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Abstract

In this paper, we study a new variant of Moreau’s sweeping process with velocity
constraint. Based on an adapted version of Moreau’s catching-up algorithm, we show
the well-posedness (in the sense existence and uniqueness) of this problem in a general
framework. We show the equivalence between this implicit sweeping process and
a quasistatic evolution variational inequality. It is well known that the variational
formulations of many mechanical problems with unilateral contact and friction lead to
an evolution variational inequality. As an application, we reformulate the quasistatic
antiplane frictional contact problem for linear elastic materials with short memory as
an implicit sweeping process with velocity constraint. The link between the implicit
sweeping process and the quasistatic evolution variational inequality is possible thanks
to some standard tools from convex analysis and is new in the literature.
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1 Introduction

The notion of the so-called sweeping process was introduced by Jean Jacques Moreau in
the 1970s. Jean Jacques Moreau wrote more than 25 papers devoted to the treatment of
both theoretical and numerical aspects of the sweeping process as well as its applications in
unilateral mechanics [13, 14, 15, 16, 17]. It was first considered for modeling the quasistatic
evolution of elastoplastic systems. The sweeping process consists of finding a trajectory
t ∈ [0, T ] 7→ u(t) ∈ C(t) satisfying the following generalized Cauchy problem

− u̇(t) ∈ NC(t)(u(t)) a.e. on [0, T ], u(0) = u0 ∈ C(0), (1)

where C : [0, T ] ⇒ H is a set-valued mapping defined from [0, T ] (T > 0) to a Hilbert
space H with convex and closed values, and NC(t)(u(t)) denotes the outward normal cone,
in the sense of convex analysis, to the set C(t) at the point u(t). Translating inclusion (1)
to a mechanical language, we obtain the following interpretation:
- If the position u(t) of a particule lies in the interior of the moving set C(t), then the
normal cone is reduced to the singleton {0} and hence u̇(t) = 0, which means that the
particule remains at rest.
- When the boundary of C(t) catches up with the particle, then this latter is pushed in
an inward normal direction by the boundary of C(t) to stay inside C(t) and satisfies the
viability constraint u(t) ∈ C(t). This mechanical visualization led Moreau to call this
problem the sweeping process: the particle is swept by the moving set.
Using the definition of the normal cone, it is easy to see that (1) is equivalent to the
following evolution variational inequality:{

Find u(t) ∈ C(t) such that
〈u̇(t), v − u(t)〉 ≥ 0, ∀v ∈ C(t) and for a. e. t ∈ [0, T ].

In nonsmooth mechanics, the moving set is usually expressed in inequalities form, corre-
sponding to the so-called unilateral constraints,

C(t) :=
m⋂
i=1

{
x ∈ H : fi(t, x) ≤ 0

}
, (2)

where fi : [0, T ]× Rn → R, (i = 1, 2, . . . ,m) are some given regular convex functions.
Several extensions of the sweeping process in diverse ways have been studied in the

literature (see e.g. [1, 10] and references therein). A natural generalization of the sweeping
process is the differential inclusion

−u̇(t) ∈ NC(t)(u(t)) + f(t, u(t)) + F(t, u(t))

u(0) = u0 ∈ C(0)
u(t) ∈ C(t), ∀t ∈ [0, T ],

(3)

where f : [0, T ] × H → H is a Lipschitz mapping and F is a set-valued mapping from
[0, T ]×H into weakly compact convex sets of a Hilbert space H.
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In this paper we are interested in a new variant of the sweeping process of the following
form {

−u̇(t) ∈ NC(t)

(
Au̇(t) +Bu(t)

)
a.e. t ∈ [0, T ].

u(0) = u0 ∈ H.
(4)

We assume that the following assumptions hold:

(SP1) A,B : H −→ H are two linear, bounded and symmetric operators satisfying:{
〈Ax, x〉 ≥ β‖x‖2, for all x ∈ H for some constant β > 0
〈Bx, x〉 ≥ 0, for all x ∈ H.

(SP2) For every t ∈ [0, T ], C(t) ⊂ H is a closed convex and nonempty set such that
t 7→ C(t) is absolutely continuous, in the sense that there exists a nondecreasing absolutely
continuous function v : [0, T ]→ R+ with v(0) = 0 such that

dH(C(t), C(s)) ≤ v(t)− v(s), for all 0 ≤ s ≤ t ≤ T,

where dH denotes the Hausdorff distance defined in (9).
It is worth mentioning that in the particular case where A := I and B := 0, problem
(4) has been studied in [5] by assuming that the set C(t) is prox-regular and satisfying a
compactness condition.
The main goal of this paper is to prove a general existence and uniqueness result for the
implicit differential inclusion described by (4) by assuming that the set-valued mapping
t 7→ C(t) moves in an absolutely continuous way with respect to the Hausdorff distance.
By using an implicit time discretization, we solve at each iteration a variational inequality.
The limit of a sequence of functions, constructed via linear interpolation, is showed to be
a solution of (4). For the particular case when the moving set C(t) = C − f(t) (with
f ∈ W 1,1([0, T ];H) and C a fixed closed convex subset of H), we give an application
to the quasistatic frictional contact problem involving viscoelastic materials with short
memory [7, 11].
The paper is organized as follows. In section 2, we introduce some notations and state
some preliminary results which will be used to establish the existence of discretization and
to prove the convergence of the approximants. In section 3, we present an existence and
uniqueness theorem related to the new variant of the sweeping process problem (4). In
section 4, we give an application to the quasistatic frictional contact problem.

2 Notation and preliminaries

Let H be a real separable Hilbert space endowed with the inner product 〈·, ·〉 and the
associated norm ‖ · ‖. For any x ∈ H and r ≥ 0, the closed ball centered at x with radius
r will be denoted by B(x, r). For x = 0 and r = 1, we will set B instead of B(0, 1). Given a
set-valued map A : H ⇒ H, we denote by D(A), G(A) and R(A) respectively the domain,
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the graph and the range of A, defined by

D(A) = {x ∈ H : A(x) 6= ∅}, G(A) = {(x, y) ∈ D(A)×H : y ∈ A(x)}
and R(A) =

⋃
x∈D(A)

A(x).

We define the inverse of A, A−1 by

y ∈ A(x)⇐⇒ x ∈ A−1(y), i.e. (x, y) ∈ G(A)⇐⇒ (y, x) ∈ G(A−1).

We say that A : H ⇒ H is monotone iff

〈x∗ − y∗, x− y〉 ≥ 0, ∀x∗ ∈ A(x), ∀y∗ ∈ A(y).

We say that A : H ⇒ H is maximal monotone iff it is monotone and its graph is maximal
in the sense of the inclusion, i.e., G(A) is not properly contained in the graph of any other
monotone operator.

Let J : H →] −∞,+∞] be a lower semicontinuous, convex and proper function, i.e.
J ∈ Γ0(H). The effective domain of J , denoted by Dom(J) is defined by

Dom(J) = {x ∈ H : J(x) < +∞}.

For any x ∈ Dom(J), the subdifferential of J at x is defined by

∂J(x) = {ξ ∈ H : 〈ξ, y − x〉 ≤ J(y)− J(x), ∀y ∈ H}. (5)

We recall that for x 6∈ Dom(J), ∂J(x) = ∅ and that if J is of class C1 at x, then
∂J(x) = {∇J(x)}.
For the above function J , its Legendre-Fenchel conjugate is defined as

J∗ : H → R ∪ {−∞,+∞} with J∗(x∗) := sup
x∈H

(
〈x∗, x〉 − J(x)

)
.

The Legendre-Fenchel conjugate is also related to the subdifferential. Indeed, for J(x)
finite, one has

x∗ ∈ ∂J(x)⇔ J∗(x∗) + J(x) = 〈x∗, x〉 ⇔ x ∈ ∂J∗(x∗),

which means that
(
∂J
)−1

= ∂J∗, for every J ∈ Γ0(H).
Given a nonempty closed convex subset C of H, those functions corresponding to the
indicator IC , to the support function σ(C, ·) of C, and to the distance function dC from
the set C, are defined by

IC : H → R ∪ {+∞} with IC(x) = 0 if x ∈ C and IC(x) = +∞ if x 6∈ C,

σ(C, ·) : H → R ∪ {+∞} with σ(C, x∗) := sup
x∈C
〈x∗, x〉,

dC : H → R with dC(x) := inf
y∈C
‖x− y‖.
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From the definition of σ(C, ·), we deduce that σ(C, ·) coincides with the Legendre-Fenchel
conjugate of IC , that is, σ(C, ·) = (IC)∗.
When J = IC and x ∈ C, we have

x∗ ∈ ∂IC(x) if and only if 〈x∗, y − x〉 ≤ 0, for all y ∈ C,

so ∂IC(x) is the set NC(x) of outward normals of the convex set C at the point x ∈ C,
defined by

NC(x) = {x∗ ∈ H : 〈x∗, y − x〉 ≤ 0,∀y ∈ C}.
We have also,

x∗ ∈ NC(x) if and only if σ(C, x∗) = 〈x∗, x〉 and x ∈ C. (6)

It is also clear from the inequality characterization above that

x− PC(x) ∈ NC

(
PC(x)

)
, for all x ∈ H, (7)

where PC(y) denotes the metric projection onto C.
It is easy to check that

NC(−x) = −N−C(x), NC(y + z) = NC−z(y), (8)

for any x ∈ −C and y, z such that y + z ∈ C.
The Hausdorff distance between two subsets C1 and C2 of H, denoted by dH(C1, C2), is
defined by

dH(C1, C2) = max
{

sup
x∈C2

dC1(x), sup
x∈C1

dC2(x)
}
. (9)

The following lemma will be useful.

Lemma 2.1 Let C1 and C2 be two subsets of a Hilbert space H, and z ∈ H . Assuming
that d = dH(C1, C2) < +∞ (i.e., C1 and C2 are non-empty), then we have

|σ(C1, z)− σ(C2, z)| ≤ ‖z‖ dH(C1, C2). (10)

Proof. From the definition of the Hausdorff distance, we have

sup
x∈C1

dC2(x) ≤ d = dH(C1, C2).

Hence, C1 ⊂ C2 + dB. On the other hand, we have,

σ(C1, z) = sup
x∈C1

〈z, x〉 ≤ sup
x∈C2+dB

〈z, x〉 = sup
x∈C2

〈z, x〉+ d sup
x∈B
〈z, x〉 = σ(C2, z) + d ‖z‖ .

Therefore,
σ(C1, z)− σ(C2, z) ≤ ‖z‖ dH(C1, C2). (11)

Since C1 and C2 play a symmetric role, we obtain (10).
We collect below some classical results, that will be useful later, concerning maximal

monotone operators (see e.g. [3]).
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Lemma 2.2 (i) If A is a maximal monotone operator with bounded domain, then A is
onto.

(ii) Let A : H −→ H be a linear, bounded and symmetric operator satisfying:

〈Ax, x〉 ≥ 0, for all x ∈ H.

Then A = ∇ϕ for the continuous convex function ϕ(x) = 1
2〈Ax, x〉; ∀x ∈ H.

(iii) Let A be a maximal monotone operator and B be a maximal Lipschitz single-valued
operator from H into H. Then A+B is maximal monotone.

We end this section with the following lemma on the approximation of unbounded
C(t).

Lemma 2.3 [10, 18] Let C : [0, T ] ⇒ H, t 7→ C(t) satisfy (SP2). Then there exists an
n0 ∈ N such that for all n ≥ n0 we have Cn(t) := C(t) ∩ B(0, n) 6= ∅ for t ∈ [0, T ], and

dH(Cn(t), Cn(s)) ≤ 8dH(C(t), C(s))≤ 8
(
v(t)− v(s)

)
, for all 0 ≤ s ≤ t ≤ T.

3 Main result

The following theorem establishes the well-posedness (existence and uniqueness result) of
the evolution problem (4).

Theorem 3.1 Assume that (SP1) and (SP2) are satisfied. Then for any initial point
u0 ∈ H, with Bu0 ∈ C(0) there exists a unique Lipschitz continuous mapping u : [0, T ]→
H satisfying (4), i.e.

−u̇(t) ∈ NC(t)(Au̇(t) +Bu(t)) a.e. t ∈ [0, T ], u(0) = u0.

Proof. We proceed by discretization of the evolution problem (4): a sequence of
continuous mappings (un(.))n∈N in C([0, T ], H) will be defined such that the limit of
a convergent subsequence is a solution of (4). The sequence is defined via an implicit
algorithm. The proof will be divided into five steps.
Step 1.Construction of approximants uni . Consider for each n ∈ N∗ the following partition
of the interval I := [0, T ]

tni := i
T

n
for 0 ≤ i ≤ n,

Ini :=]tni , t
n
i+1] for 0 ≤ i ≤ n− 1, (12)

In0 := {tn0}.

Lemma 2.3 ensures the existence of n0 ∈ N such that for all n ≥ n0 we have Cn(t) :=
C(t) ∩ B(0, n) 6= ∅ for t ∈ [0, T ], and

dH(Cn(t), Cn(s)) ≤ 8dH(C(t), C(s))≤ 8
(
v(t)− v(s)

)
, for all 0 ≤ s ≤ t ≤ T. (13)
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We propose the following numerical method based on the discretization of (4):
Set µn := T

n . Fix n ≥ n0. We choose by induction :
• un0 = u0,
For i = 0, 1, . . . n− 1 :
• Find zni+1 by solving the following variational inclusion

− zni+1 ∈ NCn(tni+1)(Az
n
i+1 +Buni ). (14)

We show later that the following estimation holds:

‖zni+1‖ ≤
8v(T )

β
exp(

1

β
‖B‖T ) := M. (15)

• Set: uni+1 = uni + µnz
n
i+1

The numerical method proposed above is well defined. Indeed, for i = 0, we have

− zn1 ∈ NCn(tn1 )(Az
n
1 +Bun0 ) (16)

or equivalently,
− zn1 ∈ NCn(tn1 )−Bu0(Azn1 ). (17)

Assumption (SP1) implies that A−1 : H −→ H is monotone and 1
β Lipschitz. Hence, (17)

can be rewritten as
0 ∈ [A−1 + NCn(tn1 )−Bu0 ](Azn1 ). (18)

The lemma 2.2 ensures that the operator

A−1 + NCn(tn1 )−Bu0 : Cn(tn1 )−Bu0 ⇒ R(A−1 + NCn(tn1 )−Bu0)

is also maximal monotone with domain Cn(tn1 )−Bu0.
As the operator B is bounded and all sets Cn(t) are bounded, it follows from Lemma 2.2
that [A−1 + NCn(tn1 )−Bu0 ] is onto.
Consequently,

R(A−1 + NCn(tn1 )−Bu0) = H,

i.e. there exists zn1 solution of (16) or (18) such that Azn1 +Bu0 ∈ Cn(tn1 ).
We set then, un1 = un0 + µnz

n
1 .

By (16) we have

〈Azn1 +Bun0 − v, zn1 〉 ≤ 0, for all v ∈ Cn(tn1 ). (19)

Using (SP1) and (19), we have

β‖zn1 ‖2 ≤ 〈Azn1 , zn1 〉
= 〈Azn1 +Bun0 − v + v −Bun0 , zn1 〉
= 〈Azn1 +Bun0 − v, zn1 〉+ 〈v −Bun0 , zn1 〉
≤ 〈v −Bun0 , zn1 〉
≤ ‖v −Bun0‖‖zn1 ‖, for all v ∈ Cn(tn1 ).
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Hence,

‖zn1 ‖ ≤
1

β
inf

v∈Cn(tn1 )
‖v −Bun0‖ =

1

β
d(Bun0 , Cn(tn1 )).

Using the fact that Bun0 ∈ Cn(0) (since Bun0 ∈ C(0) and B is bounded), we get

‖zn1 ‖ ≤
1

β
dH(Cn(tn1 ), Cn(0))

≤ 8

β
dH(C(tn1 ), C(0))

≤ 8

β

(
v(tn1 )− v(0)

)
≤ 8v(T )

β
.

Now suppose that un0 , u
n
1 , ..., u

n
i , z

n
1 , z

n
2 , ..., z

n
i have been constructed. Observe that the

operator A−1 + NCn(tni+1)−Buni : Cn(tni+1) − Buni ⇒ R(A−1 + NCn(tni+1)−Buni ) is maximal

monotone with bounded domain Cn(tni+1)−Buni . Then Lemma 2.2 ensures that R(A−1 +
NCn(tni+1)−Buni ) = H. Therefore, there exists zni+1 such that Azni+1+Buni ∈ Cn(tni+1) solution
of

− zni+1 ∈ NCn(tni+1)(Az
n
i+1 +Buni ), (20)

which allows us to set uni+1 := uni + µnz
n
i+1.

Also (20), uni = un0 + µn
∑i

k=1 z
n
k , Bun0 ∈ Cn(0) and (SP1) imply that for all v ∈ Cn(tni+1)

‖zni+1‖ ≤
1

β
‖v −Buni ‖ =

1

β
‖v −Bu0 − µn

i∑
k=1

Bznk ‖

≤ 1

β
d(Bu0, Cn(tni+1)) +

1

β
‖B‖µn

i∑
k=1

‖znk ‖

≤ 1

β
dH(Cn(0), Cn(tni+1)) +

1

β
‖B‖µn

i∑
k=1

‖znk ‖

≤ 8

β
dH(C(0), C(tni+1)) + +

1

β
‖B‖µn

i∑
k=1

‖znk ‖

≤ 8

β

(
v(tni+1)− v(0)

)
+

1

β
‖B‖µn

i∑
k=1

‖znk ‖.

Hence,

‖zni+1‖ ≤
8v(T )

β
+

1

β
‖B‖µn

i∑
k=1

‖znk ‖.
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Using a discrete version of Gronwall’s inequality, we obtain

‖zni+1‖ ≤
8v(T )

β
exp(

1

β
‖B‖iµn)

or equivalently,

‖zni+1‖ ≤
8v(T )

β
exp(

1

β
‖B‖T ) := M,

which means that (15) is satisfied and the numerical method is therefore well defined.
Step 2.Construction of the sequence (un(.)).
Using the sequences uni and zni , we construct the sequence of mapping un : [0, T ]→ H, t 7→
un(t) by defining their restrictions to each interval Ini as follows:

un(t) =


un0 if t = 0

uni +
(t−tni )
µn

(uni+1 − uni ) if t ∈ Ini , i = 0, 1, . . . , n− 1.

Clearly the mapping un(·) is Lipschitz on [0, T ], and M is a Lipschitz constant of un(·) on
[0, T ] since for every t ∈]tni , t

n
i+1[, we have

u̇n(t) =
(uni+1 − uni )

µn
= zni+1 with Azni+1 +Buni ∈ Cn(tni+1).

Furthermore, for every t ∈ [0, T ] one has un(t) = u0 +
t∫

0

u̇n(s)ds.

Hence,
‖un(t)‖ ≤ ‖u0‖+MT.

By (14) we have
− zni+1 ∈ NCn(tni+1)(Az

n
i+1 +Buni ). (21)

Define the functions θn and δn from [0, T ] to [0, T ] by θn(t) = tni+1 and δn(t) = tni for any
t ∈ Ini . Inclusion (21) becomes

− u̇n(t) ∈ NCn(θn(t))(Au̇n(t) +Bun(δn(t))) a.e. t ∈ [0, T ]. (22)

Step 3.Convergence of (un(.)). First, We note that

sup
t∈[0,T ]

|θn(t)− t| → 0 as n→∞ and sup
t∈[0,T ]

|δn(t)− t| → 0 as n→∞.

Now, let us prove the convergence of sequences (un) and (u̇n). We have for all n ≥ n0{
‖un(t)‖ ≤ ‖u0‖+ TM, for all t ∈ [0, T ] and
‖u̇n(t)‖ ≤M for almost all t ∈ [0, T ].

We deduce that the sequence (un) is uniformly bounded in norm and variation. Using
Theorem 0.2.1 in [12], there exists a function u : [0, T ] → H of bounded variation and a
subsequence, still denoted (un), such that

un(t) ⇀ u(t) weakly in H for all t ∈ [0, T ], (23)
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un ⇀ u in the weak-star topology of L∞([0, T ], H), (24)

and, for some v∗ ∈ L2([0, T ], H)

u̇n ⇀ v∗ in the weak topology of L2([0, T ], H). (25)

In particular, u(0) = u0. The Lipschitz continuity of un and the weak lower semicontinuity
of the norm give

‖u(t)− u(s)‖ ≤ lim inf
n→+∞

‖un(t)− un(s)‖ ≤M |t− s| for all t, s ∈ [0, T ],

which shows that u(·) is Lipschitz continuous on [0, T ], and hence its derivative u̇(·) exists
for almost every t ∈ [0, T ].
Fix any t ∈ [0, T ]. For each w ∈ H with ‖w‖ ≤ 1, we can write∣∣∣〈w, un(θn(t))− u(t)〉

∣∣∣ ≤ ∣∣∣〈w, un(θn(t))− un(t)〉
∣∣∣+
∣∣∣〈w, un(t)− u(t)〉

∣∣∣
≤M

∣∣∣θn(t)− t
∣∣∣+
∣∣∣〈w, un(t)− u(t)〉

∣∣∣. (26)

Taking into account (23), we get un(θn(t)) ⇀ u(t) weakly in H as n →∞. On the other
hand, we have

〈w, un(t)〉 = 〈w, u0〉+

∫ T

0

〈
1[0,t](s)w, u̇n(s)

〉
ds.

Using (25) and taking the limit as n→∞, we obtain

〈w, u(t)〉 = 〈w, u0〉+

∫ T

0

〈
1[0,t](s)w, v∗(s)

〉
ds =

〈
w, u0 +

∫ t

0
v∗(s) ds

〉
.

The latter equality being true for all w ∈ H, we deduce that u(t) = u0 +
∫ t

0 v∗(s) ds, and
this guarantees that u̇(·) = v∗(·) almost everywhere.
Consequently,

u̇n(·) ⇀ u̇(·) weakly in L2([0, T ], H). (27)

Using (26), we deduce that un(θn(t)) ⇀ u(t), as n→ +∞, weakly in H, for all t ∈ [0, T ].
Step 4.We show that u(.) is a solution of (4).
Let us prove first the following viability condition:

Au̇(t) +Bu(t) ∈ C(t), a.e. on [0, T ]. (28)

Fix any t ∈ [0, T ] such that u̇(t) exists. For each z ∈ H with ‖z‖ ≤ 1, we can write

〈z,Au̇(t) +Bu(t)〉 = 〈z,Au̇(t) +Bu(t)−Au̇n(t)−Bun(δn(t)) +Au̇n(t) +Bun(δn(t))〉
= 〈z,Au̇n(t) +Bun(δn(t))〉+ 〈z,Au̇(t)−Au̇n(t) +Bu(t)−Bun(δn(t)〉.

as Au̇n(t) +Bun(δn(t)) ∈ Cn(θn(t)) ⊂ C(θn(t)), the last inequality becomes

〈z,Au̇(t) +Bu(t)〉 ≤ σ(C(θn(t)), z) + 〈z,Au̇(t)−Au̇n(t) +Bu(t)−Bun(δn(t)〉.(29)
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From the property of the support function (see Lemma 2.1), we derive

| σ(C(θn(t)), z)− σ(C(t)), z)| ≤ ‖z‖dH(C(θn(t)), C(t)).

Hence,
σ(C(θn(t)), z) ≤ σ(C(t)), z) + | v(θn(t))− v(t)| (30)

Combining (29) and (30) we obtain

〈z,Au̇(t) +Bu(t)〉 ≤ σ(C(t), z) + | v(θn(t))− v(t)| + 〈z,Au̇(t)−Au̇n(t)〉+

〈z,Bu(t)−Bun(δn(t)〉. (31)

Itegrating (31) with τ > 0 small, we obtain

t+τ∫
t−τ

〈z,Au̇(s) +Bu(s)〉ds ≤
t+τ∫
t−τ

σ(C(s), z)ds+

t+τ∫
t−τ

〈z,Au̇(s)−Au̇n(s)〉ds+

t+τ∫
t−τ

〈z,Bu(s)−Bun(δn(s))〉ds+

∫ T

0
|v(θn(t))− v(t)|dt.

It is easily seen that
∫ T

0 |v(θn(t)) − v(t)|dt → 0 as n → ∞. Also the weak convergence of
un and u̇n to u and u̇ in L2([0, T ];H) respectively and the properties of A and B yield as
n→∞

t+τ∫
t−τ

〈z,Au̇(s) +Bu(s)〉ds ≤
t+τ∫
t−τ

σ(C(s), z)ds.

Dividing by 2τ and letting τ tend to zero, the Lebesgue differentiation theorem gives

〈z,Au̇(t) +Bu(t)〉 ≤ σ(C(t), z).

The latter inequality being true for all z ∈ H, we deduce according to the closdeness and
the convexity of C(t) that Au̇(t) +Bu(t) ∈ C(t), which means that (28) is proved.
Finally we show that u(.) satisfies the differential inclusion in (4). By (18) and the defini-
tion of the normal cone, we have

〈−u̇n(t), v −Au̇n(t)−Bun(δn(t))〉 ≤ 0, ∀ v ∈ Cn(θn(t)), a.e. t ∈ [0, T ]. (32)

We claim that for all t ∈ [0, T ] for which (32) holds and v ∈ Cn(t) we have

〈−u̇n(t), v −Au̇n(t)−Bun(δn(t))〉 ≤ εn(t), (33)

with εn(t) = 8M |v(θn(t))− v(t)|.
Indeed, by (13) we have v ∈ Cn(t) ⊂ Cn(θn(t)) + 8|v(θn(t)) − v(t)|B. So, there exists
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ṽ ∈ Cn(θn(t)) with ‖v − ṽ‖ ≤ 8|v(θn(t))− v(t)|.
By (32), we obtain

〈−u̇n(t), v −Au̇n(t)−Bun(δn(t))〉 = 〈−u̇n(t), v − ṽ + ṽ −Au̇n(t)−Bun(δn(t))〉
= 〈−u̇n(t), v − ṽ〉+

〈−u̇n(t), ṽ −Au̇n(t)−Bun(δn(t))〉
≤ 8M |v(θn(t))− v(t)| = εn(t),

the claim (33) follows.
Choose arbitrary t0 ∈ [0, T ] and v0 ∈ C(t0). Suppose that τ > 0 is such that for all most
all t ∈ [0, T ], there exists a unique projection

v(t) =

{
PC(t)(v0) ∈ C(t), if t ∈ [t0 − τ, t0 + τ ],

PC(t)(Au̇(t) +Bu(t)) = Au̇(t) +Bu(t) ∈ C(t), otherwise.

Hence, v(.) is a L∞([0, T ];H) selection of the absolutely continuous set-valued map C(.)
on [0, T ]. The boundedness of v(.) on the compact interval [0, T ] implies that v(t) ∈ Cn(t)
for all n ∈ N sufficiently large. Using (33), we have

T∫
0

〈−u̇n(t), v(t)−Au̇n(t)−Bun(δn(t))〉dt ≤
T∫

0

εn(t)dt, (34)

or equivalently,

T∫
0

〈u̇n(t), Au̇n(t)〉dt+

T∫
0

〈u̇n(t), Bun(δn(t))〉dt+

T∫
0

〈u̇n(t),−v(t)〉dt ≤
T∫

0

εn(t)dt. (35)

From the properties of A, we note that the function x(t) 7→
T∫

0

〈x(t), Ax(t)〉dt is convex

and weakly lower semicontinuous on L2([0, T ];H).
So we have,

∫ T

0
〈u̇(t), Au̇(t)〉dt ≤ lim inf

n→∞

T∫
0

〈u̇n(t), Au̇n(t)〉dt, (36)

and

∫ T

0
〈u̇(t),−v(t)〉dt = lim

n→∞

T∫
0

〈u̇n(t),−v(t)〉dt. (37)
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On the other hand, we have B = ∇ϕB, for the continuous convex function ϕB(x) =
1
2〈Bx, x〉. Therefore, the absolute continuity of ϕB ◦ u and ϕB ◦ un gives

T∫
0

〈Bu(t), u̇(t)〉 dt =

T∫
0

d

dt
ϕB(u(t))dt = ϕB(u(T ))− ϕB(u(0))

≤ lim inf
n→∞

(
ϕB(un(T ))− ϕB(un(0))

)
= lim inf

n→∞

( T∫
0

d

dt
ϕB(un(t)) dt

)

= lim inf
n→∞

T∫
0

〈Bun(t), u̇n(t)〉 dt, (38)

where the inequality is due to the weak lower semicontinuity of ϕB on H and to the fact
that un(T ) ⇀ u(T ) weakly in H as n→∞.
Since,

T∫
0

∣∣∣〈Bun(t)−Bun(δn(t)), u̇n(t)〉
∣∣∣ dt ≤M2‖B‖

∫ T

0
|t− δn(t)| dt,

we deduce that

lim inf
n→∞

T∫
0

〈Bun(t), u̇n(t)〉 dt = lim inf
n→∞

T∫
0

〈Bun(δn(t)), u̇n(t)〉 dt. (39)

Since
∫ T

0 εn(t)dt→ 0 as n→∞, inequalities (35),(36), (37), (38) and (39) yield as n→∞

T∫
0

〈−u̇(t), v(t)−Au̇(t)−Bu(t)〉dt ≤ 0. (40)

Using the definition of v(t) above, we get

t0+τ∫
t0−τ

〈−u̇(t), v(t)−Au̇(t)−Bu(t)〉dt ≤ 0. (41)

Dividing (41) by 2τ , letting τ goes to zero and using the Lebesgue differentiation theorem,
we get

〈−u̇(t0), v(t0)−Au̇(t0)−Bu(t0)〉 ≤ 0, (42)

or equivalently,
〈−u̇(t0), v0 −Au̇(t0)−Bu(t0)〉 ≤ 0, (43)
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for all t0 ∈ [0, T ], outside a fixed set of measure zero {tni , i = 0, 1, ..., n;n ∈ N}, and all
v0 ∈ C(t0). This means that u(.) is a solution of the inclusion (4).

Step 5.Uniqueness of the solution. Suppose that (u1, u2) are two solutions satisfying (4)
such that u1(0) = u2(0) = u0. Then for almost every t ∈ [0, T ], we have for i = 1, 2

〈−u̇i(t), v −Au̇i(t)−Bui(t)〉 ≤ 0, for all v ∈ C(t). (44)

Using the fact that Au̇i(t) +Bui(t) ∈ C(t) a.e., we obtain, for a.e. t ∈ [0, T ],{
〈u̇1(t), Au̇1(t) +Bu1(t)−Au̇2(t)−Bu2(t)〉 ≤ 0,
〈−u̇2(t), Au̇1(t) +Bu1(t)−Au̇2(t)−Bu2(t)〉 ≤ 0.

By adding the last two inequalities, we get〈
u̇1(t)− u̇2(t), A

(
u̇1(t)− u̇2(t)

)
+B

(
u1(t)− u2(t)

)〉
≤ 0.

Since A is coercive, we obtain

β‖u̇1(t)− u̇2(t)‖2 ≤ ‖B‖‖u̇1(t)− u̇2(t)‖‖u1(t)− u2(t)‖.

As u1(0) = u2(0) = u0, we get

‖u̇1(t)− u̇2(t)‖ ≤ ‖B‖
β

t∫
0

‖u̇1(τ)− u̇2(τ)‖dτ,

which means by Gronwall’s inequality that u̇1(t) = u̇2(t) for a.e. t ∈ [0, T ]. Therefore
u1(t) = u2(t) for all t ∈ [0, T ]. The proof of Theorem 3.1 is thereby completed.

4 Application to quasistatic frictional contact problem

As an application of the sweeping process problem (4), we consider the following evolution
variational inequality

Find u : [0, T ] −→ H such that u̇(t) = du(t)
dt ∈ K a.e. t ∈ [0, T ] and

a
(
u̇(t), v − u̇(t)

)
+ b
(
u(t), v − u̇(t)

)
+ j(v)− j(u̇(t)) ≥ 〈f(t), v − u̇(t)〉, ∀ v ∈ K.

u(0) = u0 ∈ H,

(45)

Assume that the following assumptions are satisfied:

(VI1) K ⊂ H is a nonempty, closed and convex cone (hence 0 ∈ K).
(VI2) a(·, ·), b(·, ·) : H × H → R are two real continuous bilinear and symmetric forms
satisfying for all u ∈ H

a(u, u) ≥ α0‖u‖2,
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for some positive constant α0 > 0 and b(u, u) ≥ 0.
(VI3) j : K −→ R is a convex, positively homogeneous of degree 1 (i.e. j(λx) =
λj(x), ∀λ > 0) and Lipschitz continuous with j(0) = 0.
(VI4) f ∈W 1,1([0, T ];H) with b(u0, v) + j(v) ≥ 〈f(0), v〉, for all v ∈ K.

Remark 4.1 The compatibility condition on the initial data

b(u0, v) + j(v) ≥ 〈f(0), v〉, ∀v ∈ K,

ensures that initially the state is in equilibrium and that Bu0 ∈ C(0) (see (53)).

The evolution variational inequality (45) is of great interest in the modeling of the qua-
sistatic frictional contact problems (see [7, 8, 11]). In a mechanical language, the bilinear
form a(·, ·) represents the viscosity term, the bilinear form b(·, ·) represents the elasticity
term, the functional j represents the friction functional of Tresca type.
For our purpose of motivation, the main concern is to prove that the variational inequality
(45) is of type (4). In other words, we will convert the quasistatic variational inequality
(45) to the problem of finding a solution of the sweeping process (4).
Let us first extend the function j from K to the whole space H by introducing the func-
tional J : H → R ∪ {+∞}, z 7→ J(z) defined by

J(z) =

{
j(z), z ∈ K,
+∞, z /∈ K. (46)

Since K is a nonempty, closed and convex cone, and j is convex, positively homogeneous of
degree 1 and Lipschitz continuous on K, we deduce that the extended functional J : H −→
R∪{+∞} is proper, positively homogeneous of degree 1, convex and lower semicontinuous
with J(0) = 0.
With this extension, (45) is equivalent to

Find u : [0, T ] −→ H such that for a.e. t ∈ [0, T ] we have

a(u̇(t), v − u̇(t)) + b(u(t), v − u̇(t)) + J(v)− J(u̇(t)) ≥ 〈f(t), v − u̇(t)〉 ∀v ∈ H.

u(0) = u0 ∈ H,

(47)

Let A and B be the linear bounded and symmetric operators associated respectively to
the bilinear forms a(·, ·) and b(·, ·), that is,

〈Au, v〉 = a(u, v) and 〈Bu, v〉 = b(u, v), for all u, v ∈ H. (48)

Using the definition of the subdifferential given in (5), we can rewrite (47) in the following
form {

f(t)−Au̇(t)−Bu(t) ∈ ∂J(u̇(t)) a.e. t ∈ [0, T ],
u(0) = u0 ∈ H.

(49)
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The following Proposition shows the equivalence between the variant of the sweeping
process introduced in (4) and the quasistatic variational inequality (47).

Proposition 4.2 Assume that assumptions (VI1)-(VI4) are satisfied. The function u :
[0, T ] −→ H is a solution of (45) if and only if it is a solution of the sweeping process (4),
where A and B are the linear bounded and symmetric operators associated with a(·, ·) and
b(·, ·), and C(t) := f(t)− ∂J(0), t ∈ [0, T ] with J defined in (46).

Proof. It is easy to see that u is a solution of the variational inequality (45) if and
only if it is a solution of the differential inclusion (49).
From the properties of the subdifferential of ∂J and since J(0) = 0, we deduce that the
subset

C := ∂J(0) = {ξ ∈ H : 〈ξ, v〉 ≤ J(v),∀v ∈ H}, (50)

is a closed convex subset in H.
Since J is positively homogeneous of degree 1 with J(0) = 0, from a standard result in
convex analysis, we have

J(z) = σ(C, z) = I∗C(z).

Hence,
∂J(·) = ∂I∗C(·) and J∗(·) = I∗∗C (·) = IC(·).

On the other hand, we have

p ∈ ∂J(z)⇐⇒ z ∈ ∂J∗(p).

Therefore,
p ∈ ∂J(z)⇐⇒ z ∈ ∂IC(p)⇐⇒ z ∈ NC(p), with C = ∂J(0). (51)

Applying (51) to (49) and using (8), we get for a.e. t ∈ [0, T ],

f(t)−Au̇(t)−Bu(t) ∈ ∂J(u̇(t))⇐⇒ u̇(t) ∈ NC

(
f(t)−Au̇(t)−Bu(t)

)
⇐⇒ u̇(t) ∈ NC−f(t)(−Au̇(t)−Bu(t))

⇐⇒ −u̇(t) ∈ NC(t)(Au̇(t) +Bu(t)),

with C(t) := f(t)− C = f(t)− ∂J(0).
Hence, problem (49) is equivalent to{

−u̇(t) ∈ NC(t)(Au̇(t) +Bu(t)) a.e. t ∈ [0, T ],

u(0) = u0 ∈ H,
(52)

which is exactly of the form of the variant of the sweeping process introduced in (45).

As a consequence of Theorem 3.1, we have the following existence and uniqueness result
for the quasistatic variational inequality (45).
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Corollary 4.3 Assume that assumptions (VI1)-(VI4) are satisfied. Then for each u0 ∈
H, the evolution variational inequality (45) has a unique solution u.

Proof. Let us check that all assumptions of Theorem 3.1 are satisfied. It is clear that
assumptions (VI2) are equivalent to (SP1). Let us check now that (SP2) is verified. For
every t ∈ [0, T ], we have C(t) = f(t)− C = f(t)− ∂J(0). It is clear that C(t) is a closed
and convex set of H. On the hand, we have,

Bu0 ∈ C(0) ⇐⇒ f(0)−Bu0 ∈ C
⇐⇒ f(0)−Bu0 ∈ ∂J(0)

⇐⇒ 〈f(0), v〉 ≤ j(v) + b(u0, v), ∀v ∈ K. (53)

Let us show now that the set-valued map t 7→ C(t) moves in an absolute continuous way.
In fact, for all 0 ≤ s ≤ t ≤ T , we have

dH(C(t), C(s)) ≤
∥∥f(t)− f(s)

∥∥
=

∥∥∥ t∫
s

ḟ(τ)dτ
∥∥∥

≤
t∫
s

‖ḟ(τ)‖dτ

= v(t)− v(s) with v(t) :=

t∫
0

‖ḟ(τ)‖dτ.

which means that C(.) varies in an absolutely continuous way.
Hence, all assumptions of Theorem 3.1 are satisfied. The existence and uniqueness of a
solution to problem (45) is simply a consequence of Theorem 3.1.

Example 4.4 Quasistatic frictional contact problem involving viscoelastic ma-
terials with short memory [11]. Let Ω ⊂ R2 be the section of a tube with infinity
length Ω×]−∞,+∞[ (see Figure 1). We assume that Ω is an open bounded connected set
with a regular boundary Γ = ∂Ω, (Γ is a one-dimensional manifold of class Cm (m ≥ 1 )
and Ω is located on one side of ∂Ω). We suppose that Γ is composed of three parts
Γ = Γ1 ∪Γ2 ∪Γ3, with Γi three open subsets for i = 1, 2, 3 and meas(Γ1) > 0. In this case
the well-known Korn’s inequality is satisfied. We assume that the cylinder is clamped on
Γ1 and in contact with a rigid foundation on Γ3. The cylinder deforms under the action of
a surface density force f0 on Ω acting in the axle-direction and traction forces of density
f2 on Γ2 (for more details about the mathematical modeling of the antiplane shear, we
refer to [11], Chapter 8). For simplification, we will omit the dependence of functions with
respect to the space variable x ∈ Ω∪Γ and the time variable t ∈ [0, T ]. Moreover, the dot
represents the time derivative i.e. u̇ = du

dt .
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Figure 1: Cross section of the cylinder in contact with a foundation.

The displacement of the cylinder is governed by the following quasistatic variational in-
equality:

Find u : [0, T ] −→ H such that for a.e. t ∈ [0, T ] we have

a(u̇(t), v − u̇(t)) + b(u(t), v − u̇(t)) + J(v)− J(u̇(t)) ≥ 〈f(t), v − u̇(t)〉 ∀v ∈ H,

u(0) = u0 ∈ H,

(54)

where H = {v ∈ H1(Ω) : v = 0 on Γ1}, the bilinear forms: a(·, ·), b(·, ·) : H × H →
R, (u, v) 7→ a(u, v), b(u, v), the frictional functional J : H → R, v 7→ J(v) and the
function f : [0, T ]→ H, t 7→ f(t) are defined respectively by

a(u, v) =

∫
Ω
η ∇u · ∇v dx

b(u, v) =

∫
Ω
κ∇u · ∇v dx

J(v) =

∫
Γ3

g|v|dΓ.

〈f(t), v〉 =

∫
Ω
f0(t)v dx+

∫
Γ2

f2(t)v dΓ.

(55a)

(55b)

(55c)

(55d)

Remark 4.5 The variational formulation (54) derived from the following problem:
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Find a displacement field u : [0, T ]× Ω→ R, (t, x) 7→ u(t, x) such that

(P)



div
(
η(x)∇u̇(t, x) + κ(x)∇u(t, x)

)
+ f0 = 0 in ]0, T [×Ω;

u(t, ·) = 0 on ]0, T [×Γ1;

η∂ν u̇+ κ∂νu = f2 on ]0, T [×Γ2;∣∣η∂ν u̇+ κ∂νu
∣∣ ≤ g on ]0, T [×Γ3;

η∂ν u̇+ κ∂νu = −g u̇
|u̇|

if u̇ 6= 0, on ]0, T [×Γ3;

u(0, ·) = u0(·) in Ω.

(56a)

(56b)

(56c)

(56d)

(56e)

(56f)

Here ν denotes the unit outer normal on the boundary Γ. Equation (56a) is the equilibrium
state equation where a viscoelastic constitutive law with short memory is assumed, (56b)
is the Dirichlet boundary condition on Γ1, (56c) is the traction boundary condition on
Γ2, (56d)-(56e) are the frictional conditions and (56f) is the initial condition. For more
details we refer to [11] page 191. If the contact is modeled with a nonmonotone normal
compliance condition and a unilateral constraint, then it is possible to study the problem
in the framwork of variational-hemivariational inequalities (see e.g. the recent papers [2, 9]
and references therein).

We suppose that the viscosity coefficient η, the Lamé coefficient κ, the forces f0, f2 and
the friction function g satisfy the following conditions

κ ∈ L∞(Ω)

η ∈ L∞(Ω) with η(x) ≥ η∗ a.e. x ∈ Ω (for some η∗ > 0).

f0 ∈W 1,1([0, T ];L2(Ω)), f2 ∈W 1,1([0, T ];L2(Γ2))

g(x) ≥ 0 a.e. x ∈ Γ3 and g ∈ L2(Γ3).

b(u0, v) +

∫
Γ3

g|v| dΓ ≥
∫

Ω
f0(0)v dx+

∫
Γ2

f2(0)v dΓ, ∀v ∈ H.

(57a)

(57b)

(57c)

(57d)

(57e)

As a direct consequence of Corollary 4.3, we show that problem (54) is well-posed.

Corollary 4.6 Assume (57a)-(57d). Then for each u0 ∈ H satisfying (57e), problem
(54)-(55) has a unique solution.

Proof. We have

|a(u, v)| ≤ ‖η‖∞‖u‖‖v‖ and |b(u, v)| ≤ ‖κ‖∞‖u‖‖v‖.

The coercivity of a(·, ·) follows from (57b)

a(v, v) ≥ η∗‖v‖2, ∀v ∈ H.

Assumption (57e) implies the compatibility condition (VI4). All assumptions (VI1)-(VI4)
are satisfied. The conclusion follows by Corollary 4.3.
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Remark 4.7 We note that the existence of a unique solution to problem (54)-(55) was
obtained in [11] without the compatibility condition (57e). This condition was used in
[11] for the the study of quasistatic frictional problems with elastic materials (see Section
9.3 page 184 and (11.37) page 208 in [11]). We note that the compatibility condition
(57e) is necessary in many quasistatic problems, it guarantees that the initial state is in
equilibrium otherwise the inertial terms ü(t) cannot be neglected and the problem is no
longer quasistatic (it will be a dynamic of second-order). For the implicit sweeping process
studied in this paper, condition (57e) is equivalent to the viability condition Bu0 ∈ C(0)
(necessary to start the algorithm since outside this set the normal cone would be empty).
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Sér. A-B, 273 (1971), A118-A121.

[15] J.J. Moreau, Rafle par un convexe variable I, Sém. Anal. Convexe Montpellier
(1971), Exposé 15.
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