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Abstract. In this paper, we develop finite-time horizon causal filters using the nonanticipative
rate distortion theory. We apply the developed theory to design optimal filters for time-varying
multidimensional Gauss-Markov processes, subject to a mean square error fidelity constraint. We
show that such filters are equivalent to the design of an optimal {encoder, channel, decoder}, which
ensures that the error satisfies a fidelity constraint. Moreover, we derive a universal lower bound on
the mean square error of any estimator of time-varying multidimensional Gauss-Markov processes
in terms of conditional mutual information. Unlike classical Kalman filters, the filter developed is
characterized by a reverse-waterfilling algorithm, which ensures that the fidelity constraint is satisfied.
The theoretical results are demonstrated via illustrative examples.
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1. Introduction. Motivated by real-time control applications, of communica-
tion system design, Gorbunov and Pinsker in [2] introduced the so-called nonantici-
patory ε-entropy of general processes, (see [2, Introduction I]). The nonanticipative
ε-entropy is equivalent to Shannon’s Rate Distortion Function (RDF) [3, 4] with an
additional causality constraint on the optimal reproduction or estimator.

Along the same lines, for a two-sample Gaussian process, Bucy in [5] derived a
causal estimator using the Distortion Rate Function1 (DRF) subject to a causality
constraint. Galdos and Gustafson in [7] applied the classical RDF to design reduced
order estimators. Tatikonda, in his Ph.D. thesis [8], introduced the so-called sequential
RDF, which is a variant of the nonanticipatory ε-entropy and related this to the
Optimal Performance Theoretically Attainable (OPTA) by causal codes, as defined
by Neuhoff and Gilbert in [9]. Moreover, in [8], the author computed the sequential
RDF of a scalar-valued Gaussian process described by discrete recursion driven by
an Independent and Identically Distributed (IID) Gaussian noise process, subject
to a Mean Square Error (MSE) fidelity constraint. In addition, the author of [8]
illustrated by construction, how to communicate the Gaussian process, optimally over
a memoryless Additive Gaussian Noise (AGN) channel subject to a power constraint,
that is, by designing the {encoder, decoder} so that the AGN channel operates at
its capacity and the sequential RDF is achieved. In [10] the authors showed that
if the Gaussian process is unstable then sequential RDF is bounded below by the
sum of logarithms of the absolute values of the unstable eigenvalues, and that a
necessary condition for asymptotic stability of a linear control system over a limited-
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rate communication channel is “the capacity of the channel, noiseless or noisy, is
larger than the sum of logarithms of the absolute values of the unstable eigenvalues
of the open loop control system”. Similar conditions are derived by many authors via
alternative methods [11–13].

In [14] the authors re-visited the relation between information theory and filter-
ing theory, by introducing the so-called Nonanticipative RDF (NRDF), and derived
existence of optimal solutions. Moreover, under the assumption that the solution to
the NRDF is time-invariant, the form of the optimal reproduction distribution is de-
rived. This expression is applied to derive a sub-optimal causal filter for time-invariant
multidimensional partially observed Gaussian processes described by discrete-time re-
cursions. For fully observed Gaussian processes the solution given in [14] is optimal
and generalizes the solution given in [10] to multidimensional Gaussian processes
with MSE distortion instead of per letter distortion. Recently, Stavrou et al. in [15]
showed that nonanticipative ε-entropy, sequential RDF, and NRDF are equivalent no-
tions. The optimal reproduction distribution which minimizes directed information
from one process to another process subject to average distortion constraint is given
in [16].

The NRDF has been used in many other communication-related problems. For
example, Derpich and Østergaard in [17] applied the nonanticipatory ε-entropy of
the scalar Gaussian process subject to a MSE fidelity constraint, to derive several
bounds on the OPTA by causal and zero-delay codes. Kourtellaris et al. in [18]
illustrated the simplicity of jointly designing an {encoder, channel, decoder} op-
erating optimally in real-time, for a Binary Symmetric Markov process subject to
a Hamming distance distortion function, which is communicated over a finite state
channel with unit memory on past channel outputs (with some symmetry) subject to
a transmission cost constraint. The NRDF is also applied in control-related problems
using zero-delay communication constraints. For example, Tanaka et al. in [19] inves-
tigated a time-varying multidimensional fully observed Gauss-Markov process with
letter-by-letter distortion motivated by the utility of such communication model in
real-time communications for control. In addition, in [19] the authors apply semidef-
inite programming to find, numerically, optimal solutions to the sequential RDF (or
NRDF) of time-varying fully observed Gauss-Markov sources.

1.1. Problem Statement. In this paper we investigate the following estimation
problem: given an arbitrary random process, we wish to design an optimal commu-
nication system so that at the output of this system the estimated process satisfies an
end-to-end average fidelity or distortion criterion.

This problem is equivalent to the design of an optimal {encoder, decoder},
which communicates the arbitrary process and reconstructs it at the output of the
decoder. Formally, the problem can be cast as follows:

Problem 1. (Information-based estimation) Given

(a) an arbitrary random process {Xt : t = 0, . . . , n} taking values in complete
separable metric spaces {Xt : t = 0, . . . , n}, with conditional distribution
{PXt|Xt−1(dxt|xt−1) : t = 0, . . . , n}, xt−1 , {x0, x1, . . . , xt−1};

(b) a distortion function or fidelity of reproducing xt by yt ∈ Yt ⊆ Xt, t =
0, 1, . . . , n, defined by a real-valued measurable function d0,n(·, ·)

d0,n(xn, yn) ,
n∑

t=0

ρt(T
txn, T tyn) ∈ [0,∞],(1.1)
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where T txn ⊆ {x0, x1, . . . , xt}, T tyn ⊆ {y0, y1, . . . , yt} is either fixed or non-
increasing with time2 for t = 0, 1, . . . , n,

we wish to determine an optimal probabilistic {encoder, channel, decoder} which
communicates {Xt : t = 0, . . . , n} and reconstructs it at the output of the decoder or
estimator, while it satisfies the end-to-end average fidelity given by

1

n+ 1
E {d0,n(Xn, Y n)} ≤ D, ∀D ∈ [0,∞).(1.2)

The above definition of estimation problem ensures fidelity (1.2) is satisfied, hence
it is fundamentally different from standard approaches of estimation theory, such as,
MSE estimation. In general, to achieve such fidelity, for any D ∈ [Dmin,∞], we know
from Shannon’s information theory [3], that we need to design the actual observation
process or sensor from which the estimator is constructed. This is equivalent the
construction of the {encoder, channel, decoder}, as shown in Fig. 1.1. This point

System Encoder Decoder
X0, X1, . . .

PXt|Xt�1

Y0, Y1, . . .

Optimal
Reproduction
Distribution

P ⇤
Yt|Y t�1,Xt

Channel
Z0, Z1, . . .R0, R1, . . .

Sensor map Filter

PYt|Y t�1,ZtPZt|Zt�1,RtPRt|Rt�1,Xt,Zt�1

Fig. 1.1: Block diagram of Problem 1 with probabilistic {encoder, channel,

decoder}.

of view was recognized by Gorbunov and Pinsker [2], and Bucy [5] several years ago.
Our main objective is to address Problem 1 using information-theoretic measures.
The natural information-theoretic measure to addresse Problem 1 is the NRDF; this
is justified by the equivalence of NRDF and nonanticipatory ε-entropy.

In the next section, we describe the contributions and the fundamental differences
between information-based estimation via NRDF and Bayesian estimation theory.

1.2. Relation between Bayesian Estimation and Estimation using NRDF.
In Bayesian filtering [20, 21], one is given a model that generates the unobserved
process {Xt : t = 0, . . . , n}, via its conditional distribution {PXt|Xt−1(dxt|xt−1) :
t = 0, . . . , n}, or via discrete-time recursive dynamics, and a model that generates
observed data obtained from sensors {Zt : t = 0, . . . , n}, via its conditional dis-
tribution {PZt|Zt−1,Xt (dzt|zt−1, xt) : t = 0, . . . , n}, while an estimate of the unob-

served process {Xt : t = 0, . . . , n}, denoted by {X̂t : t = 0, . . . , n}, is constructed
causally, based on the observed data {Zt : t = 0, . . . , n}. Thus, in Bayesian fil-
tering theory, both models which generate the unobserved and observed processes,

2For example ρt(T txn, T tyn) = ρ(xt, yt), t = 0, . . . , n, where ρ(·, ·) is a distance metric.
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{Xt : t = 0, . . . , n} and {Zt : t = 0, . . . , n}, respectively, are given á priori, while the

estimator {X̂t : t = 0, . . . , n} is a nonanticipative functional of the past information
Zt−1, t = 0, . . . , n, often computed recursively, like Kalman filter. Fig. 1.2 illustrates
the block diagram of the Bayesian filtering problem.

System Sensor Filter
X0, X1, . . . bX0, bX1, . . .

PXt|Xt�1 PZt|Zt�1,Xt

Z0, Z1, . . .

PXt|Zt�1

Fig. 1.2: Bayesian Filtering Problem.

On the other hand, in information-based estimation, defined in Problem 1, one
is given the process {Xt : t = 0, . . . , n} and a fidelity criterion, and the objec-
tive is to determine the optimal nonanticipative reproduction conditional distribu-
tion {P ∗Yt|Y t−1,Xt(dyt|yt−1, xt) : t = 0, . . . , n} corresponding to NRDF, denoted

hereinafter by Rna0,n(D), and to realize this distribution by an {encoder, channel,

decoder} so that the end-to-end distortion (1.2) is met.
As a result, in Problem 1, the observation model is constructed by the cascade of

the {encoder, channel} and the filter is the decoder, which satisfies the end-to-end
fidelity (1.2).

1.3. Contributions. The main contributions of this paper are the following:
(R1) We give a closed form expression for the optimal nonanticipative reproduction
conditional distribution, {P ∗Yt|Y t−1,Xt : t = 0, . . . , n}, which achieves the infimum of

the Finite-Time Horizon (FTH) NRDF3. Then, we identify some of its properties,
which are necessary for the design of the optimal {encoder, decoder} pair.
(R2) We apply our framework to a time-varying multidimensional fully observed
Gauss-Markov process {Xt : t = 0, . . . , n} with MSE distortion, and we show the
following:

(1) The parametric expression ofRna0,n(D) is characterized by a time-space reverse-
waterfilling;

(2) At each time n the value Rna0,n(D) is achieved by an optimal {encoder,
channel, decoder}, where the channel is a Multiple Input Multiple Out-
put (MIMO) Additive Gaussian Noise (AGN) channel, the encoder operates
at the capacity of the AGN channel, and (1.2) holds with equality.

(3) At each time n, we give the universal lower bound on the MSE of any causal
estimator of the Gauss-Markov process.

Contribution (R1) generalizes [14, 15], in that we remove the assumption that
the optimal reproduction distribution {P ∗Yt|Y t−1,Xt : t = 0, . . . , n} is time-invariant,
the source is Markov, and distortion is single-letter. This leads to recursive computa-
tion of the optimal nonstationary distribution {P ∗Yt|Y t−1,Xt : t = 0, . . . , n}, backwards
in time; i.e., starting at time t = n and going backwards to time t = 0. Contribu-
tion (R2) demonstrates that for time-varying multidimensional fully-observed Gauss-
Markov processes, the parametric expression of the NRDF, Rna0,n(D), is characterized
by a time-space reverse-waterfilling. To solve the time-space reverse-waterfilling, we
propose an iterative algorithm which computes numerically the value of Rna0,n(D), and
we present examples to illustrate the effectiveness of the algorithm. The Markovian

3In the sequel, when we refer to FTH NRDF we just say NRDF.
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property of the optimal reproduction distribution, implies that the optimal distri-
bution is {P ∗Yt|Y t−1,Xt

: t = 0, . . . , n}. This is realized by an {encoder, channel,

decoder}, with probability of estimation error decaying exponentially, under certain
conditions. The universal lower bound on the MSE of any estimator generalizes the
well-known bound of a Gaussian RV given in [22]. The new recursive estimator is
finite-dimensional, and ensures the fidelity constraint is met. The time-space reverse-
waterfilling implies that given a distortion level, the optimal state estimation is chosen
based on an optimal threshold policy, in time and space (dimension). This is the fun-
damental difference from the well-known Kalman filter equations.

The rest of the paper is structured as follows. In Section 2, we provide the notation
used throughout the paper. In Section 3, we introduce NRDF for general processes.
In Section 4, we describe the form of the optimal nonstationary (time-varying) re-
production distribution of the NRDF. In Section 5, we concentrate on evaluating the
NRDF for time-varying multidimensional Gaussian processes with memory, present
examples in the context of realizable filtering theory, and we derive a universal lower
bound to the mean square error of any estimator of Gaussian processes based on
NRDF. We draw conclusions and discuss future directions in Section 6.

2. Notation. We let R = (−∞,∞), Z = {. . . ,−1, 0, 1, . . .}, N = {1, 2, . . .},
N0 = {0, 1, . . .}, Nn0 , {0, 1, . . . , n}. E{·} represents the expectation of its argu-
ment. σ{·} represents the σ-algebra of events generated by its argument. For a
non-square matrix A ∈ Rn×m, we denote its transpose by AT. For a square matrix
A ∈ Rn×n, we denote by diag{A} the matrix having Aii, i = 1, . . . , n, on its diagonal
and zero elsewhere. We denote the source alphabet spaces by the measurable space
{(Xn,B(Xn)) : n ∈ Z}, where Xn, n ∈ Z are complete separable metric spaces or
Polish spaces, and B(Xn) are Borel σ−algebras of subsets of Xn. We denote points in
X Z , ×n∈ZXn by x∞−∞ , {. . . , x−1, x0, x1, . . .} ∈ X Z, and their restrictions to finite

coordinates for any (m,n) ∈ N0 by xnm , {xm, . . . , x0, x1, . . . , xn} ∈ Xnm, n ≥ m.
We denote by B(X Z) , ⊗t∈ZB(Xt) the σ−algebra on X Z generated by cylinder sets
{x = (. . . , x−1, x0, x1, . . .) ∈ X Z : xj ∈ Aj , j ∈ Z}, Aj ∈ B(Xj), j ∈ Z. Thus, B(Xnm)
denote the σ−algebras of cylinder sets in Xnm, with bases over Aj ∈ B(Xj), j ∈ {m,m+
1, . . . , n}, m ≤ n, (m,n) ∈ Z. For a Random Variable (RV) X : (Ω,F) 7−→ (X ,B(X ))
we denote the distribution induced by X on (X ,B(X )) by PX(dx) ≡ P(dx). We de-
note the set of such probability distributions byM(X ). We denote the conditional dis-
tribution of RV Y given X = x (i.e., fixed) by PY |X(dy|X = x) ≡ PY |X(dy|x). Such
conditional distributions are equivalently described by stochastic kernels or transition
functions [23] K(·|·) on B(Y)×X , mapping X intoM(Y) (space of distributions), i.e.,
x ∈ X 7−→ K(·|x) ∈M(Y), and such that for every A ∈ B(Y), the function K(A|·) is
B(X )-measurable. We denote the set of such stochastic kernels by Q(Y|X ).

3. NRDF on General Alphabets. In this section, we introduce the definition
of NRDF for general processes taking values in Polish spaces (complete separable
metric spaces), that include finite, countable, and continuous alphabet spaces.

Source Distribution. The process {X0, X1, . . .} is described by the collection of
conditional probability distributions {PXn|Xn−1(·|xn−1) : xn−1 ∈ Xn−1, n ∈ N0}.
For each n ∈ N0, we let PXn|Xn−1(·|·) ≡ Pn(·|·) ∈ Qn(Xn|Xn−1), and for n = 0, we
set PX0|X−1 = P0(dx0). We define the probability distribution on Xn by

P0,n(A0,n) ,
∫

A0

P0(dx0) . . .

∫

An

Pn(dxn|xn−1), At ∈ B(Xt), A0,n = ×nt=0At.(3.1)
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Thus, for each n ∈ N0, P0,n(·) ∈M(Xn).

Reproduction Distribution. The reproduction process {. . . , Y2, Y1, Y0, Y1, . . .} ≡
{Y −1, Y0, Y1, . . . , } is described by the collection of conditional distributions {PYn|Y n−1,Xn

(·|yn−1, xn) : (yn−1, xn) ∈ Yn−1×Xn, n ∈ N0}, i.e., yn ≡ (y−1, yn0 ), xn ≡ xn0 . For each
n ∈ N0, we let PYn|Y n−1,Xn(·|·, ·) ≡ Qn(·|·, ·) ∈ Qn(Yn|Yn−1 × Xn), and for n = 0,
PY0|Y −1,X0

= Q0(dy0|y−1, x0). The RV Y −1 is the initial data with fixed distribution
PY −1(dy−1) = µ(dy−1). We define the family of conditional probability distributions
on Yn0 parametrized by (y−1, xn) ∈ Y−1 ×Xn by

−→
Q0,n(B0,n|y−1, xn) ,

∫

B0

Q0(dy0|y−1, x0) . . .

∫

Bn

Qn(dyn|yn−1, xn), Bt ∈ B(Yt), B0,n = ×nt=0Bt.(3.2)

Thus, for each n ∈ N0,
−→
Q0,n(·|y−1, xn) ∈M(Yn0 ), (y−1, xn) ∈ Y−1 ×Xn.

Given a P0,n(·) ∈ M(Xn) a
−→
Q0,n(·|y−1, xn) ∈ M(Yn0 ), and a fixed distribution

µ(dy−1), we define the following distributions.
The joint distribution on Xn × Yn0 given Y −1 = y−1 is defined by

P
−→
Q (A0,n ×B0,n|y−1) ,(P0,n⊗

−→
Q0,n)

(
×nt=0(At×Bt)|y−1

)

=

∫

A0

P0(dx0)

∫

B0

Q0(dy0|y−1, x0) . . .

∫

An

Pn(dxn|xn−1)

∫

Bn

Qn(dyn|yn−1, xn).(3.3)

The marginal distribution on Yn0 given Y −1 = y−1 is defined by

Π
−→
Q
0,n(B0,n|y−1) ,

∫

B0,n

∫

Xn

(P0,n ⊗
−→
Q0,n)(dxn, dyn0 |y−1)

=

∫

B0,n

Π
−→
Q
0 (dy0|y−1) . . .Π

−→
Q
n (dyn|yn−1).

The product probability distribution
−→
Π

−→
Q

0,n(·|y−1) : B(Xn) ⊗ B(Yn0 ) 7−→ [0, 1] condi-
tioned on Y −1 = y−1, is defined by

−→
Π

−→
Q

0,n

(
A0,n ×B0,n|y−1

)
,
(
P0,n ×Π

−→
Q
0,n

) (
×nt=0(At×Bt)|y−1

)

=

∫

A0

P0(dx0)

∫

B0

Π
−→
Q
0 (dy0|y−1) . . .

∫

An

Pn(dxn|xn−1)

∫

Bn

Π
−→
Q
n (dyn|yn−1).

We define the relative entropy between the joint distribution P
−→
Q (dxn, dyn0 |y−1)

and the product distribution
−→
Π

−→
Q

0,n

(
dxn, dyn0 |y−1

)
, averaged over the initial distribu-
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tion µ(dy−1), as follows:

D(P0,n ⊗
−→
Q0,n||

−→
Π

−→
Q

0,n) =

∫

Xn×Yn

log


P0,n(·)⊗

−→
Q0,n(·|y−1, xn)

P0,n(·)⊗Π
−→
Q
0,n (·|y−1)

(xn, yn0 )




P0,n(dxn)⊗
−→
Q0,n(dyn0 |y−1, xn)⊗ µ(dy−1)(3.4)

(a)
=

∫

Xn×Yn

log



−→
Q0,n(·|y−1, xn)

Π
−→
Q
0,n(·|y−1)

(yn0 )




P0,n(dxn)⊗
−→
Q0,n(dyn0 |y−1, xn)⊗ µ(dy−1)(3.5)

≡I0,n(P0,n,
−→
Q0,n)(3.6)

where (a) is due to the chain rule of relative entropy (see [24]). In (3.6) the nota-

tion I0,n(·, ·) indicates the functional dependence on {P0,n,
−→
Q0,n} (the dependence on

µ(dy−1) is omitted). By [24, Theorem 5], the set of distributions
−→
Q0,n(·|y−1, xn) ∈

M(Yn0 ) is convex, and by [24, Theorem 6], I0,n(P0,n, ·) is a convex functional of
−→
Q0,n(·|y−1, xn) ∈M(Yn0 ).

Given the distortion function of reproducing xt by yt, t = 0, 1, . . . , n, defined by
(1.1), the fidelity constraint set is defined as follows.

−→
Q0,n(D) ,

{
−→
Q0,n(·|y−1, xn) ∈M(Yn0 ) :

1

n+ 1
E
−→
Q
µ {d0,n(Xn, Y n)} ≤ D

}
, D ≥ 0

where E
−→
Q
µ {·} indicates that the joint distribution is induced by {P0,n(dxn),

−→
Q0,n(dyn0 |y−1,

xn), µ(dy−1)} defined by (3.3). Clearly,
−→
Q0,n(D) is a convex set.

Definition 3.1. (NRDF)
The NRDF is defined by

Rna0,n(D) , inf−→
Q0,n(dyn0 |y−1,xn)∈−→Q0,n(D)

I0,n(P0,n,
−→
Q0,n).(3.7)

By the above discussion the NRDF is a convex optimization problem. Sufficient
conditions for existence of an optimal solution to the convex optimization problem
(3.7) are given in [24, Theorem III.13].

For completeness, in the next remark we give the connection of the NRDF to the
classical Shannon RDF [4] and nonanticipatory ε-entropy [2].

Remark 1. (RDF and nonanticipatory ε-entropy)
Consider the distribution P0,n(·) ∈M(Xn) and the conditional distribution Qnc

0,n(dyn0 |
y−1, xn) ∈M(Yn0 ), (y−1, xn) ∈ Y−1×Xn, which is a non-causal distribution, because
by Bayes’ rule Qnc

0,n(dyn0 |y−1, xn) = ⊗nt=0Q
nc
t (dyt|yt−1, xn). The conditional distribu-

tion on Yn0 given Y −1 = y−1, and the joint distribution on Xn × Yn0 are induced as
follows.

ΠQnc

0,n (dyn0 |y−1) =

∫

Xn

Qnc
0,n(dyn0 |y−1, xn)⊗ P0,n(dxn),(3.8)

PQ
nc

(dxn, dyn0 |y−1) =P0,n(dxn)⊗Qnc
0,n(dyn0 |y−1, xn).(3.9)
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Define the fidelity constraint

Q0,n(D) ,

{
Qnc

0,n(dyn0 |y−1, xn) ∈M(Yn0 ) :
1

n+ 1
EQ

nc

µ {d0,n(Xn, Y n)} ≤ D
}
, D ≥ 0.

(3.10)

The classical RDF [4] is defined by

R0,n(D) , inf
Qnc

0,n(dyn0 |y−1,xn)∈Q0,n(D)
I(Xn;Y n0 |Y −1),(3.11)

where I(Xn;Y n0 |Y −1) is the conditional mutual information given by

I(Xn;Y n0 |Y −1) =

∫

Xn×Yn

log

(
Qnc

0,n(·|y−1, xn)

ΠQnc

0,n (·|y−1)
(yn0 )

)

P0,n(dxn)⊗Qnc
0,n(dyn0 |y−1, xn)⊗ µ(dy−1)(3.12)

≡I0,n(P0,n, Q
nc
0,n).(3.13)

Unfortunately, classical RDF does not give causal estimators, because the optimal
reproduction distribution in (3.11) is {Qnc

t (dyt|yt−1, xn) : t ∈ Nn0}; hence, in general,
it is non-causal with respect to {X0, . . . , Xn}. This let Gorbunov and Pinsker in [2]
to define the notion of nonanticipatory ε-entropy, as follows

Rε0,n(D) , inf
Q0,n(D):Qnc

0,t(dy
t
0|y−1,xn)=QGP

0,t (dyt0|y−1,xt)
t=0,...,n

I(Xn;Y n0 |Y −1).(3.14)

We note that conditional independence Qnc
0,t(dy

t
0|y−1, xn) = QGP0,t (dyt0|y−1, xt), t =

0, . . . , n is a causality restriction of the reproduction distribution in (3.11).
The equivalence of the nonanticipatory ε-entropy, Rε0,n(D), and NRDF, Rna0,n(D),

is a direct consequence of the following equivalent characterization of conditional in-
dependence statements shown in [15].

MC1: Qnc
0,n(dyn0 |y−1, xn) =

−→
Q0,n(dyn0 |y−1, xn) = ⊗nt=0Qt(dyt|yt−1, xt), ∀n ∈ N0;

MC2: Qnc
t (dyt|yt−1, xt, xnt+1) = Qt(dyt|yt−1, xt), for each t = 0, 1, . . . , n − 1, ∀n ∈

N0;
MC3: Pt(dxt+1|xt, yt) = Pt(dxt+1|xt), for each t = 0, 1, . . . , n− 1, ∀n ∈ N0;

MC4: Qnc
0,t(dy

t
0|y−1, xt, xnt+1) =

−→
Q0,t(dy

t
0|y−1, xt), for each t = 0, 1, . . . , n− 1, ∀n ∈

N0.
In view of the above statements, the NRDF defined by (3.7) is equivalent to the nonan-
ticipatory ε-entropy defined by (3.14), that is, Rna0,n(D) = Rε0,n(D).

4. Optimal Nonstationary Reproduction Distribution. In this section, we
describe the form of the optimal nonstationary (time-varying) reproduction distribu-
tion that achieves the infimum in (3.7).

First, we state the following properties regarding the convexity and continuity of
the NRDF, Rna0,n(D), that are necessary for the development of our results.
1) Rna0,n(D) is a convex, non-increasing function of D ∈ [0,∞).
2) If Rna0,n(D) <∞, then Rna0,n(·) is continuous on D ∈ [0,∞).
Note that 1) is similar to the one derived in [15, Lemma IV.4]. Also, for 2) recall that
a bounded and convex function is continuous. Since Rna0,n(D) is non-increasing, it is
bounded outside the neighbourhood of D = 0 and it is also continuous on (0,∞). In
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other words, if Rna0,n(D) <∞ then Rna0,n(D) is bounded and hence continuous on [0,∞).
Moreover, sinceRna0,n(D) is convex and non-increasing then its inverse function, D0,n(Rna),
exists and it is convex, non-increasing function of Rna ∈ [0,∞). D0,n(Rna) is called
FTH Nonanticipative Distortion Rate Function (NDRF) and is given by

D0,n(Rna) = inf
1

n+1 I0,n(P0,n,
−→
Q0,n)≤Rna

E
−→
Q
µ {d0,n(Xn, Y n)} .(4.1)

The NRDF defined by (3.7) is a convex optimization problem, and thus, if there exists

an interior point in the set
−→
Q0,n(D), it can be reformulated using Lagrange duality

theorem [25, Theorem 1, pp. 224-225] as an unconstrained problem as follows.

Rna0,n(D) = sup
s≤0

inf−→
Q0,n(·|y−1,xn)∈M(Yn

0 )

{
I0,n(P0,n,

−→
Q0,n)− s 1

n+ 1
E
−→
Q
µ {d0,n(Xn, Y n)}

}
.

(4.2)

Next, we state Theorem 4.1, which is used in the subsequent analysis to compute
the NRDF, Rna0,n(D), of time-varying multidimensional Gauss-Markov processes.

Theorem 4.1. (Optimal nonstationary reproduction distributions)

Suppose there exists a
−→
Q∗0,n(·|y−1, xn) ∈

−→
Q0,n(D), which solves (3.7), and that I0,n(P0,n,

−→
Q0,n) is Gâteaux differentiable in every direction of {Qt(·|yt−1, xt) : t ∈ Nn0} for a
fixed P0,n(·) ∈M(Xn) and µ(dy−1) ∈M(Y−1). Then, the following hold:
(1) The optimal reproduction distributions denoted by {Q∗t (·|yt−1, xt) ∈ M(Yt) :
t ∈ Nn0} are given by the following recursive equations backwards in time.
For t = n:

Q∗n(dyn|yn−1, xn) =
esρn(Tnxn,Tnyn)Π

−→
Q∗
n (dyn|yn−1)

∫
Yn
esρn(Tnxn,Tnyn)Π

−→
Q∗
n (dyn|yn−1)

.(4.3)

For t = n− 1, n− 2, . . . , 0:

Q∗t (dyt|yt−1, xt) =
esρt(T

txn,T tyn)−gt,n(xt,yt)Π
−→
Q∗

t (dyt|yt−1)
∫
Yt
esρt(T

txn,T tyn)−gt,n(xt,yt)Π
−→
Q∗
t (dyt|yt−1)

(4.4)

where s < 0, Π
−→
Q∗

t (·|yt−1) ∈M(Yt) and gt,n(xt, yt) is given by

gt,n(xt, yt) = −
∫

Xt+1

Pt+1(dxt+1|xt) log

(∫

Yt+1

esρt+1(T t+1xn,T t+1yn)−gt+1,n(xt+1,yt+1)Π
−→
Q∗

t+1(dyt+1|yt)

)
,

gn,n(xn, yn) = 0.

(4.5)

(2) The NRDF is given by

Rna0,n(D) = sD − 1

n+ 1

n∑

t=0

∫

X t×Yt−1

{∫

Yt

gt,n(xt, yt)Q∗t (dyt|yt−1, xt)

+
1

n+ 1
log

(∫

Yt

esρt(T
txn,T tyn)−gt,n(xt,yt)Π

−→
Q∗

t (dyt|yt−1)

)}

⊗ Pt(dxt|xt−1)⊗ (P0,t−1 ⊗
−→
Q∗0,t−1)(dxt−1, dyt−1

0 |y−1)⊗ µ(dy−1).(4.6)
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(3) If Rna0,n(D) > 0 then s < 0, and

(4.7)
1

n+ 1

n∑

t=0

∫

X t×Yt

ρt(T
txn, T tyn)(P0,t ⊗

−→
Q∗0,t)(dx

t, dyt0|y−1)⊗ µ(dy−1) = D.

Proof. The sequence of minimizations over {Qt(·|yt−1, xt) : t ∈ Nn0} in (4.2)
is a nested optimization problem. Hence, we can introduce the dynamic program-
ming recursive equations. Then, we carry out the infimum starting at the last stage
over Qn(·|yn−1, xn) ∈M(Yn) and sequentially move backwards in time to determine
Q∗n(·|yn−1, xn), Q∗n−1(·|yn−2, xn−1), . . . , Q∗0(·|y−1, x0). The procedure is straightfor-
ward and we omit it due to space limitations.

We note that Theorem 4.1 is fundamentally different from [14, Theorem IV.4]. In
the latter, it is assumed that all elements {Qt(dyt|yt−1, xt) : t ∈ Nn0} are identical.

From the above theorem, for a given distribution P0,n(·) ∈M(Xn), we can iden-
tify the dependence of the optimal nonstationary reproduction distribution on past
and present symbols of the information process {Xt : t ∈ Nn0}, but not its depen-
dence on past reproduction symbols. In what follows, we give certain properties of
the information structure of the optimal nonstationary reproduction distribution that
achieves the infimum in (3.7).

Information structure of the optimal nonstationary reproduction distribu-
tion.
(1) The dependence of Q∗n(dyn|yn−1, xn) on xn ∈ Xn is determined by the depen-
dence of ρn(Tnxn, Tnyn) on xn ∈ Xn as follows:
(1.1) If ρt(T

txn, T iyn) = ρ̄(xt, y
t), t = 0, . . . , n, thenQ∗n(dyn|yn−1, xn) = Q∗n(dyn|yn−1, xn),

while for t = n − 1, n − 2, . . . , 0, the dependence of Q∗t (dyt|yt−1, xt) on xt ∈ X t is
determined from the dependence of gt,n(xt, yt) on xt ∈ X t.
(1.2) If Pt(dxt|xt−1) = Pt(dxt|xt−1

t−1−L), where L is a non-negative finite integer, and
ρt(T

txn, T tyn) = ρ̄(xtt−N , yt), where N is a non-negative finite integer, then Q∗t (dyt|
yt−1, xt) = Q∗t (dyt|yt−1, xtt−J), where J = max{N,L}.
(2) If gt,n(xt, yt) = ĝt,n(xt, yt−1), ∀t ∈ Nn−1

0 then the optimal reproduction distribu-
tion (4.4) reduces to

Q∗t (dyt|yt−1, xt) =
esρt(T

txn,T tyn)Π
−→
Q∗

t (dyt|yt−1)
∫
Yt
esρt(T txn,T tyn)Π

−→
Q∗
t (dyt|yt−1)

.

To further understand the dependence of the optimal nonstationary reproduction
distributions (4.3), (4.4) on past reproductions, we state an alternative characteri-
zation of the nonstationary solution of Rna0,n(D), as a maximization over a certain
class of functions. We use this additional characterization to derive lower bounds on
Rna0,n(D), which are achievable.

Theorem 4.2. (Characterization of solution of NRDF)
An alternative characterization of NRDF is

Rna0,n(D) = sup
s≤0

sup
{λt∈Ψt

s: t∈Nn
0 }

{
sD − 1

n+ 1

n∑

t=0

∫

X t×Yt−1

∫

Yt

gt,n(xt, yt)Q∗t (dyt|yt−1, xt)

+ log
(
λt(x

t, yt−1)
)
Pt(dxt|xt−1)⊗ (P0,t−1 ⊗

−→
Q∗0,t−1)(dxt−1, dyt−1

0 |y−1)⊗ µ(dy−1)

}
,

(4.8)
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where

Ψt
s ,

{
λt(x

t, yt−1) ≥ 0 :

∫

X t−1

(∫

Xt

esρt(T
txn,T tyn)−gt,n(xt,yt)λt(x

t, yt−1)Pt(dxt|xt−1)

)

⊗P
−→
Q∗(dxt−1|yt−1) ≤ 1

}

(4.9)

and gn,n(xn, yn) = 0, and for t ∈ Nn−1
0 ,

gt,n(xt, yt) = −
∫

Xt+1

Pt+1(dxt+1|xt) log
(
λt+1(xt+1, yt)

)−1
.

For s ∈ (−∞, 0] a necessary and sufficient condition for {λt(·, ·) : t = 0, . . . , n} to

achieve the supremum of (4.8) is the existence of a probability distribution Π
−→
Q∗

t (·|yt−1)
∈M(Yt) such that

λt(x
t, yt−1) =

(∫

Yt

esρt(T
txn,T tyn)−gt,n(xt,yt)Π

−→
Q∗

t (dyt|yt−1)

)−1

, t ∈ Nn0 .

Proof. See Appendix A.
Theorem 4.2 is crucial in the computation of Rna0,n(D) for any given source (with

memory), simply because apart from Gaussian or memoryless sources, to solve a rate
distortion problem explicitly, one needs to identify the dependence of the optimal re-
production distribution on past reproduction symbols, Y t−1, and in general to find the
information structure of the optimal reproduction distribution. In the next section,
we use the previous theorems to derive Rna0,n(D) for the Gaussian source.

5. NRDF of Time-Varying Multidimensional Gauss-Markov Processes.
In this section, we apply Theorem 4.1 and Theorem 4.2 from Section 4 to time-varying
multidimensional Gauss-Markov processes in state-space form, and we obtain the
following results:
(1) the analytical expression of the optimal nonstationary reproduction distribution
that achieves the infimum of the NRDF and the analytical expression of the NRDF
subject to a square error distortion;
(2) a realization of the optimal nonstationary reproduction distribution in the sense
of Fig. 5.1 that allows us to obtain the optimal filter;
(3) a universal lower bound on the MSE of any causal estimator of Gaussian processes.

The analytical expression of the NRDF is found by developing a time-space algo-
rithm, which is a generalization of the standard reverse-waterfilling algorithm derived
in [6, Section 10.3.3] for independent Gaussian RV. Toward this, illustrative examples
that verify our theory are presented.

The time-varying multidimensional Gauss-Markov processes defined as follows.
Definition 5.1. (Time-varying multidimensional Gauss-Markov process)

The source process is modeled as a time-varying p-dimensional Gauss-Markov process
defined by

Xt+1 = AtXt +BtWt, X0 = x0, t ∈ Nn−1
0 ,(5.1)

where At ∈ Rp×p, Bt ∈ Rp×k, t ∈ Nn−1
0 . We assume

(G1) X0 ∈ Rp is Gaussian N(0; ΣX0);
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(G2) {Wt : t ∈ Nn0} is a k-dimensional IID Gaussian N(0; Ik) sequence, independent
of X0;
(G3) The distortion function is defined by d0,n(xn, yn) ,

∑n
t=0 ρt(T

txn, T tyn) =∑n
t=0 ||xt − yt||22.

Information Structure. By Theorem 4.1 and the Markovian property of (5.1),
the optimal nonstationary reproduction distribution given by (4.3)-(4.4) is Markov
with respect to {X0, . . . , Xn}, that is, {Q∗t (dyt|yt−1, xt) ≡ Q∗t (dyt|yt−1, xt) : t ∈
Nn0} (see the comments below Theorem 4.1 on information structures of the optimal
reproduction distribution). Since {Xt : t ∈ Nn0} is Markov and the distortion function
is squared error, then by [10] the optimal reproduction process {Y ∗t : t ∈ Nn0} is
Gaussian, and the joint process {(Xt, Yt) : t ∈ Nn0} is also Gaussian. In what follows,
we also show the Gaussianity of the structure of the optimal reproduction distribution
{Q∗t (dyt|yt−1, xt) : t ∈ Nn0}.

Starting from stage n and going backwards, we can show that {Q∗t (dyt|yt−1, xt) : t ∈
Nn0} are conditional Gaussian distributions.

Stage n. Since the exponential term ||yn − xn||22 in the Right-Hand Side (RHS)
of (4.3) is quadratic in (xn, yn), and {Xt : t ∈ Nn0} is Gaussian, then it follows that
a Gaussian distribution Qn(·|yn−1, xn), for a fixed realization of (yn−1, xn), and a

Gaussian distribution Π
−→
Q
n (·|yn−1) satisfy both the left and right sides of (4.3). This

implies that Q∗n(·|yn−1, xn) and Π
−→
Q∗
n (·|yn−1) are both Gaussian for fixed (yn−1, xn)

and yn−1, with conditional means which are linear in (yn−1, xn) and yn−1, respec-
tively, and conditional covariances which are independent of (yn−1, xn) and yn−1,
respectively.

Stages t ∈ {n − 1, n − 2, . . . , 1, 0}. By (4.4), evaluated at t = n − 1, then
gn−1,n(xn−1, y

n−1) will include terms of quadratic form in xn−1 and yn−1. Repeating
this argument recursively, it can be verified that at any time t ∈ Nn−1

0 , the optimal
reproduction distribution Q∗t (·|yt−1, xt) is conditionally Gaussian with conditional
means linear with respect to (xt, y

t−1), and conditional covariances independent of
(xt, y

t−1), t ∈ Nn−1
0 .

By induction, we then deduce that the optimal reproduction distributions are
conditionally Gaussian, and they are realized using a general equation of the form

Yt = ĀtXt + B̄tY
t−1 + V ct , t ∈ Nn0 ,(5.2)

where Āt ∈ Rp×p, B̄t ∈ Rp×tp, and {V ct : t ∈ Nn0} is an independent sequence of
Gaussian vectors {N(0;Qt) : t ∈ Nn0}.

Next, we simplify the computation by introducing the following preprocessing at
the encoder and decoder associated with channel (5.2) (as shown in Fig. 5.1).
Preprocessing at Encoder. Introduce (i) the estimation error {Kt : t ∈ Nn0} of
{Xt : t ∈ Nn0} based on {Y0, . . . , Yt−1}, and (ii) its covariance {Πt|t−1 : t ∈ Nn0},
defined by

Kt , Xt − X̂t|t−1, X̂t|t−1 , E
{
Xt|σ{Y t−1}

}
, Πt|t−1 , E{KtK

T

t }, t ∈ Nn0 ,(5.3)

where σ{Y t−1} is the σ-algebra (observable events) generated by the sequence {Y t−1}.
The covariance is diagonalized by introducing a unitary transformation {Et : t ∈ Nn0}
such that

EtΠt|t−1E
T

t = Λt, where Λt , diag{λt,1, . . . λt,p}, t ∈ Nn0 .(5.4)
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To facilitate the computation, we introduce the scaling process {Γt : t ∈ Nn0}, where
Γt , EtKt, t ∈ Nn0 , has independent Gaussian components but all of the components
are correlated.
Preprocessing at Decoder. Analogously, we introduce the error process {K̃t : t ∈ Nn0}
and the scaling process {Γ̃ : t ∈ Nn0} defined by

K̃t , Yt − X̂t|t−1, and Γ̃t,ΦtZt, Zt , (ΘtEtKt + V ct ) , t ∈ Nn0 .(5.5)

System
(fully-observed)

...

Filter

Parallel AWGN 
Channels

Encoder
Decoder

+

Xt Yt
Et

Kt �t �t

e�t
eKtET

t⇥t

V c
t,1

V c
t,2

V c
t,p

+

Σ

Σ

+

+

+

+

Σ

Σ

Innovation
Generator

+

_
Σ
+

+

bXt|t�1

Zt

Fig. 5.1: Realization of the optimal nonstationary reproduction distribution of mul-
tidimensional Gaussian process.

The square error fidelity criterion d0,n(·, ·) is not affected by the above processing of
{(Xt, Yt) : t ∈ Nn0}, since the preprocessing at both the encoder and decoder does
not affect the form of the squared error distortion function, that is,

d0,n(Xn, Y n) = d0,n(Kn, K̃n) =
1

n+ 1

n∑

t=0

||K̃t −Kt||22

=
1

n+ 1

n∑

t=0

||Γ̃t − Γt||22 = d0,n(Γn, Γ̃n).

(5.6)

Using basic properties of conditional entropy, it can be shown that the following
expressions are equivalent.

Rna0,n(D) = Rna,K
n,K̃n

0,n (D) , inf
{Qt: t=0,...,n}: E{d0,n(Kn,K̃n)}≤D

n∑

t=0

I(Kt; K̃t|K̃t−1)

= Rna,Γ
n,Γ̃n

0,n (D) , inf
{Qt: t=0,...,n}: E{d0,n(Γn,Γ̃n)}≤D

n∑

t=0

I(Γt; Γ̃t|Γ̃t−1).(5.7)

Next, we derive the main theorem which gives the closed form expression of the NRDF
for multidimensional Gaussian process (5.1) by considering the feedback realization
scheme shown in Fig. 5.1, where {V tc : t ∈ Nn0} is Gaussian {N(0;Qt) : t ∈ Nn0}, and
{Θt,Φt : t ∈ Nn0} are the matching matrices to be determined.

Theorem 5.2. (Rna0,n(D) of time-varying multidimensional Gauss-Markov pro-
cess)
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(1) The NRDF, Rna0,n(D), of the Gauss-Markov process (5.1), is given by

Rna0,n(D) =
1

2

1

n+ 1

n∑

t=0

p∑

i=1

log

(
λt,i
δt,i

)
, δt,i ≤ λt,i, t ∈ Nn0 , i = 1, . . . , p,(5.8)

≡ 1

2

1

n+ 1

n∑

t=0

p∑

i=1

log

{
max

(
1,
λt,i
δt,i

)}
,(5.9)

where Λt = EtΠt|t−1E
T

t ,

Πt|t−1 , E
{(
Xt − E

{
Xt|σ{Y t−1}

}) (
Xt − E

{
Xt|σ{Y t−1}

})T}
(5.10)

δt,i ,

{
ξ, if ξ ≤ λt,i
λt,i, if ξ > λt,i

, ∀t, i(5.11)

and ξ is chosen such that

1

n+ 1

n∑

t=0

p∑

i=1

δt,i = D.(5.12)

(2) The error Xt−E{Xt|σ{Y t−1}} is Gaussian N(0; Πt|t−1), X̂t|t−1 , E{Xt|σ{Y t−1}},
and Πt|t−1 are given by the Kalman filter equations

X̂t+1|t = AtX̂t|t−1 +AtΠt|t−1(E
T

t HtEt)
T

M−1
t

(
Yt − X̂t|t−1

)
,(5.13)

Πt+1|t = AtΠt|t−1A
T

t −AtΠt|t−1(E
T

t HtEt)
T

M−1
t (E

T

t HtEt)Πt|t−1A
T

t

+BtB
T

t = AtE
T

t ∆tEtA
T

t +BtB
T

t , Π0|−1 = Π̄0|−1, t ∈ Nn0 ,(5.14)

Mt = E
T

t HtEtΠt|t−1(E
T

t HtEt)
T

+ E
T

t ΦtQtΦ
T

tEt = E
T

t HtΛtEt,(5.15)

where

ηt,i = 1− δt,i
λt,i

, i = 1, . . . , p, Ht , diag{ηt,1, . . . , ηt,p},

∆t = diag{δt,1, . . . , δt,p}, Φt ,
√
Ht∆tQ

−1
t , t ∈ Nn0 .

(5.16)

(3) The realization of the optimal time-varying (nonstationary) reproduction distri-
bution illustrated in Fig. 5.1 is given by

Yt = E
T

t HtEt

(
Xt − X̂t|t−1

)
+ E

T

t ΦtV
c
t + X̂t|t−1

= X̂t|t−1 + E
T

t ΦtZt, Zt = ΘtEt

(
Xt − X̂t|t−1

)
+ V ct , Θt = Φ−1

t Ht.
(5.17)

(4) The filter estimate satisfies

X̂t|t−1 = At−1Yt−1, X̂0|−1 = E{X0|σ{Y −1}}, t ∈ Nn0(5.18)

X̂t|t = Yt(5.19)

and the optimal reproduction process is

Yt = At−1Yt−1 + E
T

t ΦtZt, Zt = ΘtEt (Xt −At−1Yt−1) + V ct .(5.20)



OPTIMAL ESTIMATION VIA NRDF 15

(5) The processes {Yt : t ∈ Nn0} and {K̃t : t ∈ Nn0} generate the same information,
i.e., σ{Y t} = σ{K̃t}, t ∈ Nn0 .

Proof. See Appendix B.
We make the following observations regarding Theorem 5.2.
Remark 2.
(1) The main features of Theorem 5.2 are the following:

First, by (5.20) the information structure of the optimal reproduction for the
specific Gaussian source with memory given by (5.1) is Markov, i.e.,

Q∗t (dyt|yt−1, xt) ≡ Q∗t (dyt|yt−1, xt).(5.21)

Hence, the output process {Yt : t ∈ Nn0} is first order Markov.
Second, the time-space reverse-waterfilling property (5.8)-(5.11), states that if
the reproduction error δt,i is above the eigenvalue λt,i of the error covariance
Πt|t−1, then the time-space component Xt,i

4 is not reconstructed by Yt,i
5,

for t ∈ Nn0 , i = 1, . . . , p. The behavior of δt,i is described by the reverse-
waterfilling expression (5.11), and the level ξ depends on D, i.e., the overall
fidelity of the error.

(2) For each t + 1, X̂t+1|t = AtYt, given by (5.13), is the estimator of Xt+1

based on Y t. In addition, the time-space reverse-waterfilling is part of the
estimation algorithm. This is a variant of the Kalman filter.

The following remark, is a direct consequence of Theorem 5.2, and illustrates the
connection between Rna0,n(D) and D0,n(Rna) given by (4.1).

Remark 3.
From Theorem 5.2 the NRDF of the Gaussian process (5.1) is given by

Rna0,n(D) =
1

2

1

n+ 1

n∑

t=0

p∑

i=1

log

{
max

(
1,
λt,i
δt,i

)}
(a)
≡ 1

n+ 1

n∑

t=0

p∑

i=1

Rnat,i (δt,i)(5.22)

where (a) follows if we let

Rnat,i (δt,i) ,
1

2
log

{
max

(
1,
λt,i
δt,i

)}
, t ∈ Nn0 , i = 1, . . . , p.(5.23)

By (5.23) we obtain

δt,i = λt,ie
−2Rna

t,i , t ∈ Nn0 , i = 1, . . . , p.(5.24)

Utilizing (5.12), we obtain

D =
1

n+ 1

n∑

t=0

δt =
1

n+ 1

n∑

t=0

p∑

i=1

δt,i, δt ,
p∑

i=1

δt,i.(5.25)

Substituting (5.24) into (5.25) we obtain

D0,n(Rna) =
1

n+ 1

n∑

t=0

δt =
1

n+ 1

n∑

t=0

p∑

i=1

λt,ie
−2Rna

t,i .(5.26)

4Xt,i is the time-space component of the vector process {Xt : t ∈ Nn
0 }.

5Yt,i is the time-space component of the vector process {Yt : t ∈ Nn
0 }.
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Next, we utilize the closed form expressions of the NRDF and FTH NDRF evalu-
ated for time-varying multidimensional Gauss-Markov process to derive a lower bound
on the MSE given in terms of conditional mutual information I(Xn;Y n0 |Y −1).

Theorem 5.3. (Universal lower bound on mean square error)
Let {Xt : t ∈ Nn0} be the multidimensional Gauss-Markov process given by (5.1) and

let {Ỹt : t ∈ Nn0} be any estimator (not necessarily Gaussian) of {Xt : t ∈ Nn0}. The
mean square error is bounded below by

1

n+ 1

n∑

t=0

E
{
||Xt − Ỹt||22

}
≥ 1

n+ 1

n∑

t=0

p∑

i=1

λt,ie
−2I(Xt,i;Ỹt,i|Ỹt−1,i)(5.27)

Proof. Let D = 1
n+1

∑n
t=0 E

{
||Xt − Ỹt||22

}
where

E
{
||Xt − Ỹt||22

}
=

p∑

i=1

δt,i with D ∈ [0,∞).

Since, in general, Rnat,i ≤ I(Xt,i; Ỹt,i|Ỹt−1,i), t ∈ Nn0 , i = 1, . . . , p, then by (5.26), we
obtain

1

n+ 1

n∑

t=0

E
{
||Xt − Ỹt||22

}
= D0,n(Rna) =

1

n+ 1

n∑

t=0

p∑

i=1

λt,ie
−2Rna

t,i

≥ 1

n+ 1

n∑

t=0

p∑

i=1

λt,ie
−2I(Xt,i;Ỹt,i|Ỹt−1,i),(5.28)

which is the desired result. This completes the proof.
Notice that from Remark 2, (2), if we substitute Ỹt = X̂t|t−1 = At−1Yt−1 in

Theorem 5.3, then we have the lower bound (5.27).
In the next remark, we relate degenerated versions of the lower bound given by

(5.27) to existing results in the literature.
Remark 4. (Relations to existing results)
(a) [26, Theorem 5.8.1], [27] Let X = (X1, . . . , Xp) be a p−dimensional Gaus-

sian vector with distribution X ∼ N(0; ΓX) and Y = (Y1, . . . , Yp) be its re-
production vector. Then, for any D > 0,

R(D) , inf
Q(dy|x):E||X−Y ||22≤D

I(X;Y ) =
1

2

p∑

i=1

log

{
max

(
1,
λi
ξ

)}
(5.29)

where {λi : i = 1, . . . , p} are the eigenvalues of ΓX and ξ > 0 is a constant
uniquely determined by

∑p
i=1 min{λi, ξ} = D. Note that the solution of clas-

sical RDF in (5.29) is based on reverse-waterfilling method (see [26, Lemma
5.8.2]). The above results are also obtained from Theorem 5.2, if we assume
model (5.1) generates an IID sequence {Xt : t ∈ Nn0} (by setting At = 0,

Bt = I). In such case, X̂t|t−1 = EXt = 0 and Πt|t−1 = EXtX
T

t = ΓX .
(b) Assume X ∼ N(0;σ2

X). By [26, Theorem 1.8.7] the following holds.

R(D) = min
Q(dy|x): E||X−Y ||22≤D

I(X;Y ) =
1

2
log

{
max

(
1,
σ2
X

D

)}
, D ≥ 0,

D(R) = min
Q(dy|x): I(X;Y )≤R

E
{
||X − Y ||22

}
= σ2

Xe
−2R.
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The realization scheme to achieve the classical RDF or the DRF is the fol-
lowing.

Y =
(

1− D

σ2
X

)
X + V c, V c ∼ N

(
0;D(1− D

σ2
X

)

)
.(5.30)

Note that (5.30) is a degenerated version of (5.17) assuming the model of
(5.1) generates IID sequence {Xt : t ∈ Nn0} as in (a), and the connection

to Theorem 5.2 is established by setting Et = 1, Ht = 1 − D
σ2
X

, X̂t|t−1 = 0,

Φt = HtD and V ct ∼ N(0; 1).
(c) (Lower bound on MSE [26, 1.8.8], [22]) Given a Gaussian RV X ∼ N(0;σ2

X),

then for any real valued RV Ỹ (not necessarily Gaussian) the MSE is bounded
below by

E||X − Ỹ ||22 ≥ σ2
Xe
−2I(X;Ȳ ).(5.31)

The RDF of the Gaussian RV X ∼ N(0;σ2
X) and the lower bound in (5.31),

are utilized in [22, 26] to derive optimal coding and decoding schemes for trans-
mitting a Gaussian message θ ∼ N(0;σ2

θ) over an AWGN channel with feedback,
Yt = Xt(θ, Y

t−1) + V ct , t ∈ Nn0 , where {V ct : t ∈ Nn0} is IID Gaussian process. Al-
though we do not pursue such problems in this paper, we note that Theorems 5.2
and 5.3 are necessary in order to derive optimal coding schemes for additive Gaussian
channels with memory (including additive Gaussian memoryless channels).

5.1. Examples. In this section, we numerically compute the NRDF of time-
varying Gauss-Markov process, using Theorem 5.2. For these examples, the utility
of the reverse-waterfilling algorithm is necessary even when the process elements are
scalar (i.e., p = 1). For process elements in higher dimensions (i.e., p ≥ 2), the
complexity of the problem increases, since the reverse-waterfilling algorithm must
be solved both in time and space units. We overcome this obstacle by proposing an
iterative algorithmic technique that allocates information of the Gaussian process and
distortion levels optimally.

Remark 5. (Relations to existing results)
The examples presented here deal with the time-space aspects of the reverse-waterfilling
algorithm. This is fundamentally different from [15, Section IV.C] where it is assumed
that the optimal reproduction distributions {Q∗t (dyt|yt−1, xt) = Q∗(dyt|yt−1, xt) : t ∈
N0} are time-invariant (identical).

Example 1. Consider the following two-dimensional Gauss-Markov process

[
Xt+1,1

Xt+1,2

]
=

[
−αt 1
−βt 0

]

︸ ︷︷ ︸
At

[
Xt,1

Xt,2

]
+

[
σWt,1

0
0 σWt,2

]

︸ ︷︷ ︸
Bt

[
Wt,1

Wt,2

]
t = 0, 1, 2, i = 1, 2,(5.32)

where Wt,i ∼ N(0; 1), σWt,i
Wt,i ∼ N(0;σ2

Wt,i
) and {At, Bt} are time-varying matri-

ces. This example corresponds to (5.1) for p = k = n = 2. For this example, we
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Algorithm 1 Rate distortion allocation algorithm: The vector case

Initialize:
The number of time-steps n; the number of channels p the distortion level D; the
error tolerance ε; the initial covariance matrix Π̄0|−1 of the error process K0, the
state-space matrices At and Bt of the time-varying multidimensional Gauss-Markov
process Xt given by (5.1).

Set ξ = D; flag = 0.

while flag = 0 do
Compute δt,i ∀ t, i as follows:
for t = 0 : n do

Perform Singular Value Decomposition: [Et,Λt] = SVD(Πt|t−1)
∆t is computed according to (5.11).
Use At Bt and ∆t to compute Πt+1|t according to (5.14).

end for
if | 1

n+1

∑n
t=0

∑p
i=1 δt,i −D| ≤ ε then

flag← 1
else

Re-adjust ξ as follows:
ξ ← ξ + β(D − 1

n+1

∑n
t=0

∑p
i=1 δt,i), where β ∈ (0, 1] is a proportionality gain

and affects the rate of convergence.
end if

end while

choose the distortion level D = 3 and consider the following matrices {At, Bt}:

A0 =

[
−0.5 1
−0.4 0

]
, B0 =

[
1 0
0 1

]

A1 =

[
−0.4 1
−0.5 0

]
, B1 =

[
0.9 0
0 1.4

]

A2 =

[
−0.9 1
−0.5 0

]
, B2 =

[
1.2 0
0 1.3

]
.

The initial covariance matrix of the error process Kt is

Π̄0|−1 =

[
0.6 0.2
0.2 0.4

]
.

Recall that the covariance matrix of the error process Kt given by (5.14) is simplified
to

Πt+1|t = AtE
T

t

{
diag{δt,1, δt,2}

}
EtA

T

t +BtB
T

t , t = 0, 1, 2, Π0|−1 = Π̄0|−1(5.33)

and δt,i given by (5.11) becomes

δt,i = min{λt,1, ξ}, t = 0, 1, 2, i = 1, 2.(5.34)

Now let us implement Algorithm 1 for error tolerance ε = 10−3. We choose an initial
ξ = ξ0 to start our iterations. A good starting point is ξ0 = D. For Π̄0|−1 we perform
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Singular Value Decomposition (SVD) and we obtain the unitary matrix

E0 =

[
−0.8507 −0.5257
−0.5257 0.8507

]

and the eigenvalues in a diagonal matrix that correspond to the levels of the noise λ0,1

and λ0,2, i.e.,

Λ0 =

[
0.7236 0

0 0.2764

]
.

For ξ = ξ0 = D = 3 and (λ0,1, λ0,2) = (0.72, 0.28) we compute ∆0 using (5.34).
Hence,

∆0 = Λ0 =

[
0.7236 0

0 0.2764

]
.

Using A0, B0, ∆0 and E0 we compute Π1|0 using (5.33)

Π1|0 =

[
1.3500 0.0400
0.0400 1.0960

]
,

and the procedure of (a) computing the SVD of Π1|0, (b) computing ∆1 is repeated
as it is done for Π1|0. Similarly, the procedure is repeated for all t = 0, 1, . . . , n.

At the end, for the given ξ we check if | 1
n+1

∑n
t=0

∑p
i=1 δt,i − D| ≤ ε. If it does,

we stop the iterations and the last ξ is the level we want. If not, we update ξ as
ξ ← ξ + β(D − 1

n+1

∑n
t=0

∑p
i=1 δt,i) and we repeat the procedure for all t again. For

this example, the final reverse-waterfilling is found in 9 iterations and it is shown in
Figure 5.2.

Reverse waterfilling in time-space: vector case

1
Time

232Dimension
1

4

0

1

2

3

5
Distortion level
Reproduced Information level

Fig. 5.2: Reverse-waterfilling in time-space for n=2 time units and p=2 space units.

By (5.8) we compute the NRDF:

Rna0,2(D) =
1

2

1

2 + 1

2∑

t=0

2∑

i=1

log

(
λt,i
δt,i

)
= 0.6330 bits/source symbol
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In the next corollary, we degrade the results derived in Theorem 5.2 to the case
of time-varying scalar Gauss-Markov process. This corollary emphasizes on the fact
that even in its simplest form, i.e., when p = 1, the computation of FTH NRDF for
time-varying Gauss-Markov processes can only be evaluated numerically by utilizing
algorithmic methods. Note that in the sequel, when we refer to the scalar Gaussian
process, for simplicity we will not make use of the dimension subscript, that is, λt,1 ≡
λt, δt,1 ≡ δt, ηt,1 ≡ ηt, qt,1 ≡ qt etc.

Corollary 5.4. (Rna0,n(D) of time-varying scalar Gauss-Markov process)
This corresponds to (5.1) by setting p = k = 1, At = αt, Bt = σWt

, i.e., σWt
Wt ∼

N(0;σ2
Wt

) giving

Xt+1 = αtXt + σWt
Wt, Wt ∼ N(0; 1), X0 ∼ N(0;σ2

X0
), t = 0, 1, . . . , n(5.35)

where {αt, σWt
: t = 0, 1, . . . , n} are time varying. Then σ2

Xt
, Var(Xt), satis-

fies σ2
Xt+1

= α2
tσ

2
Xt

+ σ2
Wt
, σ2

X0
= σ2

0 , t ∈ Nn0 .

In this case, by Theorem 5.2, and (5.8) we obtain

Rna0,n(D) =
1

2

1

n+ 1

n∑

t=0

log

(
λt
δt

)
(5.36)

where

δt ,

{
ξ if ξ ≤ λt
λt if ξ > λt

, ∀t(5.37)

with ξ fixed such that 1
n+1

∑n
t=0 δt = D, δt = mint{λt, ξ} and Πt|t−1 = Λt = λt, (i.e.,

Et = 1), Ht = ηt = 1− δt
λt
, t = 0, . . . , n.

By (5.15), we obtain

Mt = λtH
2
t +Htδt = Ht (λtHt + δt) = Ht

(
λt

(
1− δt

λt

)
+ δt

)
= λtHt.(5.38)

Also, by (5.14), we obtain

λt+1 = α2
tλt − α2

tλ
2
tH

2
tM

−1 + σ2
Wt

(a)
= α2

tλt − α2
tλ

2
tH

2
tH
−1
t λ−1

t + σ2
Wt

= α2
tλt − α2

tλtHt + σ2
Wt

= α2
tλt − α2

tλt

(
1− δt

λt

)
+ σ2

Wt
= α2

t δt + σ2
Wt
, λ̄0 = σ2

X0

(5.39)

where (a) follows from (5.38).
Similarly to Algorithm 1, we structure Algorithm 2 for rate distortion allocation.
Example 2. For this example, we choose the distortion level D = 2 and use the

following {a2
t , σ

2
Wt
}:

(a2
0, σ

2
W0

) = (1, 1), (a2
1, σ

2
W1

) = (0.2, 1.3), (a2
2, σ

2
W2

) = (1.8, 0.7).

The initial variance is σX0 = 1. Hence, λ̄0 = σX0 = 1.
Now let us implement Algorithm 2 for error tolerance ε = 10−3. We choose an

initial ξ = ξ0 to start our iterations. A good starting point is ξ0 = D. Using (5.37),
δ0 = min{1, 2} = 1. Then, using (5.39), λ1 = α2

0δ0 + σ2
W0

and thus δ1 is computed.
Similarly, the procedure is repeated for all t = 0, 1, . . . , n. At the end, for the given ξ
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Algorithm 2 Rate distortion allocation algorithm: The scalar case

Initialize:
The number of time-steps n; the distortion level D; the error tolerance ε; the initial
variance λ̄0 = σ2

X0
of the initial state X0, the values at and σ2

Wt
of the time-varying

scalar Gauss-Markov process Xt given by (5.35).

Set ξ = D; flag = 0.

while flag = 0 do
Compute δt ∀ t as follows:
for t = 0 : n do
δt is computed according to (5.37).
Use at and σ2

Wt
to compute λt+1 according to (5.39).

end for
if | 1

n+1

∑n
t=0 δt −D| ≤ ε then

flag← 1
else

Re-adjust ξ as follows:
ξ ← ξ + β(D − 1

n+1

∑n
t=0 δt), where β ∈ (0, 1] is a proportionality gain and

affects the rate of convergence.
end if

end while

we check if | 1
n+1

∑n
t=0 δt −D| ≤ ε. If it does, we stop the iterations and the last ξ is

the level we want. If not, we update ξ as ξ ← ξ + β(D − 1
n+1

∑n
t=0 δt) and we repeat

the procedure for all t again.

For this example, the final reverse-waterfilling is found after 15 iterations and it
is shown in Figure 5.2.
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Reverse waterfilling in time: scalar case

Distortion level
Reproduced Information level

Fig. 5.3: Reverse-waterfilling in time for n=2 time units.
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By (5.36) we compute the NRDF:

Rna0,2(D) =
1

2

1

2 + 1

2∑

t=0

log

(
λt
δt

)
= 0.2314 bits/source symbol

5.2. Realization of (5.20). In this section, we exemplify the relation between
information-based estimation via NRDF and the fact that the latter can also be seen as
a realization of an {encoder, channel, decoder} processing information optimally
with zero-delay. For simplicity we consider scalar process (p = 1). Note that this
concept is precisely the one described in Fig. 1.1.

Example 3. (Realization of (5.20) for scalar processes)
Let Xt be the scalar time-varying Gauss-Markov process defined by (5.35), and recall

that λt = α2
t−1δt−1 + σ2

Wt−1
and Rna(D) = 1

2

∑n
t=0 log

(
δt,i
λt,i

)
(see (5.39) and (5.36),

respectively).
Using (5.20) for p = 1, we obtain the following expression:

Yt = ΦtZt + αt−1Yt−1, Zt = Θt (Xt − αt−1Yt−1) + V ct ,(5.40)

where

Φt ,

√
Htδt
qt

and Θt ,

√
Htqt
δt

.(5.41)

Note that Ht, δt are defined in Corollary 5.4 and qt is the variance of the scalar noise
process V ct ∼ N(0; qt).

Next, we consider the FTH information capacity of a memoryless AWGN channel
with or without feedback with Gaussian noise process given as follows

C0,n(P ) =
1

2

1

n+ 1

n∑

t=0

log

(
1 +

Pt
qt

)
,(5.42)

where Pt is the power level allocated at each time.
Suppose that this channel is used once per source symbol, that is, the coding rate
between the source symbols and the channel symbols is 1 [28, Definition 2.1]. For
the realization in (5.40), the smallest achievable distortion is obtained by setting
(5.36)=(5.42) that yields

δmin
t =

λtqt
qt + Pt

=

(
α2
t−1δ

min
t−1 + σ2

Wt−1

)
qt

qt + Pt
, t ∈ Nn1 ,(5.43)

where

Dmin =
1

n+ 1

n∑

t=0

δmin
t .(5.44)

Evaluating λt = α2
t−1δt−1 + σ2

Wt−1
at δmin

t the following feedback encoder operates at
FTH information capacity.

Zt =

√
Pt
λt
Kt + qt =

√
Pt

α2
t−1δ

min
t−1 + σ2

Wt−1

Kt + qt,

Kt = Xt − E{Xt|σ{Y t−1}} = Xt − αt−1Yt−1,

(5.45)



OPTIMAL ESTIMATION VIA NRDF 23

where Zt is the observation process containing the data.
In addition, the decoder (or the filter) is given by the realization in (5.40).

By (5.41), the scaling factor Φt which guarantees the minimum end-to-end error
is

Φt =

√
α2
t−1δ

min
t−1 + σ2

Wt−1

Pt

Pt
qt + Pt

.(5.46)

Substituting (5.46) into (5.40) we obtain

Yt = αt−1Yt−1 +

√
α2
t−1δ

min
t−1 + σ2

Wt−1

Pt

Pt
qt + Pt

Zt.(5.47)

Finally, the average end-to-end distortion at each time instant is computed by evalu-
ating the expectation

Dt = E{|Xt − Yt|2} =
(α2
t−1δ

min
t−1 + σ2

Wt−1
)q2
t + (α2

t−1δ
min
t−1 + σ2

Wt−1
)qtPt

(Pt + qt)2

=
(α2
t−1δ

min
t−1 + σ2

Wt−1
)qt

qt + Pt
= δmin

t .

The realization of (5.40) with an {encoder, channel, decoder} operating with zero-
delay is illustrated in Fig. 5.4.
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Fig. 5.4: Realization of the optimal reproduction of Rna0,n(D) given by (5.40). The
scalings Θt and Φt are given by (5.45) and (5.46) respectively.

6. Conclusions and Future Directions. In this paper, we derived information-
based causal filters via nonanticipative rate distortion theory in finite-time hori-
zon. We exemplified our theoretical framework to time-varying multidimensional
Gauss-Markov process subject to a MSE fidelity, and we demonstrated that obtaining
such filters is equivalent to the design of an optimal {encoder, channel, decoder},
which ensures that the error fidelity is met. Unlike classical Kalman filters, the new
information-based causal filter is characterized by a reverse-waterfilling algorithm.
Moreover, we established a universal lower bound on the MSE of any estimator of a
Gaussian random process.

The results derived in this paper makes pave the way to generalizing the pro-
posed framework to Gaussian sources governed by partially observed Gauss-Markov
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processes. Part of ongoing research focuses on how filtering with fidelity criteria affects
stability and performance of control systems.

Appendix A. Proof of Theorem 4.2.

Let s ≤ 0, λn ∈ Ψn
s and

−→
Q∗0,n(·|y−1, xn) ∈

−→
Q0,n(D) be given. Then, using the

fact that

1

n+ 1

n∑

t=0

∫

X t×Yt

ρt(T
txn, T tyn)(P0,t⊗

−→
Q0,t)

(
dxt, dyt0|y−1

)
µ(dy−1) ≤ D

we obtain

1

n+ 1
I0,n(P0,n,

−→
Q0,n)− sD +

1

n+ 1

n∑

t=0

∫

X t×Yt

gt,n(xt, yt)(P0,t⊗
−→
Q0,t)

(
dxt, dyt0|y−1

)
⊗ µ(dy−1)

− 1

n+ 1

n∑

t=0

∫

X t×Yt−1

log
(
λt(x

t, yt−1)
)

(P0,t⊗
−→
Q0,t)

(
dxt, dyt0|y−1

)
⊗ µ(dy−1)

≥ 1

n+ 1

n∑

t=0

∫

X t×Yt

log

(
Q∗t (dyt|yt−1, xt)

Π
−→
Q∗
t (dyt|yt−1)

)
(P0,t⊗

−→
Q0,t)

(
dxt, dyt0|y−1

)
⊗ µ(dy−1)

− s 1

n+ 1

n∑

t=0

∫

X t×Yt

ρt(T
txn, T tyn)(P0,t⊗

−→
Q0,t)

(
dxt, dyt0|y−1

)
⊗ µ(dy−1)

+
1

n+ 1

n∑

t=0

∫

X t×Yt

gt,n(xt, yt)(P0,t⊗
−→
Q0,t)

(
dxt, dyt0|y−1

)
⊗ µ(dy−1)

− 1

n+ 1

n∑

t=0

∫

X t×Yt

log
(
λt(x

t, yt−1)
)

(P0,t⊗
−→
Q0,t)

(
dxt, dyt0|y−1

)
⊗ µ(dy−1)

=
1

n+ 1

n∑

t=0

∫

X t−1×Yt−1

{∫

Xt×Yt

log

(
Q∗t (dyt|yt−1, xt)e−sρt(T

txn,T tyn)+gt,n(xt,yt)

Π
−→
Q∗
t (dyt|yt−1)λt(xt, yt−1)

)

Q∗t (dyt|yt−1, xt)⊗ Pt(dxt|xt−1)

}
(P0,t−1⊗

−→
Q0,t−1)

(
dxt−1, dyt−1

0 |y−1
)
⊗ µ(dy−1)

(a)

≥ 1

n+ 1

n∑

t=0

∫

X t−1×Yt−1

{∫

Xt×Yt

(
1− esρt(T

txn,T tyn)−gt,n(xt,yt)Π
−→
Q∗

t (dyt|yt−1)λt(x
t, yt−1)

Q∗t (dyt|yt−1, xt)

)

Q∗t (dyt|yt−1, xt)⊗ Pt(dxt|xt−1)

}
(P0,t−1⊗

−→
Q0,t−1)

(
dxt−1, dyt−1

0 |y−1
)
µ(dy−1)

=
1

n+ 1

n∑

t=0

{
1−

∫

Yt

Π
−→
Q∗

0,t (dyt0|y−1)⊗ µ(dy−1)

(∫

X t−1

∫

Xt

esρt(T
txn,T tyn)−gt,n(xt,yt)λt(x

t, yt−1)Pt(dxt|xt−1)⊗P
−→
Q∗(dxt−1|yt−1)

)}

(b)

≥ 1

n+ 1

n∑

t=0

(
1−

∫

Yt

Π
−→
Q∗

0,t (dyt0|y−1)⊗ µ(dy−1)

)
= 0

where (a) follows from the inequality log x ≥ 1− 1
x , x > 0, and (b) follows from (4.9).
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Hence, we obtain

Rna0,n(D)
(c)

≥

sup
s≤0

sup
λ∈Ψs

{
sD − 1

n+ 1

n∑

t=0

∫

X t×Yt

gt,n(xt, yt)(P0,t⊗
−→
Q0,t)

(
dxt, dyt0|y−1

)
⊗ µ(dy−1)

+
1

n+ 1

n∑

t=0

∫

X t×Yt−1

log
(
λt(x

t, yt−1)
)
Pt(dxt|xt−1)(P0,t−1⊗

−→
Q0,t−1)

(
dxt−1, dyt−1

0 |y−1
)
⊗ µ(dy−1)

}
.

However, equality in (c) holds if

λt(x
t, yt−1) ,

(∫

Yt

esρt(T
txn,T tyn)−gt,n(xt,yt)Π

−→
Q∗

t (dyt|yt−1)

)−1

, ∀t ∈ Nn0 .

This completes the proof.

Appendix B. Proof of Theorem 5.2.

(1) The derivation is based on the fact that the feedback realization scheme of
Fig. 5.1 is generally an upper bound on the NRDF, Rna0,n(D), of the Gaussian process,
and this realization gives (5.8). The achievability of this upper bound is established
by evaluating the lower bound in (5.8) which is done recursively moving backward in
time, utilizing the expression we obtained in Theorem 4.2.
Upper Bound. First, consider the realization of Fig. 5.1. Define {Ht : t ∈ Nn0} as in
(5.16). By Fig. 5.1, we obtain

K̃t = E
T

t HtEt
(
Xt − E

{
Xt|σ{Y t−1}

})
+ E

T

t ΦtV
c
t = E

T

t HtEtKt + E
T

t ΦtV
c
t , t ∈ Nn0

(B.1)

where {V ct : t ∈ Nn0} is a zero mean independent Gaussian process with covariance
Cov(V ct ) = Qt = diag{qt,1, . . . , qt,p}, and {Φt : t ∈ Nn0} is to be determined. Next, we

show that by letting Φt =
√
Ht∆tQ

−1
t , and ∆t , diag{δt,1, . . . , δt,p}, then Πt|t−1 =

E
{
KtK

T

t

}
, and also 1

n+1E
{∑n

t=0 ||Xt − Yt||22
}

= 1
n+1E

{∑n
t=0 ||Kt − K̃t||22

}
= D.

Clearly, by (5.3), (5.5), and (B.1), we obtain

1

n+ 1

n∑

t=0

E
{

(Xt − Yt)
T

(Xt − Yt)
}

=
1

n+ 1

n∑

t=0

trace
(
E
{

(Kt − K̃t)(Kt − K̃t)
T
})

=
1

n+ 1

n∑

t=0

trace E
{

(Kt − E
T

t HtEtKt − E
T

t ΦtV
c
t )(Kt − E

T

t HtEtKt − E
T

t ΦtV
c
t )

T
}

=
1

n+ 1

n∑

t=0

trace
{
E

T

t

(
(I −Ht) diag(λt,1, . . . , λt,p)(I −Ht)

T

+ (ΦtQtΦ
T

t )
)
Et

}

(a)
=

1

n+ 1

n∑

t=0

trace {diag(δt,1, . . . , δt,p)} = D,

where (a) holds by setting Φt as in (5.16). By (5.7), the NRDF can be written as
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follows:

Rna,K
n,K̃n

0,n (D) ≤ 1

n+ 1

n∑

t=0

I(Kt; K̃t|K̃t−1)(B.2)

=
1

n+ 1

n∑

t=0

{
H(K̃t|K̃t−1)−H(K̃t|K̃t−1,Kt)

}

(b)

≤ 1

n+ 1

n∑

t=0

{
H(K̃t)−H(K̃t|K̃t−1,Kt)

}

(c)

≤ 1

n+ 1

n∑

t=0

{
H(K̃t)−H(K̃t|Kt)

}

(d)

≤
n∑

t=0

{
H(K̃t)−H(E

T

t ΦtV
c
t )
}
,(B.3)

where (b) follows from the fact that conditioning reduces entropy (see also [15, Lemma

V.1, Remark V.2]), (c) follows again from the fact that K̃t = E
T

t HtEtKt + E
T

t ΦtV
c
t

is a memoryless Gaussian channel, and (d) follows from the orthogonality of Kt and
V ct . Actually, by [15, Lemma V.1, Remark V.2], it can be shown that the inequalities
(b), (c), (d) are equalities.
Next, we compute the entropies appearing in (B.3) from the covariances of the corre-

sponding processes. The covariance of the Gaussian zero mean term E
T

t ΦtV
c
t , t ∈ Nn0 ,

is given by

E
{

(E
T

t ΦtV
c
t )(EtΦtV

c
t )

T
}

= E
T

t ΦtE{V ct V
c,T

t }Φ
T

t Et = E
T

t ΦtQtΦ
T

t Et

= E
T

t Ht∆tEt = E
T

t diag{ηt,1δt,1, . . . , ηt,pδt,p}Et, t ∈ Nn0 .(B.4)

The covariance of K̃t, t ∈ Nn0 , is given by

E
{
K̃tK̃

T

t

}
= E

{
(E

T

t HtEtKt + E
T

t ΦtV
c
t )(E

T

t HtEtKt + E
T

t ΦtV
c
t )

T
}

= E
T

t

(
diag{η2

t,1λt,1, . . . , η
2
t,pλt,p}+ diag{ηt,1δt,1, . . . , ηt,pδt,p}

)
Et

= E
T

t diag{λt,1 − δt,1, . . . , λt,p − δt,p}Et, t ∈ Nn0 .(B.5)

Using (B.5) we obtain the first term of (B.3) as follows6

n∑

t=0

H(K̃t) =
1

2

n∑

t=0

p∑

i=1

log
{

(2πe) (λt,i − δt,i)+
}
.(B.6)

Also, by (B.4), we obtain the second term in (B.3) as follows.

n∑

t=0

H(E
T

t ΦtV
c
t ) =

1

2

n∑

t=0

p∑

i=1

log {(2πe) (ηt,iδt,i)} .(B.7)

This problem can be cast into the following convex optimization problem

min
1

n+1

∑n
t=0

∑p
i=1 δ∞,i=D

1

n+ 1

n∑

t=0

p∑

i=1

max

{
0,

1

2
log

(
λt,i
δt,i

)}
.(B.8)

6Note that (·)+ , max{0, ·}.
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Since this is a convex optimization problem, we use Lagrange multipliers to construct
the following augmented functional

J(D) =
1

2

n∑

t=0

p∑

i=1

log

(
λt,i
δt,i

)
− s 1

n+ 1

n∑

t=0

p∑

i=1

δt,i, s ≤ 0.(B.9)

Differentiating with respect to δt,i and setting equal to zero, we obtain

∂J

∂δt,i
= − 1

2δt,i
− s = 0 =⇒ s = − 1

2δt,i
or δt,i = ξ̂, ξ̂ ≥ 0.(B.10)

Evidently, the optimal information allocation to the various descriptions results in
an equal distortion for the components of the time-invariant multidimensional Gauss-
Markov process. This is feasible if the constant ξ̂ in (B.10) is less than λt,i ∀t, i. As

the total distortion level increases, the constant ξ̂ also increases until it exceeds λt,i
for some t, i. If we increase the total distortion, we must use the Karush-Kuhn-Tucker
(KKT) conditions [29] to find the minimum in the convex optimization problem (B.8).
By applying KKT conditions we obtain

∂J

∂δt,i
= − 1

2δt,i
− s, s ≤ 0(B.11)

where s is chosen so that

∂J

∂δt,i
=

{
0 if δt,i ≤ λt,i
≤ 0 if δt,i > λt,i

.(B.12)

It is easy to verify that the solution of KKT conditions yields

δt,i ,

{
ξ if ξ ≤ λt,i
λt,i if ξ > λt,i

, ∀t, i(B.13)

where ξ is chosen such that 1
n+1

∑n
t=0

∑p
i=1 δt,i = D and δt,i = min{ξ, λt,i}.

Using (B.6) and (B.7) in (B.3) we have the following upper bound

Rna,K
n,K̃n

0,n (D) ≤ 1

n+ 1

n∑

t=0

I(Kt; K̃t|, K̃t−1)

≤ 1

2

1

n+ 1

n∑

t=0

p∑

i=1

log

{
(λt,i − δt,i)+

ηt,iδt,i

}
=

1

2

1

n+ 1

n∑

t=0

p∑

i=1

log

(
λt,i
δt,i

)
,

(B.14)

where δt,i = min{ξ, λt,i}, t ∈ Nn0 , i = 1, . . . , p, and 1
n+1

∑n
t=0

∑p
i=1 δt,i = D. Note

that if δt,i = λt,i, for t ∈ Nn0 and i = 1, . . . , p, then no data are estimated.

Lower Bound. Here, we apply Theorem 4.2 recursively, to obtain a lower bound for

the NRDF, Rna0,n(D) = Rna,K
n,K̃n

0,n (D), which is precisely (5.8).
Let p̄(·|, ·) and p̄(·) denote the conditional and unconditional densities, respectively.
Using the property of {λt(·, ·, ) : t = 0, . . . , n} corresponding to the fact that
λt(k

t, k̃t−1) ≡ λt(kt, k̃
t−1), t = 0, . . . , n and by Theorem 4.2, an alternative ex-

pression for the NRDF, Rna,K
n,K̃n

0,n (D) is the following.
(B.15)

Rna,K
n,K̃n

0,n (D) = sup
s≤0

sup
{λt(kt,k̃t−1)∈Ψt

s: t∈Nn
0 }
{term-(0)+. . . +term-(n-1)+term-(n)}
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where

term-(0) ≡ − 1

n+ 1

∫

K0

(∫

K̃0

g0,n(k̃0)p̄(k̃0|k0)dk̃0

)
p̄(k0|)dk0 +

1

n+ 1

∫

K0

log
(
λ0(k0)

)
p̄(k0)dk0

term-(1) ≡ − 1

n+ 1

∫

K1×K̃0

(∫

K̃1

g1,n(k̃1)p̄(k̃1|k̃0, k1)dk̃1

)
p̄(k1, k̃0)dk1dk̃0

+
1

n+ 1

∫

K1×K̃0

log
(
λ0(k1, k̃0)

)
p̄(k1, k̃0)dk1dk̃0

...

term-(n-2) ≡ − 1

n+ 1

∫

Kn−2×K̃n−3

(∫

K̃n−2

gn−2,n(k̃n−2)p̄(k̃n−2|k̃n−3, kn−2)dk̃n−2

)
p̄(kn−2, k̃

n−3)

dkn−2dk̃
n−3 +

1

n+ 1

∫

Kn−2×K̃n−3

log
(
λn−2(kn−2, k̃

n−3)
)
p̄(kn−2, k̃

n−3)dkn−2dk̃
n−3

term-(n-1) ≡ − 1

n+ 1

∫

Kn−1×K̃n−2

(∫

K̃n−1

gn−1,n(k̃n−1)p̄(k̃n−1|k̃n−2, kn−1)dk̃n−1

)
p̄(kn−1, k̃

n−2)

dkn−1dk̃
n−2 +

1

n+ 1

∫

Kn−1×K̃n−2

log
(
λn−1(kn−1, k̃

n−2)
)
p̄(kn−1, k̃

n−2)dkn−1dk̃
n−2

term-(n) ≡ sD +
1

n+ 1

∫

Kn×K̃n−1

log
(
λn(kn, k̃

n−1)
)
p̄(kn, k̃

n−1)dkndk̃
n−1

and

Ψt
s ,

{
λt(kt, k̃

t−1) ≥ 0 :

∫

Kt

es||kt−k̃t||
2
2−gt,n(k̃t)λt(kt, k̃

t−1)p̄(kt|k̃t−1)dkt ≤ 1
}
, t ∈ Nn0 ,

(B.16)

gn,n(k̃n) = 0,

gt,n(k̃t) = −
∫

Kt+1

log
(
λt+1(kt+1, k̃

t)
)−1

p̄(kt+1|, k̃t)dkt+1, t ∈ Nn−1
0 .(B.17)

Clearly, if gt,n(k̃t) = ḡt,n(k̃t−1), i.e., it is independent of (k̃t), for t ∈ Nn−1
0 , then by

Theorem 4.1, the RHS terms in (B.15) involving gt,n(·, ·), t ∈ Nn−1
0 , will not appear

(because the optimal reproduction distribution will not involve such terms).
Since gn,n(·, ·) = 0, by (B.16), (B.17), λn(kn, k̃

n−1) determines gn−1,n(·, ·), λn−1(·, ·)
determines gn−2,n(·, ·) and so on, and the RHS of (B.15) involves supremum over
{λt(·, ·) : t ∈ Nn0}, then any choice of {λt(·, ·) : t ∈ Nn0} gives a lower bound.
The main idea, implemented below, uses the property of distortion function, and the
source distribution, to show that {λt(·, ·) : t ∈ Nn0} can be chosen so that gt,n(k̃t) =

ḡt,n(k̃t−1), t ∈ Nn−1
0 , giving a lower bound which is achievable, and that the optimal

reproduction distribution is of the form

p̄(k̃t|, k̃t−1, kt) =
es||kt−k̃t||

2
2 p̄(k̃t|k̃t−1)∫

K̃t
es||kt−k̃t||

2
2 p̄(k̃t|k̃t−1)

.
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Step t = n. The set Ψn
s is defined as follows:

Ψn
s ,

{
λn(kn, k̃

n−1) ≥ 0 :

∫

Kn

es||kn−k̃n||
2
2λn(kn, k̃

n−1)p̄(kn|k̃n−1)dkn ≤ 1
}
,(B.18)

where p̄(kn|k̃n−1) denotes the conditional density of kn given (k̃n−1). Take λn(kn, k̃
n−1) ∈

Ψn
s such that

λn(kn, k̃
n−1) =

αn

p̄(kn|k̃n−1)
(B.19)

for some αn not depending on kn, and substitute (B.19) into the integral inequality
in (B.18) to obtain

αn

∫

Kn

es||kn−k̃n||
2
2dkn ≤ 1.

By change of variable of integration then

αn

∫ ∞

−∞
es||zn||

2
2dzn = αn

√(
−π
s

)p
= αn

(
−π
s

) p
2 ≤ 1,(B.20)

where “s” is the non-positive Lagrange multiplier.
Moreover, αn is chosen so that the inequality of (B.20) holds with equality, giving

αn =
1∫

es||zn||
2
2dzn

=
(
− s
π

) p
2

, λn(kn, k̃
n−1) =

(− s
π )p/2

p̄n(kn|k̃n−1)
.(B.21)

Substituting (B.21) into the term-(n) of (B.15) gives

term-(n) = sD +
1

n+ 1
logαn −

1

n+ 1

∫

Kn×K̃n−1

log
(
p̄(kn|k̃n−1)

)
p̄(kn, k̃

n−1)dkndk̃
n−1

= sD +
1

n+ 1
log
(
− s
π

) p
2

+
1

n+ 1
H(Kn|K̃n−1).

(B.22)

The choice of λn(·, ·) given by (B.21) determines gn−1,n(·) given by

gn−1,n(k̃n−1) = −
∫

Kn

p̄(dkn|k̃n−1) log
(
λn(kn, k̃

n−1)
)−1

(a)
= −

∫

Kn

p̄(dkn|k̃n−1) log
( p̄(kn|k̃n−1)

αn

)

= logαn +H(Kn|K̃n−1 = k̃n−1), αn =
(
− s
π

) p
2

(b)

≤ logαn +H(Kn|K̃n−2 = k̃n−2)

= log
(
− s
π

) p
2

+H(Kn|K̃n−2 = k̃n−2) ≡ ḡn−1,n(k̃n−2)(B.23)

where (a) follows from the fact that
(
λn(kn, k̃

n−1)
)−1

= p̄(kn|k̃n−1)
αn

, and (b) from the

fact that conditioning reduces entropy.
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When the upper bound in (B.23) is substituted into the second expression of term-
(n-1) of (B.15) involving gn−1,n(·), it gives

− 1

n+ 1

∫

Kn−1×K̃n−2

(∫

K̃n−1

gn−1,n(k̃n−1)p̄(k̃n−1|k̃n−2, kn−1)dk̃n−1

)
p̄(kn−1, k̃

n−2)dkn−1dk̃
n−2

≥ − 1

n+ 1

∫

Kn−1×K̃n−2

(∫

K̃n−1

ḡn−1,n(k̃n−2)p̄(k̃n−1|k̃n−2, kn−1)dk̃n−1

)
p̄(kn−1, k̃

n−2)dkn−1dk̃
n−2.

Step t = n− 1. The set Ψn−1
s is defined as follows (using gn−1,n(k̃n−1) ≡ ḡn−1,n(k̃n−2)

given by (B.23) obtained in step t = n)

Ψn−1
s ,

{
λn−1(kn−1, k̃

n−2) ≥ 0 :

∫

Kn−1

es||kn−1−k̃n−1||22−ḡn−1,n(k̃n−2)λn−1(kn−1, k̃
n−2)p̄(kn−1|k̃n−2)dkn−1 ≤ 1

}
.

(B.24)

Take λn−1(kn−1, k̃
n−2) ∈ Ψn−1

s such that

λn−1(kn−1, k̃
n−2) =

αn−1(k̃n−2)

p̄(kn−1|k̃n−2)
(B.25)

for some αn−1(k̃n−2) not depending on kn−1, and substitute (B.25) into the integral
inequality in (B.24) to obtain

αn−1(k̃n−2)e−ḡn−1,n(k̃n−2)

∫

Kn−1

es||kn−1−k̃n−1||22dkn−1 ≤ 1.

By change of variable of integration then

αn−1(k̃n−2)e−ḡn−1,n(k̃n−2)

∫ ∞

−∞
es||zn−1||22dzn−1 = αn−1(k̃n−2)e−ḡn−1,n(k̃n−2)

(
−π
s

) p
2 ≤ 1.

Hence,

αn−1(k̃n−2)
(
−π
s

) p
2 ≤ eḡn−1,n(k̃n−2).(B.26)

Moreover, αn−1(·) is chosen so that the inequality in (B.26) holds with equality, giving

αn−1(k̃n−2) =
eḡn−1,n(k̃n−2)

(
−πs
) p

2

= elogαn+H(Kn|K̃n−2=k̃n−2)
(
− s
π

) p
2

(c)
=
(
− s
π

)p
eH(Kn|K̃n−2=k̃n−2),(B.27)

where (c) holds due to (B.23). Therefore, (B.25) is given by

λn−1(kn−1, k̃
n−1) =

(
− s
π

)p
eH(Kn|K̃n−2=k̃n−2)

p̄(kn−1|k̃n−2)
.(B.28)
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Substituting (B.28) into the term-(n-1) of (B.15) gives

term-(n-1)
(d)

≥ − 1

n+ 1

∫

Kn−1×K̃n−2

(∫

K̃n−1

ḡn−1,n(k̃n−2)p̄(k̃n−1|k̃n−2, kn−1)dk̃n−1

)

× p̄(kn−1, k̃
n−2|)dkn−1dk̃

n−2

+
1

n+ 1

∫

Kn−1×K̃n−2

log
(
λn−1(kn−1, k̃

n−2)
)
p̄(kn−1, k̃

n−2)dkn−1dk̃
n−2(B.29)

(e)
= − 1

n+ 1
log
(
− s
π

) p
2 − 1

n+ 1
H(Kn|K̃n−2)

+
1

n+ 1

∫

Kn−1×K̃n−2

log
( αn−1(k̃n−2)

p̄(kn−1|k̃n−2)

)
p̄(kn−1, k̃

n−2)dkn−1dk̃
n−2

= − 1

n+ 1
log
(
− s
π

) p
2 − 1

n+ 1
H(Kn|K̃n−2) +

1

n+ 1
log
(
− s
π

)p

+
1

n+ 1
H(Kn|K̃n−2) +

1

n+ 1
H(Kn−1|K̃n−2)

=
1

n+ 1
log
(
− s
π

) p
2

+
1

n+ 1
H(Kn−1|K̃n−2),(B.30)

where (d) follows from the fact that gn−1,n(k̃n−1) ≤ ḡn−1,n(k̃n−2) (see (B.23)) and
(e) follows by substituting (B.23) and (B.25) into the the second and third expression
of (B.29), respectively.

The choice of λn−1(·, ·) (given by (B.28)) determines gn−2,n(·) given by

gn−2,n(k̃n−2) = −
∫

Kn−1

p̄(kn−1|, k̃n−2) log
(
λn−1(kn−1, k̃

n−2)
)−1

(f)
= −

∫

Kn−1

p̄(kn−1|k̃n−2) log
( p̄(kn−1|k̃n−2)

αn−1(k̃n−2)

)
, αn−1(k̃n−2) =

(
− s
π

)p
eH(Kn|K̃n−2=k̃n−2)

= log
(
αn−1(k̃n−2)

)
−
∫

Kn−1

p̄(kn−1|k̃n−2) log
(
p̄(kn−1|k̃n−2)

)

= log
(
− s
π

)p
+H(Kn|K̃n−2 = k̃n−2) +H(Kn−1|K̃n−2 = k̃n−2)

(g)

≤ log
(
− s
π

)p
+H(Kn|, K̃n−3 = k̃n−3) +H(Kn−1|K̃n−3 = k̃n−3)

≡ ḡn−2,n(k̃n−3),

(B.31)

where (f) follows from the fact that
(
λn−1(kn−1, k̃

n−2)
)−1

= p̄(kn−1|k̃n−2)

αn−1(k̃n−2)
, and (g)

follows from the fact that conditioning reduces entropy.
When the upper bound in (B.31) is substituted into the second expression of term-
(n-2) of (B.15) involving gn−2,n(·), it gives

− 1

n+ 1

∫

Kn−2×K̃n−3

(∫

K̃n−2

gn−2,n(k̃n−2)p̄(k̃n−2|k̃n−3, kn−2)dk̃n−2

)
p̄(kn−2, k̃

n−3)dkn−2dk̃
n−3

≥ − 1

n+ 1

∫

Kn−2×K̃n−3

(∫

K̃n−2

ḡn−2,n(k̃n−3)p̄(k̃n−2|k̃n−3, kn−2)dk̃n−2

)
p̄(kn−2, k̃

n−3)dkn−2dk̃
n−3.
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Step t = n− 2. The set Ψn−2
s is defined as follows (using gn−2,n(k̃n−2) ≡ ḡn−2,n(k̃n−3)

given by (B.31) obtained in step t = n− 1).

Ψn−2
s ,

{
λn−2(kn−2, k̃

n−3) ≥ 0 :
∫

Kn−2

es||kn−2−k̃n−2||22−ḡn−2,n(k̃n−3)λn−2(kn−2, k̃
n−3)p̄(kn−2|k̃n−3)dkn−2 ≤ 1

}
.

(B.32)

Take λn−2(kn−2, k̃
n−3) ∈ Ψn−2

s such that

λn−2(kn−2, k̃
n−3) =

αn−2(k̃n−3)

p̄(kn−2|k̃n−3)
(B.33)

for some αn−2(k̃n−3) not depending on kn−2, and substitute (B.33) into the integral
inequality in (B.32) to obtain

αn−2(k̃n−3)e−ḡn−2,n(k̃n−3)

∫

Kn−2

es||kn−2−k̃n−2||22dkn−2 ≤ 1.

By change of variable of integration then

αn−2(k̃n−3)e−ḡn−2,n(k̃n−3)

∫ ∞

−∞
es||zn−2||22dzn−2 = αn−2(k̃n−3)e−ḡn−2,n(k̃n−3)

(
−π
s

) p
2 ≤ 1.

Hence,

αn−2(k̃n−3)
(
−π
s

) p
2 ≤ eḡn−2,n(k̃n−3).(B.34)

Moreover, αn−2(·) is chosen so that the inequality in (B.34) holds with equality, giving

αn−2(k̃n−3) =
eḡn−2,n(k̃n−3)

∫
es||zn−2||22dzn−2

= elogαn−1(k̃n−2)+H(Kn−1|K̃n−3=k̃n−3)
(
− s
π

) p
2

=

{(
− s
π

) p
2

}3

eH(Kn|K̃n−3=k̃n−3)+H(Kn−1|K̃n−3=k̃n−3).(B.35)

Therefore, (B.33) is given by

λn−2(kn−2, k̃
n−3) =

{(
− s
π

) p
2

}3

eH(Kn|K̃n−3=k̃n−3)+H(Kn−1|K̃n−3=k̃n−3)

p̄(kn−2|k̃n−3)
.(B.36)

Substituting (B.36) into term-(n-2) of (B.15) gives

Term− (n− 2) :
(h)

≥ −
∫

Kn−2×K̃n−3

(∫

K̃n−2

ḡn−2,n(k̃n−3)p̄(k̃n−2|k̃n−3, kn−2)dk̃n−2

)

p̄(kn−2, k̃
n−3)dkn−2dk̃

n−3

+

∫

Kn−2×K̃n−3

log
(
λn−2(kn−2, k̃

n−3)
)
p̄(kn−2, k̃

n−3)dkn−2dk̃
n−3(B.37)

(i)
= − 1

n+ 1
log

{(
− s
π

) p
2

}2

−H(Kn|K̃n−3)−H(Kn−1|K̃n−3)

+
1

n+ 1

∫

Kn−2×K̃n−3

log
(
αn−2(k̃n−3)

)
p̄(kn−2, k̃

n−3)dkn−2dk̃
n−3
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− 1

n+ 1

∫

Kn−2×K̃n−3

log
(
p̄(kn−2|k̃n−3)

)
p̄(kn−2, k̃

n−3)dkn−2dk̃
n−3

= − 1

n+ 1
log

{(
− s
π

) p
2

}2

− 1

n+ 1
H(Kn|K̃n−3)

− 1

n+ 1
H(Kn−1|K̃n−3) +

1

n+ 1
log

{(
− s
π

) p
2

}3

+H(Kn|K̃n−3) +
1

n+ 1
H(Kn−1|K̃n−3) +

1

n+ 1
H(Kn−2|K̃n−3)

=
1

n+ 1
log
(
− s
π

) p
2

+
1

n+ 1
H(Kn−2|K̃n−3),(B.38)

where (h) follows from the fact that gn−2,n(k̃n−2) ≤ ḡn−2,n(k̃n−3) (see (B.31)), and
(i) follows by substituting (B.31) and (B.33) into the the second and third expression
of (B.37), respectively.
By applying induction, we obtain the following lower bound for the NRDF.

Rna,K
n,K̃n

0,n (D) ≥ sD +
1

n+ 1

{(
− s
π

) p
2

}n+1

+
1

n+ 1

{
H(Kn|K̃n−1) +H(Kn−1|K̃n−2) + . . .+H(K1|K̃0) +H(K0)

}

= sD +
1

2

1

n+ 1

n∑

t=0

p∑

i=1

log
(
− s
π

)
+

1

n+ 1

n∑

t=0

H(Kt|K̃t−1)

(j)
= sD +

1

2

1

n+ 1

n∑

t=0

p∑

i=1

log
(
− s
π

)
+

1

2

1

n+ 1

n∑

t=0

log 2πe|Λt|,(B.39)

where (j) follows from the fact that

H(Kt|K̃t−1) = H(Xt − E
{
Xt|σ{Kt−1}

}∣∣K̃t−1)

= H(Xt|K̃t−1) = H(Xt) =
1

2

n∑

t=0

log 2πe|Λt|.

Next, we show how to find the Lagrangian multiplier “s” so that the lower bound

(B.39) equals 1
2

∑n
t=0

∑p
i=1 log

(
λt,i

δt,i

)
. To this end, we need to ensure existence of

some s < 0 such that the following identity holds.

sD +
1

2

1

n+ 1

n∑

n=0

p∑

i=1

log
(
− s
π

)
+

1

2

1

n+ 1

n∑

t=0

log 2πe|Λt| =
1

2

1

n+ 1

n∑

t=0

p∑

i=1

log

(
λt,i
δt,i

)
.

After some algebra, the previous expression can be simplified into the following ex-
pression.

1

2
log e2s 1

(n+1)

∑n
t=0

∑p
i=1 δt,i +

1

2

1

n+ 1

n∑

t=0

p∑

i=1

log
(
− s
π

)
=

1

2

1

n+ 1

n∑

t=0

p∑

i=1

log
1

2πeδt,i
.

In turn, from the equation above we obtain

1

2

1

n+ 1

n∑

t=0

p∑

i=1

log e2sδt,i
(
− s
π

)
=

1

2

1

n+ 1

n∑

t=0

p∑

i=1

log
1

2πeδt,i
=⇒ δt,i = − 1

2s
,
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where δt,i = {ξ, λt,i}. Now, if δt,i = ξ then δt,i = − 1
2s and the NRDF is bounded

below by the following expression

Rna,K
n,K̃n

0,n (D) ≥ 1

2

1

n+ 1

n∑

t=0

p∑

i=1

log

(
λt,i
δt,i

)
,

1

n+ 1

n∑

t=0

p∑

i=1

δt,i = D.

(2) The estimation error X̂t|t−1 is given by the modified Kalman filter equations
(5.13)-(5.15) (see [20, Theorem 1.1, pp. 158]). Note that (5.15) is computed as
follows.

Mt = E
T

t HtEtΠt|t−1(E
T

t HtEt)
T

+ E
T

t ΦtQtΦ
T

t Et
(a)
= E

T

t HtΛtHtEt + E
T

t Ht∆tEt = E
T

t HtΛtEt,
(B.40)

where (a) follows if by setting Φt =
√
Ht∆tQ

−1
t . By substituting (5.15) into (5.14)

we obtain

Πt+1|t = AtE
T

t ∆tEtA
T

t +BtB
T

t .(B.41)

(3) Next, we determine the realization of the optimal reproduction distribution. Re-
call that Πt|t−1 is given by (5.10). Therefore, to determine Πt|t−1, we need the

equation of the error et , Xt − X̂t|t−1, hence the equation of the least-squares filter

of Xt given all the previous outputs Y t−1, namely X̂t|t−1. From Fig. 5.1, we deduce

that Yt = K̃t+X̂t|t−1, where {X̂t|t−1 : t ∈ N0} is obtained from the modified Kalman

filter X̂t|t−1. Thus, we obtain (5.17).

(4) By substituting (B.40) in (5.13) we obtain the updated version of X̂t|t−1 as follows.

X̂t+1|t = AtX̂t|t−1 +AtΠt|t−1(E
T

t HtEt)
T

M−1
t

(
Yt − X̂t|t−1

)

= AtX̂t|t−1 +AtΠt|t−1E
T

t HtEtE
T

t diag{ 1

λt,1
, . . . ,

1

λt,p
}H−1

t Et

(
Yt − X̂t|t−1

)

= AtX̂t|t−1 +AtE
T

t ΛtEtE
T

t Ht diag{ 1

λt,1
, . . . ,

1

λt,p
}H−1

t Et

(
Yt − X̂t|t−1

)
= AtYt.

(B.42)

Using (B.42), we obtain (5.18) and since X̂t+1|t = AtX̂t|t we also obtain (5.19).
Finally, by substituting (5.18) in (5.17) we obtain (5.20).

(5) To show the last stage of our theorem, we note that Vt , Yt − E
{
Yt|σ{Y t−1}

}

is the innovation process of (5.17), and that Vt , Yt − X̂t|t−1 ≡ K̃t. Moreover, since

K̃t = E
T

t ΦtZt and {ET

t Φt : t ∈ Nn0} are invertible, then the statement holds. This
completes the proof.
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