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Abstract

Metric data structures (distance oracles, distance labeling schemes, routing schemes) and low-distortion
embeddings provide a powerful algorithmic methodology, which has been successfully applied for ap-
proximation algorithms [LLR95], online algorithms [BBMN11], distributed algorithms [KKM+12] and
for computing sparsifiers [ST04]. However, this methodology appears to have a limitation: the worst-
case performance inherently depends on the cardinality of the metric, and one could not specify in
advance which vertices/points should enjoy a better service (i.e., stretch/distortion, label size/dimension)
than that given by the worst-case guarantee.

In this paper we alleviate this limitation by devising a suit of prioritized metric data structures and
embeddings. We show that given a priority ranking (x1, x2, . . . , xn) of the graph vertices (respectively,
metric points) one can devise a metric data structure (respectively, embedding) in which the stretch
(resp., distortion) incurred by any pair containing a vertex xj will depend on the rank j of the vertex.
We also show that other important parameters, such as the label size and (in some sense) the dimension,
may depend only on j. In some of our metric data structures (resp., embeddings) we achieve both
prioritized stretch (resp., distortion) and label size (resp., dimension) simultaneously. The worst-case
performance of our metric data structures and embeddings is typically asymptotically no worse than of
their non-prioritized counterparts.
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1 Introduction

The celebrated distance oracle of Thorup and Zwick [TZ05] enables one to preprocess an undirected weighted
n-vertex graph G = (V,E) so that to produce a data structure (aka distance oracle) of size O(t · n1+1/t)
(for a parameter t = 1, 2, . . .) that supports distance queries between pairs u, v ∈ V in time O(t) per query.
(The query time was recently improved to O(1) by [Che14, Wul13].) The distance estimates provided by
the oracle are within a factor of 2t − 1 from the actual distance dG(u, v) between u and v in G. The ap-
proximation factor (2t − 1 in this case) is called the stretch. Distance oracles can serve as an example of
a metric data structure; other very well-studied examples include distance labeling [Pel99, GPPR01] and
routing [TZ01a, AP92]. Thorup-Zwick’s oracle can also be converted into a distance-labeling scheme: each
vertex is assigned a label of size O(n1/t · log1−1/t n) so that given labels of u and v the query algorithm
can provide a (2t− 1)-approximation of dG(u, v). Moreover, the oracle also gives rise to a routing scheme
[TZ01a] that exhibits a similar tradeoff.

A different but closely related thread of research concerns low-distortion embeddings. A celebrated
theorem of Bourgain [Bou86] asserts that any n-point metric (X, d) can be embedded into an O(log n)-
dimensional Euclidean space with distortion O(log n). (Roughly speaking, distortion and stretch are the
same thing. See Section 2 for formal definitions.) Fakcharoenphol et al. [FRT04] (following Bartal [Bar96,
Bar98]) showed that any mertic (X, d) embeds into a distribution over trees (in fact, ultrametrics) with
expected distortion O(log n).

These (and many other) important results are not only appealing from a mathematical perspective, but
they also were found extremely useful for numerous applications in Theoretical Computer Science and
beyond [LLR95, BBMN11, KKM+12, ST04]. A natural disadvantage is the dependence of all the relevant
parameters on n, the cardinality of the input graph/metric. However, all these results are either completely
tight, or very close to being completely tight. In order to address this issue, metric data structures and
embeddings in which some pairs of vertices/points enjoy better stretch/distortion or with improved label
size/dimension were developed. Specifically, [KSW09, ABC+05, ABN11, CDG06] studied embeddings
and distance oracles in which the distortion/stretch of at least 1 − ε fraction of the pairs is improved as a
function of ε, either for a fixed ε or for all ε ∈ [0, 1] simultaneously (e.g. for a fixed ε, embeddings into
Euclidean space of dimension O(log 1/ε) with distortion O(log(1/ε)), or a distance oracle with stretch
2dt · log(2/ε)logn e + 1 for 1 − ε fraction of the pairs). Also, [ABN07, SS09, AC14] devised embeddings and
distance oracles that provide distortion/stretchO(log k) for all pairs (x, y) of points such that y is among the
k closest points to x, and distance labeling schemes that support queries only between k-nearest neighbors,
in which the label size depends only on k rather than n.

An inherent shortcoming of these results is, however, that the pairs that enjoy better than worst-case
distortion cannot be specified in advance. In this paper we alleviate this shortcoming and devise a suit
of prioritized metric data structures and low-distortion embeddings. Specifically, we show that one can
order the graph vertices V = (x1, . . . , xn) arbitrarily in advance, and devise metric data structures (i.e.,
oracles/labelings/routing schemes) that, for a parameter t = 1, 2, . . ., provide stretch 2dt · log jlogne− 1 (instead
of 2t − 1) for all pairs involving xj , while using the same space as corresponding non-prioritized data
structures! In some cases the label size can be simultaneously improved for the high priority points, as
described in the sequel.

The same phenomenon occurs for low-distortion embeddings. We devise an embedding of general met-
rics into anO(log n)-dimensional Euclidean space that provides prioritized distortionO(log j·(log log j)1/2+ε),
for any constant ε > 0 (i.e., the distortion for all pairs containing xj isO(log j ·(log log j)1/2+ε)). Similarly,
our embedding into a distribution of trees provides prioritized expected distortion O(log j).
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We introduce a novel notion of improved dimension for high priority points. In general we cannot
expect that the dimension of an Euclidean embedding with low distortion (even prioritized) will be small
(as Euclidean embedding into dimension D has worst-case distortion of Ω(n1/D · log n) for some metrics
[ABN11]). What we can offer is an embedding in which the high ranked points have only a few ”active”
coordinates. That is, only the first O(poly(log j)) coordinates in the image of xj will be nonzero, while the
distortion is also bounded by O(poly(log j)). This could be useful in a setting where the high ranked points
participate in numerous computations, then since representing these points requires very few coordinates,
we can store many of them in the cache or other high speed memory. We remark that our framework is the
first which allows simultaneously improved distortion and dimension (or improved stretch and label size)
for the high priority points, while providing some guarantee for all pairs.

We have a construction of prioritized distance oracles that exhibits a qualitatively different behavior
than of our aforementioned oracles. Specifically, we devise a distance oracle with space O(n log log n)

(respectively, O(n log∗ n)) and prioritized stretch O( logn
log(n/j)) (respectively, 2

O( logn
log(n/j)

)). Observe that as
long as j < n1−ε for any fixed ε > 0, the prioritized stretch of both these oracles is O(1). The query
time is O(1). These oracles are, however, not path-reporting (a path reporting oracle can return an actual
approximate shortest path in the graph, in time proportional to its length). We also devise a path-reporting
prioritized oracle, which was mentioned above: it has space O(t · n1+1/t), stretch 2dt · log j

logne − 1, and

the query time1 is O(t · log jlogn). In the full version of this paper we also devise a path-reporting prioritized

distance oracle (extending [EP15]) with space O(n log logn), stretch O(( logn
log(n/j))

log4/3 7), and query time

O(log( logn
log(n/j))). (Observe that this stretch and query time are O(1) for all j ≤ n1−ε.)

This second oracle can be distributed as a labeling scheme, in which not only the stretch 2dt · log jlogne − 1

is prioritized, but also the label size is smaller for high priority points: it is O(n1/t · log j) rather than the
non-prioritized O(n1/t · log n). In our routing scheme, if j is the priority rank of the destination xj , it has
prioritized stretch 4dt · log jlogne − 3 (instead of 4t− 5), the routing tables have size O(n1/t · log j) (instead of

O(n1/t · log n)), and labels have size O(log j · dt log jlogne) (instead of O(t · log n)).
We also consider the dual setting in which the stretch is fixed, and label size λ(j) of xj is smaller when

j � n. The function λ(j) will be called prioritized label size. Specifically, with prioritized label size
O(j1/t · log j) we can have stretch 2t − 1. For certain points on the tradeoff curve we can even have both
stretch and label size prioritized simultaneously! In particular, a variant of our distance labeling scheme
provides a prioritized stretch 2dlog je − 1 and prioritized label size O(log j). For routing we have similar
gaurantees independent of n. We also devise a distance labeling scheme for graphs that exclude a fixed
minor with stretch 1 + ε and prioritized label size O(1/ε · log j) (extending [AG06, Tho01]).

Another notable result in this context is our prioritized embedding into a single tree. It is well-known
that any metric can be embedded into a single dominating tree with linear distortion, and that it is tight
[RR98]. We show that any n-point metric (X, d) enjoys an embedding into a single dominating tree with
prioritized distortion α(j) if and only if the sum of reciprocals

∑∞
j=1 1/α(j) converges. In particular,

prioritized distortion α(j) = j · log j · (log log j)1.01 is admissible, while α(j) = j · log j · log log j is
not, i.e., both our upper and lower bounds are tight. This lower bounds stands out as it shows that it is not
always possible to replace non-prioritized distortion of α(n) by a prioritized distortion α(j). For single-tree
embedding the non-prioritized distortion is linear, while the prioritized one is provably superlinear.

1We believe the query time can be improved to O(1): [Che14] combines the oracles of [TZ05] and of [MN06] to obtain query
time O(1). In the full version of our paper we show that the oracle of [MN06] can be altered to give prioritized stretch, similar to
that of [TZ05] we show here. Using the techniques of [Che14] should thus yield prioritized stretch with O(1) query time.
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1.1 Overview of Techniques

We elaborate briefly on the methods used to obtain our results.

Distance Oracles, Distance Labeling and Routing. We have two basic techniques for obtaining distance
oracles with prioritized stretch. The first one is manifested in Theorem 5, and the idea is as follows: Partition
the vertices into sets according to their priority, and for each set K ⊆ V , apply as a black-box a known
distance oracle on K, while for the other vertices store the distance to their nearest neighbor in K. We show
that the stretch of pairs inK×V is only a factor of 2 worse than the one guaranteed forK×K. Furthermore,
we exploit the fact that for sets K of small size, we can afford very small stretch and still maintain small
space. The exact choice of the black-box oracle and of the partitions enables a range of tradeoffs between
space and prioritized stretch.

Our second technique for an oracle with prioritized stretch, used in Theorem 6, is based on a non-black-
box variation of the [TZ05] oracle. In their construction for stretch 2t − 1, a (non-increasing) sequence of
t − 1 sets is generated by repeated random sampling. We show that if a vertex is chosen i times, then the
query algorithm can be changed to improve the stretch from 2t− 1 to 2(t− i)− 1, for any pair containing
such a vertex. This observation only shows that there exists a priority ranking for which the oracle has the
required prioritized stretch. In order to handle any given ranking, we alter the construction by forcing high
ranked elements to be chosen numerous times, and show that this increases the space usage by at most a
factor of 2.

In order to build a distance labeling scheme out of their distance oracle, [TZ05] pay an additional factor
of O(log1−1/t n) in the label size (which essentially comes from applying concentration bounds). Attempt-
ing to circumvent this logarithmic dependence on n, in Theorem 7 we give a different bound on the deviation
probability that depends on the priority ranking of the point. Thus the increase in the label size for the j-th
point in the ranking is only O(log j). To obtain arbitrary fixed stretch 2t− 1 for all pairs, in Theorem 8 we
combine this scheme with an iterative application of a source restricted distance labeling of [RTZ05].

Most results on distance labeling for bounded treewidth graphs, planar graphs, and graphs excluding a
fixed minor, are based on recursively partitioning the graph into small pieces using small separators (as in
[LT79]). The label of a vertex essentially consists of the distances to (some of) the vertices in the separator.
In order to obtain prioritized label size, such as those given in Theorem 10 and Theorem 11, high ranked
vertices should participate in few iterations. To this end, we define multiple phases of applying separators,
where each phase tries to separate only certain subset of the vertices (starting with the highest ranked, and
finishing in the lowest). This way high ranked vertices will belong to a separator after a few levels, thus their
label will be short.

Tree-routing of [Tho01] is based on categorizing tree vertices as either heavy or light, depending on the
size of their subtree. Our prioritized tree-routing assigns each vertex a weight which depends on its priority,
and a vertex is heavy if the sum of weights of its descendents is sufficiently large. This idea paves way to
our prioritized routing scheme for general graphs as well.

Embeddings It is folklore that a metric minimum spanning tree (henceforth, MST) achieves distortion
n − 1. For our prioritized embedding of general metrics (X, d) into a single tree we consider a complete
graph G = (X,

(
X
2

)
) with weight function that depends on the priority ranking. Specifically, edges incident

on high-priority points get higher weights. We then compute an MST in this (generally non-metric) graph,
and show that, given a certain convergence condition on the priority ranking, this MST provides a desired
prioritized single-tree embedding. Remarkably, we also show that when this condition is not met, no such
an embedding is possible even for the metric induced by Cn. Hence this embedding is tight.
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Our probabilistic embedding to trees with prioritized expected distortion in Theorem 4 is based on the
construction of [FRT04]. The method of [FRT04] involves sampling a random permutation and a random
radius, then using these to create a hierarchical partitioning of the metric from which a tree is built. We
make the observation that, in some sense, the expected distortion of a point depends on its position in the
permutation. Rather than choosing a permutation uniformly at random, we choose one which is strongly
correlated with the given priority ranking. One must be careful to allow sufficient randomness in the permu-
tation choice so that the analysis can still go through, while guaranteeing that high ranked points will appear
in the first positions of the permutation.

The embedding of Theorem 14 for arbitrary metrics (X, d) into Euclidean space (or any `p space) with
prioritized distortion uses similar ideas. We partition the points to sets according to the priorities, for every
set K ⊆ X apply as a black-box the embedding of [Bou85]. We show that since the embedding has certain
properties, it can be extended in a Lipschitz manner to all of the metric, while having distortion guarantee
for any pair in K ×X .

The result of Theorem 15, which gives prioritized distortion and dimension, is more technically involved.
In order to ensure that high priority points are mapped to the zero vector in the embeddings tailored for the
lower priority points, we change Bourgain’s embedding, which is defined as distances to randomly chosen
sets. Roughly speaking, when creating the embedding for a set K, we add all the higher ranked points to the
random sets. This means the original analysis does not work directly, and we turn to a subtle case analysis
to bound the distortion; see Section 8.2 for more details.

1.2 Organization

After a few preliminary definitions, we show the single tree prioritized embedding in Section 3, and the
probabilistic version in Section 4. In Section 5 we discuss our prioritized distance oracles, and in Section 6
the prioritized labeling schemes. The prioritized routing is shown in Section 7. Finally, in Section 8 we
present our prioritized embedding results into normed spaces.

2 Preliminaries

All the graphs G = (V,E) we consider are undirected and weighted. Let x1, . . . , xn ∈ V be a priority
ranking of the vertices. Let dG be the shortest path metric on G, and let α, β : [n] → R+ be monotone
non-decreasing functions.

A distance oracle for a graph G is a succinct data structure, that can approximately report distances
between vertices of G. The parameters of this data structure we will care about are its space, query time,
and stretch factor. We always measure the space of the oracle as the number of words needed to store it
(where each word is O(log n) bits). The oracle has prioritized stretch α(j), if for any 1 ≤ j < i ≤ n, when
queried for xj , xi the oracle reports a distance d̃(xj , xi) such that

dG(xj , xi) ≤ d̃(xj , xi) ≤ α(j) · dG(xj , xi) .

Some oracles can be distributed as a labeling scheme, where each vertex is given a short label, and the
approximate distance between two vertices should be computed by inspecting their labels alone. We say
that the a labeling scheme has prioritized label size β(j), if for every j ∈ [n], the label of xj consists of at
most β(j) words. See Section 7 for the precise settings of routing that we consider.

4



x2

x4x3

x1 4

1

2

1

3
3

x2

x4x3

x1 8

4

8

8

6
6

x2

x4x3

x1

4
6

6

x2

x4x3

x1

1
3

3

prioritized weights MST original weights

Figure 1: An illustration for the algorithm presented during the proof of Theorem 1. We are given a metric
space over X = {x1, x2, x3, x4}, with the function α(1) = 2, α(2) = 4, α(3) = 8, α(4) = 16. In the
first step we assign new weights over the edges, then find an MST in the new graph, and finally, restore
the original weights. For example the original distance between v2, v3 was 2, while in the returned tree the
distance is 7. Hence the pair v2, v3 suffers distortion 3.5 < 4.

Let (X, dX) be a finite metric space, and let x1, . . . , xn be a priority ranking of the points in X . Given
a target metric (Y, dY ), and a non-contractive map f : X → Y ,2 we say that f has priority distortion α(j)
if for all 1 ≤ j < i ≤ n,

dY (f(xj), f(xi)) ≤ α(j) · dX(xj , xi) .

Similarly, if f : X → Y is non-expansive, then it has priority distortion α(j) if for all 1 ≤ j < i ≤ n,
dY (f(xj), f(xi)) ≥ dX(xj , xi)/α(j). For probabilistic embedding, we require that each map in the support
of the distribution is non-contractive, and the prioritized bound on the distortion holds in expectation.

In the special case that the target metric is a normed space `p, we say that the embedding has prioritized
dimension β(j), if for every j ∈ [n], only the first β(j) coordinates in f(xj) may be nonzero.

3 Single Tree Embedding with Prioritized Distortion

In this section we show tight bounds on the priority distortion for an embedding into a single tree. The
bounds are somewhat non-standard, as they are not attained for a single specific function, but rather for the
following family of functions. Define Φ to be the family of functions α : N→ R+ that satisfy the following
properties:

• α is non-decreasing.

•
∑∞

i=1 1/α(i) ≤ 1.

3.1 Upper Bound

Theorem 1. For any finite metric space (X, d) and any α ∈ Φ, there is a (non-contractive) embedding of
X into a single tree with priority distortion 2α(j).

Proof. Let x1, . . . , xn be the priority ranking of X , and let G = (X,E) be the complete graph on X . For
e = {u, v} ∈ E, let `(e) = d(u, v). We also define the following (prioritized) weights w : E → R, for
any 1 ≤ j < i ≤ n the edge e = {xj , xi} will be given the weight w(e) = α(j) · `(e). Observe that the
w weights on G do not necessarily satisfy the triangle inequality. Let T be the minimum spanning tree of

2The map f is non-contractive if for any u, v ∈ X , dX(u, v) ≤ dY (f(u), f(v)).
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(X,E,w) (this tree is formed by iteratively removing the heaviest edge from a cycle). Finally, return the
tree T with the edges weighted by `. We claim that this tree has priority distortion α(j).

Consider some xj , xi ∈ X , if the edge e = {xj , xi} ∈ E(T ) then clearly this pair has distortion 1.
Otherwise, let P be the unique path between xj and xi in T . Since e is not in T , it is the heaviest edge on
the cycle P ∪ {e}, and for any edge e′ ∈ P we have that w(e′) ≤ w(e) = α(j) · d(xj , xi). Consider some
xk ∈ X , and note that there can be at most 2 edges touching xk in P . If e′ ∈ P is such an edge, and its
weight by w was changed by a factor of α(k), then α(k) · `(e′) ≤ α(j) · d(xj , xi). Summing this over all
the possible values of k we obtain that the length of P is at most

∑
e′∈P

`(e′) ≤ 2
n∑
k=1

α(j)

α(k)
· d(xj , xi) ≤ 2α(j) · d(xj , xi) . (1)

Corollary 1. For any fixed 0 < ε < 1/2, one can take the function α : N → R defined by α(1) = 1 + ε,
and for j ≥ 2, α(j) = j(log j)1+ε

c , which lies in Φ for c ≈ ε2, and obtain priority distortion O
(
j(log j)1+ε

)
.

Furthermore, the distortion of the pairs containing x1 is only 1 + 3ε.

Proof. The fact that α ∈ Φ follows by noting that
∫

dx
α(x) = −c

ε·logε x +C. To see the small distortion for pairs
x1, xi, observe that in the case {x1, xi} /∈ T , the first edge of the path P from x1 to xi has weight at most
d(x1, xi), while none of the other edges on P is touching x1. Furthermore, since 1/α(1) > 1− ε, we have
that

∑∞
k=2 1/α(k) < ε, and so so we can replace (1) by

∑
e′∈P

`(e′) ≤ d(x1, xi) + 2

n∑
k=2

α(1)

α(k)
· d(x1, xi) ≤ (1 + 3ε) · d(x1, xi) .

3.2 Lower Bound

Here we show a matching lower bound (up to a constant, which is only 2 for trees without Steiner nodes 3 on
the possible functions admitting an embedding into a tree with priority distortion. We first show that a (non-
decreasing) function which is not in Φ cannot bound the priority distortion in a spanning tree embedding.
Then using an argument similar to that of [Gup01], we extend this for arbitrary dominating trees,4 while
losing a factor of 8 in the lower bound.

Theorem 2. For any non-decreasing function α : N → R with α /∈ Φ, there exists an integer n, a graph
G = (V,E) with |V | = n vertices, and a priority ranking of V , such that no spanning tree of G has priority
distortion less than α.

Proof. Since α /∈ Φ, there exists an integer n′ such that
∑n′

i=1 1/α(i) > 1. Take some integer n > n′ such
that n

α(i)+1 is an integer for all 1 ≤ i ≤ n′ (assume w.l.o.g that the α(i) are rational numbers). Then let
G = Cn, a cycle on n points with unit weight on the edges. Clearly, a spanning tree of Cn is obtained by

3We say that the target tree has Steiner nodes if it contains more vertices than the original graph.
4A tree T dominates a graph G if dT ≥ dG.
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Figure 2: An illustration for the proof of Theorem 2. As all the pairs containing xi cannot suffer distortion
greater than α(i), all the edges of distance at most ai from xi cannot be deleted from the tree. As

∑
ai > n,

placing x1, x2, . . . so that the relevant sets of edges are disjoint and cover all the edges, there is no edge that
can be deleted.

removing a single edge, thus we will choose the priorities x1, . . . , xn ∈ V in such a way that no edge can
be spared.

Seeking contradiction, assume that there exists a spanning tree with priority distortion less than α. Let
x1 be an arbitrary vertex, and note that if u is a vertex within distance a1 = n/(α(1) + 1) from x1, then
all the edges on the shortest path from x1 to u must remain in the tree. Otherwise, the distortion of the pair
{x1, u} will be at least n−a1a1

= α(1). There are 2n
α(1)+1 such edges that must belong to the tree (since we

consider vertices from both sides of x1). Now take x2 to be a vertex at distance n
α(1)+1 + n

α(2)+1 from x1. By
a similar argument, the 2n

α(2)+1 edges closest to x2 must be in the tree as well. Observe that these edges form
a continuous sequence on the cycle with those edges near x1. Continue in this manner to define x3, . . . , xn′ ,
and conclude that there are at least

n′∑
i=1

2n

α(i) + 1
≥

n′∑
i=1

n

α(i)
> n (2)

edges that are not allowed to be removed, but this is a contradiction, as there are only n edges in Cn.

Theorem 3. For any non-decreasing function α : N → R with α /∈ Φ, there exists an integer n, a metric
(X, d) on n points and a priority ranking x1, . . . , xn ∈ X , such that there is no embedding of X into a
dominating tree metric with priority distortion less than α/8.

Proof. Take n, the metric (X, d) induced by Cn, and the same priority ranking as in Theorem 2. First
consider any tree T with exactly n vertices, but which is not necessarily spanning. That is, T is allowed
to have edges that did not exist in Cn. Since T must be dominating, we may assume that an edge in T
connecting vertices of distance k in Cn will have weight exactly k (if it has larger weight, reducing it to k
can only improve the distortion). We extend an argument of [Gup01] to prove that the priority distortion of
T is at least α.
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The argument at Section 7 of [Gup01] says that T can be replaced by a tree T ′ satisfying d ≤ dT ′ ≤ dT ,
and such that any vertex in T ′ has at most one edge to its left semicircle and one edge to its right semicircle.5

A crucial observation (made in [Gup01]) is that for any pair of vertices at distance k in Cn, their distance
in T ′ can be either k or at least n − k. Now we may use a similar reasoning as in the proof of Theorem 2;
Assume that x1 is the i-th vertex of Cn, and observe that any vertex i+ j for 1 ≤ j ≤ a1, must be connected
by an edge to one of the vertices i, i+1, . . . , i+j−1, as otherwise dT ′(i, i+j) ≥ n−a1, and the distortion
of the pair {x1, j} will be at least α(1). Notice that the edges x2 forces to exist are disjoint from those of
x1. It follows that for each 1 ≤ i ≤ n′, xi forces at least 2n

α(i)+1 disjoint edges to be in the tree, which is
impossible due to (2).

Finally, consider arbitrary dominating tree metrics, which may have Steiner nodes (nodes which no
vertex of Cn is mapped onto). By a result of [Gup01], such nodes may be removed while increasing the
distance between any pair of points by at most 8, so we conclude that such a tree cannot have priority
distortion less than α/8.

4 Probabilistic Embedding into Ultrametrics with Prioritized Distortion

An ultrametric (U, d) is a metric space satisfying a strong form of the triangle inequality, that is, for all
x, y, z ∈ U , d(x, z) ≤ max {d(x, y), d(y, z)}. The following definition is known to be an equivalent one
(see [BLMN05]).

Definition 1. An ultrametric U is a metric space (U, d) whose elements are the leaves of a rooted labeled
tree T . Each z ∈ T is associated with a label Φ (z) ≥ 0 such that if q ∈ T is a descendant of z then
Φ (q) ≤ Φ (z) and Φ (q) = 0 iff q is a leaf. The distance between leaves z, q ∈ U is defined as dT (z, q) =
Φ (lca (z, q)) where lca (z, q) is the least common ancestor of z and q in T .

Theorem 4. For any metric space (X, d), there exists a distribution over embeddings ofX into ultrametrics
with expected prioritized distortion O(log j).

Proof. Let x1, . . . , xn be the priority ranking of X , and let ∆ be the diameter of X . We assume w.l.o.g
that the minimal distance in X is 1, and let δ be the minimal integer so that ∆ ≤ 2δ. We shall create a
hierarchical laminar partition, where for each i ∈ {0, 1, . . . , δ}, the clusters of level i have diameter at most
2i, and each of them is contained in some level i+ 1 cluster. The ultrametric is built in the natural manner,
the root corresponds to the level δ cluster which is X , and each cluster in level i corresponds to an inner
node of the ultrametric with label 2i, whose children correspond to the level i − 1 clusters contained in it.
The leaves correspond to singletons, that is, to the elements of X . Clearly, the ultrametric will dominate
(X, d).

In order to define the partition, we choose a random permutation π : X → [n] which is strongly
correlated with the priority ranking, and in addition we choose some number β ∈ [1, 2]. Let K0 = {x1, x2},
and for any integer 1 ≤ j ≤ dlog logne let Kj = {xh : 22

j−1
< h ≤ 22

j}. The permutation π
is created by choosing a uniformly random permutation on each Ki, and concatenating these. Note that
π−1

({
h ∈ N : h ∈

(
22
j−1
, 22

j
]})

= Kj , and π−1({1, 2}) = K0.

5If the vertices of Cn are labeled 0, 1, . . . , n− 1 as ordered on the cycle, the right semicircle of vertex i is {i+1, i+2, . . . i+
bn/2c} (addition is modulo n), and the left semicircle is V \ {i, i+ 1, i+ 2, . . . i+ bn/2c}.
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In each step i, we partition a cluster S of level i + 1 as follows. Each point x ∈ S chooses the point
u ∈ X with minimal value according to π among the points of distance at most βi := β · 2i−2 from x, and
joins to the cluster of u. Note that a point may not belong to the cluster associated with it, and some clusters
may be empty (which we can discard). The description of the hierarchical partition appears in Algorithm 1.

Algorithm 1 Modified FRT(X,π)

1: Choose a random permutation π : X → [n] as above.
2: Choose β ∈ [1, 2] randomly by the distribution with the following probability density function p (x) =

1
x ln 2 .

3: Let Dδ = X; i← δ − 1.
4: while Di+1 has non-singleton clusters do
5: Set βi ← β · 2i−2.
6: for l = 1, . . . , n do
7: for every cluster S in Di+1 do
8: Create a new cluster in Di, consisting of all unassigned points in S closer than βi to π (l).
9: end for

10: end for
11: i← i− 1.
12: end while

Let T denote the ultrametric created by the hierarchical partition of Algorithm 1, and dT (u, v) the
distance between u to v in T . Consider the clustering step at some level i, where clusters in Di+1 are picked
for partitioning. In each iteration l, all unassigned points z such that d (z, π(l)) ≤ βi, assign themselves to
the cluster of π(l). Fix an arbitrary pair {v, u}. We say that center w settles the pair {v, u} at level i, if it
is the first center so that at least one of u and v gets assigned to its cluster. Note that exactly one center w
settles any pair {v, u} at any particular level. Further, we say that a center w cuts the pair {v, u} at level i,
if it settles them at this level, and exactly one of u and v is assigned to the cluster of w at level i. Whenever
w cuts a pair {v, u} at level i, dT (v, u) is set to be 2i+1 ≤ 8βi. We blame this length to the point w and
define dwT (v, u) to be

∑
i 1 (w cuts {v, u} at level i) · 8βi (where 1 (·) denotes an indicator function). We

also define dKjT (v, u) =
∑

w∈Kj d
w
T (v, u). Clearly, dT (v, u) ≤

∑
j d

Kj
T (v, u).

Fix some 0 ≤ j ≤ dlog log ne, our next goal is to bound the expected value of dKjT (v, u) byO (log (|Kj |)).
We arrange the points of Kj in non-decreasing order of their distance from the pair {v, u} (breaking ties
arbitrarily). Consider the sth point ws in this sequence. W.l.o.g assume that d (ws, v) ≤ d (ws, u). For a
center ws to cut {v, u}, it must be the case that:

1. d (ws, v) ≤ βi < d (ws, u) for some i.

2. ws settles {v, u} at level i.

Note that for each x ∈ [d (ws, v) , d (ws, u)), the probability that βi ∈ [x, x + dx) is at most dx
x·ln 2 . Con-

ditioning on βi taking such a value x, any one of w1, . . . , ws can settle {v, u}. The probability that ws is
first in the permutation π among w1, . . . ws is 1

s . (In fact, there may be points from
⋃

0≤r<jKr that settle
{v, u} before ws. It is safe to ignore that, as it can only decrease the probability that ws cuts {v, u}.) Thus
we obtain,

E[dwsT (v, u)] ≤
∫ d(ws,u)

d(ws,v)
8x · dx

x ln 2
· 1

s
=

8

s · ln 2
(d(ws, u)− d(ws, v)) ≤ 16

s
· d(v, u) . (3)
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Hence we conclude,

E[d
Kj
T (v, u)] ≤

∑
ws∈Kj

E[dwsT (v, u)]
(3)
≤ 16d(v, u)

|Kj |∑
s=1

1

s
= log |Kj | ·O(d(v, u)) . (4)

Assume v = xh is the h-th vertex in the priority ranking for some h > 2. Let a be the integer such that
v ∈ Ka, and recall that 22

a−1
< h ≤ 22

a
, i.e., 2a ≤ 2 log h. The crucial observation is that if y ∈ Kb such

that b > a, then y cannot settle {v, u}. The reason is that v always appears before y in π, so v will surely
be assigned to a cluster when it is the turn of y to create a cluster. This leads to the conclusion that for all
b > a, E[dKbT (v, u)] = 0. We conclude:

E[dT (v, u)] ≤
a∑
j=0

E[d
kj
T (v, u)]

(4)
≤ O(d(v, u))

a∑
j=0

log |Kj |

= O(d(v, u))
a∑
j=0

log
(

22
j
)

= O(d(v, u))

a∑
j=0

2j

= O(d(v, u)) · 2a

= O(d(v, u)) · log h .

When h ∈ {1, 2} we can take a = 0, and thus obtain a bound of O(d(v, u)).

5 Distance Oracles with Prioritized Stretch

In this section we consider distance oracles where the stretch scales with the priority of the vertices. See
Section 2 for the basic definitions. A classical result of [TZ05] (with improved query time due to [Che14]),
asserts that for any parameter t ≥ 1 and any graph on n vertices, there exists a (2t − 1)-stretch distance
oracle of space O(t · n1+1/t) with O(1) query time. An additional important result of [MN06] allows for
very small space: their oracle has space O(n1+1/t) with stretch O(t), and O(1) query time as well.

5.1 Prioritized Stretch with Small Space

Our first result provides a range of distance oracles with prioritized stretch and extremely low space. They
also exhibit a somewhat non-intuitive (although very good) dependence of the stretch on the priority of the
vertices. The drawbacks of these oracles are that they cannot report the approximate paths in the graph
between the queried vertices, and it is not clear that they can be distributed as a labeling scheme.

For the sake of brevity, denote by τ(j) =
⌊

logn
log(n/j)

⌋
(where n is always the number of vertices). For a

function f : N→ N, define its iterative application F : N→ N as follows: F (0) = 1, and for integer k ≥ 1
as F (k) = f(F (k − 1)). That is, F (k) is determined by iteratively applying f for k times starting at 1.

10



Theorem 5. LetG = (V,E) be a weighted graph on n vertices. For any positive integer T , let f : N→ R+

be any monotone increasing function such that f(1) = 2 and F (T ) ≥ log n. Then there exists a distance
oracle that requires space O

(∑T
k=1 F (k) · n

)
and has prioritized stretch

min {4f (τ(j))− 5, log n} .

Alternatively, one may obtain a distance oracle with space O(T · n) and prioritized stretch

min {O (f (τ(j))) , log n} .

Both oracles have O(1) query time.

Corollary 2. Any weighted graph G = (V,E) on n vertices admits distance oracles with the following
possible tradeoffs between space and prioritized stretch.
1) Space O(n log2 n) and prioritized stretch min{4τ(j)− 1, log n};
2) Space O(n log n) and prioritized stretch min{8τ(j)− 5, log n};
3) Space O(n log logn) and prioritized stretch min{O (τ(j)) , log n};
4) Space O(n log log log n) and prioritized stretch min{O

(
τ(j)2

)
, log n};

5) Space O(n log∗ n) and prioritized stretch min{O(2τ(j)), log n}.

Observe that the first two oracles have stretch 3 for all points of priority less than
√
n, and that in all of

these oracles, for any fixed ε > 0, all vertices of priority at most n1−ε have constant stretch.

Proof of Corollary 2. All the tradeoffs follow by simple choices for T and f , which are described in the
next bullets.

• For the first tradeoff let T = log n (assume w.l.o.g this is an integer), and take the function f(k) = k+
1, so that F (k) = k+1 as well for all k. Thus the space is indeedO(n ·

∑T
k=1(k+1)) = O(n log2 n),

and the prioritized stretch is 4τ(j)− 1 by the first assertion of Theorem 5.

• For the second tradeoff, using T = log log n, it suffices to take f(k) = 2k, so that F (k) = 2k. The
space is now O(n ·

∑T
k=1 2k) = O(n log n) and the prioritized stretch is as promised applying the

first assertion of Theorem 5 again.

• In the third tradeoff we use again T = log log n, f(k) = 2k and F (k) = 2k. This time using the
second assertion of Theorem 5, the space is O(n log logn), and the prioritized stretch is O (τ(j)).

• In the fourth tradeoff we use T = 1 + log log log n, and let f(1) = 2 and for k ≥ 2, f(k) =

k2. It implies that F (k) = 22
k−1

, so by the second assertion of Theorem 5 the space is indeed
O(n log log log n), and the prioritized stretch follow similarly.

• The final tradeoff holds by taking T = log∗ n− 1, and setting f(k) = 2k, so that F (k) = tower(k).6

The bounds on the space and the prioritized stretch follow as before.

We now turn to proving the theorem, and start with the following lemma.

6tower(k) is defined as tower(0) = 1 and tower(k) = 2tower(k−1), so that tower(log∗ n) = n.
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Lemma 1. For any t ≥ 1, and any graph G = (V,E) on n vertices with a subset K ⊆ V of size |K| = k,
there exists a distance oracle which can answer in O(1) time queries on every pair in K × V with either:

• Stretch 4t− 1, using space O(t · k1+1/t + n).

• Stretch O(t), using space O(k1+1/t + n).

Proof. For the first assertion, apply the distance oracle of [Che14] on the complete graphG′ = (K,E′) with
parameter t, where the weight of each edge in E′ is the shortest path distance in G between its endpoints.
This gives stretch 2t − 1 for any pair in K × K and requires space O(t · k1+1/t). For every vertex u ∈
V \ K, store only dG(u,K) and the name of the vertex ku ∈ K that manifests this distance (that is,
dG(u, ku) = dG(u,K)). We obtain a data structure of space O(t · k1+1/t + n). To answer a distance query
between v ∈ K and u ∈ V , report d̃(v, ku) + dG(ku, u) where d̃ is the distance reported by the oracle
of G′. It remains to bound the stretch: Observe that since ku is the closest vertex to u in K, we have that
dG(v, ku) ≤ dG(v, u) + dG(ku, u) ≤ 2dG(u, v), and thus the reported distance is bounded as follows,

d̃(v, ku) + dG(ku, u) ≤ (2t− 1)dG(v, ku) + dG(u, v) ≤ (4t− 1)dG(u, v) .

Using the triangle inequality, the reported distance is never larger than the original,

d̃(v, ku) + dG(ku, u) ≥ dG(v, ku) + dG(ku, u) ≥ dG(u, v) .

The second assertion follows by applying the oracle of [MN06] rather than that of [Che14], which yields
stretch O(t) on K × V , and space O(k1+1/t + n), by a similar argument.

We are finally ready to prove Theorem 5.

Proof of Theorem 5. We begin with the first assertion of the theorem. Let x1, . . . , xn ∈ V the priority
ranking of V . For each i ∈ [T ], let Si = {xj : 1 ≤ j ≤ n1−1/F (i)}, and apply the first oracle of Lemma 1
on G with the set Si and parameter ti = F (i) − 1, let Oi be the resulting oracle.7 Also invoke the oracle
OMN of [MN06] on G, that has stretch log n on all pairs using only O(n) space (with O(1) query time).

Observe that for each i ∈ [T ], the stretch ti was chosen so that (1 − 1/F (i)) · (1 + 1/ti) = 1, so that
the oracle Oi has space

O(ti · |Si|1+1/ti + n) = O(F (i) · n) .

The total space is thus O
(∑T

i=1 F (i) ·n
)
, as promised. It remains to prove the prioritized stretch guarantee.

Fix any v = xj , and let i be the minimal such that xj ∈ Si (observe that if j > n/2 there is not necessarily
any such i). For i = 1 the stretch guaranteed by O1 is 4ti − 1 = 4(F (1)− 1)− 1 = 3, as promised (recall
that f(k) ≥ 2 for all k ≥ 1, so the required stretch is never smaller than 3). For i > 1, by minimality of i
it follows that j > n1−1/F (i−1), that is, F (i − 1) ≤

⌊
logn

log(n/j)

⌋
= τ(j) (since F (i − 1) is an integer). The

stretch of Oi for v with any other point is at most

4(F (i)− 1)− 1 = 4F (i)− 5 = 4f(F (i− 1))− 5 ≤ 4f (τ(j))− 5 ,

while the stretch of OMN is at most log n for all pairs, which handles the case no i exists, and allows us to
report the minimum of the two terms. The query time is clearly O(1).

The proof of the second assertion is very similar, the only difference is using the second oracle given
by Lemma 1. This implies oracle Oi has space O(n), and thus the total space is only O(T · n). Albeit the
stretch of this oracle is worse by a constant factor.

7Since F (0) = 1 and f is strictly monotone, it follows that F (i) ≥ 2 for all i ≥ 1, so that ti ≥ 1.
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5.2 Prioritized Distance Oracles with Bounded Prioritized Stretch

In this section we prove the following theorem, which prioritized the stretch of the distance oracle of [TZ05].
Unlike the oracles of Theorem 5, this oracle can also support path queries, that is, return a path in the
graph that achieves the required stretch, in time proportional to its length (plus the distance query time).
Additionally, it can be distributed as a labeling scheme, which we exploit in the next section. Furthermore,
this oracle matches the best known bounds for the worse-case stretch of [TZ05], which are conjectured to
be optimal.

Theorem 6. Let G = (V,E) be a graph with n vertices. Given a parameter t ≥ 1, there exists a distance
oracle of space O(tn1+1/t) with prioritized stretch 2d t log jlogn e − 1 and query time O(d t log jlogn e).

Overview Recall that in the distance oracle construction of [TZ05], a sequence of sets V = A0 ⊇ A1 ⊇
· · · ⊇ At = ∅ is sampled randomly, by choosing each element of Ai−1 to be in Ai with probability n−1/t.
We make the crucial observation that the distance oracle provides improved stretch of 2(t − i) − 1, rather
than 2t − 1, to points in Ai. However, as these sets are chosen randomly, they have no correlation with
our given priority list over the vertices. We therefore alter the construction, to ensure that points with high
priority will surely be chosen to Ai for sufficiently large i.

Proof of Theorem 6. Let x1, . . . , xn ∈ V be the priority ranking of V . For each i ∈ {0, 1, . . . , t − 1} let
Si = {xj : 1 ≤ j ≤ n1−i/t}. Let A0 = V , At = ∅, and for each 1 ≤ i ≤ t − 1 define A′i by including
every element of Ai−1 with probability n−1/t/2, and let Ai = A′i ∪ Si. For each v ∈ V and 0 ≤ i ≤ t− 1,
define the i-th pivot pi(v) as the nearest point to v in Ai, and Bi(v) = {w ∈ Ai : d(v, w) < d(v,Ai+1)}.8
Also the bunch of v is defined as B(v) =

⋃
0≤i≤t−1Bi(v). The distance oracle will store in a hash table,

for each v ∈ V , all the distances to points in B(v), and also the pi(v) vertices.
The query algorithm for the distance between u, v is essentially the same as in [TZ05], with the main

difference is that we start the process at level i rather than level 0, for a specified value of i.

Algorithm 2 Dist(v, u, i)
1: w ← v;
2: while w /∈ B(u) do
3: i← i+ 1;
4: (u, v)← (v, u);
5: w ← pi(v);
6: end while
7: return d(w, u) + d(w, v);

Stretch. Let v = xj be the j-th point in the ordering for some j > 1, and fix any u ∈ V . (Observe that
every vertex of At−1 lies in all the bunches, so when considering x1 ∈ At−1, we have that x1 ∈ B(u)
and so Algorithm 2 will return the exact distance.) Let 0 ≤ i ≤ t − 1 be the integer satisfying that
n1−(i+1)/t < j ≤ n1−i/t, that is, the maximal i such that v ∈ Si. By definition we have that v ∈ Ai as well,
so we may run Dist(v, u, i). Assuming that all operations in the hash table cost O(1), the query time is
O(t− i). The stretch analysis is similar to [TZ05]: let uk, vk and wk be the values of u, v and w at the k-th

8We assume that d(v, ∅) =∞ (this is needed as At = ∅).
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iteration, it suffices to show that at every iteration in which the algorithm did not stop, d(vk, wk) increases
by at most d(u, v). It suffices because there are at most t− 1− i iterations (since wt−1 ∈ At−1, it lies in all
bunches), so if ` is the final iteration, it must be that d(v`, w`) ≤ (` − i) · d(u, v) (initially d(wi, vi) = 0),
and by the triangle inequality d(w`, u`) ≤ d(u, v) + d(v`, w`) ≤ (`− i+ 1) · d(u, v), and as ` ≤ t− 1 we
conclude that

d(w, u) + d(w, v) ≤ (2(t− i)− 1) · d(u, v) .

To see the increase by at most d(u, v) at every iteration, we first note that wi = vi ∈ Ai (this fact enables
us to start at level i rather than in level 0). In the k-th iteration, observe that as wk /∈ B(uk) but wk ∈ Ak,
it must be that d(uk, pk+1(uk)) ≤ d(uk, wk). The algorithm sets wk+1 = pk+1(uk), vk+1 = uk and
uk+1 = vk, so we get that

d(vk+1, wk+1) = d(uk, pk+1(uk)) ≤ d(uk, wk) ≤ d(uk, vk) + d(vk, wk) = d(u, v) + d(vk, wk) .

Note that as n1−(i+1)/t < j ≤ n1−i/t, it follows that t− i− 1 < t log j
logn ≤ t− i, so that t− i = d t log jlogn e.

The guaranteed stretch for pairs containing xj is thus bounded by 2d t log jlogn e − 1 (or stretch 1 for x1).

Space. Fix any u ∈ V , and let us analyze the expected size of B(u). Fix any 0 ≤ i ≤ t− 2, and consider
Bi(u). Assume we have already chosen the set Ai, and arrange the vertices of Ai = {a1, . . . am} in order of
increasing distance to u. Note that if ar is the first vertex in the ordering to be inAi+1, then |Bi(u)| = r−1.
Every vertex of Ai is either in Si+1 and thus will surely be included in Ai+1, otherwise it has probability
n−1/t/2 to be in A′i+1 and so in Ai+1 as well. The number of vertices that we see until the first success
(being in Ai+1) is stochastically dominated by a geometric distribution with parameter p = n−1/t/2, which
has expectation of 2n1/t. For the last level t − 1, note that each vertex in Si \ Si+1 has probability exactly
(n−1/t/2)t−1−i = n−1+(i+1)/t/2t−1−i to be included in At−1, independently of all other vertices. As
|Si \ Si+1| ≤ |Si| = n1−i/t, the expected number of vertices in At−1 is

t−1∑
i=0

n1−i/t · n−1+(i+1)/t/2t−1−i < 2n1/t . (5)

This implies that E[|Bt−1(u)|] ≤ 2n1/t as well, and so E[|B(u)|] ≤ 2t · n1/t. The total expected size of all
bunches is therefore at most 2t · n1+1/t.

6 Prioritized Distance Labeling

In this section we discuss distance labeling schemes, in which every vertex receives a short label, and it
should be possible to approximately compute the distance between any two vertices from their labels alone.
The novelty here is that we would like ”important” vertices, those that have high priority, to have both
improved stretch and also short labels.

6.1 Distance Labeling with Prioritized Stretch and Size

We begin by showing that the stretch-prioritized oracle of Theorem 6 can be made into a labeling scheme,
with the same stretch guarantees, and small label for high ranking points. The result has some dependence
on n in the label size, and it seems to be interesting particularly for large values of t. Indeed, we shall
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use this result with parameter t = log n in the sequel, to obtain fully prioritized label size which will be
independent of n, and can support any desired maximum stretch. Furthermore, this result is the basis for
our routing schemes with prioritized label size and stretch.

Theorem 7. For any graph G = (V,E) with n vertices and any t ≥ 1, there exists a distance labeling
scheme with prioritized stretch 2d t log jlogn e − 1 and prioritized label size O(n1/t · log j).

Proof. Using the same notation as Section 5, the label of vertex v ∈ V consists of its hash table (which
contains distances to all points in the bunch B(v), and the identity of the pivots pi(v) for 0 ≤ i ≤ t − 1).
Note that Algorithm 2 uses only this information to compute the approximate distance. The stretch guarantee
is prioritized as above, and it remains to give an appropriate bound on the label sizes.

Let x1, . . . , xn ∈ V be the priority ranking of V . Fix a point v = xj for some j > 1, and let i be the
maximal such that v ∈ Si. Note that this implies that t−i−1 < t log j

logn . Observe thatB0(v)∪· · ·∪Bi−1(v) =
∅, so it remains to bound the size of Bi(v), . . . , Bt−1(v). For the last set Bt−1(v) = At−1, let E be the event
that |At−1| ≤ 8n1/t. We already noted in (5) that the expected size of At−1 is at most 2n1/t, thus using
Markov, with probability at least 3/4 event E holds.

For i ≤ k ≤ t− 2, let Xk be a random variable distributed geometrically with parameter p = n−1/t/2,
thus E[Xk] = 2n1/t for all k. We noted above that the distribution of Xk is stochastically dominating the
cardinality of Bk(v), thus it suffices to bound

∑t−2
k=iXk. Observe that for any integer s, if

∑t−2
k=iXk > s

then it means that in a sequence of s independent coin tosses with probability p for heads, we have seen less
than t− 1− i heads. That is, if Z ∼ Bin(s, p) is a Binomial random variable then

Pr

[
t−2∑
k=i

Xk > s

]
= Pr[Z < t− 1− i] ≤ Pr

[
Z <

t log j

log n

]
≤ Pr[Z < log j] .

Take s = 16n1/t · log j (assume this is an integer), so that µ := E[Z] = 8 log j, and by a standard Chernoff
bound

Pr[Z < log j] = Pr[Z < µ/8] ≤ e−3µ/8 < 1/j3 .

Let F =
{
∃ 2 ≤ j ≤ n :

∣∣∣⋃t−2
k=0Bk(xj)

∣∣∣ > 16n1/t · log j
}

, then by a union bound over all 2 ≤ j ≤ n

(note that the bound is non-uniform, and depends on j), we obtain that

Pr[F ] ≤
n∑
j=2

Pr

[∣∣∣∣∣
t−2∑
k=0

Bk(xj)

∣∣∣∣∣ > 16n1/t · log j

]
≤

n∑
j=2

1/j3 < 1/4 .

We conclude that with probability at least 1/2 both events E and F̄ hold, which means that the size of the
bunch of each xj is bounded by O(n1/t · log j), as required. (Recall that x1 ∈ At−1, so its label size is
|At−1| ≤ 8n1/t when event E holds.)

Corollary 3. Any graph G = (V,E) has a distance labeling scheme with prioritized stretch 2dlog je − 1
and prioritized label size O(log j).

6.2 Distance Labeling with Prioritized Label Size

In this section we construct a labeling scheme in which the maximum stretch is fixed for all points, and the
label size is fully prioritized and independent of n.

Theorem 8. For any graph G = (V,E) and an integer t ≥ 1, there exists a distance labeling scheme with
stretch 2t− 1 and prioritized label size O(j1/t · log j).
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Proof Overview. The idea is to partition the vertices into m := d lognt e sets S1, . . . , Sm, and to apply the
result of Section 6.1 in conjunction with a variation of the source-restricted distance oracles of [RTZ05],
using a labeling scheme rather than an oracle. In a source restricted labeling scheme on X with a subset
S ⊆ X , only distances between pairs in S ×X can be queried. Replacing the source restricted oracle with
a labeling scheme, demands that we use an analysis similar to Section 6.1 to guarantee a prioritized bound
on the label sizes. We will apply this for each i ∈ {2, 3, . . . ,m} with X = Si ∪ · · · ∪ Sm and the subset Si.
Thus an element of Si will have a label which consists of i schemes, and we will guarantee that their sizes
form a geometric progression, so that the total label size is sufficiently small.

As it turns out, the construction of [RTZ05] is inadequate for the first 2t elements S1, which have
very strict requirement on their label size. We will use the construction of Section 6.1 to handle distances
involving the elements in S1. Fortunately, the stretch incurred by this construction is 2dlog je − 1 which is
bounded by 2t− 1 for the first 2t elements in the ranking. We begin by stating the source-restricted distance
labeling, based on [RTZ05].

Theorem 9. For any integer t ≥ 1, any graph G = (V,E) and a subset S ⊆ V , there exists a source-
restricted distance labeling scheme with stretch 2t− 1 and prioritized label size O(|S|1/t · log j).

Proof. The observation made in [RTZ05] is that to obtain a source-restricted distance oracle, it suffices to
sample the random sets S = A0 ⊇ A1 ⊇ · · · ⊇ At = ∅ only from S, where each element of Ai−1 is
included in Ai independently with probability |S|−1/t. They show that defining the bunches as in [TZ05],
the resulting stretch is 2t− 1 for all pairs in S×V . We shall use a similar analysis as in Theorem 7 to argue
that this can be made into a labeling scheme. The expected label size is O(|S|1/t), and we can show that
with constant probability, every point xj pays only an additional factor of O(log j). As the proof is very
similar, we leave the details to the reader.

Proof of Theorem 8. Let S1 = {xj : 1 ≤ j ≤ 2t}, and for each i ∈ {2, 3, . . . ,m} let Si = {xj : 2(i−1)t <
j ≤ 2it}. We have a separate construction for i = 1 and for i > 1. For the case i = 1, use the labeling
scheme of Corollary 3 on G = (V,E). For each 2 ≤ i ≤ m, apply Theorem 9 on G and the subset Si, but
append the resulting labels only for vertices in Si ∪ · · · ∪ Sm.

Fix any u, v ∈ V , and w.l.o.g assume that v ∈ Si has higher rank than u. This suggests that u ∈
Si ∪ · · · ∪ Sm, thus the source restricted labeling scheme for Si guarantee stretch at most 2t− 1 for the pair
u, v (and u indeed stored the appropriate label). Note that in the case of v = xj ∈ S1, the stretch can be
improved to 2dlog je − 1 (recall that log j ≤ t).

We now turn to bounding the label sizes. First consider v = xj ∈ S1, then it must be that j ≤ 2t. The
label size of v is by Corollary 3 at most O(log j), and this is the final label of v. For v = xj ∈ Si when
i ≥ 2, the label of v consists of labels created for the sets S1, . . . , Si. Notice that 2t(i−1) < j ≤ 2ti, so it
holds that 2i = (2t · 2t(i−1))1/t < 2j1/t. By Corollary 3 the label due to S1 is at most O(log j), and using
Theorem 9 the label size of v is at most

O(log j) +
i∑

k=2

O(|Sk|1/t · log j) = O(log j) ·
i∑

k=1

2k = O(2i · log j) = O(j1/t · log j) .
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6.3 Prioritized Distance Labeling for Graphs with Bounded Separators

6.3.1 Exact Labeling with Prioritized Size

In this section we exhibit prioritized exact distance labeling scheme tailored for graphs that admit a small
separator. We say that a graph G = (V,E) admit an s-separator, if for any weight function w : V → R+,
there exists a set U ⊆ V of size |U | = s, such that each connected component C of G \ U , has w(C) ≤
2w(V )/3.9 It is well known that trees admit a 1-separator, and graphs of treewidth k admit a k-separator.

The basic idea for constructing an exact distance labeling scheme based on separators, is to create a
hierarchical partition of the graph, each time by applying the separator on each connected component. Then
the label of a vertex u consists of all distances to all the vertices in the separators of clusters that contain
u. To answer a query between vertices u, v, we return the minimum of d(u, s) + d(v, s) for all separator
vertices s that u, v have in common in their labels (this is the exact distance, because at some point a vertex
on the shortest path from u to v must be chosen to be in a separator). Since at every iteration the number of
vertices in each cluster drops by at least a constant factor, after O(log n) levels the process is complete, thus
the label size is at most O(s log n).

Our improved label size for vertices of high priority, will be based on the following observation: If the
weight function w is an indicator for a set S ⊆ V (that is, if u ∈ S then w(u) = 1, and if u ∈ V \ S then
w(u) = 0), then after dlog |S|e+ 1 iterations, all vertices of S must have been removed from the graph.

Theorem 10. Let G = (V,E) be a graph admitting an s-separator, and let V = (x1, . . . , xn) be a priority
ranking of the vertices. Then there exists an exact distance labeling scheme with prioritized label size
O(s · log j).

Proof. Let S0 = {x1, x2}, and for 1 ≤ i ≤ dlog log ne let Si = {xj : 22
i−1

< j ≤ 22
i}. The hierarchical

partition will be performed in log logn phases. The i-th phase consists of 2i + 1 levels. In each level of
the i-th phase, we generate an s-separator for each remaining connected component C, with the following
weight function

w(u) =

{
1 u ∈ Si ∩ C
0 otherwise

Then this separator is removed from the component. By the observation made above, after at most 1 +
log |Si| ≤ 2i + 1 levels, all remaining components have no vertices from Si. The label of a vertex u ∈ V
will be the distances to all points in the separators created for components containing u.

Fix some vertex xj (for j > 1), and assume xj ∈ Si. Notice that 2i−1 < log j. Then the label size of xj
is at most

i∑
k=0

s · (2k + 1) = O(s · 2i) = O(s · log j) .

6.3.2 Planar Graphs and Graphs Excluding a Fixed Minor

While exact distance labeling for planar graphs requires polynomial label size or query time, there is a 1 + ε
stretch labeling scheme for planar graphs with label size O(log n) [Tho01, Kle02], which was extended to
graphs excluding a fixed minor [AG06]. All these constructions are based on path separators: a constant
number of shortest paths in the graph, whose removal induces pieces of bounded weight. The label of a

9For a set C ⊆ V , its weight is defined as w(C) =
∑
u∈C w(u).
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vertex consists of distances to carefully selected vertices on these paths. We may use the same methodology
as above; generate these path separators for the sets Si in order, and obtain the following.

Theorem 11. Let G = (V,E) be a graph excluding some fixed minor, and V = (x1, . . . , xn) a priority
ranking of the vertices. Then for any ε > 0 there exists a distance labeling scheme with stretch 1 + ε and
prioritized label size O((log j)/ε).

7 Routing

7.1 Routing in Trees with Prioritized Labels

In this section we extend a result of [TZ01b], and show a routing scheme on trees. The setting is that each
vertex stores a routing table, and when a routing request arrives for vertex v, it contains L(v), the label of
vertex v. We will show the following.

Theorem 12. For any tree T = (V,E) there is a routing scheme with routing tables of size O(1) and labels
of prioritized size log j + 2 log log j + 4.

Proof. The proof follows closely the one of [TZ01b], with the major difference being the assignments of
weights, which gives preference to the high priority vertices. Thus ensuring that when routing from the root
of the tree to a vertex of rank j, there are ≈ log j junctions that require routing information from the label
of the vertex.

Let x1, . . . , xn be the priority ranking of V . Let S0 = {x1} and for each 1 ≤ i ≤ log n, let Si =
{xj : 2i−1 < j ≤ 2i}. Fix an arbitrary root r of the tree T . For every v ∈ Si define p(v) = 1

2i·(i+1)2
. Note

that as |Si| ≤ 2i we have that ∑
v∈V

p(v) ≤
logn∑
i=0

2i

2i · (i+ 1)2
≤ 2 .

For each v ∈ V , define the weight of v as sv =
∑

u∈Tv p(u), where Tv is the subtree rooted at v (including v
itself). A child v′ of v is called heavy if its weight is greater than sv/2; otherwise it is called light. The root
r of the tree will always be considered heavy. Observe that any vertex can have at most one heavy child.
The light level `(v) of a vertex v is defined as the number of light vertices on the path from the root to v,
denoted by Path(v) = (r = v0, v1, . . . , vk = v). The label size of v will be `(v) words.

We enumerate all vertices T in DFS order, where all the light children of a vertex are visited before its
heavy child is visited. (The order is otherwise arbitrary.) We identify each vertex v with its DFS number.
Let fv denote the largest descendant of v. Also, let hv denote its heavy child, if exists. If it does not exist
define hv = fv + 1. Also, let P (π(v)) denote the port number of the edge connecting v to its parent π(v),
and P (hv) denote the port number connecting v to its heavy child (if it exists). The routing table stored at v
is (v, fv, hv, P (π(v)), P (hv)). It requires O(1) words.

Each time an edge from a vertex to one of its light children is taken, the weight of the corresponding
subtree decreases by at least a factor of 2. Note that a vertex v = xj ∈ Si has weight at least w(v) ≥
p(v) = 1

2i·(i+1)2
, and since the root has weight at most 2, it follows that `(v) ≤ log(2 · 2i · (i + 1)2) =

i+ 2 log(i+ 1) + 1. Since 2i−1 < j, we conclude that

`(v) ≤ log j + 2 log(log(j) + 2) + 2 .

For each index q, 1 ≤ q ≤ `(v), denote by iq the index of q-th light vertex of Path(v). Let L(v) =
(v, (port(vi1−1, vi1), . . . , port(vi`(v)−1

, vi`(v)))) be the label of v, which consists of its name, and a sequence
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of at most `(v) words containing the port numbers corresponding to the edges leading to light children on
Path(v).

The routing algorithm works as follows. Suppose we need to route a message with the header L(v)
at a vertex w. The vertex w checks if w = v. If it is the case then we are done. Otherwise, w checks if
v ∈ [w, fw]. If it is not the case, then v is not in the subtree of w, and then w sends the message to its parent.
Otherwise w checks if v ∈ [hw, fw]. If it is the case then the message is sent to the heavy child. Otherwise
v is a descendent of a light child of w. The vertex w finds itself in the sequence of L(v), and determines to
which light child of w the message should be sent. Then it sends the message to this child.

7.2 Routing in General Graphs

To obtain routing scheme for general graphs, we use the same method as [TZ01b], but replace their distance
labeling with our prioritized ones from Theorem 7. This routing scheme has the following property: after
an initial calculation using the entire label of the destination vertex v, all routing decisions are based on a
much shorter header appended to the message. In particular, we obtain the following theorem.

Theorem 13. For any graph G = (V,E) with priority ranking x1, . . . , xn of V , and any parameter t ≥ 1,
there exists a routing scheme, such that the label size of xj is at most log j · d t log jlogn e · (1 + o(1)), its header
of size log j · (1 + o(1)), and it stores a routing table of size O(n1/t · log j). Routing from any vertex into xj
will have stretch at most 4d t log jlogn e − 3.

Sketch. We use the definitions of Section 5.2. Consider the distance labeling scheme given in Theorem 7.
Following [TZ05], this labeling scheme yields a tree-cover: a collection of subtrees such that vertex v = xj
belongs to at most |B(v)| trees. The tree Tz for vertex z contains z as the root, and the shortest path to all
the vertices in C(z) = {x ∈ V : z ∈ B(x)}. To route from some vertex u ∈ V to v, it suffices to find an
appropriate z ∈ B(u) ∩B(v), and route in Tz by applying Theorem 12.

The routing table stored at each vertex v ∈ V contains the hash table for its bunch B(v), and the routing
table needed to route in Tz for each z ∈ B(v). Recall that by Theorem 7, |B(v)| ≤ O(n1/t · log j) (where
v = xj), and by Theorem 12, the routing table of each tree is of constant size. Let i be the minimal such that
v = xj ∈ Si. The label of v is ((pi(v), Li(v)), . . . , (pt−1(v), Lt−1(v))), where Lh(v) is the label of v that is
required to route in Tph(v). Note that the label is of size (t− i) log j · (1 +o(1)) = log j · d t log jlogn e · (1 +o(1))
(the equality follows from a calculation done in Section 5.2).

Finding the tree which guarantees the prioritized stretch as in Theorem 7 could have been achieved by
using Algorithm 2, alas, this requires knowledge of the bunches of both vertices u and v. It remains to see
that using only the label of v and the routing table at u, one can find a tree in the cover which has stretch at
most 4d t log jlogn e − 3 for u, v (routing in the tree does not increase the stretch). To see this, let i ≤ h ≤ t − 1
be the minimal such that ph(v) ∈ B(u). Following [TZ01b], we prove by induction that for each i ≤ k ≤ h
it holds that

• d(v, pk(v)) ≤ 2(k − i) · d(u, v),

• d(u, pk(v)) ≤ (2(k − i) + 1) · d(u, v).

The base case for k = i holds as v = pi(v), assume for k, and for k + 1 it suffices to prove the first item, as
the second follows from the first by the triangle inequality. Since k < h it follows that pk(v) /∈ B(u), thus
it must be that d(u, pk+1(u)) ≤ d(u, pk(v)). Now,

d(v, pk+1(v)) ≤ d(v, pk+1(u)) ≤ d(v, u)+d(u, pk+1(u)) ≤ d(v, u)+d(u, pk(v)) ≤ (2(k−i)+2)·d(u, v) ,
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where the last inequality uses the induction hypothesis. Finally, routing through the shortest path tree rooted
at ph(v) will have stretch at most

d(u, ph(v)) + d(ph(v), v) ≤ (4(h− i) + 1) · d(u, v) ≤ (4(t− i)− 3) · d(u, v) = (4

⌈
t log j

log n

⌉
− 3) · d(u, v) ,

using that h ≤ t − 1 and that t − i = d t log jlogn e. This concludes the bound of the stretch. Note that once the
vertex ph(v) is found, all other vertices on route from u to v only require the information (ph(v), Lh(v)),
which is appended to the message as a header of size log j · (1 + o(1)).

Corollary 4. Any graph G = (V,E) with a priority ranking x1, . . . , xn has a fully prioritized routing
scheme, such that the label size of xj is at most log2 j · (1+o(1)), its header will be of size log j · (1+o(1)),
and it stores a routing table of size O(log j). Routing from any vertex into xj will have stretch at most
4dlog je − 3.

8 Prioritized Embedding into Normed Spaces

8.1 Embedding with Prioritized Distortion

In this section we study embedding arbitrary metrics into normed spaces, where the distortion is prioritized
according to the given ranking of the points in the metric. Our main result is the following

Theorem 14. For any p ∈ [1,∞], ε > 0, and any finite metric space (X, d) with priority ranking X =

(x1, . . . , xn), there exists an embedding ofX into `O(log2 n)
p with priority distortionO(log j·(log log j)(1+ε)/2).

Proof overview. Our improved distortion guarantee for high ranked points comes from a variation of
Bourgain’s embedding [Bou85] of finite metric spaces into `p space. Bourgain’s embedding is based on
randomly sampling sets in various densities, and defining the coordinates as distances to these sets. Our first
observation (see Lemma 2) is sampling points only from a subset K ⊆ X , suffices to obtain an embedding
which is non-expansive for all pairs, and has bounded contraction for pairs in K × X . Furthermore, the
contraction depends only on |K|, rather than on |X|.

We then use a similar strategy as in previous sections, and partition X to roughly log log n subsets
S0, S1, . . . , Slog logn, where Si is of size≈ 22

i
. The doubly exponential size arises because for any u, v ∈ Si,

the logarithm of the ranking of u and of v differs by at most a factor of 2. For each i, we create the embedding
fi that will ”handle” pairs in Si × X , and concatenate all these functions f =

⊕log logn
i=0 αi · fi. Without

the αi factor, every pair will suffer a (log log n)1/p term in the distortion due to expansion. We introduce
these factors to the embedding, where αi is such that

∑∞
i=0 α

p
i ≤ 1. In such a way, the function f is

non-expansive, but we pay a small factor of 1/αi in the distortion for pairs in Si ×X .

Lemma 2. Let (X, d) be a metric space of size |X| = n, K ⊆ X a subset of size |K| = k and a parameter

p ∈ [1,∞]. Then there is an non-expansive embedding of X into `O(log2 k)
p such that the contraction of any

pair in K ×X is at most O(log k).

Proof. Letm = O(log2 k), and f : K → `mp be a non-expansive embedding with contraction α = O(log k)
on the pairs of K × K, which exists due to [Bou85, LLR95]. Since f is a Fréchet embedding, we claim
that there is an extension f̂ : X → `

O(log2 k)
p of f (that is f(v) = f̂(v) for all v ∈ K), such that f̂ is also
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non-expansive. To see this, note that f is defined as f(x) = m−1/p
⊕m

i=1 d (x,Ai) for some sets Ai ⊆ K.
One can then simply define f̂(x) = m−1/p

⊕m
i=1 d (x,Ai), which is indeed non-expansive.

Let h : X → R be defined by h(x) = d(x,K). The embedding F : X → `mp is defined by the
concatenation of these maps F = f̂ ⊕ h. Since both of the maps f̂ , h are non-expansive, it follows that for
any x, y ∈ X ,

‖F (x)− F (y)‖pp ≤ ‖f̂(x)− f̂(y)‖pp + |h(x)− h(y)|p ≤ 2 · d(x, y)p ,

hence F has expansion at most 21/p for all pairs. Let t ∈ K and x ∈ X , and let kx ∈ K be such that
d(x,K) = d(x, kx) (it could be that kx = x). If it is the case that d(x, t) ≤ 3α · d(x, kx) then by the single
coordinate of h we get sufficient contribution for this pair:

‖F (t)− F (x)‖p ≥ |h(t)− h(x)| = h(x) = d(x, kx) ≥ d(x, t)

3α
.

The other case is that d(x, t) > 3α · d(x, kx), here we will get the contribution from f̂ . First observe that by
the triangle inequality,

d(t, kx) ≥ d(t, x)− d(x, kx) ≥ d(t, x)(1− 1/(3α)) ≥ 2d(t, x)/3 . (6)

By another application of the triangle inequality, using that f̂ is non-expansive, and that f has contraction α
on K, we get the required bound on the contraction:

‖F (t)− F (x)‖p ≥ ‖f̂(t)− f̂(x)‖p
≥ ‖f̂(t)− f̂(kx)‖p − ‖f̂(kx)− f̂(x)‖p
≥ ‖f(t)− f(kx)‖p − d(x, kx)

≥ d(t, kx)

α
− d(t, x)

3α
(6)
≥ 2d(t, x)

3α
− d(t, x)

3α

=
d(t, x)

3α
.

In particular, the function 2
− 1
p · F is non-expansive for all pairs, and has contraction at most 2

1
p · 3 · α =

O(log k) for pairs in K ×X .

We are now ready to prove Theorem 14.

Proof of Theorem 14. Let S0 = {x1, x2}, and for 1 ≤ i ≤ dlog log ne let Si =
{
xj : 22

i−1
< j ≤ 22

i
}

.

For every i, let fi : X → `p be the embedding of Lemma 2 with K = Si, and let αi = c · (i + 1)−(1+ε)/p

for sufficiently small constant c, so that
∑∞

i=0 α
p
i ≤ 1. Finally, define the embedding f : X → `p by

f =

dlog logne⊕
i=0

αi · fi ,
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To see that f is indeed non-expansive, we recall that each fi is non-expansive, we obtain that for any
u, v ∈ X

‖f(u)− f(v)‖pp ≤
dlog logne∑

i=0

αpi · ‖fi(u)− fi(v)‖pp ≤ d(u, v)p
∞∑
i=0

αpi ≤ d(u, v)p .

For the contraction, let v = xj for some j > 1, and take any u ∈ X . Let i be the index such that v ∈ Si,
and note that 2i−1 < log j. By Lemma 2, the embedding fi has contraction at most O(log |Si|) = O(2i) =
O(log j) for the pair u, v. Observe that αpi = cp · (i+ 1)−(1+ε) = Ω

(
(2 + log log j)−(1+ε)

)
, thus

‖f(u)− f(v)‖pp ≥ α
p
i · ‖f(u)− f(v)‖pp ≥ Ω

(
d(u, v)p

(log j)p · (2 + log log j)−(1+ε)

)
.

It is not hard to verify that x1 has constant contraction with any u, so the prioritized distortion is
O
(
log j · (log log j)−(1+ε)/p

)
. Finally, since the dimension of fi is O(log2 |Si|) = O(22i), the embed-

ding f maps X into
∑dlog logne

i=0 O(22i) = O(log2 n) dimensions. For 1 ≤ p ≤ 2, one may embed
first into `2, use [JL84] to reduce the dimension to O(log n), and then apply an embedding to `O(logn)

p ,
while paying a constant factor in the distortion [FLM77]. The prioritized distortion will thus be at most
O(log j · (log log j)(1+ε)/2).

8.2 Embedding with Prioritized Dimension

The main result of this section is an embedding with prioritized distortion and dimension. This means that
a high ranking point will have low distortion (with any other point), and additionally, its image will consist
of few nonzero coordinates, followed by zeros in the rest.

Theorem 15. For any p ∈ [1,∞], any fixed ε > 0 and any metric space (X, d) on n points, there exists an

embedding of X into `O(log2 n)
p with priority distortion O

(
log4+ε j

)
, and prioritized dimension O(log4 j).

Proof overview. The basic framework of this embedding appears at a first glance to be similar to Sec-
tion 8.1, which is applying a variation of Bourgain’s embedding, while sampling only from certain subsets
Si of the points. However, the crux here is that we need to ensure that high priority points will be mapped
to the zero vector in the embeddings that ”handle” the lower ranked points.

Recall that the coordinates of the embedding are given by distances to sets. The idea is the following:
while creating the embedding for the points in Si, we insert all the points with higher ranking (those in
S0 ∪ · · · ∪ Si−1) into every one of the randomly sampled sets. This will certify that the high ranked points
are mapped to zero in every one of these coordinates. However, the analysis of the distortion no longer
holds, as the sets are not randomly chosen. Fix some point u ∈ Si and v ∈ X . The crucial observation
is that if none of the higher ranked points lie in certain neighborhoods around u and v (the size of these
neighborhoods depends on d(u, v)), then we can still use the randomness of the selected sets to obtain some
bound (albeit not as good as the standard embedding achieves). While if there exists a high ranked point
nearby, say z ∈ Si′ for some i′ < i, then we argue that u, v should already have sufficient contribution from
the embedding designed for Si′ . The formal derivation of this idea is captured in Lemma 3.

The calculation shows that the distortion guarantee for u, v deteriorates by a logarithmic factor for each
i, that is, it is the product of the distortion bound for points in Si−1 multiplied by O(log |Si|). This implies
that the optimal size of Si is triple exponential in i, which yields the best balance between the price paid due
to the size of Si and the product of the logarithms of |S0|, . . . , |Si−1|.
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Lemma 3. Let p ∈ [1,∞] and D ≥ 1. Given a metric space (X, d), two disjoint subsets A,K ⊆ X where
|K| = k ≥ 2, and a non-expansive embedding g : X → `p with contraction at most D for all pairs in

A×X , then there is a non-expansive embedding f : X → `
O(log2 k)
p such that the following properties hold:

1. For all x ∈ A, f (x) = ~0 .

2. For all (x, y) ∈ K ×X , ‖f(x)− f(y)‖p ≥ d(x,y)
1000D·log k , or ‖g(x)− g(y)‖p ≥ d(x,y)

2D .

We postpone the proof of Lemma 3 to Section 8.2.1, and prove Theorem 15 using the lemma.

Proof of Theorem 15. Let I = dlog log log ne. Let S0 = {x1, x2, x3, x4}, and for 1 ≤ i ≤ I let Si ={
xj : 22

2i−1

< j ≤ 22
2i
}

. Also define S<i =
⋃

0≤k<i Sk.
The desired embedding F : X → `p will be created by iteratively applying Lemma 3, each time using

its output function f as part of the input for the next iteration. Formally, for each 0 ≤ i ≤ I apply Lemma 3
with parameters A = S<i, K = Si, g = F (i−1) and D = 22

i+5i2 , to obtain a map fi : X → `p. The map
F (i) : X → `p is defined as follows: F (−1) ≡ 0, and F (i) =

⊕i
k=0 αk · fk, where (αk) is a sequence that

ensures F (i) is non-expansive for all i. For concreteness, take αk =
(

6
π2(k+1)2

)1/p
. The final embedding is

defined by F = F (I).
Fix any pair x, y ∈ X . As fi is non-expansive by Lemma 3, we obtain that F is non-expansive as well:

‖F (x)− F (y)‖pp =
I∑
i=0

αpi · ‖fi(x)− fi(y)‖pp ≤
∞∑
i=0

6

π2(i+ 1)2
· d(x, y)p = d(x, y)p .

Next, we must show that for each 0 ≤ i ≤ I , the embedding F (i−1) has contraction at most 22
i+5i2 for pairs

in S<i×X , to comply with the requirement of Lemma 3. We prove this by induction on i, the base case for
i = 0 holds trivially as F (−1) has no requirement on its contraction (since S<0 = ∅). Assume (for i) that
F (i−1) has contraction at most 22

i+5i2 on pairs in S<i × X . For i + 1, let x ∈ S<i+1 and y ∈ X . Recall
that F (i) is generated by applying Lemma 3 with A = S<i, K = Si, g = F (i−1), and D = 22

i+5i2 . Then
the lemma returns fi, and finally F (i) = g ⊕ (αi · fi).

We may assume that x ∈ Si, otherwise g = F (i−1) has the required contraction on x, y by the induction
hypothesis. Applying condition (2) of the lemma: if it is the case that ‖g(x)− g(y)‖p ≥ d(x, y)/(2D), then
clearly 2D < 22

i+1+5(i+1)2 . The other case is that ‖fi(x) − fi(y)‖p ≥ d(x,y)
1000D·log |Si| . Since log |Si| ≤ 22

i

and 1/αi ≤ 2(i+ 1)2, the contraction of F (i) is at most the contraction of αi · fi, which is bounded by

1000D · log |Si|
αi

≤ 1000 · 22i+5i2 · 22i · 2(i+ 1)2 < 22·2
i+5i2+2 log(i+1)+11 < 22

i+1+5(i+1)2 .

Observe that if x = xj ∈ Si for some j > 1, then 22
i−1

< log j, and thus the distortion of F for any
pair containing x is at most 22

i+1+5(i+1)2 = O(log4 j) · 2O((2+log log log j)2) = O(log4+ε j). Additionally,
note that as the distortion of F (I−1) is at most D = 22

I+5I2 , the same argument suggests that the maximal
distortion of F = F (I) for any pair is at most

1000D · log n

αI
≤ 1000 · 22I+5I2 · log n · 2(I + 1)2 = O(log3+ε n) .

Finally, let us bound the number of nonzero coordinates of the points. Recall that fi maps X into
O(log2 |Si|) ≤ O(22

i+1
) dimensions. Fix some x = xj for j > 1, and let i be such that xj ∈ Si. Note
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that 22
i−1

< log j, so that 22
i+1

< log4 j. By Lemma 3, for every i′ > i, fi′(xj) = ~0, and the number of
coordinates used by F (i) is at most

i∑
k=0

O(22
k+1

) = O(22
i+1

) = O(log4 j) .

Since the dimension of fI is at most O(log2 n), we get that the total number of coordinates used by F
is only

I−1∑
k=0

O(22
k+1

) +O(log2 n) ≤ O(22
1+log log logn

) +O(log2 n) = O(log2 n) .

8.2.1 Proof of Lemma 3

The basic approach to the proof is similar to Lemma 2, which is sampling subsets ofK, according to various
densities. The main difference is that we insert all the points of A into each sampled set, to ensure f(x) = ~0
for all x ∈ A. The standard analysis of Bourgain for a pair x, y, considers certain neighborhoods defined
according to the density of points around x, y. We show that the analysis still works as long as no point of A
is present in those neighborhoods. Thus we can obtain a contribution which is proportional to the distance
of x, y to A (or to d(x, y) if that distance is large). This motivates the following definition and lemma.

Definition 2. The γ-distance between x and y with respect to A is defined to be

γA (x, y) = min

{
d(x, y)

2
, d(x,A), d(y,A)

}
.

Lemma 4. Let c = 24. There exists a non-expansive embedding ϕ : X → `
O(log2 k)
p , such that for all z ∈ A,

ϕ(z) = ~0, and for all x, y ∈ K,

‖ϕ(x)− ϕ(y)‖p ≥
γA(x, y)

c log k
.

We defer the proof of Lemma 4, and proceed first with the proof of Lemma 3. Define h : X → R for
x ∈ X as h(x) = d(x,A ∪K). Our embedding f is

f =
ϕ⊕ h
21/p

.

Since both ϕ and h are non-expansive and vanish on A, clearly f is non-expansive as well, and f(z) = ~0
for any z ∈ A. It remains to show property (2) of the lemma. Fix any x ∈ K and y ∈ X , and consider the
following three cases:

Case 1: d ({x, y} , A) ≤ d(x,y)
4D .

In this case we shall use the guarantees of the map g. Assume w.l.o.g that z ∈ A is such that d(y, z) ≤
d(x,y)
4D . Then by the triangle inequality

d(x, z) ≥ d(x, y)− d(y, z) ≥ d(x, y)− d(x, y)

4D
≥ 3d(x, y)

4
. (7)

24



Now, using that g is non-expansive, and has contraction at most D for any pair in A×X , we obtain that

‖g(x)− g(y)‖p ≥ ‖g(x)− g(z)‖p − ‖g(z)− g(y)‖p

≥ d(x, z)

D
− d(z, y)

(7)
≥ 3d(x, y)

4D
− d(x, y)

4D

=
d(x, y)

2D
,

which satisfies property (2).

Case 2: d ({x, y} , A) > d(x,y)
4D and d(y,K) ≥ d(x,y)

20cD·log k (where c = 24 is the constant of Lemma 4).
Here we shall use the map h for the contribution. Since d(y,A) ≥ d(x, y)/(4D), we have that h(y) =

d(y,A ∪K) ≥ d(x,y)
20cD·log k and of course h(x) = 0, so that

‖f(x)− f(y)‖p ≥
|h(x)− h(y)|

2
≥ d(x, y)

40cD · log k
,

as required.

Case 3: d ({x, y} , A) > d(x,y)
4D and d(y,K) < d(x,y)

20cD·log k .
In this case, the function ϕ will yield the required contribution, by employing a similar strategy to

Lemma 2. Let ky ∈ K be such that d(y, ky) = d(y,K). Note that d(ky, A) ≥ d(y,A) − d(y, ky) ≥
d(x,y)
4D − d(x,y)

20cD·log k ≥
d(x,y)
5D , and it follows that

γA(x, ky) ≥
d(x, y)

5D
. (8)

By Lemma 4, since f is non-expansive, and using another application of the triangle inequality, we conclude
that

‖f(x)− f(y)‖p ≥ ‖f(x)− f(ky)‖p − ‖f(y)− f(ky)‖p

≥ ‖ϕ(x)− ϕ(ky)‖p
2

− d(y, ky)

≥ γA(x, ky)

2c log k
− d(x, y)

20cD · log k
(8)
≥ d(x, y)

10cD · log k
− d(x, y)

20cD · log k

=
d(x, y)

20cD · log k
.

This concludes the proof of Lemma 3. It remains to validate Lemma 4, which is similar in spirit to the
methods of [Bou85, LLR95], we give full details for completeness.

Proof of Lemma 4. Let I = dlog ke and J = C · log k for a constant C that will be determined later. For
each i ∈ [I] and j ∈ [J ] sample a set Q′ij by including each x ∈ K independently with probability 2−i,
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and let Qij = Q′ij ∪ A. Define maps ϕij : X → R by letting for each u ∈ X , ϕij(u) = d(u,Qij), and
ϕ : X → `I·Jp by

ϕ(u) =
1

(I · J)1/p

⊕
i∈[I]

⊕
j∈[J ]

ϕij(u) .

Since each ϕij is non-expansive, ϕ is non-expansive as well, and in what follows we bound its contraction.
Define for u ∈ K and r ≥ 0 the ball restricted to K, BK(u, r) = B(u, r) ∩K, and recall that by B◦

we mean the open ball. Fix a pair u, v ∈ K, and for each 0 ≤ i ≤ I , let r′i be the minimal such that both
|BK(u, r)| ≥ 2i and |BK(v, r)| ≥ 2i. Define ri = min{r′i, γA(u, v)} and let ∆i = ri − ri−1. Observe that
r0 = 0 and rI = γA(u, v), so that ∑

i∈[I]

∆i = γA(u, v) . (9)

We first claim that for each i ∈ [I] and j ∈ [J ],

Pr[|ϕij(u)− ϕij(v)| ≥ ∆i] ≥ 1/12 . (10)

If ∆i = 0 then there is nothing to prove. Assume then that ri−1 < ri, and note that either |B◦K(u, ri)| ≤ 2i

or |B◦K(v, ri)| ≤ 2i (otherwise it contradicts the minimality of ri). W.l.o.g we have that |B◦K(u, ri)| ≤ 2i.
Furthermore, note that the sets B◦K(u, ri), BK(v, ri−1) and A are pairwise disjoint. Let E be the event that
{Qij ∩B◦K(u, ri) = ∅} and F be the event that {Qij ∩BK(v, ri−1) 6= ∅}. Observe that if both events hold
then d(u,Qij) ≥ ri and d(v,Qij) ≤ ri−1, so that

|ϕij(u)− ϕij(v)| ≥ ri − ri−1 = ∆i .

Since both balls are disjoint from A, we have that

Pr[E ] =
∏

x∈B◦K(u,ri)

Pr
[
x /∈ Q′ij

]
=
(
1− 2−i

)|B◦K(u,ri)| ≥
(
1− 2−i

)2i ≥ 1

4
.

And similarly,

Pr[F ] = 1−
∏

x∈BK(v,ri−1)

Pr
[
x /∈ Q′ij

]
= 1−

(
1− 2−i

)|BK(v,ri−1)| ≥ 1−
(
1− 2−i

)2i−1

≥ 1− e−
1
2 ≥ 1

3
.

Since the events E and F are independent, this concludes the proof of (10). Let Xij be an indicator random
variable for the event that |ϕij(u) − ϕij(v)| ≥ ∆i, and Xi =

∑J
j=1Xij . Using the independence for

different values of j, and that E[Xi] ≥ J/12, a Chernoff bound yields that for any i

Pr[Xi < J/24] ≤ e−J/100 ≤ 1/k3 ,

when C is sufficiently large. Note that if indeed Xi ≥ J/24 for all 1 ≤ i ≤ I then

‖ϕ(u)− ϕ(v)‖pp =
1

I · J

I∑
i=1

J∑
j=1

|ϕij(u)− ϕij(v)|p

≥ 1

24I

I∑
i=1

∆p
i

≥ I1−p

24I

( I∑
i=1

∆i

)p
(9)
≥ γA(u, v)p

24Ip
,
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where the second inequality uses Hölder’s inequality. Applying a union bound over the
(
k
2

)
possible pairs

in
(
K
2

)
, and the I = dlog ke possible values of i, there is at least a constant probability that for every pair

‖ϕ(u)− ϕ(v)‖p ≥ γA(u,v)

241/p·log k .
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