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CURRENT/VOLTAGE CHARACTERISTICS OF THE
SHORT-CHANNEL DOUBLE-GATE TRANSISTOR. PART I∗

ELLIS CUMBERBATCH† AND STEFAN G. LLEWELLYN SMITH‡

Abstract. The drift-diffusion equations relevant for application to current flow in the double
gate transistor are addressed. In standard operation this device has both source and drain heavily
doped with the silicon body at the intrinsic level. This situation means that there are two second-
order elliptic partial differential equations containing an exponential nonlinearity representing the
mobile electrons. For the ODEs governing electron flow source-to-drain away from narrow layers
close to the gates, we obtain new exact and accurate approximate analytic solutions. Part II will
include improvements close to the gates as boundary layers.
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1. Introduction. This is the first part of a two-part sequence investigating the
solution of a set of nonlinear partial differential equations (PDEs) relevant to current
flow in a transistor design of recent technological interest. This first part is being
offered separately because of its mathematical interest: we have obtained an exact
solution to the system of ordinary differential equations (ODEs) relevant to the so-
lution behavior over part of the domain of interest for the full PDEs. Additionally
these ODE solutions provide the outer solution when solutions in the complementary
part of the domain are found and incorporated in a matched asymptotic (MAE) ap-
proach. This part of the work will be offered in Part II. In Part I, we also include
an MAE solution for the ODE system as (a) it has an intriguing structure (7 layers)
and (b) it provides insight into the overall solution behavior and consequently helps
with analysis of the (complicated) exact solutions. Comparison of the analytic results
with numerical solutions is provided for various approximations. Part II will provide
solutions to the complete boundary value problem and will show comparisons with
previous work (usually numerical) presented elsewhere.

The standard transistor used in the semiconductor industry is the MOSFET
(metal-oxide-silicon field-effect transistor). The basic design incorporates a single
gate. Current fabrication can place hundreds of millions of such transistors on a chip.
For design purposes of chip performance (using SPICE software, say) the MOSFET
is modeled as an assemblage of capacitances, resistances, and a diode, most of which
have characteristics dependent on the applied voltages and on device parameters such
as dimensions, material properties, and doping levels. These dependencies are mod-
eled by the drift-diffusion equations (or by a quantum mechanical formulation for very
small devices), which are nonlinear partial differential equations. Numerical solutions
of these PDEs, though accurate, would be slow for design purposes of chips with
many interconnected transistors, and approximate analytic solutions are used. When
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Fig. 1. Double gate design.

the channel length was large, the approximation for the transistor current/voltage
behavior was obtained from a quasi-one-dimensional (quasi-1-D) solution, an ODE
approximation. As channel lengths have been reduced, the ODE formulae have been
amended empirically, as there are no PDE analytic solutions for relevant voltages.

There are two large complications for 2-D analytic solutions in the standard MOS-
FET case: (1) the geometry and (2) the presence of a free surface (the boundary be-
tween the active and passive regions in the silicon.) Ward [15] formulated an idealized
free boundary problem for the drain/gate corner region, where the quasi 1-D solution
is most affected by the 2-D geometry. He was able to obtain results that amended the
quasi 1-D current/voltage formula for small drain voltages and large channel lengths.

Over the last decade the double-gate (DG) design, shown in Figure 1, has been
fabricated and used successfully. (There are also cylindrical designs.) The DG is
harder to fabricate, but its commercial use is increasing as it has desirable technologi-
cal properties at the smaller channel lengths that are increasingly being utilized. The
long channel ODE formulation for the DG device is available and is in use. There is
a large bibliography of such work; see, for example [1, 11, 8].

The introduction of the DG transistor brings anticipation of progress toward
analytic solutions of the drift-diffusion PDEs. The geometry is simpler: the silicon
region is a rectangle. The doping in the silicon is weak (often it is at the intrinsic level)
meaning that there is no free boundary. For the 2-D problem the case of threshold
voltages allows a linearization, and techniques of separation of variables or conformal
mapping have been applied [2, 6, 7].

To the authors’ knowledge there have been no publications for the case of the
short-channel DG transistor valid for voltages above the threshold when a linearization
does not give accurate results. Numerical solutions (see Figure 2) indicate large
electron densities along the channels bordering the two gates. Since these may be
taken care of by the usual boundary-layer analysis it is necessary to solve the source-
to-drain behavior.

Our work aims to provide a PDE solution for the DG device in a form suitable
for SPICE application. In particular, in this paper, it provides an exact solution to
the ODEs governing the drift-diffusion behavior from source to drain, valid down the
central region of the device. This solution is complicated, but approximations are
introduced that allow the current to be evaluated in terms of the voltage difference
source-to-drain. In a subsequent paper the effect of a positive voltage applied at



DG TRANSISTOR CURRENT/VOLTAGE CHARACTERISTICS I 879

12009/7/8

Electron Density in Double-gate MOSFETs 
L = 10nm

L=10nm

0

5E+19
1E+20

1.5E+20
2E+20

2.5E+20

3E+20
3.5E+20

4E+20
4.5E+20

5E+20

- 0.01 - 0.005 0 0.005 0.01
x [um]

ne
 [c

m
-3

]

Vds=2.0V
Vgs=2.0V
Source/drain doping : 1e23 cm-3

Channel doping: intrinsic

At y = 5nm

22009/7/8

Electron Density in Double-gate MOSFETs 
L = 20nm

L=20nm

0
5E+19
1E+20

1.5E+20
2E+20

2.5E+20
3E+20

3.5E+20
4E+20

4.5E+20
5E+20

- 0.01 - 0.005 0 0.005 0.01
x [um]

ne
 [c

m
-̂3

]

Vds=2.0V
Vgs=2.0V
Source/drain doping : 1e23 cm-3

Channel doping: intrinsic

At y = 10nm

Fig. 2. Typical DG electron densities [14].

the gates that increases the electrons attracted to thin layers (channels) there (see
Figure 2) will be included. The current in the central region is supplemented by
contributions from these layers, and it is anticipated that this effect will be modeled
by boundary-layer theory.

The full equations and boundary conditions are set out in the next section, to-
gether with a scaled version of these equations. Numerical solutions of the PDEs
for short channel geometries show that there is a large central region of the device,
away from narrow layers close to the gates, in which the solution is predominantly
influenced by the voltage difference between source and drain. The solution in this
central region is the focus of the present paper. The ODEs governing this region are
addressed in section 3.

Standard transistors operate at low voltages (less than 2 volts). Even so, these
voltages are large compared with the voltage relevant to electron displacement, the
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thermal voltage. The inverse of this ratio is used as a small parameter in an MAE
approach discussed in sections 4 and 5, where approximate solutions are obtained.
Section 6 presents a complete exact analytic solution to the ODEs generated in sec-
tion 3.

2. Governing equations and scaling. The physical set-up is shown in Fig-
ure 1. Only the case with symmetry about the center-line is treated: the gate (insu-
lator) thicknesses are equal

(1) T−g = T+
g = Tg,

as are the applied gate voltages

(2) V −gs = V +
gs = Vg.

The governing equations are to be solved in the silicon region

(3) |x1| < Tsi/2, 0 < y1 < L,

which becomes

(4) |x| < 1, 0 < y < 1,

after introducing the scaling

(5) x1 =
Tsi
2
x, y1 = Ly.

In the silicon, charge densities due only to the electrons will be considered, as
the acceptor doping is considered weak. There are two physical variables: ψ, the
electrostatic potential, and φn, the quasi-Fermi potential for electrons. In these cir-
cumstances, Gauss’ equation is

(6) εsi

(
∂2ψ

∂x21
+
∂2ψ

∂y21

)
= q ni e

(ψ−φn)/Vth ,

where εsi is the dielectric constant of silicon, q is the electron charge, ni is the intrinsic
carrier concentration, and Vth is the thermal voltage.

The conservation of current due to electrons reads

(7)
∂

∂x1

(
e(ψ−φn)/Vth

∂φn
∂x1

)
+

∂

∂y1

(
e(ψ−φn)/Vth

∂φn
∂x2

)
= 0.

It is now propitious to introduce a scaling for the potentials ψ, φn. We put

(8) (ψ, φn) = Vmax(w, φ),

where we assume that there is a maximum applied voltage Vmax. Subsequently we
take Vmax = 2 volts. With the scaling adopted in (5) and (8) the field equations (6),
(7) may be written

2

(
∂2w

∂x2
+ γ2

∂2w

∂y2

)
= e(w−φ−α)/ε,(9)

∂

∂x

(
e(w−φ)/ε

∂φ

∂x

)
+ γ2

∂

∂y

(
e(w−φ)/ε

∂φ

∂y

)
= 0,(10)
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where

(11) γ =
Tsi
2L

, ε =
Vth
Vmax

, e−α/ε =
qniT

2
si

2εsiVmax
.

The two devices shown in Figure 2 have Tsi = 10 nm, L = 10 nm, and 20 nm,
giving γ = 1/2, 1/4, respectively. With Vth = 0.0259 V and Vmax taken to be 2 V,
the value of ε is 0.013 ≈ 1/77. For Tsi = 10 nm, the value of α is 0.277.

2.1. Boundary conditions.

2.1.1. Source/Drain BCs. The values of the quasi-Fermi potential at these
boundaries are the applied voltages. The source voltage is taken to be zero, and the
drain voltage Vds, giving

φn = 0 = φ at y = 0,(12)

φn = Vds, φ = φd = Vds/Vmax at y = 1.(13)

The source and drain are both p-n junctions with electrostatic potential differences
there due to the discontinuity in doping density levels. This is called the built-in
voltage, ψbi. The boundary conditions on the electrostatic potential at these interfaces
are then

ψ = ψbi or w = ψbi/Vmax = wbi at y = 0,(14)

ψ = ψbi + VDS or w = wbi + φd at y = 1.(15)

2.1.2. Gate BCs. The devices under consideration are taken to be symmetric
about x = 0, so the boundary conditions at x1 = −Tsi/2 may be inferred from those
applied at x1 = Tsi/2. The gate oxide is an insulator allowing no current to cross it,
so

(16)
∂φn
∂x1

= 0 =
∂φ

∂x
at x = 1.

The gate voltage, VGS , is applied at the boundary x1 = Tg + Tsi/2. Continuity of
electrostatic potential and displacement at x1 = Tsi/2, and the linear potential profile
in the insulator, yield

(17) εsi
∂ψ

∂x1
= εox(VGS − ψ)/Tg at x1 = Tsi/2,

or in scaled variables (with vg = Vg/Vmax)

(18)
∂w

∂x
= r(vg − w) at x = 1, where r =

εoxTsi
2εsiTg

.

Since only the solution in the central part of the device away from the gate oxide
regions is addressed in this presentation, the boundary conditions at the gates at
x = ±1 are not invoked.

3. Central section ODEs. Figure 2 indicates that there is a large region of the
device where the profile of electron density from gate to gate is quite flat. There are
steep deviations from this behavior in narrow regions adjacent to the gates. Here, a
positive gate voltage has attracted a high density of electrons to “channel” regions,
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the terminology used in the single-gated case. These regions will be addressed sub-
sequently as boundary layers in the manner introduced in [4, 16]. In this section we
develop a solution for the central section where we assume that the potentials w and
φ are functions only of y. By putting

(19) 2γ2 = e−β/ε and χ = w − φ+ β − α,

where β − α = ε ln [ε(L/LD)2/2] with LD is the Debye length, 24 microns for silicon,
(9)–(10) may then be written as

∂2χ

∂y2
+
∂2φ

∂y2
= eχ/ε,(20)

∂

∂y

(
eχ/ε

∂φ

∂y

)
= 0.(21)

Equation (21) integrates to

(22)
∂φ

∂y
= Ae−χ/ε,

where A is a constant. It represents the (scaled) current density; its dependence on
the dimensions of the double gate and the voltage difference between source and drain
(y = 0 and y = 1) is the target of this work. A first-order system is achieved by setting

(23) s =
∂χ

∂y
, t =

∂φ

∂y

and it follows that

(24)
∂t

∂y
= −st

ε
,

∂s

∂y
=
A

t
+
st

ε
.

Dividing these gives

(25)
ds

dt
= −1− Aε

st2
or s

ds

dt
+ s = −εA

t2
.

An alternative formulation is obtained by eliminating s from (24) yielding

(26) ε
d2t

dy2
=
ε

t

(
dt

dy

)2

+ t
dt

dy
−A.

Also useful was the equation for the inverse function y(t) which supplied us with some
preliminary results.

Equation (25) is an Abel ODE of the second kind, and there are exact (parametric)
solutions to it in terms of Bessel functions of order 1/3; see [12]. Maple supplies
solutions in terms of Airy functions. These are given in section 6.

There are two-point boundary conditions on the primary variables, but these
conditions do not provide direct boundary information for (25). For the analysis
presented here it is assumed that the solution trajectory passes through s = 0, t =
tc > 0 and that the trajectory spans −∞ < s <∞, 0 < t ≤ tc.

A solution trajectory for s(t), relevant for the boundary-value problem, is shown
in Figure 3. Graphs of φ, χ, s, t as functions of y are shown in Figure 4.



DG TRANSISTOR CURRENT/VOLTAGE CHARACTERISTICS I 883

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

 t

-1

-0.5

0

0.5

1

1.5

 s
 Region V:  s = O(1), t = O(ǫ)

 Region IV:  s = O(1), t = O(1)

 Region III:

  t = t
c
 + O(ǫ),

  s = O(ǫ)

 Region II:  s = O(ǫ), t = O(1)

 Region I:  s = O(1), t = O(ǫ)

 Region VI:  s = O(ǫ
1/3

), t = O(ǫ
1/3

)

 Region VII:  s = B
7
 + O(ǫ

1/2
), t = O(ǫ

1/2
)

Fig. 3. Typical s(t) from (25) for double gate application.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

χ

φ

s

t

Fig. 4. Typical solutions for (23)–(24) with ε = 1/77, χs = 0.138, and φd = 0.5.

The next two sections contain solutions to the ODEs (23)–(25). The first, an
approximate solution for the ODE (25), is developed from the MAE approach based
on ε � 1. This solution is extended to φ and χ in section 5 using (23). It has the
advantage that it provides explicit formulae for the dependent functions φ and χ in
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terms of y, and the boundary conditions (12)–(13) also enter explicitly. The ODEs
constitute a fourth-order system with two boundary conditions at y = 0 and two at
y = 1. Equation (22) constitutes one first integral, with A representing the electron
flux density crossing y = constant. The full solution will relate A to the applied
drain voltage, φd, in the BCs, and hence the current/voltage characteristic across the
central section of the device.

The second solution, section 6, is predicted first from the Airy function solution
to the first-order ODE (25). Subsequently, and remarkably, we present two further
integrals. These three integrals, together with (22), provide an exact solution to
the fourth-order system (20)–(21). These solutions are complicated and not explicit.
However for ε � 1, with information on variable behavior provided by the MAE
solution, and otherwise, we are able to provide current characteristics to a higher-
order approximation than does the first-order MAE one derived.

4. Matched asymptotic expansion (MAE) solution for s(t). We now pro-
ceed to obtain solutions to (25) in limited regions that are identified by various scalings
for the variables. A more comprehensive solution is then sought by matching and join-
ing these solutions using standard MAE techniques [5, 10, 13]. Although this approach
runs into difficulties (due to matching) that requires a less formal solution, the MAE
approach brings valuable insight both in overall structure and in local behavior.

Only the first terms in the expansions are given. Five regions are obvious from
Figure 3:

• Region I has s < 0, s = O(1), t = O(ε), y = O(ε), φ = O(ε2), y = O(ε).
• Region II has s < 0, s = O(ε), t = O(1), φ = O(1), y = O(1).
• Region III has s = O(ε), t = tc +O(ε), φ = φc +O(ε2), y = yc +O(ε).
• Region IV has s, t both O(1) in s > 0, φ = φd +O(ε), y = O(1− ε).
• Region V has s > 0, s = O(1), t = O(ε), φ = φd +O(ε2), y = O(1− ε).

The subscript c refers to quantities at t = tc, the maximum of t. We see from Figure 4
that φc = φd+O(ε). Subsequently, two more regions are identified: Region VI between
I and II, and Region VII between IV and V, the latter being barely used. In fact,
the boundary condition on χ, which leads to one on t from (22), shows that t is
exponentially small near the boundaries. However, the scaling close to the boundary
remains the same as in Regions I and V, and there is no need to consider a different
scaling.

4.1. Asymptotic expansions for Regions I–V for s(t). Straightforward
expansions in power series in ε are given below.

Region I. With s = O(1) and t = O(ε) the first-order solution is

(27) s = −
[

2εA

t
− J2

1

]1/2
,

where J1 is a constant, taken to be real, based on the numerical solution.

Region II. With s = O(ε) and t = O(1)

(28) s = −εA
t2
.

Region III. With s = O(ε) and t = tc +O(ε),

(29) t = tc − s+
εA

t2c
ln

(
t2cs

εA
+ 1

)
,
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where the constant of integration has been chosen so that t = tc at s = 0. The inverse
of this solution is

(30) s = −εA
t2c

[
1 +W

(
− exp

{
−1 +

t2c
εA

(t− tc)
})]

,

where W is the Lambert function [3].

Region IV. With s, t both O(1)

(31) s = B4 − t.

Region VII. With s = B7 +O(ε1/2), t = O(ε1/2)

(32) s = B7 − t+
Aε

B7t
+ ε1/2C7.

Region V. This is similar to Region I, leading to

(33) s =

[
2εA

t
+ J2

5

]1/2
.

4.2. Matching for Regions I–V and VII. Using the standard technique for
matching [5] we obtain the following results. Matching solutions in III, IV, and V
yields

(34) B4 = tc and J5 = B4,

respectively. The first result requires the use of the W−1 branch of the Lambert
function, for which W−1(x) ∼ ln (−x) for x� 1. Matching VII with IV and V shows
that B7 = B4. The quantity C7 cannot be determined at this order of approximation,
but Region VII is not used in what follows. Composite solutions in s > 0 may now
be generated.

For IV–V.

(35) s = −t+

[
B2

4 +
2εA

t

]1/2
.

For III–IV.

(36) s = − εA
B2

4

[
1 +W−1

(
− exp

{
−1 +

B2
4

εA
(t−B4)

})]
.

For III–V.

(37) s =

[
B2

4 +
2εA

t

]1/2
−B4 +

εA

B2
4

[
−1−W−1

(
− exp

{
−1 +

B2
4

εA
(t−B4)

})]
.

For II–III. Matching solutions for II, III is successful. Here the W0 branch of the
Lambert function is used, with W0(x) ∼ x for x� 1.
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For I–II. Matching solutions for I, II is not possible. A bridging solution is
necessary. It is clear from the t� ε behavior of (27) that J1 � 1 and that the Region
I and II solutions meet in a region where s and t are O(ε1/3). Hence we introduce
Region VI, between Regions I and II with the change of variable

(38) S = (εA)−1/3s, T = (εA)−1/3t.

Under this scaling (3.7) becomes

(39) S
dS

dT
+ S = −1/T 2.

That is, the same equation is reproduced.
In order to proceed with the MAE solution to (25) in s < 0, it is necessary to

match a solution of (39) with the solutions in Regions I and II, i.e., (27) and (28).
This requires asymptotic properties of solutions to (39). The exact solutions (Bessel
functions) are complicated and their properties with respect to input parameters are
not easily accessible. Thus a direct approach to solving (25) by MAE is obstructed
in s < 0 and we pursue an alternative, approximate solution.

4.3. Alternative to MAE solution in s < 0. We have information on the
behavior of s(t) in s < 0, namely, (27), (28). Moreover, direct numerical solutions
to (25), and the exact solutions implemented numerically, both imply that J1 � 1.

Taking J1 = 0, s = − [2εA/t]
1/2

for t � 1 and s = −εA/t2for s � 1. A smooth
function having these properties is

(40) s = −

[(
t

2εA

)1/2

+
t2

εA

]−1
.

Comparison of (40) with numerical solutions to (25) shows excellent agreement
for a wide range of t, except in the neighborhood of s = 0, t = tc. It would be
useful to improve its accuracy in the neighborhood of s = 0, t = tc, thereby anchoring
the approximation. The local solution there is available, (29) or (30). After some
numerical experimentation, we chose to include in (40) a local approximation that
passes through s = 0, t = tc, but is small elsewhere. This is

(41) s = −

[(
t

2εA

)1/2

+
t2

εA
+

2εA

t2c(tc − t)

]−1
.

Figure 5 shows the approximation (41) for s < 0 and the MAE composite formula
(37) for s > 0 for the values tc = 0.4 and tc = 0.9 with εA = 0.01. We do not
use (40) or (41) directly in the matching of § 5, in particular because (41) leads to
an unacceptable singularity in φ, but given their accuracy for s(t), we work with a
similar hybrid solution for t(y).

5. An approximate MAE solution for φ and χ. The inability to match the
solutions to (25) for s(t) across Regions I and II, exposed in section 3.2, provides a
precursor to similar problems when solutions for the primary variables φ and χ as
functions of y are sought. These solutions may be found from (23), (24) together with
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Fig. 5. Numerical solution (solid) and MAE solution (dashed) for s(t) with tc = 0.5 (left) and
tc = 0.9 (right) for εA = 0.01.

the solutions for s(t) obtained in the various region in the section above. It was found
necessary, as a result, to make approximations to the ideal MAE approach, akin to
(40). Our approach to matching is semiformal, in that we keep terms of orders 1 and,
e.g., ε1/3 and ε2/3 together, with terms of O(ε log ε) and higher being viewed as the
next term in expansions.

A typical numerical solution for the variables φ, χ, s, t as functions of y is shown
in Figure 4. The changes in φ are small in Regions I and V, that is, in regions where
y = O(ε) and y = 1−O(ε) near the source and drain, respectively. However, changes
in χ and s in these regions are substantial and are required to be modeled accurately.
Also, finding φ, χ in Region III from (29) or (30) is difficult. As Region III is small,
an approximation based on intersecting Regions II and IV is made. These properties
are achieved in the following results. Integration constant subscript numbers identify
the region (except subscript c is used in Region III, indicating “corner”).

Region I.

s = −J1 cot {J1[y/ε+K1]/2},(42)

t =
2Aε

J2
1

sin2 {J1[y/ε+K1]/2},(43)

φ = N1 −
Aε2

J3
1

sin {J1[y/ε+K1]}+
Aεy

J2
1

,(44)

χ = −ε ln {(2ε/J2
1 ) sin2{J1[y/ε+K1]/2}.(45)

This solution has a singularity when y = O(ε2/3), that is in Region VI. It should be
matched to the solution there, but we have no good asymptotic information on the
latter.
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We know that J1 = O(ε1/3). Hence we can obtain a leading-order solution that
is of the same order of validity by neglecting J1. This is useful for later. The result is

s = − 2ε

y + εK1
,(46)

t =
A

2ε
(y + εK1)2,(47)

φ =
A

6ε
[(y + εK1)3 − (εK1)3],(48)

χ = −ε ln
(y + εK1)2

2ε
.(49)

Region VI. No simplification is possible in the s(t) relation, so we cannot obtain
a simple solution. This is the reason for the hybrid approach presented below.

Region II.

s = − ε

2(y − y2)
,(50)

t =
√

2A(y − y2),(51)

φ = (8A/9)1/2(y − y2)3/2 +Q2,(52)

χ = − ε
2

ln
2(y − y2)

A
,(53)

where y2 and Q2 are constants of integration.

Region I–II hybrid.

tH =

[
(2Ay)−1/2 +

b

y3/2
+

2εd

Ay2

]−1
+A exp (−χs/ε),(54)

φ =

∫ y

0

tH(y′) dy′.(55)

These formulae satisfy the boundary conditions at y = 0. We will not need χ and
s. The form (54) satisfies the boundary condition at y = 0, but also matches with
(47) near the origin when d = 1 because of the y2 term if the exponential term is
neglected. The dominant contribution to φ comes from Region II, so we can use b to
improve the accuracy in that region by matching (51) and (54). In the same vein, we
can also pick d to match to the correction term to (51), which can be shown to be
(y− y2)−1. The result will no longer be such a good match near the origin in Region
I, but this is acceptable since φ = O(ε2) there. Using the fact that y2 = O(ε2/3), the
appropriate relation is
(56)√

2Ay

(
1− y2

2y
+O(y22)

)
+
ε

y
[1 +O(y2)] =

√
2Ay

(
1− b

√
2A

y
− 2εd

√
2A

Ay3/2
+O(ε2)

)
.

The O(y2) terms match if we take b = y2/2
√

2A. Pursuing the matching to the
next order order leads to d = −1/4, but a negative value for d leads to unwanted
singularities in the approximant (54). It is not immediately clear what value to take
for d: the improvement in φ is O(ε) over Region II, but the contribution to φ from
Region VI is also O(ε). Based on numerical experiments, we set d = 0, which leads
to simplifications in (55). It turns out to be more important for the hybrid solution
to be accurate in Region III than in Region I.
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Region III. Here s(t) reverses direction at s = 0 and t(y) achieves a maximum;
see Figures 3 and 4. We denote by (yc, φc, χc) the values of these variables at this
corner. Local expansions at this point, together with (3), give

s =
εA

B2
4

[exp [B4(y − yc)/ε]− 1],(57)

t = B4 +
A

B4
(y − yc)−

εA

B2
4

[exp [B4(y − yc)/ε]− 1],(58)

φ = φc +

[
B4 +

εA

B4

]
(y − yc) +

A

2B4
(y − yc)2 −

ε2A

B3
4

[exp (B4(y − yc)/ε)− 1],(59)

χ = χc −
εA

B2
4

(y − yc) +
ε2A

B3
4

[exp (B4(y − yc)/ε)− 1].(60)

Note that χc = −ε log (B4/A). For matching purposes the following inverse is useful:

(61) y = yc +
B4

A
(t−B4)− ε

B4
− ε

B4
W

(
− exp

[
B2

4

Aε
(t−B4)− 1

])
.

Region IV.

s = B4[1 + (A/B4C4) exp (B4(1− y)/ε)]−1,(62)

t = B4[1 + (B4C4/A) exp (−B4(1− y)/ε)]−1,(63)

φ = N4 − ε ln [1 + (A/B4C4) exp (B4(1− y)/ε)],(64)

χ = ε ln [A/B4 + C4 exp (−B4(1− y)/ε)].(65)

Region V.

s = J5 coth {J5[(1− y)/ε+K5]/2},(66)

t =
2Aε

J2
5

sinh2 {J5[(1− y)/ε+K5]/2},(67)

φ = N5 −
Aε2

J3
5

sinh {J5[(1− y)/ε+K5]}+Aε(1− y)/J2
5 ,(68)

χ = −ε ln

{
2ε

J2
5

sinh2{J5[(1− y)/ε+K5]/2

}
.(69)

The solutions presented above for Regions I–V using the hybrid solution (54)–
(55) involve the unknown constants A, yc, φc, χc, B4, C4, N4, J5, K5, N5, and y2.
By omitting Region V for the changes in φ (the solution for φ in Region IV is used
to satisfy the boundary condition at y = 1), there is no need to evaluate N5. Also
χc is not related to the other constants. There are 9 constants remaining. Matching
solutions in adjacent regions and boundary conditions are used to obtain further
relations between the constants.

Boundary conditions.

At y = 1, on t or χ: (2ε/J2
5 ) sinh2 (J5K5/2) = exp(−χs/ε),(70)

At y = 1, on φ: φd = N4 − ε ln [1 +A/B4C4].(71)

The boundary conditions at the origin have already been incorporated into (54)–(55).
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Matching. Regions I–II and III: This uses the hybrid solution in I–II and matches
it to the solution in III.

t: yc =
B2

4

2A
+ y2,(72)

φ: φc = φ(yc) = 2
√

2A

[
2

3
y3/2c − y2

2
y1/2c +

(y2
2

)3/2
tan−1

(
2yc
y2

)1/2
]
.(73)

The matching in t uses t from II, since (51) from II and the hybrid form (54) agree to
O(ε) from (56). The matching in φ uses the hybrid solution (55) at y = y2. We have
dropped the exponential term in (54) since it is small (see below).

Regions III and IV:

(74) y: yc = 1− ε

B4
ln
C4B

4
4

A2ε
.

This result can be obtained using the W−1 branch of the Lambert function.
Regions IV and V:

(75) s and χ: B4 = J5 =
1

K5
ln

2J2
5

C4ε
.

An eighth equation is obtained from applying the formula for φ(y) in Region IV at
y = yc, assuming little variation in φ in Region III. This gives

(76) φc = N4 − ε ln {1 + (A/B4C4) expB4(1− yc)/ε}.

Equations (70)–(76) provide 8 equations for the determination of the 9 constants to
be evaluated in terms of the input φd.

Further approximation. Assuming that B4 = J5 is O(1) and approximating the
hyperbolic sine function for small argument in (70) then gives K5 ∼

√
2/εe−χs/2ε,

and thus K5 may be neglected. With the built-in voltage Vbi given by Vth ln (ND/ni)
for the source and drain doped at a level ND = 1023/c.c. and the silicon at intrinsic
level 1010/c.c., the term e−χs/ε is O(10−5). Then (75) gives that C4 = 2B2

4/ε. This
is the same approximation used to obtain the hybrid solution in I–II and matching
(72)–(73).

Finding y2. The value of y2 remains to be found. It is known to be of order ε2/3,
so the first approximation is to set it zero. From the forms of Region VI and of (51),
we can write Ay2 = λ(εA)2/3, where λ should be a constant independent of A. The
question then becomes the value of λ. Numerical solutions of the full problem show
that λ ≈ 3. (We shall find the exact value of λ from asymptotics of the exact integrals
in section 6 below, and the result λ ≈ 3 is verified.)

Solution for A and B4. With C4 = 2B2
4/ε, (74) provides yc in terms of A and B4.

This can be combined with (72) to give

(77) yc = 1− ε

B4
ln

2B6
4

A2ε2
=
B2

4

2A
+ λε2/3A−1/3, y2 = λε2/3A−1/3.

The second equality provides a relation between A and B4. A second relation between
A and B4 comes from the difference of (71) and (76), using the relation (73) for φc.
The result is

(78) φd = ε ln
1 +B3

4/Aε

1 +Aε/2B3
4

+ 2
√

2A

[
1

3
y3/2c − y2

2
y1/2c +

(y2
2

)3/2
tan−1

√
2yc/y2

]
.
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Fig. 6. Current density A as a function of φd: numerical solution (solid curve), solution of
(77)–(78) (dashed curve); leading-order approximation A = (9/8)φ2d (dotted curve); approximation
(79) (dash-dot curve); and approximation (99) (solid curve with overlaid dots) for ε = 1/77.

Equations (77) and (78) are to be solved, given ε and φd for A and B4. Then A
is a measure of the current flowing from source to drain in response to the applied
drain voltage, given by φd. Numerical solutions of (77)–(78) for A as a function of
φd with ε = 1/77 and ε = 1/33 are shown in Figures 6 and 7, along with the relation
between A and φd obtained from the numerical solution to the original ODEs (23),
(25). Also shown is the approximation obtained by ignoring higher-order terms in
(77)–(78), yielding yc = 1, B2

4 = 2A, and φd = 2
√

2A/3, i.e., A = (9/8)φ2d. A more
accurate approximation can be obtained from (78) by neglecting terms of O(ε ln ε)
and higher, leading to

(79) φd =

(
8A

9

)1/2 [
1− 3

2
y2

]
.

Figure 8 compares the value of A corresponding to φd = 0.5 as ε decreases.

6. Complete integrals in the central section. We now derive the exact
solution for s(t) obtained by Maple using a simple change of variable, and go further
by obtaining an explicit solution to the full problem. We start from the two coupled
nonlinear first-order ODEs of (24), and define the new variable u = s+ t. Then

(80)
du

dy
=
A

t
,

where we now use a total rather than a partial derivative since we are not concerned
with variations in the x-direction. A further differentiation gives

(81) ε
d2u

dy2
= u

du

dy
−A,
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Fig. 7. Current density A as a function of φd: numerical solution (solid curve), solution of
(77)–(78) (dashed curve); leading-order approximation A = (9/8)φ2d (dotted curve); approximation
(79) (dash-dot curve); and approximation (99) (solid curve with overlaid dots) for ε = 1/33.
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Fig. 8. Current density A for φd = 0.5 as a function of ε: numerical solution (solid curve),
solution of (77)–(78) (dashed curve).
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which integrates to

(82) ε
du

dy
=

1

2
u2 −A(y − y∗),

where y∗ is a constant of integration satisfying

(83) (t0 + s0)2 − 2δ

t0
= −2Ay∗

on evaluating (82) at y = 0 and using (81), defining δ = Aε.
Equation [9] shows that the nonlinear equation

(84)
dW

dz
+W 2 = z

has the solution W = w−1dw/dz, where d2w/dz2 = zw. Hence we write u = αW (z)
and z = β(y − y∗) and identify (82) with (84). Solving for α, β, and z gives

(85) α = −(4δ)1/3, β =

(
A

2ε2

)1/3

, z =
1

4

(
2

δ

)2/3

2A(y − y∗).

The solution for w(z) may be written without loss of generality as w = Ai(z)−C Bi(z),
where C is a constant and Ai(z) and Bi(z) are the Airy functions of the first and second
kind, respectively. Hence

(86) u = s+ t = −(4δ)1/3
Ai′(z)− C Bi′(z)

Ai(z)− C Bi(z)
.

This can be written as an implicit relation in the form

(87)
21/3(t+ s) Ai(z) + 2δ1/3 Ai′(z)

21/3(t+ s) Bi(z) + 2δ1/3 Bi′(z)
= C.

We also note that (82) can be written as

(88) z =
1

4

(
2

δ

)2/3

2A(y − y∗) =
1

4

(
2

δ

)2/3 [
(s+ t)2 − 2δ

t

]
,

and this is the expression for z in (87) used by Maple. Note that Maple was solving
the system (25) for s(t), rather than the full system for s(y) and t(y). The fact that
z is an affine function of y is the key to further progress.

We can now integrate (86). The result is

(89) [Ai(z)− C Bi(z)]eA(φ+χ)/2δ = E,

where E is a constant of integration. We now evaluate C at y = 0, giving

(90) C =
21/3(t0 + s0) Ai0 +2δ1/3 Ai′0
21/3(t0 + s0) Bi0 +2δ1/3 Bi′0

,

where the 0 subscripts indicate values at y = 0. We then substitute this into (89) and
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simplify, using the result Ai′(z) Bi(z)−Ai(z) Bi′(z) = π−1, to obtain

(91) E =
2δ1/3π−1

(s0 + t0) Bi0 +2δ1/3 Bi′0
e(φ0+χ0)/2ε.

We can do the same at y = 1, replacing the subscript 0 by 1. Noting that χ0 = χ1,
φ0 = 0 and φ1 = φd, and dividing the two results gives

(92) eφd/2ε =
(s1 + t1) Bi1 +2δ1/3 Bi′1
(s0 + t0) Bi0 +2δ1/3 Bi′0

.

The result (89) is a new integral of the equations of motion. Crucially it gives
access to the boundary conditions that concern φ and χ. It can be used to obtain
A as a function of φd, one of the main goals of this work, without having to solve a
boundary-value problem. This approach allows one to reach smaller values of ε, which
cause trouble for the numerical solution because of the presence of boundary layers.
It is convenient to take A as known and obtain φd in terms of A. The procedure is as
follows. Evaluating (87) at y = 0 and y = 1 gives a single equation that can be solved
for y∗ given A. This uses the result (83) to express s at the boundaries in terms of
yz − 0 and t = Ae−χ/ε there; the choice of sign that comes from the square root in
s = −t ± (2δ/t − 2Ay∗)

1/2 is uniquely determined since s < 0 (− sign) at y = 0 and
s > 0 (+ sign). Given y∗, (92) can be solved to give φd in terms of A.

We can obtain an asymptotic result for small ε. Near y = 1, z1 is asymptotically
large, so we can replace the Airy functions by their (exponentially large) asymptotic
values. However, near y = 0, it turns out that z0 is O(1). Taking the logarithm of
(92), we obtain

(93)
φd
2ε

=
2

3
z
3/2
1 + log

[
z
−1/4
1√
π

(s1 + t1)(1 +O(z
−3/2
1 )) + 2δ1/3z

1/2
1 (1 +O(z

−3/2
1 )

(s0 + t0) Bi0 +2δ1/3 Bi′0

]
.

The leading-order approximation to this equation gives

(94) φd ∼
4

3
εz

3/2
1 =

(
8A

9

)1/2

(1− y∗)3/2.

This can be compared to (79). We now need to find y∗.
To do this we examine C near y = 0 and y = 1. Near y = 1, the derivative terms

in the numerator and denominator in (87) are small, so

(95) C ∼ Ai1
Bi1
∼ 1

2
e−4z

3/2
1 /3.

This is exponentially small, so near y = 0 the numerator of C must be small,
i.e., 21/3(s0+t0) Ai0 ∼ −2δ1/3 Ai′0. The first term dominates, so z0 ∼ a1 ≈ −2.338 . . .,
the first zero of the Airy function. This shows that y∗ = O(δ2/3), and more precisely

(96) y∗ ∼ −(2δ2)1/3
a1
A
.

In Region II, comparing the asymptotic result t ≈
√

2A(y − y2) from (51) and t2 ≈
2A(y − y∗) from (85) shows that y2 and y∗ are the same. Hence λ = −21/3a1 =
2.9458 . . . , justifying the approximate value of 3 that was employed earlier.
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We can find the correction to y∗ (actually to z0) by writing z0 = a1 + ζ. Then
Ai(z0) = ζ Ai′(a1) + O(ζ2). We also use s0 + t0 = −(2δ/t0)1/2 + e.s.t, since t0 is
exponentially small. Then (87) and (95), including errors terms, become

(97) C =
1

2
e−4z

3/2
1 /3[1 +O(z

−3/2
1 )] =

21/2(s0 + t0)ζ Ai′(a1) + 2δ1/3 Ai′( a1) + · · ·
21/3(s0 + t0) Bi(a1) + 2δ1/3 Bi′(a1) + · · ·

.

This shows that the correction term arises from the numerator of the fraction vanishing
again, giving

(98) ζ ∼ (2/δ)1/6t
1/2
0 = (2/δ)1/6A1/2e−χS/2ε,

an exponentially small correction. This shows that higher corrections to φd come from
expanding the logarithm in (93) to higher algebraic order.

Finally we note that (94) and (96) can be combined to give

(99) A ∼ 9

8

[
φ
2/3
d −

(
16

9

)1/3

a1ε
2/3

]3
.

7. Conclusion(s). As far as the authors are aware there have been no analytic
solutions published for the drift-diffusion equations (20), (21). The results achieved
here provide both an exact solution, and an approximate one based on the MAE
approach for small ε. The exact integrals are complicated. The simpler MAE results
provide accurate formulas, in particular for the source-to-drain current flow, and they
indicate how to approach the exact results for information. Part II will include the
effects of a gate voltage as a boundary layer in order for a model to be completed for
general operating use of the device. These results will be useful in further applications
related to the double-gate geometry, for example, to tunnel field-effect transistors.
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