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Abstract. We present a computer-assisted proof of heteroclinic connections in the one-dimensional
Ohta-Kawasaki model of diblock copolymers. The model is a fourth-order parabolic partial differential
equation subject to homogeneous Neumann boundary conditions, which contains as a special case the
celebrated Cahn-Hilliard equation. While the attractor structure of the latter model is completely
understood for one-dimensional domains, the diblock copolymer extension exhibits considerably richer
long-term dynamical behavior, which includes a high level of multistability. In this paper, we establish
the existence of certain heteroclinic connections between the homogeneous equilibrium state and local
and global energy minimizers.

The proof of the above statement is conceptually simple, and combines several techniques from
some of the authors’ and Zgliczynski’s works. Central for the verification is the rigorous propagation
of a piece of the unstable manifold of the homogeneous state with respect to time. This propagation
has to lead to small interval bounds, while at the same time entering the basin of attraction of
the stable fixed point. For interesting parameter values the global attractor exhibits a complicated
equilibrium structure, and the dynamical equation is rather stiff. This leads to a time-consuming
numerical propagation of error bounds, with many integration steps. This problem is addressed using
an efficient algorithm for the rigorous integration of partial differential equations forward in time. The
method is able to handle large integration times within a reasonable computational time frame, and
this makes it possible to establish heteroclinic at various nontrivial parameter values.
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1 Introduction

The goal of this paper is to propose a computer assisted method of constructively proving existence
of heteroclinic connections between stationary solutions of dissipative partial differential equations



(PDEs). As a case study we establish a computer assisted proof of heteroclinic connections in the
one-dimensional Ohta-Kawasaki diblock copolymer model. Precisely, we establish the existence of
certain heteroclinic connections between the homogeneous equilibrium state, which represents a perfect
copolymer mixture, and all local and global energy minimizers. In this way, we show that not every
solution originating near the homogeneous state will converge to the global energy minimizer, but
rather is trapped by a stable state with higher energy. This phenomenon can not be observed in the
one-dimensional Cahn-Hillard equation, where generic solutions are attracted by a global minimizer.

Our method is general. To achieve the presented goal we develop a framework combining efficient
algorithms and implementation in the C++ programming language performed by the first author [11]
and the theory of cone conditions and self-consistent bounds developed by Zgliczynski et al. [2, 14, 15,
59, 60, 61, 63]. We remark that the software is not hard coded for the particular equation studied in
this paper, but is rather a generic tool that can be easily adapted for study of any dissipative PDE on
a one dimensional domain with a polynomial nonlinearity and periodic/Dirichlet/Neumann boundary
conditions.

To the best of our knowledge, this is the first result about proving constructively the existence
of heteroclinic connections for dissipative PDEs. In addition, it also rigorously shows for the first
time that there are infinitely many orbits which are trapped by each of the two local and of the two
suspected global energy minimizers. In fact, the proof of our result below shows that not all solutions
of one dimensional Ohta-Kawasaki diblock copolymer model, which originate close to the homogeneous
state, and satisfty certain space-translational symmetry, converge to the global energy minimizer.

Our approach differs in spirit from techniques based on Newton-Kantorovich type arguments in a
functional analytic setting, which were used for example in [7, 20, 49]. We would like to mention that
establishing the existence of connecting orbits in finite-dimensional continuous and discrete dynamical
systems has been the subject of a number of studies, see for example [23, 49, 56, 57, 58]. In addition,
the global dynamics of the Swift-Hohenberg model has been uncovered using a Morse decomposition
based approach in [17], and the existence of periodic orbits for the ill-posed Boussinesq equation was
established in [7, 15]. Finally, the existence of a heteroclinic orbit between the trivial and a nontrivial
stationary state has been established for the one-dimensional p-Laplace equation in [66]. Also, private
communication revealed that Zgliczynski could verify the existence of a heteroclinic connection in the
Kuramoto-Sivashinsky equation using similar techniques in the recent work in progress [64].

In the following two subsections, we first briefly introduce the Ohta-Kawasaki diblock copolymer
model, structure of its dynamics, relevant bifurcation diagrams, and present our main result (Theo-
rem 1.1). After that, we present the computer assisted framework used to prove the main result.

1.1 The diblock copolymer model description and the main result

Phase separation phenomena in materials sciences provide a rich source for pattern formation mecha-
nisms. In many situations, the resulting models are dissipative parabolic partial differential equations
which are amenable to rigorous mathematical treatment, and can therefore explain the underlying
pattern formation principles. In the current paper, we consider one of these models which has been
of significant interest in recent years. This equation is of phase field type, and it models microphase
separation in diblock copolymers. From a mathematical perspective, the model has been described
in [37], in its original form it was proposed by Ohta and Kawasaki [38], as well as Bahiana and Oono [1].
See also the discussion in [9, 10]. Consider a material constrained to the bounded domain Q C R¢.
Then the model is based on an energy functional which is comprised of the standard van der Waals
free energy with an additional nonlocal term, given by

Eeﬁ[u]—/Q( |Vul? + F(u) >dx+2/‘ —L2( x)—,u)’de. (1)



With this energy one can associate gradient-like dynamics, which is then used to model the evolution
of the material as a function of time. The diblock copolymer model in its standard form considers the
evolution equation

w = —A (62Au + f(u)) —o(u—p) in Q, (2)
1 A
,uzm/u(x)dac, and gZ:aayu:() on 02,
Q
where the nonlinearity is defined as f(u) = —F’(u), and which in our situation is given by f(u) = u—u?.

This evolution equation is based on the gradient in the H~'-topology and uses homogeneous Neumann
boundary conditions for both w and Au. The diblock copolymer model (2) is an extension of the
celebrated Cahn-Hilliard equation [6], which corresponds to the special case ¢ = 0 and serves as a
fundamental model for the phase separation phenomena spinodal decomposition [31, 32, 44, 45, 52]
and nucleation [3, 4, 18]. The quantity u average of the solution over the domain is conserved in time.

For the present paper, we focus exclusively on the diblock copolymer model on one-dimensional
domains . Recent studies in [24] have demonstrated that the structure of its equilibrium set is
considerably richer than the one for the Cahn-Hilliard equation described in [21]. This is visualized
in Figure 1, which contains equilibrium bifurcation diagrams for the parameter values ¢ = 0, 3, 6,
and 9, from top left to bottom right, and for total mass p = 0 and domain Q = (0,1). Each diagram
indicates the structure of the equilibrium set as a function of the new parameter A\ = 1/€2. The
interesting regime is the limit ¢ — 0, and by switching to A the diagrams become easier to visualize.
The horizontal straight lines in all images represent the constant function u = p = 0, which is clearly
an equilibrium, and which we call the trivial solution. As X increases, nontrivial solutions bifurcate
from the trivial branch in pairs, even though we only plot one of these branches. This is due to the
fact that the vertical axes of the bifurcation diagrams show the L?(Q)-norm of the stationary state,
and the bifurcation pairs are related by a norm-preserving symmetry.

For the Cahn-Hilliard case ¢ = 0, i.e., in the top left bifurcation diagram, pairs of solutions
are created at the bifurcation points A = k72 for k € N, and the solutions on the k-th branch look
qualitatively similar to the function cos(kmz). In this case, each nontrivial solution branch corresponds
to exactly two nontrivial solutions. It was shown in [21] that there are no other equilibrium solutions for
the equation, i.e., none of the bifurcation branches exhibit secondary bifurcations. Moreover, only the
solutions on the first branch are stable equilibria, and they correspond to solutions with one transition
layer. The situation changes dramatically for ¢ > 0. In the diblock copolymer case, all branches
which are created at the trivial solution exhibit secondary bifurcations. Even more importantly, these
secondary bifurcations can lead to the creation of multiple stable equilibrium solutions. While as of
yet there are no classical mathematical proofs for these statements, computer-assisted proof methods
were developed in [55], which allow for the validation of these equilibrium branches. See also the work
in [46, 54]. Some first results for two-dimensional domains can be found in the recent paper [51].

But how does this multistability manifest itself in the evolution equation (2)7 Based on the
underlying physical situation, one is usually interested in studying the long-term behavior of solutions
of the diblock copolymer model which originate close to the (unstable) homogeneous equilibrium
state u = pu. These long-term limits are usually periodic in space with a specific period which depends
on the precise parameter combinations. Since the system exhibits multiple stable states which all are
at least local minimizers of the energy, it is natural to wonder whether typical solutions converge to
the global energy minimizers or are trapped earlier. A systematic numerical study of this long-term
behavior was performed in [24], and it was able to show that for fixed parameters A > 0 and o > 0, most
solutions starting near the homogeneous state usually converge to the same long-term limit. Moreover,
the numerics indicated that this preferred long-term limit is usually not the stable equilibrium with
the lowest energy. For more details, we refer the reader to [24]. In addition, the recent paper [53]
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Figure 1: Bifurcation diagrams for the diblock copolymer model (2) on the domain € = (0, 1) and for
total mass p = 0. From top left to bottom right the bifurcation diagrams are for ¢ = 0, 3, 6, and 9,
respectively. In each diagram, the vertical axis measures the L?(0,1)-norm of the solutions, and the
horizontal axis uses the parameter A = 1/€2. Each colored point corresponds to at least one stationary
solution of the diblock copolymer model, and the color indicates the Morse index of the equilibrium in
the evolution equation (2), as described in the figure caption. The solution branches are color-coded
by the Morse index of the solutions, and black, red, blue, green, magenta, and cyan correspond to
indices 0, 1, 2, 3, 4, and 5, respectively.



contains a heuristic explanation of these numerical observations. We would like to point out, however,
that to the best of our knowledge there is no rigorous complete description of the equilibrium set of
the diblock copolymer model. Thus, even though the bifurcation diagrams in Figure 1 for o > 0 show
multiple stable equilibria which can be ordered according to their energies, the lowest energy steady
state is not known to be the global energy minimizer — there might be more equilibria than the ones
shown in the diagram. However, since it is generally assumed that these diagrams are complete in the
shown parameter ranges, we will refer in the following to the stable steady state in a diagram with
the lowest energy as the suspected global minimizer.

Describing the complete attractor in a mathematically rigorous manner has proven to be elusive,
even for the Cahn-Hilliard special case ¢ = 0. While the equilibrium structure of the Cahn-Hilliard
equation is completely known for one-dimensional base domains [21], the precise structure of hetero-
clinic connections is an open question and has been answered only partially [4, 22]. Even for special
two-dimensional domains such as the unit square, the structure of the Cahn-Hilliard attractor is ex-
tremely complicated, see for example the discussions in [19, 28, 29, 30]. In the case of the full diblock
copolymer model, i.e., for o > 0, even less is known. There are mathematical results on specific types
of equilibrium solutions for two- and three-dimensional domains €, see for example [40, 41, 42, 43]
as well as the references therein. Moreover, numerical studies have been performed of the long-term
behavior of solutions of (2) which originate close to the homogeneous state [8, 9].

Despite the above numerical evidence, there has been no mathematical result which shows that
large numbers of solutions of the diblock copolymer model which start near the trivial equilibrium
solution are in fact trapped by a local energy minimizer, and that at the same time energy minimizers
with lower energy can be reached from the homogeneous state as well. It is the goal of the present
paper to close this gap for the bifurcation diagram shown in Figure 2.

This will be accomplished using a computer-assisted proof technique, and it will establish the
existence of heteroclinic solutions between the homogeneous state and the local minimizers, as well as
between the homogeneous state and local minimizers with lower energy, which are in fact suspected to
be the global minimizers. More precisely, we verify heteroclinic connections from the state indicated
by a yellow square, to both the equilibria indicated by yellow circles and the equilibria indicated by a
yellow star. Our main result is the following theorem

Theorem 1.1 (Existence of heteroclinic connections). Consider the diblock copolymer equation (2)
on the one-dimensional domain Q = (0,1), for interaction lengths A = 1/¢*> = 167% and o = 16, and
for total mass u = 0. Then there exist heteroclinic connections between the unstable homogeneous
stationary state uw = p and each of the two local energy minimizers which are indicated by yellow
circles in Figure 2, and shown in the top right panel of Figure 8. In addition, there exist heteroclinic
connections between the unstable homogeneous stationary state and each of the two suspected global
energy minimizers which are indicated by yellow stars in Figure 2, and which are shown in the top left
panel of Figure 3. In other words, for the above parameter values the diblock copolymer equation (2)
exhibits multistability in the sense that local or suspected global energy minimizers can be reached from
the homogeneous state.

We consider the specific parameter value A\ = 1672 ~ 157.91. It was shown in [24] that for this
parameter value the diblock copolymer model (2) exhibits multistability which can be observed in
practice. More precisely, if one randomly chooses initial conditions near the homogeneous state u =
1 = 0, then some of the resulting solutions converge to the suspected global energy minimizer, while
some are trapped in a local energy minimum At this value, the diblock copolymer model has eight
nontrivial equilibrium solutions, which are shown in Figure 3. The top left image shows the two
suspected global energy minimizers, which are marked by a star in Figure 2, while the two local
minimizers are indicated by a yellow circle, and are shown in the top right panel of Figure 3. Finally,
the four colored solutions in the two lower panels of Figure 3 are of index one, and they all lie on
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Figure 2: Bifurcation diagrams for the diblock copolymer model (2) on the domain Q = (0, 1), for
total mass p = 0, and for nonlocal interaction parameter o = 16. In the left diagram, the vertical axis
measures the L2(0, 1)-norm of the solutions, while the right diagram shows the total energy (1). In both
diagrams, the horizontal axis uses the parameter A = 1/€2. As in Figure 1, the solution branches are
color-coded by the Morse index of the solutions, and black, red, blue, green, and magenta correspond
to indices 0, 1, 2, 3, and 4, respectively.

the red secondary bifurcation branch in Figure 2. We would like to point out that the equilibrium
solutions on the first and second branch bifurcating from the horizontal trivial solution line have
two and three transition layers, respectively. The reason for this is described in more detail in [24].
The above theorem will be established as Theorem 4.1, which for computational reasons considers a
rescaled version of the diblock copolymer model.

We remark that both of the local and global minimizers are symmetric. In Figure 3 it is clearly
seen that the dominant harmonic of the local minimizer is ¢ = 3, whereas the dominant harmonic
of the global minimizer is ¢ = 2 (the a4 cos(gx) term of the solution’s expansion in Fourier series
dominates). Also, the space of sequences (ay) with ax = 0 for k # ¢N is invariant under the flow,
which is also suggested by the numerical data from Appendix A. We make use of those symmetries in
the construction of the stretched unstable isolating blocks, presented in Section 4. Precisely, to obtain
the connection to the suspected global minimizer we stretch the block in the direction of the second
eigenfunction cos 2z, whereas to obtain the connection to the local minimizer we stretch the block in
the direction of the third eigenfunction cos 3.

1.2 Framework for proving constructively connecting orbits in parabolic PDEs

In recent years, computer-assisted proof techniques have been used extensively in the context of
nonlinear partial differential equations, and they are based on a number of different approaches. Here
we present our approach for the computer assisted proof of Theorem 1.1.

Our method is general and can be used to achieve similar results for other dissipative PDEs. The
crux of the whole algorithm for the proof of Theorem 1.1 is a procedure of rigorous propagation of a
piece of the unstable manifold of the homogeneous state with respect to time. This propagation has
to lead to small interval bounds, while at the same time entering the basin of attraction of the stable
fixed point. For interesting parameter values the global attractor exhibits a complicated equilibrium
structure, and the dynamical equation is rather stiff. This leads to a numerical propagation of error
bounds involving lots of integration steps. For example the successful proof of the main result required
performing of thousands of numerical integration steps. To address this problem we have developed
an efficient algorithm for rigorous integration of dissipative PDEs forward in time [11]. Its highlight
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Figure 3: Stationary solutions of the diblock copolymer model (2) on the domain 2 = (0, 1), for total
mass 1 = 0, and for interaction length parameters A\ = 1672 ~ 157.91 and o = 16. The top left image
contains the two suspected global energy minimizers, which are indicated by a star in the bifurcation
diagrams of Figure 2. The image in the top right shows the local energy minimizers, which are marked
by circles in Figure 2. The two bottom panels show the index one solutions which are created through
a stabilizing pitchfork bifurcation. In each figure, the local minimizer from the respective primary
bifurcation branch is shown as a dashed black curve.

is an implementation of validated fast Fourier transforms, and generic and efficient implementation of
a time-stepping scheme in C++ programming language combining several techniques, including the
interval arithmetic, automatic differentiation, Taylor method, and Lohner’s algorithm [25, 26]. By
calling it generic we mean that we developed a software tool that can be easily adapted to other
dissipative PDEs, for example we have successfully integrated other equations including the Burgers,
Swift-Hohenberg and Kuramoto-Sivashinsky PDEs [11, 12, 14]. Performing all required computations
for the proof of the theorem presented in this paper takes only about 10 minutes on a laptop. All the
numerical computations we performed are reproducible, the numerical data from the proofs, and the
software codes with compile/use instructions are published online as a bitbucket repository [13]. We are
convinced that the method is able to handle large integration times within a reasonable computational
time frame, and in a future work we will explore applicability of our algorithm to parameter regimes in
which the studied model exhibits much more complicated attractor structure and numerical stiffness.
Explicit bounds for the unstable manifold and basins of attraction of the stationary solutions are
computed using now standard techniques based on cone conditions [58, 62, 65] and logarithmic norms



[12, 14, 59]. Computation of explicit bounds for the unstable manifold and basins of attraction of the
stationary solutions is computationally very cheap compared to the numerical integration part.

1.3 Structure of the paper

The remainder of the paper is organized as follows. In Section 2 we describe the general setting for
our approach, while Section 3 is devoted to its theoretical foundations. We recall basic definitions
and results for isolating blocks, self-consistent bounds, as well as the cone condition. Based on this,
Section 4 contains the proof of our main theorem. The next three sections are concerned with the
computational aspects of our work. While the rigorous integration algorithm is described in Section 5,
the following Section 6 shows how the cone condition can be verified in infinite dimensions. General
remarks about the software can be found in Section 7. Section 8 contains conclusions and future plans.
Finally, Appendix A.1l contains some numerical data from the computer assisted part of the proof.
Throughout, from now on, we will drop the label “suspected” when we talk about the two suspected
global minimizers in the above situation.

2 Problem formulation and basic setting

We begin by presenting the basic setup for our computer-assisted proof. As was mentioned in the
introduction, our goal is to consider the diblock copolymer model (2) on the domain Q = (0,1).
Unfortunately, for the parameter range of interest this choice of domain leads to extreme stiffness in
the discretized equations. We will address this issue through rescaling techniques, and as a consequence
our basic setup will be for a general one-dimensional domain of the form Q = (0,L). The length L
will be chosen later in such a way to reduce the stiffness of the problem. Thus, we study problem (2)
in one dimension in the form

Ut = — (uzx + )‘f(u))mx - AJ(“’ - :U') ) (3)

which is equivalent to (2) up to a rescaling of time. In this formulation, we use the parameter A\ = 1/¢2,
and consider the partial differential equation subject to the mass and boundary constraints given by

1 L
= Z/ u(t,z)dr and  uy(t,x) = Ugye(t,x) =0 for ¢t >0, x€{0,L}.
0

As before, the nonlinearity is given by f(u) = u — u?, and we consider the case = 0 of zero total
mass, which means that we have equal amounts of the two polymers A and B.

Our basic discretization of this infinite-dimensional problem is based on the Fourier series expan-
sion. More precisely, due to the imposed homogeneous Neumann boundary conditions we consider the
expansion

k
u(t,x) = ap(t —I—QZak cosH (4)

which is based on the cosine Fourier basis. We would like to point out that due to our choice p =0
for the total mass we automatically have

ap(t)=0 forall t>0.

Notice also that the domain length L enters the expansion. We will see later that by choosing L large
enough the stiffness of the problem (3) can be reduced, since the eigenvalues of the linear part of a
suitable finite-dimensional approximation are more averaged. To simplify notation, we will use the

abbreviation "
er(x) := cos % ,  where k>0,



for the basis functions in the above expansion. By default we assume that the coefficients a; are de-
pendent on time ¢, and we therefore frequently drop the explicit mentioning of the temporal argument.
Upon substituting the series representation of u into the cubic part of the nonlinearity f one obtains

3 .

3 1% TJ2 TJ3%

uw = 2 arer(T = 8 A, Gi, Qs + COS - COS -+ COS ———
> () Z Z E g1 %2 A i I I
k>1 Jj121j22>1j3>1

™, . . . T, . . .
=2 ) ajaa (COS —(j1 — g2 — J3)w +cos —(j1 + j2 — J3)

J1,J2,33=>1 L L
™, . . . ™, . . .
+ cos z(]l — j2 + j3)x + cos E(‘h +je+j3)z ) -
The last expression can be further simplified using the fact that cos Lf‘r == % (exp % + exp LZ“) )

as long as we recall ap = 0 and define a_; = ai for k € N. By reordering one further obtains

8 _ R —_— mhx

u- = Z ajy Ay Ay + 2 Z Z Qj,Ajp g | COS I
J1,J2,J3€Z keN \  j1.j2,J3€Z
J1+j2+73=0 J1+j2+is=k

If we finally substitute this expression for u?, together with the original series expansion for u, into
the differential equation (3), then one obtains after division by 2 and extraction of the coefficients of
the basis functions ex(x) the identities

da Eirt A\k2n2 \k272

aTtk = <_L4 + P K E aj aj,a;, forall k>0. (5)
J1,J2,J3€Z
J1+j2+i3=k

In this way, we have reformulated the original parabolic partial differential equation as an infinite
system of ordinary differential equations. This system will be used throughout the remainder of the
paper. Recall one more time that the coefficient sequence a;, satisfies

ag=0, aswellas ap=a_p€R forall keZ.

To close this section, we present two central definitions. The first one is concerned with the function
space which forms the basis of our computer-assisted proof.

Definition 2.1 (Sequence space with algebraic coefficient decay). Let H denote the space EQW(Z,]R),
i.e., elements a € H are sequences a: Z — R such that ) ;.5 lag|? < oo. In addition, let H ¢ H
denote the subspace of H which is defined by

- C
H:= {{ak}kel € H: there exists a constant C' > 0 such that |ag| < s fork e Z} ,

where t x 1= |z| for & # 0 and 1 04= 1. Finally, let the space H' be given by
H :=Hn {H{ar}tpez : @0 =0 and ay = a_y, for allk € Z} .
Notice that all three spaces are Hilbert spaces.

From now on, all computations we perform in infinite dimensions will be constrained to the
space H'. Needless to say, any actual numerical computations performed on a computer have to
take place in finite dimensions, and for this we make use of Galerkin approzimations of (5), which are
the subject of the following final definition of this section.



Definition 2.2 (Galerkin approximation). Consider the infinite system of ordinary differential equa-
tions given in (5), and let n € N be arbitrary. Then the n-th Galerkin approximation of (5) is defined

as
day, o (TN [ 5 /m\? 5 (T2
o= (—k (L) k (L) —A| = Ao |ap — Ak <L) Z aj, Qjy Qi (6)
‘jllv‘j2|7‘j3lgn
Jitje+is=k
for any coefficient index k = 1,...,n. In other words, the n-th Galerkin approximation is an n-
dimensional system of ordinary differential equations, which depends only on the coefficients a1, . . ., ay.

3 Isolating blocks, self-consistent bounds, and the cone condition

In this section we briefly recall the theoretical framework that is used to establish the main result of
this paper. More precisely, we review the concepts of cone conditions and self-consistent bounds as
introduced by Zgliczynski. In Section 3.1, we present a finite-dimensional version of h-sets, isolating
blocks, and cone conditions. This is followed in Section 3.2 by a discussion of self-consistent bounds,
which allows one to extend the notion of h-sets, isolating blocks, and cone conditions to the Hilbert
space setting. Finally, in Section 3.3 we present the concept of infinite-dimensional cone conditions,
i.e. we show how to verify cone conditions on infinite-dimensional self-consistent bounds. Since the
results presented in this section are known, our presentation will be short, albeit as self-contained as
possible. For more detailed discussions of h-sets, isolating blocks, and cone conditions we refer the
reader to [58, 62, 65], and references therein.

The concepts introduced in the present section will be used in two different ways in the proof of
our main theorem, which is the subject of the next Section 4. On the one hand, we use the fact that
the construction of an wunstable infinite-dimensional isolating block which satisfies a cone condition
provides us with explicit bounds for the unstable manifold of the unstable steady state contained in
the block. On the other hand, the construction of a stable infinite-dimensional isolating block which
satisfies a cone condition guarantees the local uniqueness of the stable stationary solution contained
in the block, as well as explicit bounds for the size of its basin of attraction.

3.1 Isolating blocks and cone conditions in finite dimensions

We begin by reviewing the concepts of isolating blocks and cone conditions in a finite-dimensional
setting. For this, let n € N be arbitrary. Then for any vector z € R™ we let ||z|| denote a norm on R”,
which does not have to be the standard Euclidean norm. The basic types of sets necessary for our
discussion are interval sets. For this, consider real numbers :);f for k =1,...,n. Then we define the
interval set [z] by

n
[x]:H{x;,mﬂCR”, as long as x,;gxz for k=1,...,n.
k=1

For any point xg € R™ and arbitrary r > 0, we let B, (zo,7) = {z € R" | ||z — x¢|| < r} denote the
open ball of radius r centered at zp, and we use the abbreviation B, = Bj(0,1) for the unit ball
centered at the origin. For a linear map A: R” — R", we let Sp(A) denote the spectrum of A. When
considering product spaces such as R* x R® we write elements z € R* x R® in the form z = (z,y),
where x € R* and y € R® denote the first and second component vectors of z, respectively, and the
superscripts s, and u refer to the stable and unstable spaces respectively. Moreover, if f: R" — R"”
denotes a continuously differentiable function, and if Z C R™ is a compact set, then we define

M;; € [inf %(z), sup Of; (2)1 } :

z2€Z 81,‘]' 2€Z 8:Uj

[df (2)] = {M = (M= € R™™
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Consider now an ordinary differential equation of the form
Z=f(z), zeR", [feC*R"“R"). (7)

Then we denote by ¢(t, z9) the solution of (7) which satisfies the initial condition z(0) = 2. Notice
that since we assume the twice continuous differentiability of f, the solution of this initial value
problem is in fact uniquely determined.

After these preparations, we now turn our attention to the concept of h-sets. Informally speaking,
an h-set is a subset of Euclidean space, which becomes a cube after a suitable choice of coordinate
system. In addition, the letter i alludes to the fact that this choice of coordinate system will lead to
a phase portrait for the underlying ordinary differential equation which exhibits typical hyperbolic-
like form. The concept of h-sets originated in the work on covering relations for multi-dimensional
dynamical systems, see [65]. From the perspective of our specific application, the considered h-sets
have a trivial structure in the sense that the cube is always expressed with respect to canonical
coordinates. Consequently, also the cone conditions which will be introduced below are expressed
in the canonical coordinate system. More precisely, in our application to the unstable homogeneous
state, two of the dimensions will be distinguished as unstable, while the homeomorphism ¢y appearing
in the following definition of an h-set is just a scaling. Despite this fact, we now recall the appropriate
definitions in their original form.

Definition 3.1 (h-set [65, Definition 1]). An h-set is a quadruple of the form (N,u(N),s(N),cn)
which satisfies the following three conditions:

e The set N is a compact subset of R™,
o the natural numbers u(N), s(N) € Ny satisfy the identity w(N) + s(N) = n, and

o the mapping cy: R®™ — R"™ where we write R" = R*W) x RSWN) s 4 homeomorphism which
satisfies

en(N) = Byvy X By -

In the following, we will slightly abuse notation and refer to an h-set as just N, rather than always
listing the full quadruple. In addition, with each h-set we associate the sets

Ng = 0By X By, N = Byw) x 9By, Ne = Byw) X By,

[

N~ = ' (ND), Nt = (Nj) , N = it (V).
and we define dim(N) := n.

The above definition shows that an h-set N is the product of two closed unit balls in some ap-
propriate coordinate system. The two integers u(N) and s(IV) are called the nominally unstable and
nominally stable dimensions, respectively. The subscript ¢ refers to the new coordinates given by the
homeomorphism ¢y. Note that if we have u(N) = 0, then one immediately obtains N~ = (), and the
identity s(N) = 0 implies N* = (). The next definition introduces the concept of a horizontal disk.

Definition 3.2 (Horizontal disk [58, Definition 10]). Let N denote an arbitrary h-set. In addition,
consider a continuous mapping b: By — N, and define bo = cy ob. Then we say that b is a
horizontal disk in N, if there exists a homotopy h: [0, 1] x Byuny = Nc such that

h(0,z) = be(x) for all T € Byny »

h(1,z) = (x,0) for all z € Byny
h(t,z) € N; for all t€0,1] and x € IByy) -
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In order to handle the hyperbolic structure of h-sets, we use the notion of cones, which are defined
through a quadratic form defined on the h-set in the following way.

Definition 3.3 (h-set with cones [65, Definition 8]). Let N C R"™ denote an arbitrary h-set, and
consider the associated splitting R" = R*W) x RSWN) - Purthermore, let Q: R*W) x RSWN) 5 R be a
quadratic form which is given as the difference

Q(z,y) = a(w) = Bly) ,  for arbitrary  (z,y) € R*N) x RNV,

where a: R*™Y) 5 R and 8: R5W) — R are positive definite quadratic forms. Then the pair (N,Q) is
called an h-set with cones.

Definition 3.4 (Cone condition [65, Definition 10]). Consider an h-set with cones given by (N, Q),
as introduced in the previous definition. In addition, let b: B,y — N denote a horizontal disk as in
Definition 3.2. Then we say that b satisfies the cone condition (with respect to @), if and only if for

arbitrary points x,y € By(n) we have

Q(be(x) —be(y)) >0 aslongas x#vy.
Recall that we have b.: R — RuN) RS(N), and b, = cn o b.

The remaining definitions of this section are concerned with standard dynamical systems notions.
We begin by recalling the concept of isolating block from Conley index theory [34].

Definition 3.5 (Isolating block). Let N denote an arbitrary h-set. We say that N is an isolating
block for the vector field f : R™ — R™, if and only if cy is a diffeomorphism, if the sets NT and N~
are local sections for f, i.e., the vector field f is transversal to N*, and if the following two conditions
are satisfied:

e For all points x € N~ there exists a constant 6 > 0 such that p(t,x) & N for all t € (0,9].
e For all points x € N there exists a constant 6 > 0 such that p(t,z) € N for all t € [—6,0).

In other words, the closed set N~ consists of all exit points for the flow associated with (7), and the
closed set NT is the set of entry points.

Lemma 3.6 (Graph representation [62, Lemma 5]). Let (N, Q) denote an arbitrary h-set with cones,

and let b: Byny — N be a horizontal disk which satisfies the cone condition as in Definition 3.4.
Then there exists a Lipschitz continuous function y: Byny — Bsny such that be(z) = (z,y(x)).

Definition 3.7 (Hyperbolic fixed point). Let zg € R™ and consider again the ordinary differential
equation (7). Then zy is called a hyperbolic fixed point for (7) if f(z0) = 0 and if ReX # 0 for all
eigenvalues N € Sp(df(29)), where df (zg) is the Jacobian matriz of the vector field f at the point z,
and Re)\ denotes the real part of the eigenvalue \.

Now consider a hyperbolic fixed point zy which is contained in a given set Z C R™. Then we define
the stable and unstable manifolds of zo as

t——+00

W3(z0,p) = {z €z ‘ o(t,z) e Z forall t>0 and lim o(t, 2) = zo} and

Wi(z0,9) = {z ez ’ o(t,z) € Z  forall t<0 and tlizn o(t,z) = zo} ,

respectively.
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Important for our later applications will be the following theorem. It shows that for hyperbolic fixed
points, one can always find an h-set N with cones in such a way that the unstable manifold W} (zo)
is a horizontal disk in N, and that the stable manifold W3, (z) is a vertical disk.

Theorem 3.8 (Invariant manifolds as disks [62, Theorem 26]). Suppose that the point zg is a hyperbolic
fized point for the ordinary differential equation (7). Moreover, let Z C R™ denote an open set with
zo € Z. Then there exists an h-set N with cones such that the following hold:

o We have both z9 € N and N C Z.

o The h-set N is an isolating block for the vector field f.

e The unstable manifold W§ (z9) is a horizontal disk in N which satisfies the cone condition.
e The stable manifold W3, (z9) is a vertical disk in N which also satisfies the cone condition.

Finally, the unstable manifold W3 (z9) can be represented as the graph of a Lipschitz continuous
function over the unstable space of the linearization of f at zg, and this graph is tangent to the
unstable space at zo. An analogous statement holds for the stable manifold W g (zo).

In our application below we are interested in a slightly different situation. In our case, the existence
of the fixed point is not known ahead of time. Its existence is, however, a consequence of the existence
of an isolating block. Such a theorem in the context of maps has been proven in [62, Theorem 10]. In
the context of differential equations it has been first established in [33], see also [28, 61].

3.2 Self-consistent bounds

We now turn our attention to the concept of self-consistent bounds, which have been used extensively in
recent years [14, 15, 28, 59, 60, 61, 63]. In the following, we recall the basic definitions and fundamental
ideas behind this concept, and describe an application which will be used for our main result.

In its most general form, the method of self-consistent bounds applies to arbitrary dissipative
evolution equations in a suitable subspace of the sequence space £2, subject to certain admissibility
conditions which depend on the specific notion of dissipativity. In other words, one can suppose that
the underlying evolution equation takes the abstract form

du

= (), (5)
where F is defined on a suitable subspace of £? and takes values in the sequence space. Rather than
presenting the concept of self-consistent bounds in this general setting, we right away specialize to the
situation of the present paper. Our base space is the Hilbert space H' C ¢ which was introduced in
Definition 2.1, and we consider the infinite system of ordinary differential equations given by (5). In
other words, in our situation the abstract equation (8) can be written in coordinate form as

day, Bt AE2n? k272

== Fy(a) = <_L4 + 2 AT ak— Z aj aj,a;, foral k>0, (9)
J1,J2,J3€7Z
Jitje+js=k

where ag(t) = 0. Without going into details, we note that the right-hand side is well-defined for all
sequences a € H'. In fact, the algebraic decay imposed through the subspace H in Definition 2.1
guarantees the four-time continuous differentiability of the function w given by (4), and therefore
standard regularity results for parabolic partial differential equations ensure the well-posedness of (9)
in the space H'.
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The basic idea behind the method of self-consistent bounds is the construction of a suitable subset
of the phase space of (8), in our case the Hilbert space H' C ¢2, for which one can easily determine
the flow across its boundary. Usually, such a set is constructed as an infinite product of intervals
for each of the coefficients a; of the sequences a € H’, where, in order to be able to handle this
set computationally, a bound for infinite number of them is provided by an algebraic decay. More
precisely, let a; and az denote the lower and upper bounds, respectively, for the k-th coefficient ay,
i.e., we will assume that elements of the constructed set satisfy aj, € [a; , a;:], as long as k is sufficiently
large. In detail, self-consistent bounds are defined as follows.

Definition 3.9 (Self-consistent bounds). Consider a set of the form
WeaT={acH |(a1,...,am) €W and (am+1,am+2,...) €T} C H',

which is the product of a finite-dimensional set W C R™ and an infinite-dimensional tail T C R™.
Then the set W @ T forms self-consistent bounds for the evolution equation (9) if and only if the
following conditions are satisfied.

o The infinite-dimensional tail T is given by an infinite product of intervals in the form
_ — o+
R® DT = H [ak,ak} .
k>m

Moreover, there exists a usually large integer M > m such that a;; <0 < a;r forallk > M, i.e.,
all but finitely many of the intervals in T contain zero.

o There exists a constant C > 0 and an exponent s > 6 such that |aif| < C/|k|* for all k > m.

e The vector field F' points inwards on the parts of the boundary of W @ T which are associated
with the components in the tail T in the sense that for all sequences © € W & T we have

Fi(z) >0 if zp=aqa; , and Fi(z)<0 if zy=a), foral k>m.

The evolution equation (9) represents a dissipative partial differential equation in the sense dis-
cussed in [59, 60, 63]. Moreover, one can show that the right-hand side operator in (9) is in fact
continuous on the set W & T. The block decomposition of the underlying Hilbert space H’ is given by
the infinite sum

H=HoHo..., (10)

where the subspace Hj, is the orthogonal projection onto the subspace of H' which corresponds to the
k-th cosine basis vector via (4). For all of our considerations we will not use the standard induced
norm on H’, but rather the so-called block-infinity norm given by

Z|oo 1= max | forall z={x cH
] 0o k@g]d Kl {Tk}rez :
This norm was introduced in [59]. For later applications, we also define the projection P,: H — R"

which maps a to (aq,...,ay) for all n € N. Finally, within the set of self-consistent bounds WaT C H’
for (9) we have

e uniform convergence and existence of a solution for the infinite-dimensional system (9) in the
sense that the orbits that stay in the set during a finite time interval converge in the block-
infitnity norm,

e the solutions of (9) are uniquely determined, and

e one can derive a bound for the Lipschitz constant of the associated flow.

For more details on the justifications for each of these statements we refer the reader to [59].
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3.3 Cone conditions in infinite dimensions

In this section we briefly describe how the finite-dimensional cone conditions from Section 3.1 can
be interpreted in the infinite-dimensional self-consistent bounds setting. The involved results have
appeared in two recent works on computer-assisted proofs for partial differential equations. On the
one hand, they were used to establish a heteroclinic connection for the Kuramoto-Sivashinsky par-
tial differential equation in [64]. In addition, in the recent thesis [36] they are fundamental for the
computation of rigorous enclosures of unstable manifolds in the Cahn-Hillard equation.

As a first step, we have to extend the notion of h-set to the infinite-dimensional self-consistent
bounds setting. This can be accomplished as follows.

Definition 3.10 (Self-consistent bounds and h-sets). Suppose that W & T C H' establishes self-
consistent bounds for the evolution equation (9). Then the set W & T is an h-set, if and only if the
finite-dimensional part W is an h-set in the sense of Definition 3.1.

Our primary interest is the verification of cone conditions for self-consistent bounds for the evo-
lution equation (9) for the purposes of establishing the existence of an equilibrium solution in the
self-consistent bound set, and to recognize the unstable manifold at this stationary state as a suitable
horizontal disk. This is the subject of the next theorem, which states that if the cone condition has
been verified for self-consistent bounds W @ T" and a specific matrix @, then there exists a stationary
point zgp € W @ T for (9), and the unstable manifold W3 (29) is a horizontal disk in W @& T which
satisfies the cone condition.

Theorem 3.11 (Consequences of the cone condition). Consider self-consistent bounds W & T C H'
for (9), and assume that the orthogonal projection P,(W @& T) is an isolating block for the n-th
Galerkin approxzimation (6) of (9) for all n > M. In particular, there is a finite number of unstable
directions, all of them are confined to the finite dimensional part of W & T, and all the directions
corresponding to the infinite dimensional tail are stable. In addition, let QQ denote an infinite diagonal
matriz with QQ;; = 1 for all indices j corresponding to the unstable directions and (Qj; = —1 for the
stable ones. Using this matriz, we assume that

w' ([P F(W)]'Q + QA P F(W)]) w > 0 (11)

for all w # 0 of the form w = x —y, where x,y € W.

Then there exists an equilibrium zy € W & T for (9) and the unstable manifold W (zo) is a
horizontal disk in W &T which satisfies the cone condition, where we set N = W ®T. We use here an
extended notion of h-set as a product of a compact subset of RM and an infinite tail. Moreover, the
manifold W3 (z0) can be represented as the graph of a Lipschitz continuous function over the unstable
space.

For a detailed proof we refer the reader to [36, 64]. Basically, this theorem follows from the finite-
dimensional version given in Theorem 3.8, combined with the fact that within self-consistent bounds
W @ T C H' both the Fourier series of all terms appearing in the right-hand side F' of (9) and all
partial derivatives in dF converge uniformly. This allows one to establish the existence of unstable
manifolds for all Galerkin approximations of (9) with uniform bounds, which in addition are contained
in a compact set. One can now employ a standard convergent subsequence argument to establish the
existence of an unstable manifold for the infinite-dimensional system (9). Moreover, the verification
of positive definiteness of the infinite-dimensional matrix [d P, F(W)]7Q + Q[d P, (W)] reduces to
the verification of positivity of a finite number of inequalities, due to the polynomial growth of the
diagonal which stems from the quartic increase of the eigenvalues of the linear part of (9). Finally,
since the equation is dissipative, for sufficiently large k the eigenvalues of the linear part of (9) are all
negative, and therefore we have Qrr = —1 for all these indices. In order to verify (11), we make use
of the following lemma.
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Lemma 3.12 (Verifying the cone condition). If for some € > 0 and for all k € N one can show that

—ZSU

p
O£k zeW

0Fy,
2 inf |—

R,
axk

(z) + Qkkg?;(if) >e, (12)

’sz

is satisfied, then the inequality (11) holds.

It will be the subject of Section 6 below how this infinite-dimensional condition can be verified
computationally, and this will provide the unstable equilibrium which forms the initial point for our
heteroclinic solutions.

Finally, we would like to mention that the existence of a stable steady state of (9) can be ac-
complished by checking suitable estimates for logarithmic norms, which were introduced in [16, 27].
In addition, such logarithmic norm estimates will provide explicit bounds for the size of the basin of
attraction of the stable steady state. For this, we basically apply the theory, algorithms, and code
from [12, 14, 59], and the interested reader is referred to these papers for more details. We do not
further describe the details this verification procedure, since the logarithmic norm condition is equiva-
lent to the cone condition (12) with only stable directions, i.e., with the matrix @) being given by —Id,
where Id denotes the infinite-dimensional identity matrix.

4 Proof of the main result

With this section we begin proving our main result, which was described in Theorem 1.1 in the
introduction. While this result guarantees the existence of heteroclinic connections between an un-
stable index two stationary solution, which in fact is the homogeneous steady state, and two stable
local energy minimizers, its formulation concentrated on the diblock copolymer model on the do-
main ) = (0,1). This choice was motivated by the studies in [24], yet for numerical reasons it is not
optimal. In fact, by naively choosing the parameters as in Theorem 1.1 one ends up with an extremely
stiff Galerkin approximation (6).

In order to overcome this stiffness problem, we make use of standard rescaling arguments. For a
fixed approximation dimension taking larger domain size results in ’averaging’ the set of linear part
eigenvalues appearing in the approximation of a fixed dimension. For this, assume that u denotes a
solution of the diblock copolymer model (2) on the one-dimensional domain €2 = (0, 1), and for fixed
parameters A = 1/€2 > 0 and o > 0. Furthermore, let L > 0 be a fixed interval length, and define a
function v : Rj x (0, L) — R via

A
U(T,y):u(l,;,?) foral 7>0 and ye(0,L).

Then one can easily verify that v solves the diblock copolymer equation
A oA .
vy = — <vyy +ts f(v))yy — 2 (v—p) onthe domain RY x (0,L),

which is exactly of the form given in (3), but with rescaled parameters A and o.

It turns out that for the parameter combinations given in Theorem 1.1 it is most convenient to
choose the new domain length L = 27, since this reduces the size of the eigenvalues of the linearized
Galerkin approximation (6). Thus, in the following, we will establish the following rescaled result.

Theorem 4.1 (Rescaled version of the main theorem). Consider the diblock copolymer equation (3)
on the domain Q = (0, L) with L = 27, for interaction lengths A = 4 and o = 4/7% ~ 0.405284735,
and for total mass . = 0. Then there exist heteroclinic connections between the unstable homogeneous
stationary state u = 0, which is indicated by a yellow square in Figure 4, and
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Figure 4: Bifurcation diagrams for the diblock copolymer model (2) on the (rescaled) domain Q =
(0,27), for total mass p = 0, and for nonlocal interaction parameter o = 16/(27)? ~ 0.405285. In the
left diagram, the vertical axis measures the L?(0,27)-norm of the solutions, while the right diagram
shows the total energy (1). In both diagrams, the horizontal axis uses the parameter A = 1/¢2. As in
Figure 1, the solution branches are color-coded by the Morse index of the solutions, and black, red,
blue, green, and magenta correspond to indices 0, 1, 2, 3, and 4, respectively.

(a) FEach of the two local energy minimizers which are indicated by yellow circles, as well as
(b) Each of the two global energy minimizers which are indicated by yellow stars.

In other words, for the above parameter combinations, the diblock copolymer equation exhibits mul-
tistability, and all energy minimizers can be reached from any arbitrarily small neighborhood of the
homogeneous state.

To illustrate the formulation of the above theorem, we have included the bifurcation diagrams for
the new, rescaled situation in Figure 4. Compare also their original counterparts in Figure 2.

Before turning our attention to the proof of Theorem 4.1, we need to introduce some notation.
In the following, we denote the unstable homogeneous steady state of (3) at origin by z{ € H'. This
equilibrium is indicated by a yellow square in Figure 4. In addition, let zS’lOC € H’ denote one of
the two stable local energy minimizers of (1), which are indicated by a yellow circle in Figure 4. Let
zS’glOb € H' denote one of the two global energy minimizers of (1), which are indicated by yellow star
in Figure 4. One can easily see that the theorem only has to be verified for one of these local/global
minima, the result for the second one follows from symmetry arguments.

For each of the involved equilibrium solutions, we need to construct self-consistent bounds con-
taining them. Thus, we let

wlee c 7’
denote an infinite-dimensional stable isolating block which contains the stable steady state zg’loc, and
which forms self-consistent bounds. We also let

nglob C H/
denote the infinite-dimensional stable isolating block which contains the stable steady state zS’glOb
As long as it also satisfies the cone condition, the existence of stable steady states in Wsloc and

WP follows then from Theorem 3.11 with all directions being stable directions, as illustrated in
Figure 5. Now consider the unstable equilibrium involved in the heteroclinic. Let

W, C H'
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Figure 5: The stable isolating block W!°¢ and its infinite-dimensional self-consistent bounds structure.
The isolating block has the topological property that the vector field in (9) points inwards in all
coordinate directions.

denote the infinite-dimensional unstable isolating block which contains the known unstable equilib-
rium z5 = 0, and which forms self-consistent bounds. In this case, if the block satisfies the cone
condition, then the existence of a two-dimensional unstable manifold is guaranteed at the origin by
Theorem 3.11, as is the fact that the manifold is a horizontal disk in W,. See also the illustration in
Figure 6. After these preparations, we can now proceed with the proof of Theorem 4.1.

Proof. The verification of Theorem 4.1 is divided into three parts, which are described in more detail
below. We would like to point out already now that all sets used in the proof are constructed using
rigorous numerical programs which are based on interval arithmetic, see for example [35]. In this way,
all computations done by a computer are validated in a strict mathematical sense. In particular, if the
program verifies the cone condition for the whole set under consideration, this automatically implies
that the condition is satisfied for all elements of this set. For more illustrations of this approach, also
in other contexts, we refer the interested reader to [48].

First step: Using a computer program based on interval arithmetic, we first construct self-
consistent bounds W, C H' in such a way that W, is an unstable isolating block for (9). For this,
the set W, is centered at the origin, which represents our known unstable equilibrium z{ for (9).
More specific information regarding the specific choice of Wy is presented in Appendix A.1, which
contains verified numerical data from the program. These results show that the topological structure
of W, is exactly of the form shown in Figure 6. In addition, the set W, is verified to satisfy the cone
condition (12), using the method presented in Section 6. Now Theorem 3.11 implies that the unstable
manifold Wy (z{) is a horizontal disk in W, and therefore the unstable manifold at the origin crosses
one of the faces of W,. Let Wy denote such a face, see also the diagram in Figure 7. The whole
construction of W, relies on the fact that the unstable equilibrium zj is given by the origin. We can
therefore determine the eigenfunctions of the linearization of (9) at z{ explicitly, and this easily shows
that all eigenfunctions are just the basis functions eg(x) for & € N. Furthermore, recall from our brief
discussion in the introduction that for our choice of ¢ the two unstable eigendirections correspond to
the eigenfunctions ex(z) and es(z). In order to make the subsequent parts of the proof computationally
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Figure 6: The unstable isolating block W, which contains the unstable homogeneous equilibrium
of (3) at the origin, and its infinite-dimensional self-consistent bounds structure. This isolating block
has the topological property that the vector field in (9) points outwards for the second and third
coordinate directions, while pointing inwards for all remaining directions. Once the cone condition
given in Lemma 3.12 has been verified for this block, the existence of a two-dimensional unstable
manifold follows, as well as the fact that it is a horizontal disk within the depicted set.

faster, the set W, is chosen in such a way that it is much more elongated in the second eigenfunction
direction compared to all the other directions, which is given by es(z) (we denote the face of W, in this
direction by Wy(es)) for the case of the connection to the local minimizer. Additionally, the set W, is
chosen in such a way that it is much more elongated in the third eigenfunction ey (z) direction for the
case of the connection to the global minimizer (we denote the face of W, in this direction by Wy(e2)).
See again Figure 7.

Second step: Similar to the first step, we use interval arithmetic to construct self-consistent
bounds W W9t H' in such a way that W, W9l is a stable isolating block for (9). The

block VVSZ"C is centered at a numerically computed approximation to the actual stable equilibrium zg’loc,

and the topological structure of W!°¢ is as indicated in Figure 5. Analogously, the block W3 is cen-
tered at a numerically computed approximation to the stable equilibrium zg’gl"b — the global minimizer.
The finite-dimensional part of this set is determined in an appropriate coordinate system, which is
given by the numerically determined eigenbasis of the Jacobian matrix at the numerical approxima-
tion of ,287100, zS’glOb respectively. As a consequence, the block decomposition (10) of H' takes on the
following form. The first m coordinates correspond to the eigenbasis of the m-th Galerkin approxima-
tion (6), while the remaining coordinate directions are given by the standard basis functions ey (z) for
k > m. In other words, we have to take into account that the Jacobian at zS’lOC, zS’glOb is considered in
two different coordinate systems, and this is handled as outlined in more detail in [12, 59]. Next, the
computer program is used to compute a verified upper bound on the logarithmic norm of the Jacobian
in block coordinates (10). As can be seen from the numerical data in Appendix A.1, this bound turns
out to be negative. Notice that determining an upper bound for a logarithmic norm is equivalent to
computing the cone condition (12) in the situation of only stable directions, and our program makes
use of the techniques described in more detail in [12, 59]. Thus, the numerical data presented in the

appendix ensures the existence of an attracting equilibriums for (9), namely zS’lOC in W'oe, and zé’gl()b
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Figure 7: Sketch of the isolating block W, centered at the unstable equilibrium z{, which is the
homogeneous zero state. The eigenfunctions es(z) and eg(x) correspond to the two unstable directions,
as can be easily seen by determining the linearization of (9) at zero. For establishing the existence of
the heteroclinic, the face Wy should be preferably small, and as far away from the unstable stationary
point as possible, as it will be propagated forward in time through rigorous integration. We illustrate
the unstable isolating block that we construct in the case of the connection to the local minimizer.
Observe that the set is elongated in the direction of the third eigenvector, and is very much thinner
in all the other directions. For the other case of the connection to the global minimizer the isolating
block looks qualitatively the same, but it is elongated along es eigendirection instead of es.

in W9°®. In addition, we obtain that the complete sets W!¢, W3 are contained in the basin of
attraction of zS’lOC, and zS’glOb respectively.

Third step: Since the first two steps of the proof have established sets Wy(ez), Wy(es) which
contains part of the unstable manifold of z{, as well as a subsets Whee W9lob wwhich are contained in
the basin of attraction of zS’ZOC, zé’glOb respectively, it only remains to show that all solutions of (9)
which originate in Wo(e3) end up in W, and all solutions of (9) which originate in Wy(e2) end up in
W9l This is accomplished in the last step of the proof through rigorous forward integration of the
flow associated with (9). For this, we use the algorithm for rigorous integration described in the series
of works [12, 25, 60, 63]. In fact, we make use of an optimized version of this algorithm which was
developed in [11], and this version will be described in more detail in the next Section 5. In this way, we
are able to rigorously propagate the sets Wy forward in time in such a way that all computational errors
are accounted for, and we obtain that the flow of (9) in H’ transports Wy(e3) into W!°¢, and Wy (ez)
into W9, A cartoon of this procedure is shown in Figure 8. In the figure, the sets [®(kh, Wy)] denote
rigorous enclosures for the images of Wy under the flow at time kh, for integers & > 0. After N + 1
steps of this forward integration by time h, the final enclosure is shown to be contained in W,
and therefore the basin of attraction of zS’lOC. In the actual computation performed by a computer
program any initial condition in the face Wy(es) of W, at time T" = 3.02 (after performing 1510
numerical integration steps) is verified to be within W'¢, and any initial condition in the face Wy(es)
of Wy at time T" = 4.62 (after performing 2310 numerical integration steps) is verified to be within

W9t As a consequence, one obtains the existence of a manifold W4(z%) N W* (zg’loc) which connects

the unstable equilibrium z§ with the stable equilibrium zg’loc. As well as the existence of a manifold
W (z8) NS (259'°") which connects the unstable equilibrium z¢ with the stable equilibrium z59"”" For
more details on the numerical data from the actual computations we refer the reader to Appendix A.1
and the numerical data available in an online repository [13]. Needless to say, the third and last step

of the proof is the most time consuming part. O

We would like to close this section with a brief comment on the applicability of the above approach.
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o YW,

[®(2h, Wy)]

Figure 8: The last part of the proof described in Step 3 establishes the existence of a heteroclinic
connection. This is accomplished through rigorous integration forward in time of the face Wy of W,,
which was indicated in Figure 7. Notice that this numerical integration has to be performed for the
infinite-dimensional system (9) with phase space H'.

The proof given above defines an algorithm for proving Theorem 4.1. The algorithm is general.
While in the proof we have considered a very specific instance of the diblock copolymer model, for
a particular set of parameters, in principle the algorithm applies to the verification of any saddle to
sink connection for the diblock copolymer model (9). The algorithm describes numerical verification
needed to be performed with a clear separation of the computation into three consecutive steps. We
have implemented a computer program, realizing this algorithm, which is part of the publication
[13] and available online. The input to the program are the parameters in the equation, and if the
program terminates successfully we have proved the existence of a heteroclinic connection. The main
prerequisite for termination is of course that the set propagated by the rigorous numerical integrator
is mapped completely inside the stable isolating block WSZOC. However, the process of obtaining such a
proof for arbitrary parameters is not fully automated. In general, one has to try to make the set Wé"c
as large as possible, while at the same time keeping Wy small. In this way, the accumulated effect of
roundoff errors and inherent expansion in the differential equation can often be controlled.

5 Rigorous integration algorithm

To rigorously integrate (9) forward in time we apply an algorithm based on the rigorous Taylor method,
as well as the Lohner algorithm for an efficient representation of sets and to avoid the wrapping effect.
The Lohner algorithm is presented in detail in [25, 26]. We specifically use the algorithm introduced
in [11], which allows for the efficient implementation of the Taylor method for differential equations
in combination with the variational equations arising in partial differential equations. This algorithm
combines automatic differentiation with the fast Fourier transform algorithm. In the remainder of this
section, we briefly explain the ideas behind this algorithm, and discuss why it is much more efficient
than the direct method of computation of normalized derivatives. For a more detailed discussion,
we refer the reader to [11], where a computational complexity analysis can be found in the context
of partial differential equations with a quadratic nonlinearity. We will demonstrate below that this
analysis can be extended to the diblock copolymer model (3) with a cubic nonlinearity. In fact, in the
situation of the present paper, the method of [11] leads to even greater speedups. One of the main
advantages of the method of [11] is that it allows one to use a high-order Taylor method as opposed to
the direct integration method. In fact, in the actual proof of the results of this paper we use a Taylor
method of order 16.

To describe our approach in more detail, consider again the right-hand side F' of (9). In addition,
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we denote the right-hand side of the m-th Galerkin approximation (6) by F,,. We begin by giving a
brief description of how the actual solution of an initial value problem for (9) can be enclosed in an
efficient way. This is achieved by bounding the solution set of the differential inclusion given by

dz
a(t) € Fn(z(t) +1[4] , (13)

where z(t) takes values in R™. More precisely, the solution set of (13) is bounded by first enclosing
the solution of the Cauchy problem associated with (13), and then adding appropriate a-posteriori
bounds, see for example [12, 25] for more details.

In order to rigorously enclose the solution of the Cauchy problem associated with (13), we make
use of the classical Taylor method. Thus, the enclosure for the solution is propagated by one time step
through the knowledge of the normalized derivatives of orders up to p, where the integer p denotes
the order of the Taylor method. These normalized derivatives are defined as follows.

Definition 5.1 (Normalized derivative). Let n > 0 be an arbitrary integer, and let w: [0,tpmqez) — R
denote a sufficiently smooth function. Then the n-th normalized derivative of w is defined as

1
(1) = = qp(™
w(t) = —w(t)

where w™ (t) denotes the classical n-th derivative of w.

According to this definition, the normalized derivatives are precisely the terms occurring in a
standard Taylor expansion. They can be determined efficiently via a well-known recursive formula
from automatic differentiation, which is recalled in the next remark.

Remark 5.2 (Recursion for normalized derivatives). For an ordinary differential equation of the form

d

£:G(Z>’ where zeR™, and G:R™ —=R™,

the normalized derivatives of z can be determined as follows. If we set 219 = 2O then for arbitrary
differentiation orders j =1,...,q — 1 the normalized derivative zU! is given by the recursive formula

. 1 .
+1] — - 5]
z P (Goz)V|

as long as G is q-times differentiable.

After these preparations we can now analyze the cost of computing the (p + 1)-st order Taylor
method for the finite system of ordinary differential equations given by the Galerkin approximation (6).
If we assume that the normalized derivatives of u of orders 1,2,...,p have already been computed,
then the cost of determining the (p+ 1)-st normalized derivative is equivalent to the cost of evaluating
the convolutions

) [p]

(u*u*u) for all indices k| <m,

where the function w is given by its time-dependent Fourier coefficients, and [p] denotes p-th normalized
derivative with respect to time.
Since we are interested in using the Lohner algorithm [26], we not only have to keep track of the
Fourier coefficients {ay}}-; of the solution u, but also of the associated partial derivatives vector
8u]'

=, Jk=1,...,m.
aak7 Js ) , M
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for each 7 = 1,...,m the first order multi-variate polynomial with respect to an auxiliary variable
é‘: (517"'7§m)
© vy dug
u;(§) =u; =aj,

J J J Pt day, k
is usually referred to as the jet. Thus, in order to emphasize that we work with jets, not scalar values
we will from now on write u instead of u. An algebra of jets can be formed defining addition and
multiplication as the usual operations on polynomials. But the terms of the second order in £ are
truncated after the multiplication. Our goal is the computation of the convolutions

[»]
k

(uxuxu) for all indices k| <m,

which can be expanded as

(u*ux u)][f] = > > u,[il]u,[g]u%] forall |k| <m. (14)
0<p1,p2,p3<p |k1|,|k2|.|k5|<m
P1+p2+p3=p k1+ko+ks=k
If we now let N denote the number of coefficients that are calculated in (14), along with their partial
derivatives for the variational equations, then one can easily see that we basically have

N=m?+m,

up to a constant, which has to be large enough to avoid the aliasing effect (in our algorithm the
constant is equal to 2). With this, one can finally analyze the computational cost of evaluating (14).
While we do not present the details, the result is collected in the following remark.

Remark 5.3 (Computational cost of evaluating the convolution). The total cost of the direct evalu-
ation of the convolution given in (14) is proportional to p? N3, where N = m? +m up to a constant.
An example analysis can be found in [11].

Besides the above direct computation, it is well-known that one can evaluate convolutions as
in (14) indirectly through the use of the fast Fourier transform algorithm. If we assume again that
all normalized derivatives of uw of order 1,2,...,p have already been computed, then the discrete
functional values of the normalized derivatives of u, which are also called the L-coefficients in [11],
have already been determined, and they can therefore be cached in memory. We denote these values
by

ﬁy] = FFT; (u[r]) forall r=0,...,p, j7=0,....,c-m,
where FFT} (-) denotes the j-th component of the discrete Fourier transform computed by the fast
Fourier transform method, and the constant c¢ is specified below. Using these values, one can then
determine (14) by computing the convolution for the L-coefficients in the form

((B)?’]: S atsa”ya” foran j=o0,...,c0m, (15)
J 0<p1,p2,p3<p
p1+p2+p3=p

and then applying the inverse fast Fourier transform, which we denote by FFT ™!, in order to obtain
(uB)Ef} =FFT;! ((1/15)[1;]> for all |k| < N. (16)

After this, we can also calculate the L-coefficients of @P** and cache them in memory, provided we
intend to increase the order further, i.e., we evaluate

alPtl — FRT (u[P“]) .
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While at first glance the approach based on the fast Fourier transform seems to be more involved, its
computational savings are significant. To see this, recall that the cost of performing a fast Fourier
transform is of the order N log N, and therefore the same is true for the computation of (16). Moreover,
the cost of computing the convolution for the L-coefficients (15) is just the cost of multiplying p?cN
values, and this leads to the following observation.

Remark 5.4 (Computational cost of the convolution via the fast Fourier transform). If we assume
that the L-coefficients of U have already been computed and cached in memory, then the total cost of
the fast Fourier transform approach to the computation of (14) is proportional to

Nlog N + p?cN . (17)
An example analysis can be found in [11].

Typically, the integer N is significantly larger than the order p, since it counts the number of
equations and variationals. Clearly the cost provided in Remark 5.3, i.e. p?N3 dominates both of
the terms appearing in (17) — the cost provided in Remark 5.4 for any p and N. Also, increasing
the order p in case of the cost given in Remark 5.4 does not result in as severe increase of the total
computational cost, as in the case of Remark 5.3. The typical choice of the constant ¢ in the above
discussion is ¢ = 3. Using some optimizations that were described in [11], one can in fact reduce the
constant to ¢ = 2.

Needless to say, in practice the fast Fourier transform technique greatly reduces the total running
time of our computer-assisted proof.

Remark 5.5. The actual running time of the integration step of the proof with parameters as reported
in Appendixz A.1 is triple reduced. The real time of the integration procedure on a laptop is 3mb5s
FFT vs 11m55 direct (without FFT) in case of the connection to the local minimizer, and 6mS34s FFT
vs 17m29s in case of the connection to the global minimizer.

We remark that the actual proof was performed with a moderate Galerkin approximation dimension
(m = 15), which allows to achieve the proof in a reasonable time on a laptop. In particular performing
of an analogous proof, but for a parameter regime further from zero will require larger approximations,
due to much more complicated dynamics on the attractor. The analysis of the algorithm presented in
this section shows that for larger approrimation dimension even a higher speedup is anticipated.

6 Verifying the cone condition in infinite dimensions

This section is devoted to illustrating how the cone condition (12) can be verified in infinite dimensions.
For the sake of brevity, this will only be done in the context of the set W,. As mentioned earlier, the
verification of the cone condition for the remaining set V!¢ basically amounts to obtaining logarithmic
norm estimates, and this can be achieved directly with the algorithms from [12, 59], and is therefore
omitted in the following. To begin with, we would like to remind the reader that according to (12),
we have to verify the estimate

. OF, OFy OF},
2 f |—= — 5 —= — > 1
R By (v) g%wzuvgu Qzeaxk (%) + Qg B2 (x)| > €, (18)
0k

for the unstable isolating block W,, for some ¢ > 0 and for all £ € N.
In order to accomplish this, the block W, € H’ is divided into two parts, and we refer to this
representation again as self-consistent bounds. More precisely, we have that

e the finite part for kK = 1,..., M is represented as a finite-dimensional interval product, i.e., the
projection (W), is an interval, and
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e the tail, which corresponds to k = M +1, ..., is represented by an algebraically decaying bound,
ie., for all x € (Wy),, the inequality |z| < C/|k|® is satisfied. In order to explicitly relate the
constant C' to the block Wy, we will use the notation C'(W,) in the following.

Notice that W, forms self-consistent bounds with the fixed polynomial decay, therefore the tail in the
algorithm is represented by only the value of the constant C' > 0.

In order to establish the cone condition, we first determine self-consistent bounds C € H’, which
bound all possible convolutions of elements from the block Wy, i.e., such that for all K =0,..., M we

have
Cr issuch that Cp D (axb), forall a,beW,.

Since the nonlinearity in (9) is cubic, one therefore immediately obtains an enclosure for the partial
derivatives matrix DF in the form
8Fk( T kim4 n k272 3)\k2 2
l’ —_—— —_— S —
20 M\ T IR 7 L2

Before proceeding, we need to introduce some notation. if I C R denotes an arbitrary interval, then
we denote the maximal absolute value of all points from I by |I|max. We can now estimate the second

(DF), (Cr—p +Ciye) forall zxzeW,.

expression in (18) by

OF, OF; RV
> sup Qe t(@) + Quy t(@)| < T 3 | Que (Cont Cove) + K2 Qun (Gt + Ca)|
17, %Wn ez ma
02k O£k

The right-hand side in this estimate can be bounded further. For this, we split it into two parts to
obtain

3)\77
)+ k*Quek (Cromt + Ck+£)‘ =

€7 e
7k

372 9 9

72 ‘5 Que (Co—t + Cryr) + k°Qrk (Ch—e + Crye)|  +
VESvan: max
U4k
32
5 1 Que (Cote+ Crie) + K Qur (Cooe + Cire)|
[¢|>M+k

04k
The first part of this sum consists of expressions which contain at least one term from the finite part.
In addition, the first summand is a finite sum, and we can therefore compute it term by term using
interval arithmetic. In contrast, the second summand is infinite and consists exclusively of terms from
the tail part, which can therefore be estimated. Using standard results from rigorous numerics for
partial differential equations, due to a high regularity of the Fourier coeflicients sequences all of the
appearing sums have a finite value, which can be estimated efficiently.
Finally this yields the following estimate

32
12 > ’EQQze (Co—t + Crse) + K*Quk (Cre + C’“”)’max =
l|>M+k
\ IZHJF
32 32
2 [FCra] T 3 Gt G, <
> M+ [€|>M+k
ok £k
32 (2C(C)k2  2C(C)
L2 ( sars - gas L ERAM) )
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whose right-hand side is given explicitly — and from this one can easily establish the validity of (18)
fork=1,..., M.

For k > M using now standard arguments, see e.g. [63], it can be shown that (18) is decreasing
with k for & > M, due to the fast decay of eigenvalues. Hence, the negativity of (18) for k& > M
follows from the negativity of (18) for k = M.

Finally the cone condition can be verified.

7 Software

The computer program performing all computational steps required to prove Theorem 4.1, as described
in more detail in the respective proof in Section 4, has been written in the C++ programming language.
The source codes, some compiled binary files, and the numerical output from the actual proofs are
available in an online bitbucket repository [13]. The published source codes for this work utilizes some
parts of the rigorous numerics software package developed by the first author, which was dedicated to
the study of dissipative partial differential equations based on Fourier series expansions. This package
has been used in a number of different contexts as well, see for example [11, 12, 14].

The software package is written in such a way that it should be easily adaptable to other situations
as well. More precisely, by performing only small modifications in the code, it can be applied to a
range of dissipative partial differential equations which are written in terms of infinite Fourier series.
Examples include the viscous Burgers equation, the Kuramoto-Sivashinsky equation, and the Swift-
Hohenberg equation. The main part of the software package is a dedicated algorithm for performing
time integration using Taylor’s method, and the efficient computation of the (higher order) time
derivatives of the flow. The latter are required by Taylor’s method, and they are determined using
the FFT algorithm described earlier.

8 Conclusion and future work

In this paper, we have presented a first instance in which heterolinic solutions can be rigorously
determined for the diblock copolymer model on one-dimensional domains. Moreover, our results
have shown that the model exhibits strong multistability in the sense that all (local or global) energy
minimizers can be reached from arbitrarily small neigborhoods of the homogeneous steady state. In the
near future we plan to extend the presented research to prove heteroclinic connections for a wide range
of other parameter regimes, with particular emphasis on regions further from the homogeneous steady
state. Moreover, we plan to perform similar studies on simple two-dimensional domains. Another
intriguing possibility for future work is to apply the parametrization method [5] in the first step of
the proof of Theorem 4.1. Recently, the parametrization method has been generalized to allow for the
validation of unstable manifolds for parabolic partial differential equations, see for example [39, 50].
Using the parametrization method, bounds for the unstable manifold are obtained by computing its
expansion in the form of a finite Taylor polynomial. In contrast, in the present work, we obtain
bounds for the unstable manifold by verifying the cone condition on a linear segment. For nonlinear
partial differential equations and nontrivial parameter values, it is expected that the unstable manifold
behaves linearly only very close to the unstable steady state. We are convinced that, using the
parametrization method, especially for high Taylor orders, one can compute bounds for the unstable
manifold of the diblock copolymer model that reach much further than those obtained using a linear
block and cone conditions. This in turn is expected to greatly reduce the work needed for performing
the final step of the proof, i.e., using the rigorous integrator to demonstrate that the unstable manifold
enters the basin of attraction of the stable steady state. This should make it possible to then establish
a result analogous to Theorem 4.1, but for large parameter values.
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A Numerical data from the computer proof

A.1 Heteroclinic to the local minimizer

In this appendix we present some numerical data from the computer-assisted part of the proof pre-
sented in this paper. For the sake of brevity we list only a small number of the relevant modes which
are involved in the constructed infinite-dimensional bounds. In addition, only three decimals of all
numerical values are shown. Complete and detailed numerical data presented with larger precision
can be found online http://bitbucket.org/dzako/dbcp_ proof.

Unstable isolating block W, C H' around zero. This is the first step of the proof of the main
theorem from Section 4. We mark with text in bold the numerical values for the eigendirection eg
along which the unstable manifold of the homogeneous state connects to the stable local minimizer
(W, is stretched along this direction)..

l k ‘ ak interval in the form center + radius ‘

1 0 + [—2.365,2.365]10~°

2 0+ [—1,1]107*2

3 [~0.075,0.075]

4 0+ [—1.538,1.538]10~'°

5 0+ [—3.038,3.038]107 16

6 04 [—1.478,1.478]10716

7 0+ [—9.664,9.664]10'7

8 0+ [~5.623,5.623]107 7

9 0+ [—5.193,5.193]107 17

10 0+ [-3.771,3.771]10'7

11 0+ [-3.332,3.332]107 7

12 0 4 [—2.248,2.248]107 17

13 0+ [—2.33,2.33]10" "7

14 0+ [~1.926,1.926]10~ 7

15 0+ [—1.69,1.69]10™'7

16 — 75 small intervals of width < 10~2°
> 76 < 1.393-10 " /kS

The infinite-dimensional cone condition (18) is satisfied with
e = 0.08478.

The file unstable box_log.txt which can be found online [13] contains more detailed numerical data
related to this computation. The actual running time of the program computing this set is negligible
compared to the last step, i.e., the numerical integration. Therefore, we do not report it.

Stable isolating block W!/¢ ¢ H’  This is the second step of the proof of the main theorem from
Section 4. The block Wéoc is centered at a numerically computed approximation to the actual stable

equilibrium zg’loc which was loaded from the provided file fizedPoint.in.
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[ k | ax | 24 —1.441-10 7 + [-1.763, 1.763]10 "
1| 3.321-10 ™ +[—6.895,6.805]10 ° 25 2.333-10"%° 4+ [-1.87,1.87]107"
2 | 8181077+ [~1.691,1.691]10~* 26 2.084-107*% 4 [~1.651,1.651]107"
3 0.2956 + [—1.031,1.031]10~° 27 3.847-107° + [—7.323,7.323]10®
4 | —6.551-107'7 +[—9.807,9.807]10~° 28 1.265-1072° 4 [—1.417,1.417]1077
5 | —1.241-10'7 + [~9.732,9.732]10 ¢ 29 1.257-107%° + [~1.366, 1.366]10~"
6 | —1.411-1076 + [—2.994,2.994]10~° 30 3.047-10" 1% + [-1.1,1.1]1077
7 | —3.635- 10718 + [~2.875,2.875]107¢ 31 7.491-107"° 4 [-1.754,1.754]107
8 | —9.215-107'® + [—~1.417,1.417]10° 32 6.881 - 101*19 +[-1.7,1.71077
9 | —5.613-1073 +[~1.518,1.518]107° 33 —7.323- 10‘190 +[-8.918, 8-918]10;8
10 | —2.005- 107 '® 4 [6.141,6.141]10~ 34 7818 107 + [~8.435,8.435]10"
11 | —4.048 - 1078 + [~1.659, 1.659]10~° 35 7.079 1077 + [~1,1]107
12 | 4.056-107%¢ +[—1.001,1.001]10° 36 2.828 - 10‘1196 + [-5.943, 5-943]10‘78
13 | —2.184- 1078 + [~1.367, 1.367]10~° 37 7.42-107 4+ [—1.151,1.151]10
14 | —1.914- 107 4 [~1.559, 1.559]10° 38 6.551 - 107" +[~1.099, 1.099]10~"
15| 1.062-10~* 4 [—6.264,6.264]107 39 1.394-107"" + [-8.788,8.788]107"
16 | —1.771-107'° + [~7.908,7.908]10~" 40 —1.015 - 107 ' + [—2.472,2.472]10~*°
17 | —1.616 - 107'° + [—5.853,5.853]107 41 —1.129- 1072 4 [-2.747,2.747]107
18 | 1.351-107*¢ 4 [-2.593,2.593]10~7 42 —6.509 - 10713 4 [~1.584, 1.584]10*°
19 | —2.224-107% +[-3.73,3.73]10~7 43 —1.184 - 107" + [—2.881,2.881]10~*°
20 | —1.555-107' 4 [~2.83,2.83]10°7 44 —1.08-107" 4 [~2.627,2.627]10 "
21 | —2.021-107° +[-2.355,2.355]10" " 45 —1.075-10" " 4+ [-1.967, 1.967]10"
22 6.774-1072° 4+ [-3.8,3.8]1077 46 — 250 small intervals of width < 10711
23 | 6.011-10° 4 [—3.309, 3.309]10 " > 251 < 6.947 - 10 % /k°

The infinite-dimensional cone condition (18) is satisfied with
e =0.03816 ,

which equivalently means that the logarithmic norm estimate is strictly negative. The interval radii of
the first 39 modes, separated above by a horizontal line, of the block W!¢ are given in the eigenbasis
of the finite-dimensional derivative at zg’loc. These coordinates are being written by the program into
the file ).7n. The actual running time of the program computing this set is again negligible compared
to the last step, i.e., the numerical integration. As before, we therefore do not report it.

The file stable _boz_log.tzt that can be found online [13] contains more detailed numerical data

related with this computation.

Result of the numerical integration. This is the third and final step of the proof of the main
theorem from Section 4. Some technical parameters of the numerical integration are chosen in the
following way:

e The Taylor method order is 16,
e the constant time step is 0.002,

e the Galerkin projection dimension m is 15, the dimension used by the FFT-algorithm N is 32,
see also the description in Section 5.

e The whole integration process took 3m55s on an Intel®Core™i7-4610M CPU @ 3.00GHz x 4,
compiled with gcc version 4.9.2 (64-bit Ubuntu 4.9.2-10ubuntul3) and with flags -O2 -frounding-
math.

e In contrast, if instead of the FFT-algorithm we used the direct algorithm, then the whole inte-
gration process took 11mb55s.
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We note that the overall speedup of the FFT algorithm over the direct algorithm does not seem
to be overwhelming in this particular example, we guess it is due to the fact of moderate Galerkin
approximation dimension (15) used. We also guess that some parts of our code may not be optimized,
which results in large constants multiplying the total cost of the FFT algorithm (17). We expect much
larger speedups in case of larger Galerkin approximation dimensions. We will investigate this as a
future research.

The file num__integration_log.txt that can be found online [13] contains more detailed numerical
data related to this computation. Specifically, the file contains

e the vector which is the finite-dimensional part of the propagated polynomial bounds, saved at
each step of the integration,

e each 100 steps of the integration the full infinite-dimensional polynomial bounds,

e at each step of the integration information at which coordinates the entry of W, into Wsloc has
not yet been attained.

The infinite-dimensional bounds at time T" = 3.02 after performing 1510 numerical integration steps
are

[ k] ax | 24 2.481-10 2 1 [—3.129,3.129]10 2
1 —1.014-10 5+ [—1.49, 1.49]10 " 25 1.17 - 107" + [~1.405,1.405)10~ 2
2 | 14541077 4 [—2.748,2.748]10"" 26 1492107 "% +[-9.22,9.22]10
3 0.2956 + [—8.522,8.522]10° 27 3.847- 1078 4 [—1.241,1.241]10~ "
4| —1.293-1077 4 [~1.183,1.183]107 28 —1.128 - 10713 + [-1.779,1.779]10~ 3
5| —7.29-107° 4 [—3.619,3.619]10~° 29 5.294 - 107 '° + [—5.796, 5.796]10'*
6 | —1.580-107'! + [—1.156,1.156]10° 30 —6.041-10~"* + [~ 7.655, 7.655]10
7 | —3.299-1078 + [~1.501, 1.501]10~% 31 —2.807 - 107 + [3.384, 3.384]10*
8 1725 - 107® + [—2.031,2.031]10~8 32 —3.631-107"% +[-2.199,2.199]10~
9 —5.613-1073 + [~1.14,1.14]10~° 33 —~7.325-107'% +[-3.017,3.017]10" **
10 | 7.704-107° + [~8.354, 8.354]10~° 34 2.608 - 10715 + [—4.228,4.228]10~ %
11 | —7.297-107° + [—4.831,4.831]10~° 35 —1.224 - 10716 + [-1.359,1.359]10~*°
12| 1.083-107% 4 [—4.586,4.586]10° 36 1.389-10'° 4 [~1.775,1.775]10" *°
13| 5.124-107° + [~7.282,7.282]1071° 37 6.412 - 10710 4 [=7.772,7.772]107 16
14 | 1.396-107° + [—9.208,9.208]10~ 1 38 8.304 - 1077 + [—5.039,5.039]10'°
15 1.063 - 10~* + [~4.66,4.66]10° 39 1.395 - 10" + [-6.956, 6.956]10'°
16 | —1.778 - 10710 + [-2.702, 2.702]10~° 40 —5.841-107'7 +[-9.691,9.691]10™*7
17 | 6.718-107'% 4 [—8.894,8.894]10 " 41 2.718 - 107" 4 [-3.085,3.085]10 "
18 | —8.661-107 " +[—1.11,1.11]1071° 42 —3.09- 10717 + [-3.994,3.994]10~ "
19 | —4.31-107 " + [—5.222,5.222]10 ! 43 | —1.421-107'7 + [-1.738,1.738]10" 7
20 | —5.023 - 1072 + [—3.588,3.588]10 ! 44 —1.839-107"% +[-1.126,1.126]10" 7
21 | —2.021-107° + [~4.376,4.376]10 45 —2.655 - 10713 + [~1.557,1.557]10 ¢
22 | 4.655-107'2 4 [=7.155,7.155]10'2 46 — 200 | small intervals of width < 10~ "
23 | —2.128 - 107" 4 [-2.362,2.362]10 2 > 201 < 3.295-10 " /k°

The bounds above are within the set WSZOC, i.e., within the basin of attraction of the stable fixed point.
This implies that the third step of the proof of the main theorem from Section 4 succeeded.

A.2 Heteroclinic to the global minimizer

We present the analogous numerical data from the computer-assisted existence proof of the heteroclinic

between the homogeneous state and the global minimizer.

Unstable isolating block W, C H' around zero This is the first step of the proof of the main
theorem from Section 4). We mark with text in bold the numerical values for the eigendirection ey
along which the unstable manifold of the homogeneous state connects to the stable global minimizer
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(W, is stretched along this direction).

l k [ ay interval in the form center + radius ‘

1 0+ [-1.105,1.105]10~ ®

2 [-0.1,0.1]

3 0+ [~1,1]107"2

4 0+ [-7.235,7.235]10*°

5 0+ [—1.438,1.438]1071°

6 04 [~6.918,6.918]107 16

7 04 [—4.579,4.579]107 16

8 0+ [—2.626,2.626]107 16

9 0 + [—2.449,2.449]1071°

10 0+ [—1.742,1.742]10716

11 0+ [~1.571,1.571]107'6

12 0+ [~1.054,1.054]107'°

13 0+ [~1.102,1.102]10716

14 0+ [—8.963,8.963]10~'7

15 0 4 [—8.008, 8.008]10~ 7

16 — 75 small intervals of width < 10~ 1°
> 76 <6.925-10 "7 /k°

The infinite-dimensional cone condition (18) is satisfied with
e =0.2873.

The file unstable_box_log.txt which can be found online [13] contains more detailed numerical data
related with this computation.

Stable isolating block wdlet - H' (The second step of the proof of the main theorem from
Section 4) Wé"l"b is centered at a numerically computed approximation to the actual global stable
equilibrium loaded from the provided file fixedPointGlobal.in.

Observe that although the dimension of the finite-dimensional subtail here is larger (300), where by
finite-dimensional subtail we mean the distinguished part of the whole tail T', which is represented by
explicit intervals. The diameters of W9°® are now considerably larger, as well as the & cone condition
value, than in the case of the local minimizer. This is due to the fact that the global minimizer is
stronger attracting than the local minimizer in the sense that the maximal eigenvalue of the Jacobian
matrix at the global minimizer is further away from zero than the maximal eigenvalue at the local

30



minimizer.

Lk | 2 |
1 [ —6.339-10" " +[-2.122,2.122]10°
2 0.3484 + [2.368,2.368]10°
3 | 3.969-107'7 4 [-4.191,4.191]107°
4 | —1.125-107% 4 [~1.129,1.129]107°
5 | 3.558-107'7 4 [-1.213,1.213]107°
6 —0.02108 + [—7.626, 7.626]107°
7 | —9.56-107'% +[-9.823,9.823]10~°
8 | 4.792-107' 4 [-4.311,4.311]10~°
9 —2.52-107 "% 4 [-4.51,4.51]107°
10 | 1.207-107% 4 [—2.687,2.687]10°
11 | 4.678-107'% + [-2.501,2.501]10~°
12 | —1.251-107% +[-1.19,1.19]107°
13| 7.395-107*8 +[—1.571,1.571]10¢
14 | —7.109 - 107° + [~1.238,1.238]107°
15 | 5.117-107"® + [—1.442,1.442]10~°
16 | —4.127- 1071 +[-9.132,9.132]10"7
17 | 2.433-107'® + [-8.563,8.563]10~"
18 | 4.197-107° 4 [—4.648,4.648]10~7
19 | —1.265-107'% + [—6.274,6.274]10 7
20 | 4.897-107'7 4 [—5.667,5.667]10" "
21 | —2.285- 107" 4 [—7.082,7.082]10 "
22 | —2.479-1077 + [—4.735,4.735]10~7
23 | 1.889-107'® 4 [—4.624,4.624]10" 7
24 | —2.62-107'% 4+ [-2.606,2.606]10~"

25 2.058 - 10~ 1% + [~2.564, 2.564]10~ "
26 1.465 - 1078 + [—2.352,2.352]10~7
27 3.304 - 1071 4+ [-2.936,2.936]10 7
28 —3.412-10717 +[-1.982,1.982]107
29 —2.625 - 10719 + [~1.998,1.998]10~ 7
30 —8.656 - 10710 + [—1.384, 1.384]107
31 1.09 - 107 4 [-2.202,2.202]10~7
32 —1.348 - 10717 + [-2.093,2.093]10~ 7
33 1.483 - 10719 + [-2.814,2.814]10°7
34 5.115- 107 + [-2.029,2.029]10~7
35 2.292 107" + [-1.962,1.962]10~7
36 —4.436 - 10717 + [—1.683,1.683]107
37 2.326 - 1071 + [-2.629,2.629]10~7
38 —3.022- 1072 + [-2.325,2.325]107 7
39 3.417-107%° 4 [-2.932,2.932]10~ 7
40 —3.135- 107 "% + [ 7.641,7.641]10~°
41 —4.553 - 1072 + [-1.109, 1.109]10~?
42 —3.567 - 1072 + [-9.137,9.137]10~*°
43 —4.418 - 1072 + [~1.076,1.076]10~°
44 —1.845-107"% 4 [~7.486,7.486]10 !
45 —3.045 - 10713 + [-1.092, 1.092]10~*°
46 —2.93- 107" 4 [-9.065,9.065]10
47 —3.638 - 1073 + [-1.075,1.075]10~*°
48 — 300 small intervals of width 10~ 12
> 301 < 5.334-10" " kS

The infinite-dimensional cone condition (18) is satisfied with

e = 0.7869,

which equivalently means that the logarithmic norm estimate is negative.

The file stable_box_log.tzt that can be found online [13] contains more detailed numerical data
related with this computation. As in the case of the local minimizer, the interval radii of the first 39
modes (separated above with a horizontal line) of W9°® are given in the eigenbasis of the finite-
dimensional derivative at 2

Result of the numerical integration This is the third and final step of the proof of the main
theorem from Section 4. Some technical parameters of the numerical integration are chosen in the
following way:

e The whole integration process took 6m34s on an Intel®Core™i7-4610M CPU @ 3.00GHz x 4,
compiled with gee version 4.9.2 (64-bit Ubuntu 4.9.2-10ubuntul3) and with flags -O2 -frounding-

math.

e In contrast, if instead of the FFT-algorithm we used the direct algorithm, then the whole inte-

,glob

gration process took 17m29s.

The infinite-dimensional bounds at time 7" = 4.62 after performing 2310 numerical integration
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steps are

(k] ar | 25 —8.013 - 10—138+ [—2.045, 2.045]}29—12

1] —1.13-10 7 +[—5.199,5.199]10 ° 20 La64 - 1077+ 27079110
, 0 27 | —2.201-107 4+ [—2.113,2.113]10
2 0.3484 + [~7.806,7.806]10° 98 632210~ + [1.699. 1.699]10 13
’ *23;73(’35 ‘&)‘17 : [ [*25;5;7’2532;]7]1%‘19 29 5.65 104 + [~1.436, 1.436]1017
5 | 4.499-107% + [—1.5557 1.555]1078 50 —805 1915 * 5562, 5'562]1914
6 0.02108 + [~1.812, 1.812]10° i L5107 7+ [-1.458 14S8IL0°
o 1077 4 [_7195, 7195110~ 32 4326 10" +[~1.168, 1.168]10~"*
8 | —2.038-10° 4 [~4.573,4.573]10 10 33 ~3:846- 107 7 4 [29.814, 0.814110°
9 | 4.559-107% 4 [~1.703,1.703]10~° o1 bl 10 et [3.809, 3.809]10 ~16
10 | 1.207- 1073 4 [~2.437, 2.437]10 10 35| TL008-107 T4 [-9.878, 9.878)10°
11| 17221075 + [—7.148,7.148] 10~ 56| 2894100 4 [-7.888, T.888LI0°
12| —2.243-107% + [—2.33772.337}10*10 o 2063 10712+ [_6'592’6'592]10715
13| 1.96-10°° 4+ [~1.743, 1.743]10° 5 802107 T [72.562,2.562]10°
14 | —7.098-107° + [—6.0079, 6.009]10~ ! 59 0011107 "+ [—6.603, 6’603]10_17
15 | —1.855- 1071 + [~2.586,2.586]101° 20 1906 10 ey [+5.255, 5.255] 10 —17
16 | 8.757-107'! 4+ [—3.642,3.642]10° AU 168 10T T [4.875, 4378107
17 | —9.373- 107 +[—3.223,3.223]101° o 1785 0T [_1'702’1’702]10_18
18 | 4.195-107% + [—1.181,1.181]10~° i —A81-10 7 [74.366,4.366110
19 | —4.39-107'% +[—3.988,3.988]10 ! 4| TL2al 100 F A 73464, 8AGH0T
20 | —1.142-107* +[-3.233,3.233]107* " 1094 10 Lt [2.872, 2.872]10 —17
21| 1.051-107" + [—2.777,2.777]10~ " 46| S1055- 100 T4 [ZL118 LUSHO.
22 | —2478-1077 + [—1.0647 1.064]10~1° o 280 10 T |—2.861, 2'861]10719
23 | 3.143- 1073 + [2.981,2.981]10 2 18 8009 10" _ + [-2.264, 2’264],1?9
94 | 8.888.10-13 4+ [_2.403’ 5.403]10~12 49 — 250 small intervals of_vgidtl; 10
) > 251 <3.96-10 °*/k

The bounds above are within W9  i.e., the basin of attraction of the stable fixed point, which

means that the third step of the proof of the main theorem from Section 4 succeeded.
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