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Semidefinite Approximations of Reachable Sets for
Discrete-time Polynomial Systems

Victor Magron1 Pierre-Loic Garoche2 Didier Henrion3,4

Xavier Thirioux5

March 16, 2017

Abstract

We consider the problem of approximating the reachable set of a discrete-time
polynomial system from a semialgebraic set of initial conditions under general semi-
algebraic set constraints. Assuming inclusion in a given simple set like a box or
an ellipsoid, we provide a method to compute certified outer approximations of the
reachable set.

The proposed method consists of building a hierarchy of relaxations for an
infinite-dimensional moment problem. Under certain assumptions, the optimal value
of this problem is the volume of the reachable set and the optimum solution is the
restriction of the Lebesgue measure on this set. Then, one can outer approximate
the reachable set as closely as desired with a hierarchy of super level sets of in-
creasing degree polynomials. For each fixed degree, finding the coefficients of the
polynomial boils down to computing the optimal solution of a convex semidefinite
program. When the degree of the polynomial approximation tends to infinity, we
provide strong convergence guarantees of the super level sets to the reachable set.
We also present some application examples together with numerical results.

Keywords: reachable set, discrete-time polynomial systems, polynomial optimization,
semidefinite programming, moment relaxations, sums of squares, convex optimization.

1 Introduction

Given a dynamical polynomial system described by a discrete-time (difference) equation,
the (forward) reachable set (RS) is the set of all states that can be reached from a set of
initial conditions under general state constraints. This set appears in different fields such
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as optimal control, hybrid systems or program analysis. In general, computing or even
approximating the RS is a challenge. Note that the RS is typically non-convex and non-
connected, even in the case when the set of initial conditions is convex and the dynamics
are linear. In this paper, we propose a characterization of the RS as the solution of
an infinite-dimensional linear programming (LP) problem. This characterization is done
by considering a hierarchy of converging convex programs through moment relaxations
of the LP. Doing so, one can compute tight outer approximations of the RS. Such outer
approximations yield invariants for the discrete-time system, which are sets where systems
trajectories are confined.

This general methodology is deeply inspired from previous research efforts. The idea of
formulation relying on LP optimization over probability measures appears in [19], with
a hierarchy of semidefinite programs (SDP) also called moment-sum-of-squares or some-
times Lasserre hierarchy, whose optimal values converge from below to the infimum of
a multivariate polynomial. One can see outer approximations of sets as the analogue of
lower approximations of real-valued functions. In [15], the authors leverage on these tech-
niques to address the problem of computing outer approximations by single polynomial
super level sets of basic compact semialgebraic sets described by the intersection of a
finite number of given polynomial super level sets. Further work focused on approximat-
ing semialgebraic sets for which such a description is not explicitly known or difficult to
compute: in [22], the author derives converging outer approximations of sets defined with
existential quantifiers; in [27], the authors approximate the image of a compact semialge-
braic set under a polynomial map. The current study can be seen as an extension of [27]
where instead of considering only one iteration of the map, we consider infinitely many
iterations starting from a set of initial conditions.

This methodology has also been successfully applied for several problems arising in the
context of polynomial systems control. Similar convergent hierarchies appear in [14],
where the authors approximate the region of attraction (ROA) of a controlled polynomial
system subject to compact semialgebraic constraints in continuous time. Note that the
ROA is not a semialgebraic set in general. The authors of [17] build upon the infinite-
dimensional LP formulation of the ROA problem while providing a similar framework to
characterize the maximum controlled invariant (MCI) for discrete and continuous time
polynomial dynamical systems. The framework used for ROA and MCI computation
both rely on occupation measures. These allow to measure the time spent by solutions of
differential or difference equations. As solutions of a linear transport equation called the
Liouville Equation, occupation measures also capture the evolution of the semialgebraic
set describing the initial conditions. As mentioned in [14], the problem of characterizing
the (forward) RS in a continuous setting and finite horizon could be done as ROA com-
putation by using a time-reversal argument. In the present study, we handle the problem
in a discrete setting and infinite horizon. Our contribution follows a similar approach but
requires to describe the solution set of another Liouville Equation.

Computing or approximating RS has been a topic of intensive research in the last four
decades. When the dynamics of the discrete-time system is linear, one can rely on contrac-
tive algorithms based on finite LP relaxations combined with polyhedral projections [8].
For more details and historical surveys, we refer the interested reader to [9, 10]. A
recent approach [12] has extended the scope of problems for which one can construct
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polyhedral bounds on the reachable set. Again, the method relies on (parametric) LP
and numerical integration procedures. The works [5] compares approaches combining
LP relaxations with Bernstein decompositions or Krivine/Handelman representations of
nonnegative polynomials (also based on sums of squares certificates). See also [6] using
template polyhedra and Bernstein form of polynomials.

However, all these methods based on linear relaxations often fail to construct tight bounds
since they build convex over approximations of possibly nonconvex sets. Furthermore,
they usually do not provide convergence guarantees. In contrast with previous work, our
contributions are the following:

• we rely on a infinite-dimensional LP formulation to handle the general discrete-time
RS problem under semialgebraic state and initial conditions;

• we build a hierarchy of finite-dimensional SDP relaxations for this infinite-
dimensional LP problem. Under additional assumptions, the optimal value of this
LP is the volume of the RS, whose optimum is the restriction of the Lebesgue
measure on the RS;

• we use the solutions of these SDP relaxations to approximate the RS as closely
as desired, with a sequence of certified outer approximations defined as (possibly
nonconvex) polynomial super level sets, which is less restrictive than linear or convex
approximations used in the literature (such as polyhedra or ellipsoids).

In the sequel, we focus on computation of semidefinite approximations of the forward
RS for discrete-time polynomial systems. The problem statement is formalized in Sec-
tion 2 and reformulated in Section 3 into a primal optimization problem over probability
measures satisfying Liouville’s Equation. We explain how to obtain the dual problem in
Section 3.3. Then, we show in Section 4 how to solve in practice the primal problem
with moment relaxations, as well as the dual with sums of squares strenghtenings. In
both cases, this boils down to solving a hierarchy of finite-dimensional SDP problems.
We illustrate the method with several numerical experiments in Section 5.

2 Problem Statement and Prerequisite

2.1 Forward Reachable set for Discrete-time Polynomial Systems

Given r, n ∈ N, let R[x] (resp. R2r[x]) stands for the vector space of real-valued n-variate
polynomials (resp. of degree at most 2r) in the variable x = (x1, . . . , xn) ∈ Rn. We are
interested in the polynomial discrete-time system defined by

• a set of initial constraints assumed to be compact basic semi-algebraic:

X0 := {x ∈ Rn : g0
1(x) ≥ 0, . . . , g0

m0(x) ≥ 0} (1)

defined by given polynomials g0
1, . . . , g

0
m0 ∈ R[x], m0 ∈ N;
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• a polynomial transition map f : Rn → Rn, x 7→ f(x) := (f1(x), . . . , fn(x)) ∈ Rn[x]
of degree d := max{deg f1, . . . , deg fn}.

Given T ∈ N, let us define the set of all admissible trajectories after at most T iterations
of the polynomial transition map f , starting from any initial condition in X0:

XT := X0 ∪ f(X0) ∪ f(f(X0)) ∪ · · · ∪ fT (X0) ,

with fT denoting the T -fold composition of f . Then, we consider the reachable set (RS)
of all admissible trajectories:

X∞ := lim
T→∞

XT

and we make the following assumption in the sequel:

Assumption 2.1. The RS X∞ is included in a given compact basic semi-algebraic set

X := {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0} (2)

defined by polynomials g1, . . . , gm ∈ R[x], m ∈ N.

Example 1. Let X0 = [1/2, 1] and f(x) = x/4. Then X∞ = [1/2, 1] ∪ [1/8, 1/4] ∪
[1/32, 1/16] . . . is not connected within X = [0, 1].

We denote the closure of X∞ by X̄∞ . Obviously X∞ ⊆ X̄∞ and the inclusion can be
strict. To circumvent this difficulty, we make the following assumption in the remainder
of the paper.

Assumption 2.2. The volume of the RS is equal to the volume of its closure,
i.e. volX∞ = vol X̄∞.

Example 2. Let X0 = [1/2, 1] and f(x) = x/2. Then X∞ = [1/2, 1] ∪ [1/4, 1/2] ∪
[1/8, 1/4] . . . = (0, 1] is a half-closed interval within X = [0, 1]. Note that X̄∞ = X, so
that Assumption 2.2 is satisfied.

2.2 Prerequisite and Working Assumptions

Given a compact set A ⊂ Rn, we denote byM(A) the vector space of finite signed Borel
measures supported on A, namely real-valued functions from the Borel sigma algebra
B(A). The support of a measure µ ∈ M(A) is defined as the closure of the set of all
points x such that µ(B) 6= 0 for any open neighborhood B of x. We note C(A) the
Banach space of continuous functions on A equipped with the sup-norm. Let C(A)′ stand
for the topological dual of C(A) (equipped with the sup-norm), i.e. the set of continuous
linear functionals of C(A). By a Riesz identification theorem, C(A)′ is isomorphically
identified with M(A) equipped with the total variation norm denoted by ‖ · ‖TV. Let
C+(A) (resp.M+(A)) stand for the cone of non-negative elements of C(A) (resp. M(A)).
The topology in C+(A) is the strong topology of uniform convergence in contrast with the
weak-star topology inM+(A). See [30, Section 21.7] and [4, Chapter IV] or [23, Section
5.10] for functional analysis, measure theory and applications in convex optimization.
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With X a basic compact semialgebraic set as in (2), the restriction of the Lebesgue
measure on a subset A ⊆ X is λA(dx) := 1A(x) dx, where 1A : X → {0, 1} stands for
the indicator function of A, namely 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise.

The moments of the Lebesgue measure on A are denoted by

yAβ :=

∫
xβλA(dx) ∈ R , β ∈ Nn (3)

where we use the multinomial notation xβ := xβ11 x
β2
2 . . . xβnn . The Lebesgue volume of A

is volA := yA0 =
∫
λA(dx).

Given µ, ν ∈M(A), the notation
µ ≤ ν

stands for ν − µ ∈M+(A), and we say that µ is dominated by ν.

Given µ ∈ M+(X), the so-called pushforward measure or image measure, see e.g. [1,
Section 1.5], of µ under f is defined as follows:

f#µ(A) := µ(f−1(A)) = µ({x ∈ X : f(x) ∈ A})

for every set A ∈ B(X). A measure µ is called invariant w.r.t. f when it satisfies

µ = f#µ.

For conciseness, we refer to such a measure as an invariant measure and we omit the
reference to the map f when it is obvious from the context. See e.g. [18] for background
on invariant measures and dynamical systems.

With X0 a basic compact semialgebraic set as in (1), we set r0
j := d(deg g0

j )/2e, j =
1, . . . ,m0 and with X a basic compact semialgebraic set as in (2), we set rj :=
d(deg gj)/2e, j = 1, . . . ,m. Let Σ[x] stand for the cone of polynomial sums of squares
(SOS) and let Σr[x] denote the cone of SOS polynomials of degree at most 2r, namely
Σr[x] := Σ[x] ∩ R2r[x].

For the ease of further notation, we set g0
0(x) := 1 and g0(x) := 1. For each integer r,

let Q0
r (resp. Qr) be the r-truncated quadratic module generated by g0

0, . . . , g
m0

m (resp.
g0, . . . , gm):

Q0
r :=

{ m0∑
j=0

sj(x)g0
j (x) : sj ∈ Σr−r0j [x], j = 0, . . . ,m0

}
,

Qr :=
{ m∑

j=0

sj(x)gj(x) : sj ∈ Σr−rj [x], j = 0, . . . ,m
}
.

To guarantee the convergence behavior of the relaxations presented in the sequel, we need
to ensure that polynomials which are positive on X0 (resp. X) lie in Q0

r (resp. Qr) for
some r ∈ N. The existence of such SOS-based representations is guaranteed by Putinar’s
Positivstellensaz (see e.g. [20, Section 2.5]), when the following condition holds:
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Assumption 2.3. There exists a large enough integer N0 (resp. N) such that one of
the polynomials describing the set X0 (resp. X) is equal to gi0 := N0 − ‖x‖2

2 (resp. gi :=
N − ‖x‖2

2).

From now on, the over approximation set X of the set X∞ is assumed to be “simple”
(e.g. a ball or a box), meaning that X fulfills the following condition:

Assumption 2.4. The moments (3) of the Lebesgue measure on X are available analyt-
ically.

Let N0 stands for the set of positive integers. For all r ∈ N, we set Nn
r := {β ∈ Nn :∑n

j=1 βj ≤ r}, whose cardinality is
(
n+r
r

)
. Then a polynomial p ∈ R[x] is written as

follows:
x 7→ p(x) =

∑
β∈Nn

pβ x
β ,

and p is identified with its vector of coefficients p = (pβ) in the canonical basis (xβ),
β ∈ Nn.

Given a real sequence y = (yβ)β∈Nn , let us define the linear functional `y : R[x] → R by
`y(p) :=

∑
β pβyβ, for every polynomial p.

Then, we associate to y the so-called moment matrix Mr(y), that is the real symmetric
matrix with rows and columns indexed by Nn

r and the following entrywise definition:

(Mr(y))β,γ := `y(xβ+γ) , ∀β, γ ∈ Nn
r .

Given a polynomial q ∈ R[x], we also associate to y the so-called localizing matrix, that
is the real symmetric matrix Mr(q y) with rows and columns indexed by Nn

r and the
following entrywise definition:

(Mr(q y))β,γ := `y(q(x)xβ+γ) , ∀β, γ ∈ Nn
r .

In the sequel, we propose a method to compute an outer approximation of X∞ as the
super level set of a polynomial. Given its degree 2r, such a polynomial may be produced
using standard numerical optimization tools. Under certain assumptions, the resulting
outer approximation can be as tight as desired and converges (with respect to the L1

norm on X) to the set X∞ as r tends to infinity.

3 Primal-Dual Infinite-dimensional LP

3.1 Forward Reachable Sets and Liouville’s Equation

For a given T ∈ N0 and a measure µ0 ∈M+(X0), let us define the measures µ1, . . . , µT , µ ∈
M+(X) as follows:

µt+1 := f#µt = f t+1
# µ0 , t = 0, . . . , T − 1 ,

ν :=
T−1∑
t=0

µt =
T−1∑
t=0

f t#µ0 .
(4)
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The measure ν is a (discrete-time) occupation measure: if µ0 = δx0 is the Dirac measure
at x0 ∈ X0 then µt = δxt and ν = δx0 + δx1 + · · ·+ δxT−1

, i.e. ν measures the time spent
by the state trajectory in any subset of X after T iterations, if initialized at x0.

Lemma 3.1. For any T ∈ N0 and µ0 ∈ M(X0), there exist µT , ν ∈ M(X) solving the
discrete Liouville Equation:

µT + ν = f#ν + µ0 . (5)

Proof. Follows readily from the definitions given in (4).

Now let
Y0 := X0, Yt := f t(X0)\Xt−1, t = 1, . . . , T.

Note that the RS defined in Section 2.1 is equal to

XT = ∪Tt=0Y
t.

Further results involve statements relying on the following technical assumption:

Assumption 3.2. limT→∞
∑T

t=0 t volYt <∞.

This assumption seems to be strong or unjustified at that point, but it was satisfied in
all the examples we processed. Moreover, if we do not know if the assumption is satisfied
a priori, there is an a posteriori validation based on duality theory. We will explain this
later on. Before that, let us prove that equation (5) holds when µT = λXT , the restriction
of the Lebesgue measure over the RS:

Lemma 3.3. For any T ∈ N0, there exist µT0 ∈M+(X0) and νT ∈M+(X) such that the
restriction of the Lebesgue measure over XT solves the discrete Liouville Equation:

λXT + νT = f#ν
T + µT0 . (6)

In addition, if Assumption 3.2 holds, then there exist µ0 ∈ M+(X0) and ν ∈ M+(X)
such that the restriction of the Lebesgue measure over X∞ solves the discrete Liouville
Equation:

λX∞ + ν = f#ν + µ0 . (7)

Proof. We first show that for each t = 1, . . . , T there exist a measure νt ∈ M+(X) and
µ0,t ∈M+(X0) such that

λYt + νt = f#νt + µ0,t. (8)

By the Radon-Nikodým Theorem [29] there exists a function qt ∈ L1(λYt) such that
dλYt(x) = qt(x)dλYt(x) and qt(x) ≥ 0 for all x ∈ Yt. Then, it follows from [27, Lemma
4.1] that there exists a measure µ0,t ∈ M+(f−t(Yt)) such that λYt = f t#µ0,t (with the
notations f ← f t, S ← f−t(Yt), B ← X, µ1 ← λYt and µ0 ← µ0,t) since it is impos-
sible to find a function v ∈ C(X) such that v(x) ≥ 0 for all x ∈ Yt while satisfying∫
v(x)qt(x)dλYt(x) < 0. Since f−t(Yt) ⊆ X0, it implies that the measures µ0,t and

νt :=
∑t−1

i=0 f
i
#µ0,t satisfy µ0,t ∈M+(X0), νt ∈M+(X) and Equation (8).
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Letting µ0,0 := λX0 , we now prove the first claim of the Lemma by showing that the
measures

νT :=
T∑
t=0

νt ∈M+(X)

and

µT0 :=
T∑
t=0

µ0,t ∈M+(X0)

satisfy
λXT + νT = f#ν

T + µT0 . (9)

Since XT =
⋃T
t=0 Y

t and the Yt are disjoint, one can write λXT =
∑T

t=0 λYt . This
decomposition together with Equation (8) allows to show the first claim.

Now, we prove the second claim of the Lemma by showing that the respective limits of
the measure sequences (λXT )T , (νT )T and (µT0 )T exist as T →∞, and that the respective
limits λX∞ , ν and µ0 satisfy Equation (7):

• The limit of λXT exists and is equal to λX∞ by definition of X∞;

• The limit of µT0 exists since ‖µT0 ‖TV =
∑T

t=0

∫
X0 µ0,t =

∑T
t=0

∫
Yt µt =

∑T
t=0 volYt ≤

volX∞ ≤ volX <∞. Therefore there is a subsequence which converges to a certain
µ0 ∈M+(X0) for the weak-star topology.

• The limit of νT exists since ‖νT‖TV =
∑T

t=0

∫
X
νt =

∑T
t=0

∫
Yt

∑t−1
i=0

∫
X
f i#µ0,t =∑T

t=0 t volYt < ∞ by Assumption 3.2. Therefore, there is a subsequence which
converges to a certain ν ∈M+(X) for the weak-star topology.

Finally, taking the limit to infinity of both sides of Equation (9) yields the initial claim.

Remark 1. In Lemma 3.3, the measure µT0 (resp. µ0) can be thought as distribution of
mass for the initial states of trajectories reaching XT (resp. X∞) but it has a total mass
which is not required to be normalized to one.

The mass of νT measures the volume averaged w.r.t. µ0 occupied by state trajectories
reaching XT after T iterations, by contrast with the mass of λXT which measures the
volume of XT .

The mass of ν measures the volume averaged w.r.t. µ0 occupied by state trajectories
reaching the RS X∞, by contrast with the mass of λX∞ which measures the exact RS
volume.
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3.2 Primal Formulation

To approximate the set X∞, one considers the infinite-dimensional linear programming
(LP) problem, for any T ∈ N0:

pT := sup
µ0,µ,µ̂,ν,a

∫
X

µ

s.t.
∫
X

ν + a = T volX ,

µ+ ν = f#ν + µ0 ,

µ+ µ̂ = λX ,

µ0 ∈M+(X0) , µ, µ̂, ν ∈M+(X) , a ∈ R+ .

(10)

The first equality constraint ensures that the mass of the occupation measure ν is bounded
(by T volX).

Lemma 3.4. For any T ∈ N0, LP (10) admits an optimal solution (µ∗0, µ
∗, µ̂∗, ν∗, a∗)

such that µ∗ = λST for some set ST satisfying XT ⊆ ST ⊆ X̄∞ and volST = pT .

In addition if Assumption 3.2 holds then there exists T0 ∈ N such that for all T ≥ T0 one
has ST = X̄∞, LP (10) has a unique optimal solution with µ∗ = λX∞ and pT = volX∞.

Proof. Let T ∈ N0. First we show that the feasible set of LP (10) is nonempty and
compact, and that LP (10) has at least one optimal solution (µ∗0, µ

∗, µ̂∗, ν∗, a∗). The
feasible set of LP (10) is nonempty as (µ0, µ, µ̂, ν, a) = (0, 0, λX, 0, T volX) is a feasible
solution. Let us consider the sequences of measures (µ0n)n, (µn)n, (µ̂n)n, (νn)n and the
nonnegative real sequence (an)n such that each (µ0n, µn, µ̂n, νn, an)n is feasible for LP (10).
One has:

• ‖µn‖TV + ‖µ̂n‖TV = volX <∞ (as X is bounded), which implies that ‖µn‖TV and
‖µ̂n‖TV are both bounded;

• ‖µ0n‖TV = ‖µn‖TV <∞, which implies that ‖µ0n‖TV is bounded;

• ‖νn‖TV and an are both bounded by T volX.

Thus, the feasible set of the LP (10) is bounded for the weak-star topology. Now we
show that this set is closed. Assume that the sequences of measures respectively converge
weakly-star to µ0, µ, µ̂, ν and the sequence of nonnegative real numbers converge to a.
For each A ∈ B(X), one has ν(f−1A) → νn(f−1(A)) and hence f#νn → f#ν. Thus,
(µ0, µ, µ̂, ν, a) is also feasible for LP (10), proving that the feasible set of the LP (10) is
closed in the metric including the weak-star topology. The existence of an optimal solution
(µ∗0, µ

∗, µ̂∗, ν∗, a∗) follows from the fact that LP (10) has a linear objective function with
a weak-star compact feasible set.

By Lemma 3.3, there exist µT0 ∈ M+(X0) and νT ∈ M+(X) such that the restriction of
the Lebesgue measure over XT solves the discrete Liouville Equation, i.e. λXT + νT =

9



f#ν
T + µT0 and

∫
X
νT =

∑T
t=0 t volYt ≤ T volX. With aT = T volX−

∑T
t=0 t volYt and

µ̂T = λX − λXT , it follows that (µT0 , µ
T , µ̂T , νT , aT ) is feasible for LP (10).

Next, given any feasible solution (µ′0, µ
′, µ̂′, ν ′, a′) of LP (10), we show that the support of

µ′ is included in X̄∞. Using the Liouville Equation and the fact that µ′0 is supported on
X0 ⊆ X∞, one has:

µ′(X∞) + µ′(X\X∞) = µ′(X) = µ′0(X0) = µ′0(X∞) = µ′(X∞) + ν ′(X∞)− f#ν
′(X∞) ,

which proves that µ′(X\X∞) = ν ′(X∞) − f#ν
′(X∞). Since X∞ ⊆ f−1(X∞), one has

ν ′(X∞) ≤ ν ′(f−1(X∞)) = f#ν
′(X∞), implying that µ′(X\X∞) = 0. Thus, the support

of µ′ is included in X̄∞.

Now we assume that
∑∞

t=0 t volYt > T volX. Hence, there exist a minimal integer
T2 ∈ N0 and measures µT20 ∈ M+(X0), νT2 ∈ M+(X) such that T < T2, λXT2 + νT2 =
f#ν

T2 + µT20 and T volX <
∫
X
νT2 . Therefore, for some T1 ∈ N0 with T1 ≥ T , there exist

some sets S0, . . . ,ST1 ⊆ X such that S0 = Y0, . . . ,ST = YT ,ST+1 ⊆ YT+1, . . . ,ST1 ⊆ YT1

and
∑T1

t=0 t volSt = T volX. By defining ST :=
⋃T1
t=0 St, one has XT ⊆ ST ⊂ XT2 ⊆ X∞.

As for Lemma 3.3, one proves that for all t = 0, . . . , T1, there exist µ′0,t ∈ M+(X0),
ν ′t ∈M+(X) such that λSt + ν ′t = f#ν

′
t + µ′0,t.

By superposition, the measures λST , µT10 :=
∑T1

i=0 µ
′
0,t and νT1 :=

∑T1
i=0 ν

′
t satisfy λST +

νT1 = f#ν
T1 + µT10 and

∫
X
νT1 =

∑T1
t=0 t volSt = T volX.

This implies that λST is feasible for LP (10). Then one proves, exactly as in the proof
of [15, Theorem 3.1], that the quintuple (µT10 , λST , λX\ST , νT1 , 0) is optimum, yielding the
optimal value pT = volST .

Under Assumption 3.2, Lemma 3.3 implies that there exist µ0 ∈M+(X0) and ν ∈M+(X)
such that the restriction of the Lebesgue measure over X∞ solves the discrete Liouville’s
Equation (7). In addition, there exists T0 ∈ N such that for all T ≥ T0,

∑T
t=0 t volYt ≤

T volX, thus
∫
X
ν ≤ T volX. This implies that λX∞ is feasible for LP (10). With µ0

and ν as in Lemma 3.3, we define µ∗0 := µ0, µ∗ := λX∞ , µ̂∗ := λX − λX∞ , ν∗ := ν and
a∗ := T volX−

∫
X
ν and show as in the proof of [15, Theorem 3.1], that (µ∗0, µ

∗, µ̂∗, ν∗, a∗)
is optimum with unique µ∗, yielding the optimal value pT = volX∞.

From now on, we refer to ST as the support of the optimal solution µ∗ of LP (10) which
satisfies the condition of Lemma 3.4, i.e. XT ⊆ ST ⊆ X̄∞.

In the sequel, we formulate LP (10) as an infinite-dimensional conic problem on appro-
priate vector spaces. By construction, a feasible solution of problem (10) satisfies:∫

X

ν(dx) + a =

∫
X

Tλ(dx) , (11)∫
X

v(x)µ(dx) +

∫
X

v(x) ν(dx) =

∫
X

v(f(x)) ν(dx) +

∫
X0

v(x)µ0(dx) , (12)∫
X

w(x)µ(dx) +

∫
X

w(x) µ̂(dx) =

∫
X

w(x)λ(dx) , (13)

for all continuous test functions v, w ∈ C(X).
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Then, we cast problem (10) as a particular instance of a primal LP in the canonical form
given in [4, 7.1.1]:

pT = sup
x
〈x, c〉1

s.t. Ax = b,

x ∈ E+
1 ,

(14)

with

• the vector space E1 := M(X0) ×M(X)3 × R with its cone E+
1 of non-negative

elements;

• the vector space F1 := C(X0)× C(X)3 × R;

• the duality 〈·, ·〉1 : E1 × F1 → R, given by the integration of continuous functions
against Borel measures, since E1 = F ′1 is the dual of F1;

• the decision variable x := (µ0, µ, µ̂, ν, a) ∈ E1 and the reward c := (0, 1, 0, 0, 0) ∈ F1;

• E2 := R × M(X)2, F2 := R × C(X)2 and the right hand side vector b :=
(T volX, 0, λ) ∈ E2 = F ′2;

• the linear operator A : E1 → E2 given by

A (µ0, µ, µ̂, ν, a) :=

 ∫
X
ν + a

µ+ ν − f#ν − µ0

µ+ µ̂

 .
Note that both spaces E1, E2 (resp. F1, F2) are equipped with the weak topologies
σ(E1, F1), σ(E2, F2) (resp. σ(F1, E1), σ(F2, E2)) and σ(E1, F1) is the weak-star topology
(since E1 = F ′1). Observe that A is continuous with respect to the weak topology, as
A′(F2) ⊂ F1.

3.3 Dual Formulation

Using the same notations, the dual of the primal LP (14) in the canonical form given
in [4, 7.1.2] reads:

dT = inf
y
〈b, y〉2

s.t. A′ y − c ∈ F+
1 ,

(15)

with

• the dual variable y := (u, v, w) ∈ F2;

• the (pre)-dual cone F+
1 := R+ × C+(X)2, whose dual is E+

1 ;

• the duality pairing 〈·, ·〉2 : E2 × F2 → R, with E2 = F ′2;

11



• the adjoint linear operator A′ : F2 → F1 given by

A′ (u, v, w) :=


−v
w + v
w

u+ v − v ◦ f

 .
Using our original notations, the dual LP of problem (10) then reads:

dT := inf
u,v,w

∫
X

(w(x) + Tu)λX(dx)

s.t. v(x) ≥ 0, ∀x ∈ X0,

w(x) ≥ 1 + v(x), ∀x ∈ X,

w(x) ≥ 0, ∀x ∈ X,

u+ v(f(x)) ≥ v(x), ∀x ∈ X,

u ≥ 0,

u ∈ R , v, w ∈ C(X).

(16)

Theorem 3.5. For a fixed T ∈ N0, there is no duality gap between primal LP (10) and
dual LP (16), i.e. pT = dT and there exists a minimizing sequence (uk, vk, wk)k∈N for the
dual LP (16).

In addition, if uk = 0 for some k ∈ N, then Assumption 3.2 holds and pT = dT = volX∞.

Proof. As in [17, Theorem 3], the zero duality gap follows from infinite-dimensional LP
duality theory (for more details, see [4]). The feasible set of the LP (10) is nonempty in the
metric inducing the weak-star topology onM(X0)×M(X)3×R since (0, 0, λX, 0, T volX)
is a trivial feasible solution. As shown in Lemma 3.4, the feasible set of the LP (10) is
bounded for the same metric. Hence, the first claim follows from nonemptiness and
boundedness of the feasible set of the primal LP (10).

Now, let us assume that there exists a minimizing sequence (uk, vk, wk)k∈N of the dual
LP (16) such that the dual variable uk is equal to 0 for some k ∈ N. This implies that
the corresponding constraint in the primal LP (10) is not saturated, i.e.

∫
X
ν < T volX,

for any solution (µ0, µ, µ̂, ν, a). Let us show that Assumption 3.2 holds. Otherwise, by
contradiction one would have

∑∞
t=0 t volYt > T volX. In the proof of Lemma 3.4, we

proved that this strict inequality implies the existence of a set ST and an optimal solution
(µT10 , λST , λX\ST , νT1 , 0) for the primal LP (10), such that

∫
X
νT1 = T volX, yielding a

contradiction. Eventually, Lemma 3.4 implies that pT = dT = volX∞.

4 Primal-Dual Hierarchies of SDP Approximations

4.1 Primal-Dual Finite-dimensional SDP

For each r ≥ rmin := max{r0
1, . . . , r

0
m0 , r1, . . . , rm}, let y0 = (y0β)β∈Nn

2r
be the finite se-

quence of moments up to degree 2r of the measure µ0. Similarly, let y, ŷ and z stand for

12



the sequences of moments up to degree 2r, respectively associated with µ, µ̂ and ν. The
infinite primal LP (10) can be relaxed with the following semidefinite program:

pTr := sup
y0,y,ŷ,z,a

y0

s.t. z0 + a = TyX0 ,

yβ + zβ = `z(f(x)β) + y0β , ∀β ∈ Nn
2r ,

yβ + ŷβ = yXβ , ∀β ∈ Nn
2r ,

Mrd−r0j (g0
j y0) � 0, j = 0, . . . ,m0 ,

Mr−rj(gj y) � 0 ,Mr−rj(gj ŷ) � 0 ,Mr−rj(gj z) � 0 , j = 0, . . . ,m ,

a ≥ 0 .
(17)

Consider also the following semidefinite program, which is a strengthening of the infinite
dual LP (16) and also the dual of Problem (17):

dTr := inf
u,v,w

∑
β∈Nn

2r

wβz
X
β + uTzX0

s.t. v ∈ Q0
r ,

w − 1− v ∈ Qr ,

u+ v ◦ f − v ∈ Qrd ,

w ∈ Qr ,

u ∈ R+ ,

v, w ∈ R2r[x] .

(18)

Theorem 4.1. Let r ≥ rmin. Suppose that the three sets X0, ST and X\ST have nonempty
interior. Then:

1. pTr = dTr , i.e. there is no duality gap between the primal SDP program (17) and the
dual SDP program (18).

2. The dual SDP program (18) has an optimal solution (ur, vr, wr) ∈ R×R2r[x]×R2r[x],
and the sequence (wr + urT ) converges to 1ST in L1 norm on X:

lim
r→∞

∫
|wr(x) + urT − 1ST (x)|λX(dx) = 0. (19)

3. Defining the sets
XT
r := {x ∈ X : vr(x) + urT ≥ 0} ,

it holds that
XT
r ⊇ XT .

4. In addition, if ur = 0 then Assumption 3.2 holds and the sequence (wr) converges
to 1X̄∞ in L1 norm on X. Defining the sets

X∞r := {x ∈ X : vr(x) ≥ 0} ,

13



its holds that
X∞r ⊇ X̄∞ ⊇ X∞ .

and
lim
r→∞

vol(X∞r \X∞) = vol(X∞r \X̄∞) = 0 .

Proof.

1. Let µ∗ := λST , µ∗0 and ν∗ be such that µ∗ + ν∗ = f#ν
∗ + µ∗0 as in the proof of

Lemma 3.4, and let µ̂∗ = λX−µ∗ and a∗ := T volX−
∫
X
ν∗ so that (µ∗0, µ

∗, µ̂∗, ν∗, a∗)
is feasible for LP (10). Given r ≥ rmin, let y0, y, ŷ and z be the sequences of moments
up to degree 2r of µ∗0, µ∗, µ̂∗ and ν∗ respectively. Then, as in the proof of the first
item of Theorem 4.4 in [27], the optimal set of the primal SDP program (17) is
nonempty and bounded and the result of [31] implies that there is no duality gap
between the primal SDP program (17) and dual SDP program (18).

2. The proof follows by the same arguments as in the proof of the second item of Theo-
rem 4.4 in [27]. One first shows that (y0,y, ŷ, z) is strictly feasible for program (17).
It comes from the fact the three sets X0, ST and X\ST have nonempty interior, re-
spectively yielding the positive definiteness of Mr−r0j (gj y0) for each j = 0, . . . ,m0,
Mr−rj(gj y), Mr−rj(gj ŷ) and Mr−rj(gj z) for each j = 0, . . . ,m.

Then, we conclude that the dual SDP program (18) has an optimal solution
(ur, vr, wr) ∈ R× R2r[x]× R2r[x].

Now, one proves that there exists a sequence of polynomials (wk)k∈N ⊂ R[x] such
that wk(x) ≥ 1ST (x), for all x ∈ X and such that

lim
k→∞

∫
|wk(x)− 1ST (x)|λX(dx) = 0. (20)

Closedness of ST implies that the indicator function 1ST is upper semi-continuous, so
there exists a non-increasing sequence of bounded continuous functions hk : X→ R
such that hk(x) ↓ 1ST (x), for all x ∈ X, as k →∞.

By the Monotone Convergence Theorem [3], hk → 1ST for the L1 norm. Let ε >
0 be given. Using the Stone-Weierstrass Theorem [25], there exists a sequence
of polynomials (w′k)k∈N ⊂ R[x], such that supx∈X | w′k(x) − hk(x) |< ε, thus |
w′k(x) − 1ST (x) |< 2ε. With uk := 4ε, the polynomial wk := w′k + 2ε satisfies
0 < wk − 1ST < 4ε and 4Tε < wk + ukT − 1ST < (4 + 4T )ε, thus (20) holds.

Finally, let us define the polynomials w′′k := wk + ε, vk := wk − 1 and prove that
(uk, v

′′
k , w

′′
k) is a feasible solution of (18) for large enough r ∈ N. The inequalities

w′′k > wk > 1ST prove that w′′k ∈ Qr(X), as a consequence of Putinar’s Posi-
tivstellensatz [20, Section 2.5]. Similarly, w′′k − v′′k − 1 = ε > 0 which proves that
w′′k − v′′k − 1 ∈ Qr(X). For each x ∈ X, one has 0 < v′′k(x) < 4ε. The left in-
equality proves that v′′k ∈ Qr(X

0). Using both inequalities, one has for all x ∈ X,
ukT +v′′k(f(x))−v′′k(x) > 0, so ukT +v′′k ◦f−v′′k lies in Qrd(X). Then, one concludes
as for the proof of the second item of Theorem 3.3 or Theorem 4.4 in [27].
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3. Let x ∈ XT and (ur, vr, wr) ∈ R2r[y]×R2r[y] be an optimal solution of (18). There
exist t ∈ N such that t ≤ T and x ∈ Yt. Thus, there exists X0 ∈ X0 such that
x = f t(X0). By feasibility, vr(X0) ≥ 0 and by induction, one has vr(x) + urt ≥
vr(X

0) ≥ 0. Since ur ≥ 0, one has vr(x)+urT ≥ vr(x)+urt ≥ 0, yielding XT
r ⊇ XT .

4. If the dual variable ur satisfies ur = 0, then the corresponding constraint in the
primal is not saturated, i.e. z0 < TyX0 , which implies as in the proof of Lemma 3.5
that Assumption 3.2 holds. By Lemma 3.4, ST = X̄∞ and the sequence (wr)
converges to 1X̄∞ in L1 norm on X. For all x ∈ X∞, there exists X0 ∈ X0 and t ∈ N
such that x = f t(X0). By feasibility, vr(X0) ≥ 0 implies that vr(x) ≥ vr(X

0) ≥ 0.
For all x ∈ X̄∞, there exists a sequence (xn) ⊂ X∞ converging to x, and as above,
one shows that for all n ∈ N, one has vr(xn) ≥ 0. Continuity of vr implies that
vr(x) ≥ 0. This proves that X∞r ⊇ X̄∞ ⊇ X∞. Finally, the proof of the convergence
in volume is similar to the proof of the third item of Theorem 3.3 or Theorem 4.4
in [27].

Remark 2. Theorem 4.1 states that one can over approximate the reachable states of
the system after any arbitrary finite number of discrete-time steps (third item).

In addition, Theorem 4.1 provides a sufficient condition to obtain a hierarchy of over
approximations converging in volume to the RS (fourth item).

4.2 Special Case: linear systems with ellipsoid constraints

Given A ∈ Rn×n, let us consider a discrete-time linear system xt+1 = Axt with a set of
initial constraints defined by the ellipsoid X0 := {x ∈ Rn : 1 ≥ xT V0 x } with V0 ∈ Rn×n

a positive definite matrix.

Similarly the set of state constraints is defined by the ellipsoid X := {x ∈ Rn : 1 ≥
xT Gx } with G ∈ Rn×n a positive definite matrix. Since one has X0 ⊆ X, it follows that
V0 � G.

Then, one can look for a quadratic function v(x) := 1−xT Vx, with V ∈ Rn×n a positive
definite matrix solution of the following SDP optimization problem:

sup
V∈Rn×n

traceMV

s.t. V0 � V � ATVA ,

V � 0 ,

(21)

where M is the second-order moment matrix of the Lebesgue measure on X, i.e. the
matrix with entries

(M)α,β = yXα+β, , α, β ∈ Nn, |α|+ |β| = 2.

Note that in this special case SDP (21) can be retrieved from SDP (18) and one can over
approximate the reachable set with the superlevel set of v or w − 1:
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Lemma 4.2. SDP (21) is equivalent to SDP (18) with r := 1, ur := 0, v(x) := 1−xT Vx
and w(x) = 1 + v(x). Thus, one has:

{x ∈ X : v(x) ≥ 0} = {x ∈ X : w(x) ≥ 1} ⊇ X∞ .

Proof. The polynomial v is nonnegative over X0 if and only if V0 � V. The “if” part
comes from the fact that V0 � V implies that 1 − xT Vx ≥ 1 − xT V0 x ≥ 0, for all
x ∈ X0. The other implication is a consequence of the S-Lemma [32]: there exists a
nonnegative constant c such that 1 − xT Vx ≥ c (1 − xT V0 x) for all x ∈ Rn. It yields

1 ≥ c when x = 0. By defining y = (1,x), one finds that yT
(

1− c 0
0 V0 −V

)
y ≥ 0 for

all y ∈ Rn+1, which finally gives V0 � V.

In addition, the polynomial x 7→ v(Ax) − v(x) is nonnegative over X if and only if
V � ATVA. The “if” part comes from the fact that V � ATVA implies that v(Ax) −
v(x) = xT (V − ATVA)x ≥ 0, for all x ∈ X. The other implication follows from the
S-Lemma: there exists a constant c ≥ 0 such that v(Ax) − v(x) ≥ c (1 − xT Gx) or
equivalently xT (V −AtVA)x ≥ c (1 − xT Gx), for all x ∈ Rn. As before, this yields
0 ≥ c, thus c = 0 and V −AtVA � 0, which finally gives V0 � V � ATVA.

Minimizing the integral (w.r.t. the Lebesgue measure) of w over X is equivalent to maxi-
mizing the integral of the trace of the matrix xxTV on X.

5 Numerical Experiments

Here, we present experimental benchmarks that illustrate our method. For a given positive
integer r, we compute the polynomial solution wr of the dual SDP program (18). This dual
SDP is modeled using the Yalmip toolbox [24] available within Matlab and interfaced
with the SDP solver Mosek [2]. Performance results were obtained with an Intel Core
i7-5600U CPU (2.60GHz) running under Debian 8.

For all experiments, we could find an optimal solution of the dual SDP program (18)
either by adding the constraint u = 0 or by setting T = 100. In the latter case, the
optimal solution is such that ur ' 0 and the polynomial solution wr is the same than
in the former case, up to small numerical errors (in practice the value of ur is less than
1e–5). This implies that Assumption 3.2 is satisfied, i.e. the constraint of the mass of
the occupation measure is not saturated, and yielding valid outer approximations of X∞.
The implementation is freely available on-line1.

1www-verimag.imag.fr/~magron/reachsdp.tar.gz
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5.1 Toy Example

First, let us consider the discrete-time polynomial system defined by

x+
1 :=

1

2
(x1 + 2x1x2) ,

x+
2 :=

1

2
(x2 − 2x3

1) ,

with initial state constraints X0 := {x ∈ R2 : (x1− 1
2
)2+(x2− 1

2
)2 ≤ 4−2} and general state

constraints within the unit ball X := {x ∈ R2 : ‖x‖2
2 ≤ 1}. On Figure 1, we represent in

light gray the outer approximations X∞r of X∞ obtained by our method, for increasing
values of the relaxation order r (from 2r = 4 to 14). On each figure, the colored sets of
points are obtained by simulation for the first 7 iterates. More precisely, each colored set
correspond to (under approximations of) the successive image sets f(X0), . . . , f 7(X0) of
the points obtained by uniform sampling of X0 under f, . . . , f 7 respectively. The set X0

is blue and the set f 7(X0) is red, while intermediate sets take intermediate colors. The
dotted circle represents the boundary of the unit ball X. Figure 1 shows that the over
approximations are already quite tight for low degrees.

(a) 2r = 4 (b) 2r = 6 (c) 2r = 8

(d) 2r = 10 (e) 2r = 12 (f) 2r = 14

Figure 1: Outer approximations X∞r (light gray) of X∞ (color dot samples) for Exam-
ple 5.1, from 2r = 4 to 2r = 14.
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5.2 Cathala System

Consider the Cathala System (see [17, Section 7.1.2]):

x+
1 := x1 + x2 ,

x+
2 := −0.5952 + x2

1 ,

with initial state constraints X0 := {x ∈ R2 : (x1 + 0.6)2 + (x2 − 0.5)2 ≤ 0.42} and state
constraints X := {x ∈ R2 : ‖x‖2

2 ≤ 1.82}. The value −0.5952 corresponds to a parameter
for which this system has an attractor (see Figure 2), the Cathala system being known to
exhibit chaotic behavior [28].

(a) 2r = 6 (b) 2r = 8 (c) 2r = 10

(d) 2r = 12 (e) 2r = 14 (f) 2r = 16

Figure 2: Outer approximations X∞r (light gray) of X∞ (color dot samples) for Exam-
ple 5.2, from 2r = 6 to 2r = 16.

5.3 FitzHugh-Nagumo Neuron Model

Consider the discretized version (taken from [6, Section 5]) of the FitzHugh-Nagumo
model [11], which is originally a continuous-time polynomial system modelling the elec-
trical activity of a neuron:

x+
1 := x1 + 0.2(x1 − x3

1/3− x2 + 0.875) ,

x+
2 := x2 + 0.2(0.08(x1 + 0.7− 0.8x2)) ,
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with initial state constraints X0 := [1, 1.25]× [2.25, 2.5] and state constraints X := {x ∈
R2 : (x1−0.1

3.6
)2 +(x2−1.25

1.75
)2 ≤ 1}. Figure 3 illustrates that the outer approximations provide

useful indications on the system behavior, in particular for higher values of r. Indeed
X∞5 and X∞6 capture the presence of the central “hole” made by periodic trajectories and
X∞7 shows that there is a gap between the first discrete-time steps and the iterations
corresponding to these periodic trajectories.

(a) 2r = 4 (b) 2r = 6

(c) 2r = 8 (d) 2r = 10

(e) 2r = 12 (f) 2r = 14

Figure 3: Outer approximations X∞r (light gray) of X∞ (color dot samples) for Exam-
ple 5.3, from 2r = 4 to 2r = 14.
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5.4 Julia Map

Consider the discrete-time system z+ := z2 + c, with the state variable z ∈ C and
parameter c ∈ C. By setting z = x1 + ix2 and c = c1 + ic2, with i the imaginary unit, we
obtain the following equivalent quadratic two-dimensional formulation:

x+
1 := x2

1 − x2
2 + c1 ,

x+
2 := 2x1x2 + c2 ,

with initial state constraints X0 := {x ∈ R2 : ‖x‖2
2 ≤ 0.12} and state constraints X ⊆

[−1.2, 0.2]× [−0.5, 0.6]. This recurrence allows to generate the filled Julia set, defined as
the set of initial conditions for which the RS of the above quadratic system is bounded.
Connectivity of the filled Julia set is ensured when c belongs to the Mandelbrot set. In [17,
Section 7.1.3], the authors provide over approximations of the sets of initial condition for
different values of the parameter c, in particular for the case c = −0.7 + 0.2i belonging to
the Mandelbrot set and c = −0.9 + 0.2i which lies outside the Mandelbrot set.

By contrast with the experimental results provided in [17, Section 7.1.3], Figure 4 depicts
over approximations of the RS for different values of the parameter c. In particular, for
cases where the parameter c = −0.7±0.2i lies inside the Mandelbrot set (corresponding to
Figure 4(a) and Figure 4(b)), the over approximation X∞5 indicates that the trajectories
possibly converge to an attractor. For cases where the parameter c = −0.9 ± 0.2i lies
outside the Mandelbrot set (corresponding to Figure 4(c) and Figure 4(d)), the over
approximation X∞5 proves a disconnected behavior, possibly implying the presence of two
attractors.

5.5 Phytoplankton Growth Model

Consider the discretized version of the Phytoplankton growth model (also taken from [6,
Section 5]). This model is obtained after making assumptions, corroborated experimen-
tally by biologists in order to represent such growth phenomena [7], yielding the following
discrete-time polynomial system:

x+
1 := x1 + 0.01(1− x1 − 0.25x1x2) ,

x+
2 := x2 + 0.01(2x3 − 1)x2 ,

x+
3 := x3 + 0.01(0.25x1 − 2x2

3) ,

with initial state constraints X0 := [−0.3,−0.2]2 × [−0.05, 0.05] and state constraints
X := [−0.5, 1.5] × [−0.5, 0.5]2. Figure 5 illustrates the system convergence behavior
towards an equilibrium point for initial conditions near the origin.

6 Conclusion and Perspectives

This paper presented an infinite-dimensional primal-dual LP characterization of the (for-
ward) reachable set (RS) for discrete-time polynomial systems with semialgebraic initial
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(a) c1 = −0.7, c2 = 0.2 (b) c1 = −0.7, c2 = −0.2

(c) c1 = −0.9, c2 = 0.2 (d) c1 = −0.9, c2 = −0.2

Figure 4: Outer approximations X∞r (light gray) of X∞ (color dot samples) for Exam-
ple 5.4, for 2r = 10 and different values of the Julia parameter c.

and general state constraints. The problem can be practically handled through solving a
hierarchy of finite dimensional primal-dual SDP relaxations.

In particular, the hierarchy of dual SDP problems yields sequences of polynomials of
increasing degrees, allowing to construct certified outer approximations of the RS while
ensuring convergence guarantees (w.r.t. the L1 norm) to the indicator function of the RS
when the mass of some occupation measure is bounded. Our approach happens to be not
only theoretically consistent but also practically efficient.

In some cases, it is possible to complement the hierarchy of convergent outer approxi-
mations of set of interest (ROA, MCI) by providing a sequence of inner approximations.
For instance, the work [16] uses similar tools from measure theory to derive such inner
approximations of the ROA. Future research perspectives include the study a comple-
mentary hierarchy of inner approximations for the RS, in the spirit of [16]. We also
intend to investigate the RS problem for continuous time polynomial systems as for the
infinite-dimensional convex modeling of the maximum controlled invariant, with infinite
horizon [17]. In addition, it would be worth to apply the framework of [14], relying on
occupation measures to approximate the region of attraction (ROA). A time-reversal ar-
gument would allow to formulate the RS problem in continuous time and finite horizon as
ROA characterization. Finally, we also intend to develop a formally certified framework,
inspired from [26], in order to guarantee the correctness of the over approximations.
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(a) 2r = 4 (b) 2r = 6 (c) 2r = 8

(d) 2r = 10 (e) 2r = 12 (f) 2r = 14

Figure 5: Outer approximations X∞r (red) of X∞ (color dot samples) for Example 5.5,
from 2r = 4 to 2r = 14.
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