under the metric subregularity of subdifferen-
tials of spectral functions. Moreover, we show that these two variational properties
of spectral functions, namely, the C2-cone reducibility and the metric subregularity
of the subdifferentials, can be verified via the corresponding properties of underly-
ing (absolutely) symmetric functions. Finally, the quadratic growth conditions are
applied to conduct convergence rates analysis of the ALM for solving convex matrix
optimization problems. Nevertheless, there remain many issues that require further
investigation. These include the sufficient conditions for ensuring the calmness of the
KKT solution mappings of matrix optimization problems and the efficient algorithms
for solving the subproblems in the ALM when the problems are degenerate.
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