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Multilevel Sequential Monte Carlo with Dimension-Independent
Likelihood-Informed Proposals∗

Alexandros Beskos† , Ajay Jasra‡ , Kody Law§ , Youssef Marzouk¶, and Yan Zhou‡

Abstract. In this article we develop a new sequential Monte Carlo method for multilevel Monte Carlo esti-
mation. In particular, the method can be used to estimate expectations with respect to a target
probability distribution over an infinite-dimensional and noncompact space—as produced, for exam-
ple, by a Bayesian inverse problem with a Gaussian random field prior. Under suitable assumptions
the MLSMC method has the optimal O(ε−2) bound on the cost to obtain a mean-square error of
O(ε2). The algorithm is accelerated by dimension-independent likelihood-informed proposals [T. Cui,
K. J. Law, and Y. M. Marzouk, (2016), J. Comput. Phys., 304, pp. 109–137] designed for Gaussian
priors, leveraging a novel variation which uses empirical covariance information in lieu of Hessian
information, hence eliminating the requirement for gradient evaluations. The efficiency of the algo-
rithm is illustrated on two examples: (i) inversion of noisy pressure measurements in a PDE model
of Darcy flow to recover the posterior distribution of the permeability field and (ii) inversion of noisy
measurements of the solution of an SDE to recover the posterior path measure.

Key words. multilevel Monte Carlo, sequential Monte Carlo, Bayesian inverse problem, uncertainty quantifi-
cation
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1. Introduction. The estimation of expectations under a target probability distribution
over an infinite-dimensional and noncompact space has a wide range of applications, e.g., [33]
and the references therein. In particular, Bayesian inverse problems (BIP) with Gaussian
random field priors are an important class of such mathematical models. In most cases of
practical interest, one must compute estimates of expectations using the Monte Carlo method
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under a finite-dimensional discretization of the associated probability distribution; see [8, 23],
for example.

In many scenarios, such as the BIP above, the finite-dimensional approximation of the
probability distribution of interest becomes more accurate but more computationally ex-
pensive as the dimension of the approximation increases to infinity. This is precisely the
class of problems of interest in this paper. It is well known that the multilevel Monte Carlo
(MLMC) method [17, 21] can reduce the computational effort, relative to independent sam-
pling (from a given fixed resolution) required to obtain a particular mean-square error; see
[23, 4]. MLMC uses a sequence of increasingly accurate approximations of the target dis-
tribution and relies on sampling independently from a collection of couples of this sequence
and employing the multilevel (ML) identity; details are given later in the paper. A main
challenge in the problems of interest here is that such independent sampling is not currently
possible.

This paper employs sequential Monte Carlo (SMC) samplers, as these approaches have
been shown to outperform Markov chain Monte Carlo (MCMC) in many cases (e.g., [25]) and
to be robust in classes of high-dimensional problems [1, 2, 13]. In [4] an SMC method for
ML estimation was introduced (and extended in [14]) and analyzed for a class of BIPs. This
method was developed for scenarios where ML estimation is expected to be quite beneficial,
but where independent sampling from the couplings of interest is not trivial to perform. The
papers [4, 14] use SMC to replace independent sampling and coupling in the ML context.
However, the approaches in [4, 14] can only deal with a sequence of probability distributions
on a fixed state-space. That is, the dimension of the parameter of interest, and hence the
state space of the resulting sequence of distributions, is assumed to be fixed. Different levels
in the estimation scheme correspond to refinements of the PDE approximation for the forward
model. In contrast, this paper assumes that the parameter of interest is in principle infinite-
dimensional; thus the resolution of the parameter is refined along with the approximation
of the PDE model as the level increases. The dimension of the state space of the resulting
distributions therefore increases at each level, and hence a modification of previous multilevel
algorithms in [4, 14] is required.

The main contributions of this paper are as follows:
1. the design of a new SMC sampler approach for MLMC estimation which allows refine-

ment of the parameter space and solver of the forward model,
2. under assumptions, a theoretical cost analysis for this MLSMC method,
3. introduction of a covariance-based version of the likelihood-informed subspace (cLIS)

of [10, 9] and a method for its sample approximation,
4. adoption of efficient dimension-independent likelihood-informed (DILI) proposals [9]

within the SMC algorithm, utilizing the new cLIS.
In terms of 1 and 2 there are few methodologies that exist to implement the ML procedure
on our problem of interest, nor accompanying theory. For 3 the idea of the approach is to
improve proposals in MCMC. In comparison to the LIS method of [10], cLIS does not need
potentially expensive or complex gradient/Hessian information. In addition, as we discuss in
section 3, when used as part of Gaussian proposals, it is not clear that there is a considerable
loss in information of using cLIS against LIS. SMC samplers rely on MCMC as well as on
sequential importance sampling/resampling. For such samplers to work well, the MCMC stepD
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764 A. BESKOS, A. JASRA, K. LAW, Y. MARZOUK, AND Y. ZHOU

must mix over the high-dimensional state space at a reasonable rate. We show that this can
be achieved through the mechanism in point 4.

A related multilevel approach in [19] could also be considered for the class of problems
in this paper. However, it would have to be modified for the present setting. The sequence
of distributions considered in this paper is associated with a convergent approximation of a
single static target distribution. The present work is not relevant for online data assimilation.

This article is structured as follows. In section 2, the basic algorithm and estimation
procedure are introduced. Section 3 presents the derivation of the DILI proposal given a
collection of samples. Section 4 shows how the DILI proposal methodology can be embedded
within the context of MLSMC. Section 5 presents several numerical implementations of our
methodology. Some proofs and technical mathematical results are deferred to the appendix.

2. Multilevel sequential Monte Carlo samplers.

2.1. Model. Let U0, U1, . . . be a sequence of spaces, Un ⊆ Rd′n , d′n ∈ N, n ≥ 0. Let
En =

⊗n
i=0 Ui ⊆ Rdn , where dn =

∑n
i=0 d

′
i. We consider a sequence of probability measures

{η̂n}n≥0 on {En}n≥0. Without confusion, we denote the densities with respect to appropriate
dominating measures (for this work, these will correspond to Lebesgue measures) also as
{η̂n}n≥0. We suppose that

η̂n(u0:n) =
κn(u0:n)

Zn

with κn : En → R+ known but Zn possibly unknown. The probability measures of inter-
est in this work are associated with Bayesian problems in high-dimensions. (BIPs over a
basis function-type approximate solution of a PDE or inference problems related with the
approximation of an SDE; see section 5.) As n grows, so does the dimension of the target,
towards a well defined infinite-dimensional limit. Let the approximate forward solution of the
continuous system associated to an input u0:` ∈ E` processed into a finite number p ∈ N of
summary values be denoted by ρ`, i.e., ρ` : E` → Rp. We are interested in computing, for
bounded-measurable functions ϕ : Rp → R,

η̂L(ϕ ◦ ρL) :=

∫
EL

ϕ(ρL(u0:L))η̂L(u0:L)du0:L

for some large L or, ideally, η̂∞(ϕ ◦ ρ∞). We denote the infinite resolution expectation as
η̂(ϕ) := η̂∞(ϕ ◦ ρ∞). In addition it is of interest to estimate the normalizing constant ZL or
Z∞. Define ρl(u0:n) := ρl(u0:l) for n > l.

Assume that

(2.1) κ`(du0:`) = L`(u0:`)µ0(du0:`),

where L`(u0:`) is a likelihood term, related to observations of the approximate solution of
the continuous system, and µ0 is the prior density typically defined on the whole E∞ with
µ0(du0:`) referring to its finite-dimensional marginal distribution on u0:` ∈ E`. It is worth
noting that the algorithms to be described later will be more broadly applicable than the
context described in this paragraph.D
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2.2. Algorithm. We consider a sequence of Markov kernels {Kn}n≥0, Kn : En → P(En)
(P(En) is the set the probability measures on En) each keeping the respective measure {η̂n}n≥0

invariant, i.e., η̂nKn = η̂n. Let {qn}n≥1 be a sequence of probability kernels on {Un}n≥1, so
that qn : En−1 → P(Un). Let {Mn}n≥1, Mn : En−1 → P(En) be defined as

Mn(u0:n−1, du
′
0:n) = Kn−1(u0:n−1, du

′
0:n−1)⊗ qn(u′0:n−1, du

′
n).

Finally, let G0(u0) = 1, and for n ≥ 1

Gn(u0:n) =
κn(u0:n)

κn−1(u0:n−1)qn(u0:n−1, un)
,

where the slightly degenerate notation qn(u0:n−1, dun) = qn(u0:n−1, un)dun has been used. For
n ≥ 0, ϕ ∈ Bb(En) (the space of bounded, measurable functions on En), set

γn(ϕ) :=

∫
E0×···×En

ϕ(u0:n(n))
{ n−1∏
p=0

Gp(u0:p(p))
}
η̂0(du0(0))

{ n∏
p=1

Mp(u0:p−1(p−1), du0:p(p))
}
.

Then, from standard Feynman–Kac model calculations [11] one can show that, for n ≥ 1,
η̂n(ϕ) = γn(Gnϕ)/γn(Gn). Denote ηn(ϕ) = γn(ϕ)/γn(1), n ≥ 0. Note that Zn/Z0 ≡ γn(Gn)
and η0 ≡ η̂0 (since G0 ≡ 1). Let n ≥ 1, µ ∈ P(En−1) and define Φn : P(En−1)→ P(En)

Φn(µ)(du0:n) =
µ(Gn−1Mn( · , du0:n))

µ(Gn−1)
.

Our ML algorithm works as follows. Let N0 ≥ N1 ≥ · · · ≥ NL ≥ 1 be a sequence of given
integers. The algorithm approximates the sequence {ηn}0≤n≤L. At time zero, one samples

N0∏
i=1

η0(dui0(0)).

Let ηN0
0 denote the N0-empirical measure of samples. At time 1, one samples from

N1∏
i=1

Φ1(ηN0
0 )(dui0:1(1)).

Thus, in an obvious extension of the notation, the joint law of the algorithm is

( N0∏
i=1

η0(dui0(0))
)( L∏

`=1

Nl∏
i=1

Φ`(η
N`−1

`−1 )(dui0:`(`))
)
.

Notice that the present algorithm is different from the one in [12], and hence also the algo-
rithm in [4]. In particular, the state space dimension here grows at each iteration. Moreover,
the present algorithm is not the standard one used for nonlinear state-space models, as our
implementation includes an MCMC step and as we now explain, this is not desirable in theseD
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766 A. BESKOS, A. JASRA, K. LAW, Y. MARZOUK, AND Y. ZHOU

alternative contexts. The present algorithm will have increasing cost with time (the subscript
n). This is because the cost of the MCMC steps and sometimes the cost of computing Gn will
grow at some rate with the size of the state space. This is generally not desirable for classi-
cal applications of SMC methods associated with the filtering of non-Gaussian and nonlinear
state-space models (i.e., dynamic problems with data arriving sequentially in time). The al-
gorithm described above is designed for inverse problems that are so-called static, i.e., one has
a single instance of the data from which to make inference. Such growth is therefore less of
a concern. Note, also, that the MCMC step is necessary for the efficiency of the algorithm.
This algorithm can be iterated until n = ∞, although the cost will be infinite. Here we are
interested in controlling the rate of growth in cost as one approaches the unbiased estimator.
In certain contexts it is possible to design an algorithm which produces unbiased estimators
targeting E∞ for finite cost; see [2]. The extension of this algorithm to the latter context is
beyond the scope of the current article and will be a topic of future work.

2.2.1. Multilevel estimation. We note that

η̂L(ϕ ◦ ρL) =
L∑
`=0

[η̂`(ϕ ◦ ρ`)− η̂`−1(ϕ ◦ ρ`−1)]

with η̂−1(ϕ ◦ ρ−1) := 0. Now

η̂`(ϕ ◦ ρ`) =
Z`−1

Z`
η̂`−1M`(G` ϕ ◦ ρ`) =

Z`−1

Z`
(η̂`−1 ⊗ q`) (G` ϕ ◦ ρ`).

Also η`(ϕ◦ρ`−1) ≡ η̂`−1(ϕ◦ρ`−1). So one can approximate, for ` ≥ 1, η̂`(ϕ◦ρ`)− η̂`−1(ϕ◦ρ`−1)
by

ηN`
` (G`)

−1ηN`
` (G` ϕ ◦ ρ`)− ηN`

` (ϕ ◦ ρ`−1),

and η̂0(ϕ ◦ ρ0) by ηN0
0 (ϕ ◦ ρ0). This estimate is different than that in [4], but similar in spirit.

As Z`/Z0 = γ`(G`), this can be approximated by

γN0:`
` (G`) =

∏̀
l=0

ηNl
l (Gl).

As shown in [14] (in a different context) this estimator has similar properties to one that
follows the “standard” ML type principle.

Define

η̂ML
L (ϕ) := ηN0

0 (ϕ ◦ ρ0) +
L∑
`=0

ηN`
` (G`)

−1ηN`
` (G` ϕ ◦ ρ`)− ηN`

` (ϕ ◦ ρ`−1).

Let a(ε) . b(ε) denote (for nonnegative a(ε), b(ε)) that there exists a constant c > 0 such that
a(ε) ≤ c b(ε) for all ε sufficiently small. The following proposition is proved in the appendix.

Proposition 2.1. Under appropriate assumptions (see assumptions A1–A3 in the appendix),
for any ε > 0 there exists an L and sequence {N`}L`=0, such that

(2.2) E|η̂ML
L (ϕ)− η̂(ϕ)|2 . ε2,

for a total computational cost Cost . ε−2.D
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3. Dimension-independent likelihood-informed proposals. In this section, we describe
how to set up DILI proposals [9] that will later on be embedded into the MLSMC framework.
In particular, section 3.1 describes the nonintrusive (i.e., gradient-free) covariance-based con-
struction of cLIS. Section 3.2 illustrates an approach for obtaining the dimension of cLIS.
Section 3.3 provides a description of the resulting DILI proposals which will ultimately be
used as the kernels K` within the MLSMC algorithm. Later on, section 4 will place the cLIS
construction within the ML context. In section 5, we will present simulation studies that
illustrate the significance of such a likelihood-informed proposal for the effectiveness of the
overall MLSMC method.

3.1. Sample approximation of the cLIS. For simplicity of exposition, this section will
consider some fixed (high) finite dimension d ≥ 1; however the framework is easily extended
to infinite-dimensional spaces. Consider the case where we have a particle population ui ∈ Rd,
1 ≤ i ≤ N , for some N ≥ 1, from a probability measure ν ∈ P(Rd). Define the covariance
matrix

C := Eν [(u− Eν(u))⊗ (u− Eν(u))],

and assume that

(3.1) C = I −QQ>.

Here Q ∈ Rd×m, I is the d × d identity matrix, and m � d is the dimension of a linear
subspace of concentration of the measure ν with respect to a reference measure ν0, where the
latter has identity covariance,

Eν0 [(u− Eν0(u))⊗ (u− Eν0(u))] = I.

One should think of ν0 and ν as prior and posterior measures, respectively, in a given context.
The column space of Q, defined by the matrix P of m orthonormal eigenvectors of Q such
that Q = PΛ1/2 for some full rank diagonal matrix of positive eigenvalues Λ ∈ Rm×m, is a
covariance-based generalization of the gradient-based LIS introduced in [10, 9] and will be
referred to below as a cLIS. Notice that the condition above is equivalent to

C−1 = I +MM>,

where M and Q have the same column space. If σ2
Q,i and σ2

M,i are the squared singular values

of the matrices Q and M , respectively, then σ2
M,i = σ2

Q,i/(1 − σ2
Q,i) for 1 ≤ i ≤ m, once the

appropriate ordering is applied [32].
In practical settings, (3.1) may hold only approximately, in the sense that C ≈ I −QQ>

(see [9] for applications); however for simplicity of presentation, here we will assume that it
holds exactly. The case where (3.1) does not hold is beyond the scope of the present work.

We want to estimate C and, more importantly, the column space of Q, using the particles
{ui}Ni=1. The simplest way this can be done is the following. Assume for simplicity that we
know the rank m. We construct a sample approximation of the low-rank correction to theD
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(a) cLIS fidelity as a function of the number of sam-
ples for 20 random targets, using i.i.d. samples.

0 200 400 600 800 1000
number of samples

0

0.2

0.4

0.6

0.8

1

fi
d
e
lit

y
 o

f 
a
p
p
ro

x
im

a
te

 L
IS

(b) cLIS fidelity as a function of the number of sam-
ples for random targets, using correlated samples with
IACT=100.

Figure 1.

covariance as

(3.2) HN := I − 1

N − 1

N∑
i=1

(ui − ū)⊗ (ui − ū), ū =
1

N

N∑
i=1

ui.

Now, we use an iterative algorithm, such as the Lanczos iteration, to compute the dominant
m eigenpairs giving rise to PN,m ∈ Rd×m, and a diagonal ΛN,m ∈ Rm×m (with the diagonal
comprised of the m dominant eigenvalues) so that HN ≈ PN,mΛN,m(PN,m)>. The (orthonor-
mal) columns of PN,m correspond to the N -sample approximation of the m-dimensional cLIS.
Simulations indicate that as long as N > d, this approach provides a reasonable approxima-
tion of the cLIS. Indeed, (3.1) may be seen as an inverse version of the spiked covariance model
from [15]. There it was shown that this is in fact the required number of samples as d→∞,
and explicit error bounds are provided. See also [28] for further exploration of this point.

For a simple example, see Figure 1, where we consider 20 random Gaussian targets with
d = 100 of known rank m = 10, i.e., a 10-dimensional (IOD) cLIS. The random Gaussian

targets were constructed as follows. For k = 1, . . . , 20, i = 1, . . . , d, j = 1, . . . ,m, let A
(k)
ij ∼

N(0, 1), independently over i, j. Let C(k) = (A(k)A(k),> + Id)
−1. The kth Gaussian is given

by N(0, C(k)), k = 1, . . . , 20. The cLIS is approximated using (3.2) with independent and
identically distributed (i.i.d.) samples (Figure 1, left panel) and highly correlated samples
(Figure 1, right panel), and the cLIS fidelity is approximated using

(3.3) fidelity := ‖PP>(I − PN,mP>N,m)‖/‖PP>‖,

where P is the matrix with orthonormal columns making up the exact m-dimensional cLIS
(analytically known in this synthetic example) and ‖ · ‖ indicates the Frobenius norm. The
rationale behind this nonsymmetric subspace divergence is that we are particularly concerned
with how well PN,m approximates P , i.e., with the projection of PN,m onto P . Note that aD
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weighted subspace distance [27] as advocated in [10] can be used to favor recovery of the most
important directions of the cLIS; alternatively one might use a modification of the Förstner
[16] metric between SPD matrices, as proposed in [9]. Also, note that these ideal error metrics
cannot be computed in practice, since we do not have access to P .

Remark 3.1. In general, the cLIS construction may miss local features that can be cap-
tured by the original gradient-based LIS of [10]. However, cLIS will ultimately be used
here only for the construction of a Gaussian proposal, and it is unclear what benefit a
more sensitive gradient-based LIS would offer for this purpose. For example, consider a d-
dimensional distribution that is bimodal along a data-informed direction with unnormalized
density exp{−((y1−u2

1)2 +(y2−u2)2)/(2γ2)− 1
2 |u|

2}. As γ → 0, the averaged Hessian used to
build an LIS in [9] will be large across (u1, u2), which both are clearly informed by the data.
The cLIS, though, will only identify u2. Nonetheless, a global Gaussian proposal constructed
using either subspace will have difficulty sampling the target.

3.2. Estimating the dimension of the cLIS. It is critical to develop a method to au-
tomatically estimate the cLIS dimension m in realistic scenarios, where one may know or
suspect that there exists a low-dimensional subspace informed by the data of some unknown
dimension m ≥ 1. For this task, the following algorithm is proposed.

Let h̃N denote the full vector of d eigenvalues of matrix HN in (3.2), sorted in decreasing
order, and let hN = h̃N1{h̃N≥0}. We truncate the negative eigenvalues, as there may be
some large negative eigenvalues when the sample covariance approximation is poor, while
the cLIS approximation can actually already be adequate. This also prevents issues arising
when a perturbation from the prior is not negative definite, as might occur with multimodal
posteriors. Now define, for i = 1, . . . d− 1,

(∆̃hN )i = |hN,i+1 − hN,i|, ∆hN =
1

d− 1

d−1∑
i=1

(∆̃hN )i, (∆hN )i = (∆̃hN )i/∆hN .

It will suffice to find the index iex such that (∆hN )iex > TOL, where TOL is some prespecified
reasonable value in between the sample error and the expected size of the gap in the spectrum
at convergence. This index, effectively the position where the relative absolute difference in
the eigenvalues delivers a “spike,” is then taken as the estimate of m, i.e., m̂ = iex.

Figure 2 applies this approach to the target N(0, C(1)), where C(1) is constructed as
described above, i.e., one of the targets from Figure 1. The left panel of Figure 2 illustrates
the growth of the gap in spectrum beyond the threshold for the targetN(0, C(1)) from Figure 1,
where the horizontal axis indicates the index of the nonzero values of hN , and the connected
lines of different color show the values of vector ∆hN for different choices of sample size
N = d, d + m, . . . , 250. The threshold value is set to TOL = 10, and (∆hN )iex exceeds this
value already for N = 250 samples with the correct value of m = iex = 10. It is clear
that in this case the increments ∆hN show a spike at the correct value m = 10 for a large
enough sample size. Notice also that the right panel in Figure 2 illustrates that, in this
example, accurate-enough sample approximation of the cLIS is less of a challenge than sample
approximation of the covariance matrix.
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N

(a) Sequence of increments in vector ∆hN for various
choices of sample size N , for a given target distribution
N(0, C(1)). The colors are arbitrary. The point is
that, as N increases, the noise is reduced and the peak
sharpens.
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number of samples
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1 relative fidelity of LIS
relative fidelity of S

(b) Relative fidelity of the cLIS approximation,
i.e., (3.3) (blue), in comparison to the relative
fidelity of the sample covariance S, i.e., ‖S −
C‖/‖C‖ (red dashed) in terms of the number of
samples.

Figure 2.

3.3. Use of a subspace at a mutation step. Mutation steps in our SMC algorithm will
use a DILI proposal, defined abstractly as follows. Consider a subspace determined by the
collection of orthonormal vectors P = [e1, e2, . . . , em], spanning an m-dimensional subspace of
Rd, together with an approximation of the projected mean ū ≈ PP>Eηu and the covariance
of the coordinates (〈u, ei〉)mi=1, Σ ≈ P>CP ∈ Rm×m. We will make use of the orthogonal
decomposition

u = PP>u+ (I − PP>)u,

where PP>u is the orthogonal projection of u onto the subspace. Let u′ ∼ Q(u, ·) be defined
by

(3.4) u′ = ū+A(u− ū) +Bw, w ∼ N(0, I),

where we have defined

A = P (Im − bmΣ)1/2P> + (1− b2⊥)1/2(I − PP>),(3.5)

B = P
√
bmΣP> + b⊥(I − PP>),(3.6)

and bm, b⊥ ∈ (0, 1) are small step sizes on and off the subspace, respectively. The second
summands in (3.5)–(3.6) correspond to a preconditioned Crank–Nicolson (pCN) step on the
space orthogonal to the subspace, while the first summands correspond to a step that uses the
covariance Σ to scale the step sizes across the various directions of the subspace. All matrix
operations are carried out via the eigendecomposition of the symmetric, positive semidefinite
Σ. The matrices weighting the proposal satisfy A2 +B2 = I and take into account appropri-
ately the covariance (likelihood) information. The proposal Q(u, ·) is reversible with respectD
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to ν0 ≡ N(0, I), in the sense that

ν0(du)Q(u, dv) = ν0(dv)Q(v, du).

(Note this implies
∫
E ν0(du)Q(u, dv) = ν0(dv).) The above proposal therefore provides an

effective dimension-independent (DI) proposal for the whitened Gaussian prior µ0, as the
algorithm is well-defined even on infinite-dimensional separable Hilbert spaces (i.e., even if
d = ∞). In the case of nonwhite priors, e.g., for the standard assumption of a covariance
that is a trace-class operator, one must simply employ a change of variables. (See [9] for more
details on this construction.)

Recall the assumption from section 3.1 that the covariance is a negative semidefinite
perturbation of the prior, so that if Σ is the exact covariance, then Im− bmΣ is guaranteed to
be positive semidefinite (and vanishing only off the true cLIS and when bm = 1). When the
approximate cLIS is constructed from samples in practice, one must take care to ensure the
nonnegativity of Im − bmΣ.

Note that as long as the proposal is split according to a rotation induced by an operator
P with a finite range m, then any proposal can be used on the subspace spanned by P and
the DI property will be preserved. However, the proposal should be chosen such that the
resulting Metropolis–Hastings algorithm is convergent, as the above algorithm is proved to be
in [31]. If derivatives were available, we could use them on the cLIS part of the proposal above
to construct manifold-based proposals, as was recently done in [3]. The following proposal,
which preserves the Gaussian approximation of the posterior on the cLIS (instead of the prior)
is not, in general, geometrically ergodic

A = (1− bm)1/2PP> + (1− b2⊥)1/2(I − PP>),

B = P
√
bmΣP> + b⊥(I − PP>).

In particular, it is shown in [29] Theorem 2.1 that this proposal is not ergodic for b = bm =
b⊥ = 1, for a wide range of target distributions, including Gaussians with a covariance larger
than Σ on the subspace. This property is expected to hold for bm < 1 as well. In [6] it is
suggested simply to scale the covariance Σ by a factor (1 + ε) for ε > 0. This strategy works
in practice, but the downside is that there is no clear criterion for the choice of ε.

4. Multilevel cLIS in MLSMC samplers. We will now embed the cLIS methodology
within a multilevel sampling framework. The idea here is that the cLIS is expected to converge
at some level of mesh refinement that is less accurate than the final level required by the
MLSMC algorithm, so that the cLIS can then be embedded into higher levels at a nominal
cost. See [10] for an example of the LIS basis converging under mesh refinement. Furthermore,
the telescopic identity can be leveraged along the way to improve the cost of the algorithm.
It is noted that cLIS-based proposals can be used outside of the MLSMC context as well, and
this will be the subject of future work (for instance, as part of standard SMC samplers).

Section 4 will be organized as follows. In subsection 4.1 the multilevel setting will be
introduced, in which each level has its own cLIS, and these converge as the level increases. The
form of the importance sampling proposal will be described in section 4.2. The embeddingD
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of cLIS will be described in subsection 4.3, and the ML covariance construction using the
cLIS will be described in section 4.4. The additional ML cost considerations due to the DILI
mutations are considered in subsection 4.5, and finally an example of the framework for a
simple basis is presented in subsection 4.6.

4.1. Setting. Recall that in the setting of section 2, we are interested in a sequence of
unnormalized densities κ`(u0:`) in (2.1) defined on spaces of increasing dimension E` for levels
` = 0, 1, . . . . Let h` denote a resolution parameter and C` the associated computational cost
of evaluating κ`(u0:`), such that h` → 0 and C` →∞ as `→∞, and assume that the compu-
tational cost is dominated by a forward model involved in the likelihood calculation L`(u0:`),
as in (2.1). In particular, consider the case in which the sequence of spaces E0, E1, . . . , EL
correspond to finite-dimensional approximations (of increasing dimension) of a limiting space
E := E∞, where E is a separable Hilbert space, and u ∈ E.

In order to establish a clear context, let φ1, φ2, . . . ∈ E and define Ψ` := [φ1, . . . , φd` ] ∈
E × Rd` . Using matrix notation, let

E` = (Ψ>` Ψ`)
−1Ψ>` E.

Letting u0:` = (Ψ>` Ψ`)
−1Ψ>` u, Ψ`u0:` is the orthogonal projection of u onto the d`-dimensional

subspace of E spanned by the columns of Ψ`. In the following u0:` may also correspond to
the value of u at d` grid points with Ψ`u0:` an interpolant through those points. In the limit,
isomorphic representations of E will be identified, i.e., spatial representations or sequence
representations in terms of expansion coefficients. Suppose that one has a regularly structured
grid that is uniform across D underlying spatiotemporal dimensions of the limiting space E
(for example, L2([0, 1]D,R)) and that the grid spacing is h`. Then the dimension of E` is
d` = h−D` . Conversely, for an arbitrary expansion, for instance, in terms of some family
of orthonormal polynomials, with equal numbers of basis functions in each direction, it is

reasonable to define h` := d
−1/D
` . These notions are therefore interchangeable.

Let P` ∈ Rd`×m` denote an orthonormal basis for the m`-dimensional cLIS at level `, so
that

C` = Id` −Q`Q
>
` ,

where Q` = P`Λ
1/2
` for some diagonal matrix Λ` of nonzero singular values, and Id` is the

d` × d` identity matrix. We set m = lim`→∞m` and let P denote the limiting m-dimensional
cLIS on E.

According to the simulated examples, the cLIS associated with E` is expected to require
O(d`) samples to identify—see Figures 1 and 2(b). Therefore we cannot afford to compute
the cLIS at level L, or high levels close to L, without affecting the cost of the algorithm.
It is reasonable to assume that for ` sufficiently large, m` ≈ m, and hence we can obtain a
good approximation of P . Therefore, at some level `∗ in the MLSMC algorithm, one stops
constructing the cLIS and the current cLIS P`∗ ⊂ E`∗ is simply embedded into E`∗+n for
n ≥ 1. Thus, one can use the empirical covariance on the cLIS, at a cost that depends upon
m (at most cubically), for a DILI proposal without recomputing the cLIS on higher levels.
The proposal construction therefore does not depend upon L or ε except through the forward
model, and hence it does not impact the asymptotic cost. Furthermore, within the MLSMCD
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context, one needs to collect at least d` samples for ` < `∗, but the restriction does not persist
for ` > `∗. The implication of this is discussed in more detail in section 4.5.

4.2. Importance sampling proposal to extend dimension. The mutation kernel K` will
be constructed through the DILI methodology in section 3.3. It remains to determine the
kernel q` : E`−1 → P(U`) that extends the dimension of the state space during the iterative
importance sampling steps. In both numerical applications in section 5 we employ regular
grids of increasing resolution in one dimension and two dimensions; other options could involve
truncating the Karhunen–Loève expansion of the prior Gaussian measure.

In our applications we have used the Gaussian prior dynamics to determine q`, so that

q`(u0:`−1, du`) = µ0(du`|u0:`−1),

though other choices could also be made. This choice gives

G`(u0:`) = L`(u0:`)/L`−1(u0:`−1).

From standard properties of Gaussian laws, assuming that µ0(du0:`) = N(0,Γ0:`) with covari-
ance

Γ0:` =

(
Γ0:(`−1) Γ0:(`−1),`

Γ>0:(`−1),` Γ`,`

)
with Γ0:(`−1) ∈ Rd`−1×d`−1 , Γ`,` ∈ Rd′`×d′` , Γ0:(`−1),` ∈ Rd`−1×d′` , we have

(4.1) q`(u0:`−1, ·) = Γ>0:(`−1),` Γ−1
0:(`−1) u0:`−1 +N

(
0,Γ`

)
,

where
Γ` := Γ`,` − Γ>0:(`−1),` Γ−1

0:(`−1)Γ0:(`−1),` .

4.3. cLIS construction when extending dimension. Recall that the main idea in section
4.1 is that one will reach a cut-off level, say, `− 1, when the standard cLIS methodology will
be applied using the particle information available at this point, as described in section 3.3,
but from level ` onward the cLIS will simply be propagated forward without Monte Carlo
effort to identify further directions informed by the likelihood. We will now describe how to
carry out this propagation.

The construction of the cLIS proposal in section 3.3 requires the identification of an
orthonormal set of vectors spanning the critical subspace informed by the likelihood after
whitening the prior covariance. That is, one must in practice work with the linear transfor-
mation v0:` = L−1

` u0:`, where L` is any matrix such that L`L
>
` = Γ0:`. Notice that in many

cases (e.g., if the prior is a Gaussian Markov random field) L−1
` is sparse, so this operation is

cheap. Also, L` itself may be sparse, or have a simple structure which allows for cheap (i.e.,
not O(d2

` )) operations, as will be the case in section 5.1 below. Assume that the columns of
matrix P`−1 ∈ Rd`−1×m correspond to the orthonormal basis of the cLIS at the cut-off level
`− 1, so that P>`−1P`−1 = Im and

L−1
`−1C`−1L

−>
`−1 = Id`−1

− P`−1ΛP>`−1.

We will identify P`.D
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It will be convenient to define the matrices

(4.2) A`|`−1 =

(
Id`−1

Γ>0:(`−1),`Γ
−1
0:(`−1)

)
, A`\`−1 =

(
0d`−1×d′`

Γ
1/2
`

)
,

where Id`−1
is the d`−1× d`−1 identity matrix and 0d`−1×d′` is the d`−1× d′` matrix of all zeros.

Then for u∗` ∼ q`(u0:`−1, ·), one has

(u>0:`−1, u
∗,>
` )> = A`|`−1u0:`−1 +A`\`−1ξ` ,

where ξ` ∼ N(0, Id′`). Indeed, by definition we have

(4.3) Γ0:` = A`|`−1Γ0:`−1A
>
`|`−1 +A`\`−1A

>
`\`−1,

so that if u0:`−1 ∼ µ0, then (u>0:`−1, u
∗,>
` )> ∼ µ0.

In other words, A`|`−1 has rank d`−1, and its column-space is exactly the d`−1-dimensional

subspace of Rd` in which u0:` depends upon u0:`−1, under the prior measure µ0. Therefore, if
one has a genuine (rather than approximate) cLIS and it is furthermore already completely
characterized at level ` − 1, then A`|`−1 embeds it into level `, but with respect to the u0:`

variables. The appropriate cLIS with respect to u0:`−1 is L`−1P`−1, orthogonal with respect
to the Mahalanobis norm weighted with L−>`−1L

−1
`−1 = Γ−1

0:` . Therefore one expects L`P` =
A`|`−1L`−1P`−1 to be the appropriate cLIS on u0:` embedded into level `. In other words,

(4.4) P` = L−1
` A`|`−1L`−1P`−1 .

A useful identity is the following:

(4.5) Γ−1
0:`−1 = A>`|`−1Γ−1

0:`A`|`−1 .

To see this, observe that the first d`−1 rows of Γ0:` are given by Γ0:`−1A
>
`|`−1. It is then clear

that

A>`|`−1Γ−1
0:` = Γ−1

0:(`−1)

(
Id`−1

0d`−1×d′`

)
,

and the identity above follows immediately. Due to (4.5) it is easy to check that P` defined
by (4.4) satisfies P>` P` = Im. This ensures that an orthonormal cLIS at the cut-off level `− 1
transforms to an orthonormal cLIS at level ` through the map P`−1 7→ L−1

` A`|`−1L`−1P`−1.

4.4. Multilevel covariance estimation. The covariance C` can also be estimated with the
multilevel estimator [5, 22]

(4.6) CML
` ≈ CN0

0 +
∑̀
l=1

(
CNl
l − C

Nl
l−1

)
,

where CNl
l = 1

Nl

∑Nl
i=1 u

i
0:l(l)(u

i
0:l(l))

> −
(

1
Nl

∑Nl
i=1 u

i
0:l(l)

)(
1
Nl

∑Nl
i=1 u

i
0:l(l)

)>
, and CNl

l−1 is the

appropriate upscaled (so that matrix dimensions match in 4.6)) sample covariance associatedD
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with u0:l−1(l). This will give rise to the multilevel cLIS approximation PML
` , which will be

used to approximate the covariance on the approximate cLIS, Σ` = PML,>
` C`P

ML
` , by

ΣML
` ≈ PML,>

` CN0
0 PML

` +
∑̀
l=1

PML,>
`

(
CNl
l − C

Nl
l−1

)
PML
` .

Consider A`+n|` = A`+n|`+n−1A`+n−1|`+n−2 · · ·A`+1|` for Al|l−1, l ≥ 1, defined in (4.2).
As mentioned in section 4.3, the cLIS will be constructed only until some level `∗. Then the
cLIS PML

`∗ ∈ Rd`∗×m, constructed at the final level using (4.6), is transformed into the cLIS
at higher levels PML

`∗+n ∈ Rd`∗+n×m by

(4.7) PML
`∗+n = L−1

`∗+nA`∗+n|`∗L`∗P
ML
`∗ ,

where orthonormality of the column vectors of PML
`∗+n holds by transitivity and (4.5).

4.5. Multilevel cost considerations. In the following discussion the constants β and γ are
defined in Appendix A, assumption (A3). The multilevel analysis proceeds as in a standard
case, except one has to consider that if ` > `∗, then C` = h−γD` , and if ` ≤ `∗, then C` = h−3D

` .
Note that the cubic power corresponds to the worst case scenario for the cost of computing
the cLIS, while it may be possible in cases to compute it more cheaply, e.g., even with linear
cost. Assuming we fix `∗, then asymptotically the use of the cLIS does not change the error

analysis of the estimates. One has N` = h
(β+γ)/2
` if ` > `∗ and N` = h

(β+3)/2
` if ` ≤ `∗. More

careful analysis can be done, e.g., using the rate of convergence of the cLIS to choose `∗, but
since this construction is merely to improve mixing of the MCMC kernels, it is reasonable to
simply fix `∗ and ensure that N0 is chosen large enough so that N`∗ > d`∗ .

4.6. Example with a Karhunen–Loève basis. We end this subsection with a comment
that the spaces {E`}L`=0 could be determined via a Karhunen–Loève expansion as described
below.

Let µ0 be the prior distribution over the infinite-dimensional separable Hilbert space E,
which will be assumed Gaussian with mean 0 and trace-class covariance operator Γ. There is
an orthonormal basis {φi}∞i=1 for E and associated eigenvalues {λi}∞i=1 such that Γφi = λiφi.
The Karhunen–Loève expansion of a draw u ∼ µ0 is given by

(4.8) u =

∞∑
i=1

xiφi, where xi = 〈u, φi〉 = λ
1/2
i ξi, and ξi ∼ N(0, 1) i.i.d.

Thus, the covariance operator Γ is diagonal in the basis Ψ∞ = [φ1, φ2, . . .]. In this setting it
is natural to work with the coordinates u` = (xd`−1+1, . . . , xd`), 0 ≤ ` ≤ L, so that we simply

have L` = Γ
1/2
0:` = Ψ>` Γ1/2Ψ` = diag{λ1/2

1 , . . . , λ
1/2
d`
}. Also, one has that

(4.9) q`(u0:`−1, ·) = q`(·) = N
(
0,diag(λd`−1+1, λd`−1+2, . . . , λd`)

)
,

and Γ0:(`−1),` = 0 so P`∗+` = [P>`∗ , 0m`∗×(d`−d`∗ )]
>, where recall that 0m×n ∈ Rm×n is a matrix

of zeros.D
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5. Examples. In this section, two models will be described. Section 5.1 considers inversion
of the white noise forcing in an SDE given noisy observations of the path. Section 5.2 considers
a Bayesian inverse problem of inferring the diffusion coefficient in a 2D elliptic PDE given
noisy observations of the solution field. Some theoretical considerations relating to verification
of the assumptions (in Appendix A) for the algorithms are included in Appendix B.

5.1. Conditioned diffusions. We consider an SDE scenario. For u denoting a realization
of the s-dimensional Brownian motion, s ≥ 1, let p = p(u) be the solution of the SDE

(5.1) dp = f(p)dt+ σ(p)du, p(0) = p0,

where f : Rs 7→ Rs, σ : Rs 7→ Rs×s are elementwise Lipschitz continuous with σ ∈ Rs×s nonde-
generate. Let Gi(u) = p(ti;u) for times 0 < t1 < · · · < tq ≤ T , q ≥ 1. We consider observations
y|u ∼ N(G(u),Ξ), where G = (G>1 , . . . ,G>q )>, with noise (of variance Ξ) independent of u, so
that the likelihood is

(5.2) L(u) = exp
(
−1

2 |y − G(u)|2Ξ
)
.

5.1.1. Numerical method and multilevel approximation. We will henceforth assume s =
1, though multidimensional extensions are straightforward. The standard Euler–Maruyama
discretization is employed, with refinement occurring via Brownian bridge sampling between
successive grid points; this is a particular scenario of the general description in section 4.2.
The paths are generated on a uniform grid, which gives rise to proposals of the form (4.1)
under the prior Wiener measure dynamics. In particular, let us assume that d` = d0 2`, so
h` = T/d`; to avoid undue complications d0 is chosen large enough to accommodate the q
observations at grid points. Then the linear transformations in (4.1) are given for the case
of the scalar (s = 1) SDE in (5.1) by the following, for i = 1, . . . , d` (the first, undefined,
equation is ignored for i = 1):

(A`+1|`)2i−1,i−1 = (A`+1|`)2i−1,i = 1/2,

(A`+1|`)2i,2i = 1,

(A`+1\`)2i−1,i =
√
h`/2,

and (A`+1|`)j,k = (A`+1\`)j,k = 0 otherwise. This is simply a way to write down the well-
known Brownian bridge measure for the fine grid points u0:`+1, every other of which coincides
with one of the coarse grid points u0:` or bisects two of them. The new bisecting points u`+1

are conditionally independent given u0:`, with distribution,

q`+1,i(u0:`, u`+1,i) = N
(

1
2(u0:`,i + u0:`,i+1), h`4

)
for i = 1, . . . , d′`. Operator L` : v0:` 7→ u0:` in (4.5) is given by the Cholesky factorization:
(L`)j,i =

√
h`, i ≤ j; (L`)j,i = 0 otherwise.

5.1.2. Numerical results. The specific settings of our numerical study are as follows:
σ(p) = 1, T = q = 16, and the observations are evenly spaced with t1 = 1 and noise Ξ = 0.01.
The simulations are carried out with d0 = 32 at the initial level and dl = d02l as described
above. For simplicity the quantity of interest is taken as the observation function ϕ = G.D
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Numerical results for the solution of the conditioned diffusion problem are shown in Figure
3. The variance rate plot helps us to obtain β for our simulations. In Appendix A, assumption
(A3), a precise definition of β is given, but this is essentially associated to the variance,
where larger β relates to smaller variances. We then consider SMC (i.e., no telescoping
identity), MLSMC with the standard pCN method for the mutations and MLSMC with the
DILI proposals of section 3. The samples for the simulations are chosen as mentioned above.
The results are repeated 100 times and averaged for robustness. The (theoretical) cost vs.
error (mean square error) plot of Figure 3 presents a comparison of the three methods. Both
MLSMC methods outperform SMC as was the case in [4]. Moreover, it is evident that the
performance with the DILI mutations is superior to that of the standard pCN mutations.

5.2. Elliptic PDE inverse problem. In this section, we consider a Bayesian inverse prob-
lem involving inference of the (log) permeability coefficient in a 2D elliptic PDE, given noisy
measurements of the associated solution field (representing, e.g., pressure). Consider the
nested spaces V := H1(Ω) ⊂ L2(Ω) ⊂ H−1(Ω) =: V ∗ for a domain Ω ⊂ R2 with convex
boundary ∂Ω ∈ C0. Let f ∈ V ∗, and consider the following PDE on Ω:

−∇ · (K(u)∇p) = f on Ω,(5.3)

p = 0 on ∂Ω(5.4)

for pressure field p, permeability K(u) = eu, and known force field f . We set up a Bayesian
inference problem for the unknown log permeability field u. We assume a truncated stationary
Gaussian prior,

(5.5) u ∼ µ0(du) · I [ |u|∞ < R ], µ0 ≡ N(0, C),

for some R > 0 with C denoting the covariance operator derived through the covariance
function

(5.6) c(x, x′) = σ2 exp{−|x− x′|2/α}

for hyperparameters σ > 0, α > 0.
We will henceforth assume Ω = [0, 1]2. Let p( · ;u) denote the weak solution of (5.3)–(5.4)

for parameter u. Define the following vector-valued function:

G(u) = [g1(p( · ;u)), . . . , gM (p( · ;u))]>,

where gm are elements of the dual space V ∗ for m = 1, . . . ,M for some M > 1. It is assumed
that the data take the form

(5.7) y = G(u) + ξ, ξ ∼ N(0,Ξ), ξ ⊥ u,

so that the likelihood is given again by L(u) = exp(−1
2 |y − G(u)|2Ξ).D
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Figure 3. Results for the conditioned diffusion example.

5.2.1. Numerical method and multilevel approximation. Consider the 1D piecewise lin-
ear nodal basis functions φ1

j defined as follows for mesh {xi = i/K}Ki=0:

φ1
j (x) =


x−xj−1

xj−xj−1
, x ∈ [xj−1, xj ],

1− x−xj
xj+1−xj , x ∈ [xj , xj+1],

0 otherwise .

Consider the tensor product grid over Ω = [0, 1]2 formed by {(xi, xj)}Ki,j=1, where K = K0×2`

with initial resolutionK0 = 10. Let φi,j(x, y) = φ1
j (x)φ1

i (y) be piecewise bilinear functions, andD
ow

nl
oa

de
d 

06
/2

6/
18

 to
 1

30
.8

8.
63

.1
72

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

MLSMC WITH DILI 779

let E` = span{φi; 1 ≤ i ≤ d`} with d` = K2, and any appropriate single index representation.
The permeability at level ` will be approximated by K`(u0:`) =

∑d`
i=1 e

ui0:`φi. Likewise, the

solution will be approximated by p`(u0:`) =
∑d`

i=1 p
i
` φi. The weak solution of the considered

PDE (5.3)–(5.4) is generated by a standard finite element approximation, resulting in the
solution p := p`(u0:`). This is done by substituting these expansions into (5.3) and taking
inner product with φj for j = 1, . . . , d`. Define fj = 〈f, φj〉 and

Aij :=

j1+1∑
k1=j1−1

j2+1∑
k2=j2−1

∫ xj1+1

xj1−1

∫ yj2+1

yj2−1

eu
k
0:`φk∇φi · ∇φjdxdy,

where the notation j = (j1, j2) is introduced to represent the components of the indices
corresponding to spatial dimensions 1 and 2. The approximate weak solution to (5.3), (5.4)
is given by the system Ap = f .

The solution p`(u0:`) is then plugged into the likelihood to provide L`(u0:`). At the next
level, values of log-permeability on extra grid points are proposed from the conditional prior
dynamics u`+1|u0:`, by halving horizontal/vertical distances between points in the grid.

5.2.2. Numerical results. The specific settings for our simulations and generated data
are as follows: the source/sink term f is defined by a superposition of four weighted Gaussian
bumps with standard deviation σf = 0.05, centered at (0.3, 0.3), (0.3, 0.7), (0.7, 0.3), and
(0.7, 0.7), with weights {2,−3,−2, 3}, respectively. Observations of the potential function p
are collected at 25 measurement points, evenly spaced within [0.2, 0.6]2 (boundaries included).
The observation variance σ2

y is chosen such that a prescribed signal-to-noise ratio, which is
defined as max{p}/σy, is equal to 10. The hyperparameters α and σ−2 are given Gamma priors
with mean and variance 1. For simplicity the quantity of interest is taken as the observation
function ϕ = G.

The numerical results for the elliptic PDE inverse problem are presented in Figure 4,
which contains plots analogous to those shown for the previous numerical example. Again,
the MLSMC schemes show the desired improved convergence rate, and the DILI mutation
steps yield consistently better performance than pCN mutations.

Appendix A. Basic theoretical results.
The following assumptions will be made. Throughout E` is compact for any fixed ` < +∞.

(A1) Assume there exist some c, C such that for all ` = 0, 1, . . . , and all u0:` ∈ E`

(A.1) 0 < c ≤ G`(u0:`) ≤ C <∞.

(A2) Assume there exists a λ < 1 such that for all ` = 0, 1, . . . , u, v ∈ E` and A ⊂ E`

K`(u,A) ≥ λK`(v,A).

(A3) Assume there exists a c > 0 and β > 0 such that for all ` sufficiently large

(A.2) V` := max{‖G` − 1‖2∞, ‖ρ` − ρ`−1‖2∞} ≤ ch
β
` ,

where for bounded and measurable f : E` → Rd, ‖f‖∞ = supu∈E`
|f(u)|, | · | is the

L1-norm, and h` denotes an accuracy parameter, for example, mesh-diameter of theD
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Figure 4. Results for the 2D PDE example.

discretization of a PDE. Also, assume the cost C` to evaluate G` and ρ` satisfies, for
some ζ ≥ 0,

C` ≤ c h−ζ` .

Define

η̂ML
L (ϕ) := ηN0

0 (ϕ ◦ ρ0) +
L∑
`=0

ηN`
` (G`)

−1ηN`
` (G` ϕ ◦ ρ`)− ηN`

` (ϕ ◦ ρ`−1).

Let a(ε) . b(ε) denote that there exists a c > 0 such that a(ε) . cb(ε) for all ε sufficiently
small.
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Proposition A.1. Assume (A1)–(A3) and that β > ζ. Then, for any ε > 0 there exists an
L, and a choice of {N`}L`=0, such that

(A.3) E|η̂ML
L (ϕ)− η̂(ϕ)|2 . ε2

for a total cost Cost . ε−2.

Proof. The proof follows essentially that of [4] given the above assumptions. Observe that
Lemma A.3 (in Appendix A.1) below provides the bound

E
[
{η̂ML
L (g)− EηL [g(U)]}2

]
≤ C

(
1

N0
+

L∑
`=1

V`
N`

+
∑

1≤`<q≤L
V

1/2
` V 1/2

q

{
κq

N`
+ 1

N
1/2
` Nq

})
.

Theorem 3.3 of [24] describes how to complete the proof. Briefly, the choice L h | log ε|
controls the bias. One chooses N` = ε−2KLh

(β+ζ)/2
` , where KL =

∑L−1
`=1 h

(β−ζ)/2
` = O(1), so

one has

COST =
L∑
`=0

N`C` = ε−2K2
L . ε−2.

It then suffices to show the second term is negligible for this choice, and this is done in
Theorem 3.3 of [24].

The below result follows directly from that in [14] and hence the proof is omitted.

Corollary A.2. Assume (A1)–(A3) and assume β > ζ. Then, for any ε > 0 there exists an
L and a choice of {N`}L`=0 such that

(A.4) E|γN0:L
L (GL)− Z∞/Z0|2 . ε2

for a total cost Cost . | log ε|ε−2.

A.1. Key theoretical result. The following lemma is similar to Theorem 3.1 in [4], and
the proof follows in the same spirit, but is given for completeness.

Lemma A.3. Assume (A1)–(A3). Then there exists a C > 0 and κ ∈ (0, 1) such that for
any g ∈ Bb(E) with ‖g‖∞ = 1,

E
[
{η̂ML
L (g)− EηL [g(U)]}2

]
≤ C

(
1

N0
+

L∑
l=1

Vl
Nl

+
∑

1≤l<q≤L
V

1/2
l V 1/2

q

{
κq

Nl
+ 1

N
1/2
l Nq

})
.

Proof. The proof follows essentially that of [4] given the above assumptions. Assumptions
(A1)–(A2) are similar to that paper. Note that, as shown in section 4.2 of [4], there is a
constant C > 0 such that

(A.5) ‖Zl−1

Zl
Gl − 1‖∞ ≤ C‖Gl − 1‖∞.D
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Observe that η̂l(ϕ ◦ ρl) = ηl(Glϕ ◦ ρl)/ηl(Gl). Now establish the following notation:

Y Nl
l =

ηNl
l (Glϕ ◦ ρl)
ηNl
l (Gl)

− ηNl
l (ϕ ◦ ρl−1) ,

Yl =
ηl(Glϕ ◦ ρl)
ηl(Gl)

− ηl(ϕ ◦ ρl−1)
(
≡ ηl(g)− ηl−1(g)

)
,(A.6)

ϕl(u) =

(
Zl−1

Zl
Gl(u)− 1

)
,

ϕ̃l(u) = ϕl(u)ϕ(u) ,

An(ϕ,N) = ηNn (Gnϕ ◦ ρn)/ηNn (Gn) , ϕ ∈ Bb(E) , 0 ≤ n ≤ L− 1 ,(A.7)

An(ϕ,N) = An(ϕ,N)− ηn(Gnϕ ◦ ρn)

ηn(Gn)
.(A.8)

Notice that ηl(ϕl) = 0 and ηl(Gl) = Zl/Zl−1. So,
(A.9)

Y Nl
l − Yl = Al(ϕ,Nl) {ηl − ηNl

l }(ϕl)︸ ︷︷ ︸
T 1
l

+ {ηNl
l − ηl}(ϕ̃l ◦ ρl)︸ ︷︷ ︸

T 2
l

+ {ηNl
l − ηl}(ϕ ◦ (ρl − ρl−1))︸ ︷︷ ︸

T 3
l

.

Observe that there is an additional term T 3
l in comparison to equation (10) of [4]. Lemma 3.1

of that paper is replaced by

‖Y Nl
l − Yl‖

2
2 ≤ 4‖Al(ϕ,Nl) {ηl − ηNl

l }(ϕl)‖
2
2

+ 4‖{ηNl
l − ηl}(ϕ̃l ◦ ρl)‖

2
2 + 4‖{ηNl

l − ηl}(ϕ ◦ (ρl − ρl−1))‖22.(A.10)

In view of (A.5) and [11, Theorem 7.4.4], the first two terms are bounded by C‖Gl − 1‖2∞/Nl

and the last term is bounded by C‖ρl − ρl−1‖2∞/Nl. Now

E
[{ N∑

l=1

(Y Nl
l − Yl)

}2
]

= E
[ N∑
l=1

(Y Nl
l − Yl)

2
]

+ 2
∑

1≤l<q≤L
E
[
(Y Nl
l − Yl)(Y

Nq
q − Yq)

]
,

and the cross terms are

(a)
∑

1≤l<q≤L
E
[
(Y Nl
l − Yl)(Y

Nq
q − Yq)

]
=

∑
1≤l<q≤L

E(T 1
l T

1
q )

(b) +
∑

1≤l<q≤L
E(T 1

l T
2
q ) + E(T 1

l T
3
q )

(c) +
∑

1≤l<q≤L
E(T 2

l T
1
q ) + E(T 3

l T
1
q )

(d) +
∑

1≤l<q≤L
E(T 2

l T
2
q ) + E(T 2

l T
3
q ) + E(T 3

l T
2
q ) + E(T 3

l T
3
q ).
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There are five new terms with respect to [4] (all those including T 3), i.e., 1 in (b), 1 in (c), and
3 in (d), but they can be dealt with similarly. In fact, since ‖ϕ̃n‖∞ ≤ ‖ϕn‖∞ ≤ C‖Gn− 1‖∞,
and max{‖Gn−1‖2∞, ‖ρn−ρn−1‖2∞} = Vn, the terms are all of the same type as in [4], grouped
by category (a, b, c, d), and are bounded exactly as in the appendix of that paper.

Appendix B. Theory related to verification of assumptions.

B.1. Restriction of prior measure. The examples in section 5 consider Gaussian prior
measures µ0, which are hence supported on an unbounded space in principle. The restricted
prior measure is

µ0,R(du) := 1SR
(u)

1

µ0(SR)
µ0(du) , SR := {u ∈ E; |u|L∞(Ω) ≤ R}

for some R > 0, where Ω is the spatial/temporal domain. Note that provided µ0(L∞(Ω)) = 1,
for any ε > 0, there exists a R(ε) such that |µ0,R − µ0|TV < ε, as shown in [31]. This
restriction allows for a simple verification of assumptions (A1) and (A3). In full generality
one would have to carry out several technical proofs that would obscure the main ideas of the
ML approach. It will be shown below that the restriction to SR will allow (A1) and (A3) to
hold for the examples considered. Note that the bound on TV-norm implies a similar bound
for the difference in expectation of bounded functionals and functions with bounded second
moments (via Hellinger metric, where the bound is replaced by ε1/2, as shown in Lemma 1.30
of [26]).

Before continuing, assumption (A2) in Appendix A needs to be considered. Theorem 20 of
[31] shows that under conditions on the target distribution, the Metropolis–Hastings algorithm
with proposal (3.4) restricted on SR has an L2(µ0) spectral gap. (See also Corollary 4 of [31]
to verify that (3.4) for ū = 0 takes the appropriate so-called generalized pCN form.) Therefore
the proposal kernel K`, conditionally on the current population of samples, satisfies a spectral
gap assumption. It is beyond the scope of the present work to theoretically verify the validity
of the algorithm for this weaker property (relative to (A2)), so we shall content ourselves
with the stronger assumption (A2) and leave open the much more challenging question of
the algorithm’s rigorous validity under weaker assumptions. See also the recent work [13] for
consideration of weaker assumptions in the case of the original MLSMC sampler algorithm on
spaces of fixed dimensions of [4].

B.2. Conditioned diffusions. Recall (5.1). For any T > 0 there is this equation that
has a unique solution p ∈ C(Ω,Rs) with Ω = [0, T ] and a map u 7→ p which is continuous
from C(Ω,Rs) to C(Ω,Rs) with probability 1 under the Wiener measure. This is shown in
Theorem 3.14 of [20], along with the well-posedness of the corresponding smoothing problem
below. Note that since C(Ω,Rs) ⊂ L∞(Ω,Rs) the prior Wiener measure can be restricted to
some SR with arbitrarily small effect.

Likewise, the path p0:` arising from the Euler–Maruyama discretization of (5.1) using the
Brownian motion positions u0:` is a continuous function of u0:`. The likelihood function at
level ` will now be L`(u0:`) = exp

(
−1

2 |y − G`(u0:`)|2Ξ
)

with G`(u0:`) denoting the mapping from
the Euler scheme points u0:` to the position of p0:` at observation times. We immediately haveD
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that |G`(u0:`)| ≤ C(R), so assumption (A1) is satisfied. We also have∣∣∣∣ L`(u0:`)

L`−1(u0:`−1)
− 1

∣∣∣∣ ≤ C(R)
∣∣G`(u0:`)− G`−1(u0:`−1)

∣∣
≤ C ′(R) sup

t∈[0,T ]
|p`(t)− p`−1(t)| = o(h

β/2
`−1),

where p`(t) = p`,i for t ∈ [(i − 1)h`, ih`), the latter bound holding almost surely for any
β ∈ (0, 1), as shown in Theorem 7.12 of [18]. Note that this does not provide our required
uniformity in u0:` for assumption (A3); however, the required rate will be verified numerically.

B.3. Elliptic PDE inverse problem. Notice that in the case R → ∞, L`(u0:`) is not
uniformly bounded for the full unrestricted support of the Gaussian measure µ0. Choosing
R < ∞, the weak form of (5.3) is continuous and coercive uniformly in u, and the Lax–
Milgram lemma holds [7]. This provides the uniform bound in (A1). Uniform bounds on the
PDE finite-element approximations with piecewise bilinear nodal basis functions are readily
available in this case for any fixed space E`. See [4, 7, 34] for details.

Now, we proceed to extend the proof of convergence rate from finite uniform u [4] to
infinite (truncated) Gaussian u. We define the V -norm as

|p|2V :=

∫
[0,1]2

|∇p(u)|2dx, p ∈ V,

noting that the boundary condition (5.4) guarantees that
∫

Ω pdx = 0 and so Poincaré inequal-
ity applies. As in [4], the quantity we would like to bound uniformly in u is

(B.1) |p`(u0:`)− p(u)|V ≤ |p`(u0:`)− p(u0:`)|V + |p(u0:`)− p(u)|V .

The first term is dealt with as in [4]. The second term comes from the truncation to E`.
Denote p̄ = p(u0:`) and observe that for all v ∈ V

〈∇v,K`(u0:`)∇p̄−K(u)∇p〉 = 0,

so

〈∇v,K`(u0:`)∇p̄−K`(u0:`)∇p〉+ 〈∇v,K`(u0:`)∇p−K(u)∇p〉 = 0.

Letting v = p̄− p and rearranging, we have (using also Poincaré inequality)

|p̄− p|2V ≤ C(|u0:`|∞)|(K`(u0:`)−K(u))(∇p) · (∇(p̄− p))|
≤ C(|u0:`|∞)|K`(u0:`)−K(u)|L∞(Ω)|p|V |p̄− p|V .

Therefore on the truncated space SR, the following holds:

(B.2) |p̄− p|V ≤ C(R)|K`(u0:`)−K(u)|L∞(Ω) = O(h
β/2
` )D
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for some β ∈ (2, 4). (See section 3.3 of [7].) The error due to the solution of the PDE with
finite element discretization of diameter h` is also given by

|p`(u0:`)− p(u0:`)|V = O(h
β/2
` )

for β ∈ (2, 4) [4, 7]. Ultimately, the quantity

V` = max{‖G` − 1‖2∞, ‖ρ` − ρ`−1‖2∞}

can be bounded by Chβ` , as both terms are controlled by (B.1). The first term is handled
similarly to the work [4]. Typically the functions ρ` we are interested in will have the form
ρ`(u0:`)i = fi(p`(u0:`)) for some fi ∈ V ∗, and hence V` = O(‖|p`(u0:`)− p(u)|V ‖∞).
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