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Abstract: We extend the class of pedestrian crowd models introduced by Lachapelle
and Wolfram (2011) to allow for nonlocal crowd aversion and arbitrarily but finitely many
interacting crowds. The new crowd aversion feature grants pedestrians a ’personal space’
where crowding is undesirable. We derive the model from a particle picture and treat it
as a mean-field type game. Solutions to the mean-field type game are characterized via a
Pontryagin-type Maximum Principle. The behavior of pedestrians acting under nonlocal
crowd aversion is illustrated by a numerical simulation.
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1. Introduction

When moving in a crowd, a pedestrian chooses its path based not only on its desired final
destination but it also takes the movement of other surrounding pedestrians into account. The
bullet points below are stated in [18] as typical traits of pedestrian behavior.

• Will to reach specific targets. Pedestrians experience a strong interaction with the envi-
ronment.
• Repulsion from other individuals. Pedestrians may agree to deviate from their preferred

path, looking for free surrounding room.
• Deterministic if the crowd is sparse, partially random if the crowd is dense.

These properties appear in classical particle models. Other authors advocate smart particle
models that follow decision-based dynamics. In [18] some fundamental differences between
classical and smart particle models are outlined. We list a few of them in Table 1.
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Classical Smart

Robust - interaction only through collisions Fragile - avoidance of collisions and obstacles
Blindness - dynamics ruled by inertia Vision - dynamics ruled at least partially by decision
Local - interaction is pointwise Nonlocal - interaction at a distance

Table 1

A smart particle model lets pedestrians decide blue where to walk, with what speed etc. The
choice is based on some rule that takes the available information into account such as the
positioning and movement of other pedestrians. Although more realistic, this approach has
complications. If pedestrian i moves, all pedestrians accessing information on i’s state might
have to adapt their movements. The large number of connections where information is ex-
changed within a crowd is a computational difficulty.

The mean-field approach to modeling crowd aversion and congestion for pedestrians was in-
troduced in [15]. The pedestrians are treated as particles following decision-based dynamics
that optimize their path by avoiding densely crowded areas. Crowd aversion describes mo-
tion avoiding high density whereas congestion describes motion hindered by high density. The
theory of mean-field games originates from the independent works of Lasry-Lions [16] and
Huang-Caines-Malhamé [10]. The cost considered in this early work is not of congestion type,
i.e. the energy penalization is independent of the density. The framework was extended to
several populations on the torus in [9] and to several populations on a bounded domain with
reflecting boundaries in [8], with further studies in [1, 6]. Mean field games with a cost of
congestion type was introduced by P-L. Lions in a lecture series 2011 [17]. Congestion has
also been studied in the mean-field type. In [2] the finite horizon case is considered. In [3, 4]
the authors prove existence and uniqueness of weak solutions characterized by an optimization
approach based on duality, and propose a numerical method for mean-field type control based
on this result for the case of local congestion.

Turning to the crowd aversion model of this paper, a pedestrian with position Xi,N in a
crowd of N pedestrians controls its velocity such that its risk measure, J i,N , is minimized over
a finite time horizon [0, T ]. The risk measure penalizes proximity to others, energy waste and
failure to reach a target area. In this paper we advocate for the use of the following nonlocal
contribution to the risk measure, reflecting a crowd aversion behavior,

EN

∫ T

0

1

N − 1

N∑
j=1
j 6=i

φr

(
Xi,N
t −Xj,N

t

)
dt

 . (1.1)

The ‘personal space’ of a typical pedestrian is modeled by the function φr and Xi,N
t −Xj,N

t is
the distance between two pedestrians at time t. The personal space has support within a ball
of radius r so for positive r, (1.1) is a weighted average of the crowding within the personal
space and the pedestrian is not effected by crowding outside it. Connecting to the terminology
in Table 1, the case of positive r will be referred to as nonlocal crowd aversion. In the limit
r → 0 the personal space shrinks to a singleton and only pointwise crowding, that is collisions,
will effect the pedestrian. This will be referred to as local crowd aversion.
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In emergency situations it is often in the interest of all pedestrians to get to a certain place,
such an exit. In evacuation planning and crowd management at mass gatherings, it is in the
interest of the planner to control the crowd along paths and towards certain areas. Common
to such situations is the conflict between attraction to said locations and repulsive interactions
in the crowd. Pedestrians acting under nonlocal crowd aversion will order themselves more
densely in such places compared to pedestrians acting under local crowd aversion. This effect
is caused by the larger personal space, the nonlocal crowd aversion term (1.1) is an average over
a bigger set hence allowing for higher densities in attractive areas. Higher densities will in turn
allow for more effective emergency planning when designing for example escape routes. The
numerical simulation in the end of this paper confirms this effect. The pedestrians are allowed
to move freely, but the observed effect will become even more beneficial for a planner when
introducing an environment for the pedestrians to interact with. In reality, crowd management
is often done by the strategic placement of obstacles such as pillars and walls. Furthermore, the
pedestrians acting under nonlocal crowd aversion travel at an overall lower risk than their local
counterpart. This suggests that a crowd with nonlocal crowd averse behavior could potentially
move at a higher velocity than its local counterpart which allows for faster and more successful
evacuations.

In [15] the mean-field optimal control is characterized through a matching argument. This
control is an approximate Nash equilibrium for the crowd. It is, for each pedestrian, the best
response to the movement of the rest of the crowd. Furthermore, two crowds are considered
where each pedestrian has crowd-specific preferences such as the target location and crowd
aversion preference. The authors set up a mean-field game and show that it is equivalent to
an optimal control problem. In this paper, we look at the crowd from the bird’s-eye view of
an evacuation planner. We seek a ‘simultaneous’ optimal strategy for all the pedestrians in-
volved in the crowd through a mean-field type control approach for the single-crowd case and
a mean-field type game approach for the multi-crowd case.

The contributions of this paper are the following. We identify a particle model that is ap-
proximated by mean-field model for crowd aversion proposed in [15]. This gives us insights
into how the interaction between pedestrians in the crowd effects the mean-field model and
reveals that the crowd of [15] has a local crowd averse behavior. Our second contribution is a
relaxation of the locality of the pedestrian model by allowing for interaction between pedestri-
ans at a distance. Each pedestrian is given a personal space where it dislikes crowding, instead
of interacting with other pedestrians only through collisions. This conceptual change is realistic
since pedestrians do not need to be in physical contact to interact. As discussed above, the
suggested nonlocal crowd aversion model allows for the following desirable features:

• Higher densities in target areas such as exits or escape routes where the pedestrians have
to choose between more crowding and not reaching the target.
• Lower risk, which implies a potential increase in pedestrian velocity allowing for faster ex-

its and a larger flow of people, a very useful feature in the design of evacuation strategies.
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Finally, we generalize the model to allow for an arbitrary number of interacting crowds. This
multi-crowd scenario is treated as a mean-field type game and is linked to an optimal control
problem, for which we prove a sufficient maximum principle.

The paper is organized as follows. After a short section of preliminaries, we consider the
single-crowd case in Section 3. In Section 4, the multi-crowd case is studied. The results de-
rived in Section 3 generalize to an arbitrary finite number of interacting crowds and a sufficient
maximum principle that characterizes the solution is proved. An example that highlights the
difference between local and nonlocal crowd aversion is solved numerically in Section 5. For
the sake of clarity, all technical proofs are moved to an appendix.

2. Preliminaries

Given a general Polish space S, let P(S) denote the space of probability measures on B(S).
For an element s ∈ S, the Dirac measure on s is an element of P(S) and will be denoted by
δs. Let P(S) be equipped with the topology of weak convergence of probability measures. A
metric that induces this topology is the bounded 1-Lipschitz metric,

dP(S)(µ, ν) := ‖µ− ν‖1 = sup
f∈L1

〈µ, f〉 − 〈ν, f〉 , (2.1)

where L1 is the set of real-valued functions on S bounded by 1 and with Lipschitz coefficient
1. With his metric, P(S) is a Polish space. The space of probability measures on B(S) with
finite second moments will be denoted by P2(S),

P2(S) :=

{
ν ∈ P(S) : ∃ s0 ∈ S that satisfies

∫
S
dS(s, s0)2ν(ds) <∞

}
. (2.2)

Equipped with the topology of weak convergence of measures and convergence of second mo-
ments, P2(S) is a Polish space. A compatible complete metric is the square Wasserstein metric
dP2(S), for which the following inequalities will be useful. For all si, s̃i ∈ S and for all N ∈ N,

d2
P2(S)

(
1

N

N∑
i=1

δsi ,
1

N

N∑
i=1

δs̃i

)
≤ 1

N

N∑
i=1

dS(si, s̃i)
2. (2.3)

For random variables X and X̃ with distributions ν and ν̃,

d2
P2(S)(ν, ν̃) ≤ E

[
|X − X̃|2

]
. (2.4)

Let T > 0 be a finite time horizon and let Rd, d ∈ N, be equipped with the Euclidean norm. Let
M and M2 be the spaces of continuous functions on [0, T ] with values in P(Rd) and P2(Rd)
respectively,

M := C([0, T ];P(Rd)), M2 := C([0, T ];P2(Rd)). (2.5)

Equipped with the uniform metrics dM and dM,

dM(m,m′) := sup
t∈[0,T ]

dP(Rd)(mt,m
′
t), dM2(m,m′) := sup

t∈[0,T ]
dP2(Rd)(mt,m

′
t), (2.6)
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M and M2 are Polish spaces. The mathematical results stated above can be found in [20,
Chapter 2] and [11, Chapter 14].

Let A be a compact subset of Rd. Given a filtered probability space (Ω,F ,F,P), denote by A
the set of A-valued F-adapted processes such that

E
[∫ T

0
|at|2dt

]
<∞. (2.7)

An element of A will be called an admissible control. From the context, it will be clear which
stochastic basis the notation A is referring to.

Given a vector x = (x1, . . . , xN ) in the product space SN and an element y ∈ S, we let

x−i := (x1, . . . , xi−1, xi+1, . . . , xN ),

(y, x−i) := (x1, . . . , xi−1, y, xi+1, . . . , xN ).
(2.8)

Furthermore, the law of any random quantity X will be denoted by L(X) and any index set
of the form {1, . . . , N} will be denoted by [[N ]].

3. Single-crowd model for crowd aversion

3.1. The particle picture

Let (ΩN ,FN ,FN ,PN ) be a complete filtered probability space for each N ∈ N. The filtra-
tion FN is right-continuous and augmented with PN -null sets. It carries the independent d-
dimensional FN -Wiener processes W 1,N , . . . ,WN,N . Let, for each i ∈ [[N ]], the FN0 -measurable
Rd-valued random variable ξi,N be square-integrable and independent of (W 1,N , . . . ,WN,N ).
Given a vector of admissible controls, āN = (a1,N , . . . , aN,N ) ∈ AN , consider the system

dXi,N
t = b(t,Xi,N

t , ai,Nt )dt+ σ(t,Xi,N
t )dW i,N

t , Xi,N
0 = ξi,N , i ∈ [[N ]]. (3.1)

Proposition 3.1. Assume that

(A1) b : [0, T ]× Rd ×A→ Rd and σ : [0, T ]× Rd → Rd×d are continuous in all arguments.
(A2) For all x1, x2 ∈ Rd and a1, a2 ∈ A, there exists a constant K > 0 independent of

(t, x1, x2, a1, a2) such that

|b(t, x1, a1)− b(t, x2, a2)| ≤ K(|x1 − x2|+ |a1 − a2|),
|σ(t, x1)− σ(t, x2)| ≤ K|x1 − x2|,

|b(t, x1, a1)|+ |σ(t, x1)| ≤ K(1 + |x1|+ |a1|).
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Under these assumptions, (3.1) has a unique strong solution in the sense that

Xi,N
0 = ξi,N , (3.2)∫ t

0

∣∣b(s,Xi,N
s , ai,Ns )

∣∣+
∣∣σ(s,Xi,N

s )
∣∣2 ds <∞, t ∈ [0, T ], P− a.s. (3.3)

Xi,N
t = ξi,N +

∫ t

0
b(s,Xi,N

s , ai,Ns )ds+

∫ t

0
σ(s,Xi,N

s )dW i,N
s , t ∈ [0, T ]. (3.4)

Furthermore, the strong solutionXi,N satisfies the estimate EN
[
sups∈[0,t] |X

i,N
s |2

]
≤ Kt

(
1 + EN

[
|ξi,N |2

])
for all t ∈ [0, T ], for all i ∈ [[N ]] and for some positive constant Kt depending only on t.

Proof. A proof can be found in [24, Chapter 1, Theorem 6.16]. Note that Kt is independent of
ai,N by compactness of A.

The process Xi,N models the motion of an individual in a crowd of N pedestrians, from now
on called an N -crowd, who partially controls its velocity through the control ai,N . Since its
control is adapted to the full filtration FN , the model allows for the pedestrian to take every
movement in the crowd into account. Its motion is also influenced by external forces, such as
the random disturbance driven by W i,N . The motion of the pedestrian may be modeled more
generally than above by introducing an explicit weak interaction in the drift [10], such as

dXi,N
t =

1

N

N∑
j=1

b̃(t,Xi,N
t , ai,Nt , Xj,N )dt+ σ(t,Xi,N

t )dW i,N
t . (3.5)

It is also possible to let a common disturbance effect all pedestrians [13], to model for example
evacuations during an earthquake, a fire, a tsunami etc.

Individual i evaluates the state of theN -crowd, given by the control vector āN = (a1,N , . . . , aN,N ),
according to its measure of risk

J i,Nr (āN ) := EN
[∫ T

0

(
1

2
|ai,Nt |2 +

∫
Rd

φr(X
i,N
t − y)µ−i,Nt (dy)

)
dt+ Ψ(Xi,N

T )

]
, (3.6)

where X1,N , . . . , XN,N solves (3.1) given āN and µ−i,Nt is the empirical measure of X−i,N .
The region where crowding has an influence on the pedestrian’s choice of control, its ’personal
space’, is ideally modeled by a normalized indicator function,

Ir(x) :=

{
Vol(Br)

−1, x ∈ Br,
0, x /∈ Br,

(3.7)

where Br ⊂ Rd is the ball with radius r > 0 centered at the origin and Vol(Br) is its volume.
The term ∫

Rd

Ir(Xi,N
t − y)µ−i,Nt (dy) (3.8)

then represents the number of pedestrians around Xi,N
t within a distance less than r at time

t [22]. To simplify the calculations we will use a smoothed version of Ir. Let γδ be a mollifier,
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γδ(x) := γ(x/δ)/δ, where γ is a smooth symmetric probability density with compact support.
For a fixed δ > 0, we set

φr(x) := γδ ∗ Ir(x). (3.9)

For convergence estimates later in this section, we assume that the final cost Ψ satisfies the
following condition.

(A3) For all x1, x2 ∈ Rd there exists a constant K > 0 independent of (x1, x2) such that

|Ψ(x1)−Ψ(x2)| ≤ K|x1 − x2|.

The interpretation of the risk measure is the following. The first term penalizes energy us-
age whereas the second term penalizes paths through densely crowded areas. The final cost
penalizes deviations from specific target regions. Typically the final cost takes large values
everywhere except in areas where the pedestrians want to end up, places like meeting points,
evacuation doors, etc.

3.2. The mean-field type control problem

Let (Ω,F ,F,P) be a complete filtered probability space such that the filtration is right con-
tinuous and augmented with P-null sets. Let F carry a Wiener process W and let ξ be an
F0-measurable and square-integrable Rd-valued random variable independent of W . Given a
control a ∈ A, the mean-field type dynamics is

dXt = b(t,Xt, at)dt+ σ(t,Xt)dWt, X0 = ξ. (3.10)

By Proposition 3.1 there exists a unique strong solution to (3.10). The mean-field type risk
measure is given by

Jr(a) = E
[∫ T

0

1

2
|at|2 +

∫
Rd

φr(Xt − y)µXt(dy)dt+ Ψ(XT )

]
. (3.11)

where µXt is the distribution of Xt.

Remark 3.1. The difference between a mean-field type control and a mean-field game is that
in general mean-field games can be reduced to a standard control problem and an equilibrium
while a mean-field type control problem is a nonstandard control problem [5, 7]. The matching
procedure to find the fixed point (equilibrium) for a mean-field game is pedagogically described
as follows [10, 16].

(i) Fix a deterministic function µt : [0, T ]→ P2(Rd).
(ii) Solve the stochastic control problem

â = argmin
a∈A

E
[∫ T

0

1

2
|at|2 +

∫
Rd

φr(Xt − y)µt(dy)dt+ Ψ(XT )

]
, (3.12)

where X is the dynamics corresponding to a.
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(iii) Determine the function µ̂t : [0, T ]→ P2(Rd) such that µ̂t = L(X̂t) for all t ∈ [0, T ] where
X̂ is the dynamics corresponding to the optimal control â.

In the mean-field type control setting, the measure-valued process (µXt ; t ∈ [0, T ]) is not con-
sidered to be a separate variable but given by the input control process.

3.3. Convergence of the state process

Let the initial data ξ1,N , . . . , ξN,N satisfy the following assumptions,

(B1) supN∈N EN
[

1
N

∑N
i=1 |ξi,N |2

]
<∞ for all i ∈ [[N ]].

(B2) (ξ1,N , . . . , ξN,N ) is exchangeable for all N ∈ N.

(B3) limN→∞ L
(

1
N

∑N
i=1 δξi,N

)
= δµ0 in P(P2(Rd)).

Under (B1)-(B3) the sequence (ξi,N )N∈N is tight and a subsequence can be extracted that
converges in distribution to a µ0-distributed random variable, from now on denoted by ξ. We
make the following assumption about the controls.

(B4) The controls are of feedback form, ai,Nt (ω) = aN (t,Xi,N
t (ω)), where each aN is an A-

valued deterministic function and aN converge uniformly to a as N →∞. Furthermore,

sup
N∈N

EN
[∫ T

0
|aN (t,Xi,N

t )|2
]
<∞, ∀ i ∈ [[N ]]. (3.13)

Remark 3.2. Assumption (B4) implies that, while the paths of pedestrians in the N -crowd
may differ, they are outcomes from a symmetric joint probability distribution. By exchange-
ability of (ξi,N ,W i,N )Ni=1,

(aN (t,Xi,N
t ))Ni=1

d
= (aN (t,X

π(i),N
t ))Ni=1 (3.14)

for all permutations π of [[N ]], the interpretation is that we cannot distinguish between pedes-
trians in the crowd. The pedestrians are anonymous.

Proposition 3.2. If µN is the empirical measure of X1,N , . . . , XN,N , the solution of (3.1)
given aN , then {L(µN ), N ∈ N} is tight in P(M2).

Proof. The empirical measures are elements of M2 by Proposition 3.1 together with (B1)
and (B2). The proof of tightness in the case of uncontrolled diffusions is found in [19]. The
introduction of a control does not change the situation.

Recall that a sequence {Xn} of random variables converges weakly to X in a Polish space
if and only if {Xn} is tight and every convergent subsequence of {Xn} converges to X. The



Aurell, Djehiche/Tagged pedestrian 9

tightness of the empirical measures implies that along a converging subsequence, µN converges
weakly to the measure-valued process µ that for all f ∈ C2

b (Rd) satisfies

〈µt, f〉 − 〈µ0, f〉 =

∫ t

0

〈
µs, b(s, ·, a(s, ·)) · ∇f +

1

2
σ(s, ·)∆f

〉
ds. (3.15)

Since the strong solution of (3.10) is unique, the weak solution is also unique [23] which is
equivalent to uniqueness of solutions to (3.15) [12]. We have the following result.

Theorem 3.1. Let Xi, i ∈ N, be independent copies of the strong solution of (3.10). Under
assumptions (A1)-(B4), Xi,N converges weakly to Xi as N →∞.

Proof. Applying Sznitman’s propagation of chaos theorem [21], the result follows by the weak
convergence of µN to the deterministic measure µ.

3.4. Convergence of the risk measure

From the previous section we know that Xi,N , the strong solution of (3.1), converges weakly
to X, the strong solution of (3.10), and we know that µNt converges weakly to µXt . Applying
(2.3), we have that dP2(Rd)(µ

−i,N
t , µNt ) ≤ 2/N , so µ−i,Nt converges weakly to µXt as well. By

Skorokhod’s Representation Theorem [11, Theorem 3.30] we can represent (up to distribution)
all the random variables mentioned above in a common probability space (Ω̃, F̃ , P̃) where they
converge P̃-almost surely. This allows us to write

|J i,Nr (aN )− Jr(a)| ≤ EP̃

[∫ T

0

∣∣∣∣12 |aN (t,Xi,N
t )|2 − 1

2
|a(t,Xt)|2

∣∣∣∣
+

∣∣∣∣∣
∫
Rd

φr(X
i,N
t − y)µ−i,Nt (dy)−

∫
Rd

φr(Xt − y)µXt(dy)

∣∣∣∣∣dt
+
∣∣∣Ψ(Xi,N

T )−Ψ(XT )
∣∣∣ ],

(3.16)

By compactness of A, the Continuous Mapping Theorem, (B4) and Dominated Convergence
we have

lim
N→∞

EP̃

[∫ T

0

∣∣∣∣12 |aN (t,Xi,N
t )|2 − 1

2
|a(t,Xt)|2

∣∣∣∣
]

= 0. (3.17)

By (A3), Proposition 3.1 and Dominated Convergence, EP̃[|Ψ(Xi,N
T )−Ψ(XT )|] = 0 as N →∞.

Note that

EP̃
[∫ T

0

∣∣∣∣∫
Rd

φr(X
i,N
t − y)µ−i,Nt (dy)−

∫
Rd

φr(Xt − y)µXt(dy)

∣∣∣∣ dt]
≤ EP̃

[∫ T

0

∣∣∣∣∫
Rd

φr(X
i,N
t − y)µ−i,Nt (dy)−

∫
Rd

φr(X
i,N
t − y)µXt(dy)

∣∣∣∣ dt]
+ EP̃

[∫ T

0

∣∣∣∣∫
Rd

φr(X
i,N
t − y)µXt(dy)−

∫
Rd

φr(Xt − y)µXt(dy)

∣∣∣∣ dt] .
(3.18)
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As N →∞, the first term on the right hand side tends to zero by the definition of weak con-
vergence while the second tends to zero by the Continuous Mapping Theorem and Dominated
Convergence. We have proved the following result.

Theorem 3.2. Let a ∈ A and aN = (a, . . . , a) ∈ AN , then J i,Nr (aN ) = Jr(a) + εN where
limN→∞ εN = 0.

3.5. Solutions to the N-crowd model and the MFT control problem

The notion of solutions of the the N -crowd model (N-1) and the mean-field type control
problem (MFT-1) for crowd aversion will now be defined.

Definition 3.1 (Solution to N-1). Let âN = (â, . . . , â) ∈ AN for some fixed â ∈ A and let
aN = (a, . . . , a) ∈ AN for an arbitrary strategy a ∈ A. Then âN is a solution to N-1 if

J i,Nr (âN ) ≤ J i,Nr (aN ), ∀a ∈ A, ∀i ∈ [[N ]]. (3.19)

If, for a given ε > 0, â satisfies

J i,Nr (âN ) ≤ J i,Nr (aN ) + ε, ∀a ∈ A, ∀i ∈ [[N ]], (3.20)

then âN is an ε-solution to N-1.

Definition 3.2 (Solution to MFT-1). If â ∈ A satisfies

Jr(â) ≤ Jr(a), ∀a ∈ A, (3.21)

then â is a solution to MFT-1.

The following result motivates the use of MFT-1 as an approximation to N-1. It confirms that
we can construct an approximate solution to N-1 using a solution to MFT-1.

Theorem 3.3. If â solves MFT-1, then âN = (â, . . . , â) is a εN -solution, where εN → 0 as
N →∞, to N-1 among feedback strategies.

Proof. The proof follows straight away by Theorem 3.2.

Remark 3.3. It is known that the solution of a mean-field game corresponds to an approximate
Nash equilibrium for N-1 ([10],[16]). To the best of our knowledge, this has not been shown
to be true for solutions to mean-field type control problems. Theorem 3.3 has the following
interpretation; a mean-field type optimal control induces an approximate solution for the N -
crowd if the crowd consists homogeneous pedestrians and thus a representative pedestrian
determines the control of all. This was in fact visible already in Theorem 3.2.

3.6. Deterministic version of MFT-1

We want to present results in a setting similar to [15] to highlight the differences between the
models. To do this, we make the assumption that µXt has a density mX(t, ·) for all t ∈ [0, T ]. An
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example of sufficient conditions for the existence is bounded drift and diffusion [19]. Under this
assumption, we may rewrite (3.10)-(3.11) into a deterministic problem for mX . Furthermore,
an admissible control can not be stochastic in the deterministic problem formulation. The full
stochastic problem will be analyzed in future work. We have a new definition of an admissible
control.

Definition 3.3 (Ad). A square-integrable deterministic function a : [0, T ] × Rd → A will
be called an admissible control for the deterministic problem and the set of such functions is
denoted by Ad.

By (3.15) the density mX satisfies∫
Rd

f(x)mX(t, x)dx−
∫
Rd

f(x)mX(0, x)dx =∫ t

0

∫
Rd

(
b(s, x, a(s, x)) · ∇f(x) +

1

2
Tr
[
σσT (s, x)∇2f(x)

])
mX(s, x)dsdx,

(3.22)

for all f ∈ C2
b (Rd) and for all t ∈ [0, T ], hence it is a weak solution to
∂mX

∂t
(t, x) =

1

2
Tr
[
∇2σσTmX(t, x)

]
−∇ · (b(t, x, a(t, x))mX(t, x)),

mX(0, x) = density of µ0.
(3.23)

We arrive to a deterministic version of MFT-1 (dMFT-1),
min
a∈Ad

Jdet
r (a)

s.t.
∂mX

∂t
(t, x) =

1

2
Tr
[
∇2σσTmX(t, x)

]
−∇ · (b(t, x, a(t, x))mX(t, x)),

mX(0, x) = density of µ0.

(3.24)

where

Jdet
r (a) :=

∫
Rd

∫ T

0

(
1

2
|a(t, x)|2mX(t, x) +

(∫
Rd

φr(x− y)mX(t, y)dy

)
mX(t, x)

)
dtdx+

∫
Rd

Ψ(x)m(T, x)

]
dx.

(3.25)

Remark 3.4. Note that φr converges weakly to δ0 as r → 0. In this limit, the risk measure
tends to

Jdet
0 (a) =

∫
Rd

∫ T

0

1

2
|a(t, x)|2mX(t, x) +mX(t, x)2dt+ Ψ(x)m(T, x)dx, (3.26)

which is exactly the risk analyzed in the pedestrian crowd model of [15]! Clearly this case
corresponds to a situation where the pedestrian will only react to how likely it is to ‘bump’
into other pedestrians. In the case of positive r, a pedestrian is effected by crowding within a
personal space of nonzero range and reacts to the level of the density within this range. This
is the distinction between local and nonlocal crowd averse behavior.
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4. Multi-crowd model for crowd aversion

4.1. The particle picture

In this section, crowd averse behavior between several crowds is introduced. The crowds are
allowed to differ in their opinions on target areas and/or the level of crowd aversion. This
inhomogeneity is introduced in the risk measure. Let the setup be as in the previous chapter,
except now FN carries NM independent FN -Wiener processes W i,j,N , i ∈ [[N ]], j ∈ [[M ]] and
there is for all i ∈ [[N ]], j ∈ [[M ]] a square-integrable FN0 measurable Rd-valued random variable
ξi,j,N independent of all the Wiener processes. Given NM admissible controls ai,j,N , consider
the system {

dXi,j,N
t = b(t,Xi,j,N

t , ai,j,Nt )dt+ σ(t,Xi,j,N
t )dW i,j,N

t ,

Xi,j,N
0 = ξi,j,N , i ∈ [[N ]], j ∈ [[M ]].

(4.1)

In view of Proposition 3.1 there exists a unique strong solution to (4.1). Pedestrian i in crowd
j evaluates a according to its individual risk measure

J i,j,Nr,Λ (a) := EN
[∫ T

0

1

2
|ai,j,N |2 +

∫
Rd

φr(X
i,j,N
t − y)ν̃j,Nt,Λ (dy)dt+ Ψj(X

i,j,N
T )

]
, (4.2)

where

ν̃j,Nt,Λ :=
M∑
k=1

λjk
1

N

N∑
l=1

δ
Xl,k,N

t
, (4.3)

λjk are bounded and non-negative real numbers and Λ = (λjk)jk. The weights λjk quantify the
crowd aversion preferences in the model. If λjk is high, pedestrians in crowd j pay a high price
for being close to pedestrians in crowd k. If λjk is zero, pedestrians in crowd j are indifferent
to the positioning of pedestrians in crowd k. Note that if λjk = 1 for j = k and 0 otherwise,
the crowds are disconnected in the sense that there is no interaction between pedestrians from
different crowds.

4.2. The mean-field type model

Again the setup be as before except that F now carries M independent F-Wiener processes
W j , j ∈ [[M ]], and there are M square-integrable F0 measurable Rd-valued random variables
ξj , j ∈ [[M ]], independent of all the Wiener processes. Given a vector of admissible controls
āM = (a1, . . . , aM the mean-field type dynamics are

dXj
t = b(t,Xj

t , a
j
t )dt+ σ(t,Xj

t )dW j
t , Xj

0 = ξj , j ∈ [[M ]]. (4.4)

There exists a unique strong solution to (4.4) by Proposition 3.1. The mean-field type risk
measure for crowd j ∈ [[M ]] is given by

J jr,Λ(āM ) := E
[∫ T

0

1

2
|aj |2 +

∫
Rd

φr(X
j
t − y)νjt,Λ(dy)dt+ Ψj(X

j
T )

]
, (4.5)

where νjt,Λ :=
∑M

k=1 λjkµXk
t
.
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4.3. Solutions of N-M and MFT-M

The convergence results for the single-crowd case generalizes to multiple crowds under the
following assumptions.

(C1) supN∈N EN
[

1
N

∑N
i=1 |ξi,j,N |2

]
<∞ for all j ∈ [[M ]].

(C2) (ξ1,j,N , . . . , ξN,j,N ) is exchangeable for all j ∈ [[M ]].

(C3) limN→∞ L
(

1
N

∑N
i=1 ξ

i,j,N
)

= δ
µj0

in P(P2(Rd)) for all j ∈ [[M ]].

(C4) The controls are of feedback form, ai,j,Nt (ω) = aj,N (t,Xi,j,N
t (ω)) where each aj,N is a

deterministic A-valued function and aj,N converge uniformly to aj as N →∞. Further-
more,

sup
N∈N

EN
[∫ T

0
|aj,N (t,Xi,j,N

t )|2
]
<∞, ∀ i ∈ [[N ]], ∀ j ∈ [[M ]]. (4.6)

Under (A1),(A2), (A3) for all final costs Ψj and (C1)-(C4) the results from Section 3.3 and
Section 3.4 immediately generalize to multiple crowds. Next, solutions to the N -crowd model
(N-M) and the mean-field type model (MFT-M) for the multi-crowd case are defined.

Definition 4.1 (Solution to N-M). For any aj ∈ A, let (aj)N = (aj , . . . , aj) ∈ AN . The control
vector ((â1)N , . . . , (âM )N ) is a solution to N-M if

J i,j,Nr,Λ ((â1)N , . . . , (âM )N ) ≤ J i,j,Nr,Λ ((aj)N , (â−j)N ), ∀ aj ∈ A, ∀ j ∈ [[M ]]. (4.7)

If
J i,j,Nr,Λ ((â1)N , . . . , (âM )N ) ≤ J i,j,Nr,Λ ((aj)N , (â−j)N ) + ε, ∀ aj ∈ A, ∀ j ∈ [[M ]] (4.8)

for ε > 0, ((â1)N , . . . , (âM )N ) is an ε-solution to MFT-M.

Definition 4.2 (Solution to MFT-M). The vector âM = (â1,M , . . . , âM,M ) ∈ AM is a solution
to MFT-M if

J jr,Λ(âM ) ≤ J jr,Λ(a, â−j,M ), ∀ a ∈ A, ∀ j ∈ [[M ]]. (4.9)

Remark 4.1. There is a fundamental difference between the definition of solutions in the
single-crowd case and in the multi-crowd case. The latter is a Nash equilibrium while the for-
mer is an optimal control. So, what has changed? We still have anonymity between pedestrians
within a crowd but the vector of all controls used in the multi-crowd case, ((aj,N (t,Xi,j,N

t ))Ni=1)Mj=1

for N-M and (aj(t,Xj
t ))Mj=1 for MFT-M, is not exchangeable (cf. (3.14)). From our point of

view, we may distinguish between two pedestrians from different crowds and hence the pedes-
trians are not anonymous anymore. Thus, it makes sense to look at a game problem between
the crowds.

The approximation result Theorem 3.3 generalizes to the multi-crowd case.

Theorem 4.1. Assume that âM is a solution to MFT-M. Then the vector
((â1,M )N , . . . , (âM,M )N ) is an εN -solution to N-M.

Proof. The proof follows exactly the same steps as the proof of Theorem 3.3.
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Finally, under the assumption that µ
Xj

t
admits a density mXj (t, ·), we rewrite MFT-M into a

deterministic problem (dMFT-M).

Definition 4.3 (Solution to dMFT-M). A control vector â = (â1, . . . , âM ) ∈ AMd solves
dMFT-M if

J j,det
r,Λ (â) ≤ J j,det

r,Λ (a, â−j), ∀ a ∈ Ad, ∀ j ∈ [[M ]], (4.10)

where

J j,det
r,Λ (â) :=

∫
Rd

[∫ T

0

(
1

2
|âj(t, x)|2mj(t, x)

+
M∑
k=1

λjk

∫
Rd

φr(x− y)mk(t, y)dymj(t, x)

)
dt+ Ψj(x)mj(T, x)

]
dx

(4.11)

and mj solves
∂mj

∂t
(t, x) =

1

2
Tr
[
∇2(σσTmj)(t, x)

]
−∇ · (b(t, x, âj(t, x))mj(t, x)),

mj(0, t) = the density of µj0.
(4.12)

Remark 4.2. In the limit r → 0 the risk measure is

J j,det
0,Λ (a) =

∫
Rd

[∫ T

0

(
1

2
|aj(t, x)|2mj(t, x)

+

M∑
k=1

λj,kmk(t, x)mj(t, x)

)
dt+ Ψj(x)mj(T, x)

]
dx.

(4.13)

The interpretation is the same as in the single-crowd model, when r → 0 the personal space
of the pedestrians shrink to a singleton and only collisions have an impact on the choice of
control. Note that (4.13) with parameters M = 2, λ11 = λ22 = 1 and λ12 = λ21 = λ is exactly
the cost that appears in [15].

4.4. An optimal control problem equivalent to dMFT-M

In this section an optimal control problem is introduced. It is shown to have the same so-
lution as dMFT-M, so instead of solving the game problem an optimal control is character-
ized by a Pontryagin-type Maximum Principle. To ease notation, let ϕ = (ϕ1, . . . , ϕM ) for
ϕ ∈ {Ψ(x),m(t, x), |a(t, x)|2}. Consider the following optimization problem,

min
a∈AM

d

Jr,Λ̄(a)

s.t.
∂mj

∂t
(t, x) =

1

2
Tr
[
∇2(σσTmj)(t, x)

]
−∇ · (b(t, x, aj(t, x))mj(t, x)),

mj(0, x) = density of µj0, j ∈ [[M ]],

(OC)
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where

Jr,Λ̄(a) :=

∫
Rd

[∫ T

0

(
1

2
|a(t, x)|2 ·m(t, x) +Gφr [m]T (t, x)Λ̄m(t, x)

)
dt (4.14)

+ Ψ(x) ·m(T, x)

]
dx, Λ̄ ∈ RM×M ,

Gφr [m](t, x) :=

(∫
Rd

φr(x− y)m1(t, y)dy, . . . ,

∫
Rd

φr(x− y)mM (t, y)dy

)
, (4.15)

The following proposition is the first link between dMFT-M and (OC).

Proposition 4.1. If â solves (OC) and Λ = Λ̄ + Λ̄T − diag(Λ̄), then â is solves dMFT-M.

Proof. The proof is found in Appendix 6.1.

The condition Λ = Λ̄ + Λ̄T − diag(Λ̄) forces Λ to be symmetric and the interpretation is that
the aversion between crowds must be symmetric, i.e. if a crowd is averse to another, the other
one must be equally averse towards the first. One can of course consider other situations, but
then it is not possible to rewrite the game into an optimization problem on the form of (OC).
Therefore from now Λ is assumed to satisfy the condition of Proposition 4.1. Note that Λ̄ does
not necessarily have to be symmetric. Towards a characterization of the optimal control, let

f(t, x, a,m) :=
1

2
|a(t, x)|2 ·m(t, x) +Gφr [m](t, x)T Λ̄m(t, x),

g(x,m) := Ψ(x) ·m(T, x),
(4.16)

and let, with some abuse of notation,

Tr
[
σσT∇2p(t, x)

]
:=
(
Tr
[
σσT∇2p1(t, x)

]
, . . . ,Tr

[
σσT∇2pM (t, x)

])
,

Tr
[
∇2(σσTm)(t, x)

]
:=
(
Tr
[
∇2(σσTm1)(t, x)

]
, . . . ,Tr

[
∇2(σσTmM )(t, x)

])
.

(4.17)

Theorem 4.2 (Sufficient maximum principle for (OC)). Let â ∈ AMd , let

H(t, x, a,m, p) := f(t, x, a,m) +

M∑
j=1

b(t, x, aj(t, x))mj(t, x) · ∇pj(t, x), (4.18)

and let p solve the adjoint equation

∂p

∂t
(t, x) = −

(
1

2
|â(t, x)|2 +Gφr [m̂]T (t, x)(Λ̄ + Λ̄T )

+ (b(t, x, â1(t, x)) · ∇p1(t, x), . . . , b(t, x, âM (t, x)) · ∇pM (t, x))

+
1

2
Tr
[
σσT∇2p(t, x)

])
,

p(T, x) = Ψ(x).

(4.19)
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Assume that

(a,m) 7→
∫
Rd

H(t, x, a,m, p)dx (4.20)

is convex for all t ∈ [0, T ] Then â solves (OC) if for all wj ∈ Ad and j ∈ [[M ]]∫
Rd

∫ T

0
DajH(t, x, â(t, x), m̂(t, x), p) · wj(t, x)dtdx = 0. (4.21)

Proof. Let a, â ∈ AMd and let aε := εa+(1−ε)â, ε ∈ (0, 1). Let mε and m̂ satisfy the constraints
of (OC) with aε and â respectively, then η := mε − m̂ solves

∂ηj
∂t

(t, x) =
1

2
Tr
[
σTσ(t, x)∇2ηj(t, x)

]
−∇ · (b(t, x, âj(t, x))ηj(t, x) + κjε(t, x)),

ηj(0, x) = 0, j ∈ [[M ]],

(4.22)

where κjε := Dab(t, x, â
j(t, x))εajmε

j + o(εaj) is a remainder that will cancel out in the end.
Let ϕε(t, x, p) := ϕ(t, x, aε,m

ε, p) for ϕ ∈ {f, g,H} and define ϕ̂ in the same way using â. Note
that

f ε(t, x)− f̂(t, x) = Hε(t, x, p)− Ĥ(t, x, p)

−
M∑
j=1

(
b(t, x, âj(t, x))ηj(t, x) + κjε(t, x)

)
· ∇pj(t, x)

(4.23)

and by symmetry of φn,∫
Rd

Gφr [m̂](t, x)Λ̄η(t, x)dx =

∫
Rd

Gφr [η](t, x)Λ̄T m̂(t, x)dx. (4.24)

By the convexity assumption on H,

Jr,Λ̄(aε)− Jr,Λ̄(â)

=

∫
Rd

∫ T

0
f ε(t, x)− f̂(t, x)dtdx+

∫
Rd

gε(x)− ĝ(x)dx

≥
∫
Rd

∫ T

0

{
DmĤ[η](t, x, p) +

M∑
j=1

DajĤ(t, x, p) · (ajε(t, x)− âj(t, x))

−
M∑
j=1

(
b(t, x, âj(t, x))ηj(t, x) + κjε(t, x)

)
· ∇pj(t, x)

}
dtdx

+

∫
Rd

Ψ(x) · η(T, x)dx

(4.25)

By a variation argument, the m-derivative of Ĥ is found to be

DmĤ[η](t, x, p)

=
1

2
|â(t, x)|2 · η(t, x) +Gφr [m̂]T (t, x)Λ̄η(t, x)

+ Gφr [η]T (t, x)Λ̄m̂(t, x) +

M∑
j=1

b(t, x, âj(t, x))ηj(t, x) · ∇pj(t, x).

(4.26)
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The a-derivatives of Ĥ vanish by the optimality condition (4.21). Hence, using (4.24),

Jr,Λ̄(aε)− Jr,Λ̄(â)

≥
∫ T

0

∫
Rd

{
1

2
|â(t, x)|2 +Gφr [m̂]T (t, x)(Λ̄ + Λ̄T ) +

1

2
Tr
[
σσT∇2p(t, x)

]
+ (â1(t, x) · ∇p1(t, x), . . . , âM (t, x) · ∇pM (t, x)) +

∂p

∂t
(t, x)

}
· η(t, x)dxdt

(4.27)

Applying the adjoint equation (4.19) now gives Jr,Λ̄(aε)− Jr,Λ̄(â) ≥ 0 for all convex perturba-
tions aε of â. In the case of a control sets A which is not convex the proof can be carried out
in similar fashion by replacing the convex perturbation aε by a spike variation.

Note that if
âj(t, x) = −(Dab(t, x, a(t, x))|a=âj )∇pj(t, x) (4.28)

the optimality condition (4.21) is satisfied. In the case of linear dynamics, (4.28) is the well-
known solution âj(t, x) = −∇pj(t, x). No property of Λ̄ except boundedness in norm was used
in the proof of the maximum principle. The following proposition identifies all matrices Λ̄ such
that the convexity assumption (4.20) holds.

Proposition 4.2. Condition (4.20) holds if and only if∫
Rd

∫
Rd

φr(x− y)(m(t, y)−m′(t, y))T Λ̄(m(t, x)−m′(t, x))dydx ≥ 0, (4.29)

for all densities m and m′ and t ∈ [0, T ]

Proof. The convexity of H in a is trivial. H is convex in m if∫
Rd

H(t, x, a, αm+ (1− α)m′, p)dtdx ≤ α

∫
Rd

H(t, x, a,m, p)dtdx

+ (1− α)

∫
Rd

H(t, x, a,m′, p)dtdx.

(4.30)

The inequality above can be rearranged into

0 ≥ (α2 − α)

∫
Rd

Gφr [m̃](t, x)Λ̄m̃(t, x)dx

= (α2 − α)

∫
Rd

∫
Rd

φr(x− y)m̃(t, x)T Λ̄m̃(t, x)dydx,

(4.31)

where m̃ := m−m′. The fact that (α2 − α) < 0 concludes the proof.

The opposite direction of Proposition 4.1 can now be proven.

Proposition 4.3. If â solves dMFT-M, m̂ satisfies the constraints of (OC) with control â and
p satisfies the adjoint equation (4.19), then â solves (OC).

Proof. The proof is found in Appendix 6.2.
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The local risk measure, introduced in Remark 4.2, will naturally yield a different Hamiltonian
and adjoint equation than the ones above. Anyhow, results analogous to Proposition 4.1,
Theorem 4.2 and Proposition 4.3 hold for the local case, and their proofs are carried out
following the same steps as in the nonlocal case. The most notable structural change is that in
the local case, H is convex if and only if Λ̄ is positive semidefinite.

5. Numerical example

With the following numerical example we want to illustrate the difference local nonlocal crowd
aversion. We consider the following simple pedestrian model on the one-dimensional torus T,

min
a∈Ad

∫
T

∫ T

0

{
a2(t, x)

2
+ C

∫
T
φr(x− y)m(t, y)dy

}
m(t, x)dtdx

+

∫
T

Ψ(x)m(T, x)dx

s.t.
∂m

∂t
(t, x) =

1

2

∂2m

∂x2
(t, x)− ∂

∂x
(a(t, x)m(t, x)),

m(0, x) = m0(x).

(5.1)

To make the comparison we also consider the corresponding local crowd aversion problem
minimize
a∈Ad

∫
T

∫ T

0

{
a2(t, x)

2
+ Cm(t, x)

}
m(t, x)dt+ Ψ(x)m(T, x)dx

subject to
∂m

∂t
(t, x) =

1

2

∂2m

∂x2
(t, x)− ∂

∂x
(a(t, x)m(t, x)),

m(0, x) = m0(x).

(5.2)

The constraint in (5.1) and (5.2) corresponds to the dynamics of a pedestrian that controls its
velocity but is disturbed by white noise,

dXt = a(t,Xt)dt+ dWt. (5.3)

The constant C has been introduced to reweight the contribution of crowd aversion. By up-
weighting this term, emphasis is given to the impact of the preference, local or nonlocal, and
the difference between the two crowds will be more clear. To solve (5.1) and (5.2) the gradient
decent method (GDM) of [15] is used.

5.1. Simulations and discussions

We let T = 1, C = 500 and m0 and φr are set to the functions presented in Figure 5.1. Most
pedestrians are initially gathered around x = 0 and they have an incentive to end up around
x = 0.5 at time t = 1. The personal space of a pedestrian is modeled as

φ̂0.2(x) := 5I[0, .2](x) (5.4)
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In the calculations, φ̂0.2 is smoothed with a mollifier (cf. (3.9)). Note that∫
T
φ̂0.2(x− y)m(t, y)dy = 5P (x−Xt ∈ [0, 0.2]) , (5.5)

The use of an indicator to model the personal space thus has the following interpretation; the
pedestrian acting under nonlocal crowd aversion is affected by the probability of other pedes-
trians being closer than 0.2 from its own position. The averaging effect of a nonlocal crowd
aversion model is clear: the larger the personal space, the bigger neighborhood around the
pedestrian is affecting it.

The optimal controls for (5.1) and (5.2) are found by the GDM-scheme of [15]. The convergence
of the risk is presented in Figure 5.1. In Figure 5.1, a comparison between the solutions of (5.1)
and (5.2) is displayed. The crowds behave similarly until time begins to approach t = 1. The
crowd acting under nonlocal crowd aversion then gathers more densely in the low cost area.
Since the crowding experienced by a pedestrian in the nonlocal model is an average over a
larger neighborhood, it cares less about pointwise high densities and the benefits of reaching
the low cost area around x = 0.5 has a stronger impact in the nonlocal model, resulting in
a more concentrated density. This is visualized in Figure 5.1, where on the left the difference
between crowd aversion penalties,∫

T
ϕr(x− y)mnon-local(t, y)dy︸ ︷︷ ︸

Nonlocal crowd aversion

− mlocal(t, x)︸ ︷︷ ︸
Local crowd aversion

, (5.6)

is plotted. On the right plot, we display

mnon-local(t, x)−mlocal(t, x). (5.7)

Note that even though the densities differ at t = 1, the two crowds experience approximately
the same amount of crowding at that time t = 1!
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Fig 1. The initial density and terminal cost used in the simulations. Initially the pedestrians are crowded around
x = 0 but they will quickly flatten the density to heed their crowd aversion preferences. The low cost around
x = 0.5 will give the pedestrians an incentive to end up around this part of the domain at t = 1.
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Fig 2. In each iteration of the GDM the control function a is updated. The method is run until the risk measure,
under local (dashed line) and nonlocal (solid line) crowd aversion, has converged to a minimum.
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Fig 3. The optimally controlled density under local (dashed) and non-local (solid) crowd aversion at six instants.
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6. Appendix

6.1. Proof of Proposition 4.1

The proof extends the results in [15] to an arbitrary finite number of crowds and to nonlocal
crowd aversion.

Proof. Let the entries in Λ̄ be denoted by λ̄jk. For each j ∈ [[M ]],

Jr,Λ̄(a)− J j,det
r,Λ (aj , a−j)

=
∑
k 6=j

(∫
Rd

∫ T

0

1

2
|ak(t, x)|2mk(t, x)dtdx+

∫
Rd

Ψk(x)mk(T, x)dx

)

+
M∑

k,l=1

(∫
Rd

∫ T

0
Gφr [mk]

T λ̄klmldtdx

)
−

M∑
k=1

(∫
Rd

∫ T

0
Gφr [mk]

Tλkjmjdtdx

)
.

(6.1)

Note that by symmetry of φ, the indices of Gφ[mk] and ml may be swapped under the integral
sign and the last line of (6.1) can be rewritten as

M∑
k,l=1
l,k 6=j

(∫
Rd

∫ T

0
Gφr [mk]

T λ̄klmldtdx

)

+

∫
Rd

∫ T

0

M∑
k=1
k 6=j

(
Gφr [mk]

T (λ̄kj + λjk − λkj)mj

)
+Gφr [mj ]

T (λ̄jj − λjj)mjdtdx.

(6.2)

The last line vanishes since Λ = Λ̄ + Λ̄T − diag(Λ̄) and Jr,Λ̄(a)− J j,det
r,Λ (aj , a−j) is independent

of (aj ,mj). Therefore the optimality of â implies that

J j,det
r,Λ (â) ≤ J j,det

r,Λ (aj , â−j), ∀ aj ∈ Ad, j ∈ [[M ]]. (6.3)

Since (6.3) holds for all j ∈ [[M ]], â is a solution to dMFT-M.

6.2. Proof of Proposition 4.3

This proof is a variation of [14, Proposition 4.2.1] which extends it to an arbitrary finite number
of crowds and to nonlocal crowd aversion.

Proof. Let, for a given ε > 0, ajε be the first order perturbation of âj for some arbitrary wj

such that
ajε(t, x) := âj(t, x) + εwj(t, x) ∈ Ad. (6.4)

Let mε
j satisfy the constraints in (OC) with ajε and let

mε
j(t, x) := m̂j(t, x) + εhεj(t, x) +O(hεj

2). (6.5)
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Then hεj satisfies the equation

∂hεj
∂t

(t, x) =
1

2
Tr
[
∇2(σσThεj)(t, x)

]
−∇ ·

(
b(t, x, âj(t, x))hεj(t, x)

)
−∇ ·

(
b(t, x, ajε(t, x))− b(t, x, âj(t, x)

ε
mε
j(t, x))

)
,

hεj(0, x) = 0.

(6.6)

Let J j : ε→ J j,det
r,Λ (ajε , â−j). Since the functional is convex, â solves dMFT-M if and only if

∂J jr,Λ
∂ε

(0) = 0, ∀wj such that âj + εwj ∈ Ad, ∀ j ∈ [[M ]]. (6.7)

Condition (6.7) is equivalent to

0 =

∫
Rd

[∫ T

0

(
âj(t, x)m̂j(t, x) · wj(t, x) +

1

2
|âj(t, x)|2h0

j (t, x)

+ 2λjj

(∫
Rd

φr(x− y)m̂j(t, y)dy

)
h0
j (t, x)

+
M∑
k 6=j

λjk

(∫
Rd

φr(x− y)m̂k(t, y)dy

)
h0
k(t, x)

)
dt+ Ψj(x)h0

j (T, x)

]
dx

(6.8)

where h0
j is the solution of (6.6) in the limit ε → 0. Recall that Λ′ = 1

2(Λ + diag(Λ)). Since p
satisfies the adjoint equation, Ψj(x) = pj(T, x) and∫

Rd

pj(T, x)h0
j (T, x)dx

=

∫
Rd

∫ T

0

{
− 1

2
|aj(t, x)|2 − 2λjj

(∫
Rd

φr(x− y)m̂j(t, y)dy

)

−
M∑
k 6=j

λjk

(∫
Rd

φr(x− y)m̂k(t, y)dy

)
− b(t, x, âj(t, x)) · ∇pj(t, x)

− 1

2
Tr
[
σσT∇2pj(t, x)

]}
h0
j (t, x)

+

{
1

2
Tr
[
∇2(σσTh0

j )(t, x)
]
−∇ ·

(
b(t, x, âj(t, x))h0

j (t, x)
)

−∇ ·
(
Dajb(t, x, â

j(t, x))wj(t, x)m̂j(t, x)
)}

pj(t, x)dtdx.

(6.9)

Inserting (6.9) into (6.8) yields∫
Rd

∫ T

0

(
âj(t, x) +Dajb(t, x, â

j(t, x))T∇pj(t, x)
)
· wj(t, x)m̂j(t, x)dxdt = 0. (6.10)

Note that this since (6.10) holds for all j ∈ [[M ]], â satisfies the optimality condition in Theorem
4.2 and therefore â is a solution to (OC) by Theorem 4.2.
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