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Abstract This paper generalizes the optimized gradient method (OGM) [9,15,16] that achieves the op-
timal worst-case cost function bound of first-order methods for smooth convex minimization [7]. Specif-
ically, this paper studies a generalized formulation of OGM and analyzes its worst-case rates in terms
of both the function value and the norm of the function gradient. This paper also develops a new algo-
rithm called OGM-OG that is in the generalized family of OGM and that has the best known analytical
worst-case bound with rate O(1/N1.5) on the decrease of the gradient norm among fixed-step first-order
methods. This paper also proves that Nesterov’s fast gradient method [24,26] has an O(1/N1.5) worst-
case gradient norm rate but with constant larger than OGM-OG. The proof is based on the worst-case
analysis called Performance Estimation Problem in [9].

1 Introduction

First-order methods are favorable for solving large-scale problems because their computational complexity
per iteration depends mildly on the problem dimension. In particular, Nesterov’s fast gradient method
(FGM) [24,26] achieves the optimal worst-case rate O(1/N2) for decreasing smooth convex functions after
N iterations [25], and thus has been widely used in (large-scale) applications. Recently, the optimized
gradient method (OGM) [9,15,16] was found to achieve the optimal worst-case cost function bound of
first-order methods (with either fixed-step or adaptive-step approaches) for smooth convex minimization
in [7], whereas FGM achieves that bound only up to constant.1

Building upon [9,15,16], this paper presents two different ways of generalizing OGM and its develop-
ment. First, this paper specifies a parameterized family of algorithms that generalizes OGM, and provides
worst-case bounds on the function and gradient norm values for this family. Like the generalized forms of
FGM [3,26] being widely used and studied (e.g., [1,3,29]), we believe introducing the generalized OGM
here can be potentially useful. Second, this paper optimizes the step coefficients of fixed-step first-order
methods with respect to the rate of decrease of the cost function’s gradient norm, leading to a new
algorithm called OGM-OG (OG for optimized over a gradient). This development expands the choice of
worst-case rate metrics for optimizing first-order methods in [9,15,16] that focused on the cost function
decrease leading to OGM. We next briefly review the Performance Estimation Problem (PEP) [9] that
was used in [9,15,16] to develop OGM and that we extensively use throughout the paper.
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1 There is a backtracking line-search version of FGM [25] that also achieves the optimal worst-case function bound up
to constant, which is sometimes more useful than the fixed-step FGM in practice. However, such backtracking line-search
version of OGM with a fast worst-case bound is yet unknown (unlike the fixed-step OGM [9,15,16]), while recently an
exact line-search version of OGM is developed in [8].
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Drori and Teboulle [9] cast a worst-case analysis into an optimization problem called PEP2 [9] that
examines the maximal absolute cost function inaccuracy over all possible inputs (cost functions) to the
optimization algorithm. (See e.g., [5,8,10,15,16,17,18,19,30,31] for its extensions.) Moreover, Drori and
Teboulle [9] optimized numerically the step coefficients of first-order methods using PEP for smooth
convex minimization, and found an algorithm whose worst-case bound is lower than that of FGM, but it
required too much computation and memory to be appealing for large-scale problems. Building on their
work, the authors [15,16] found computationally and memory-wise efficient version, called OGM, and
showed analytically that OGM satisfies an analytical worst-case bound that is twice smaller than that of
FGM. Drori [7] showed that the OGM is optimal for large-dimensional smooth convex minimization over
a general class of first-order methods with either fixed or adaptive step sizes [7]. This OGM has been
numerically extended for nonsmooth composite convex problems in [30]. In addition, this OGM-type
algorithm was already studied in the context of a proximal point method [13, Appendix].

Using the PEP approach [9], this paper proposes a generalized version of OGM (GOGM) and analyzes
its worst-case rates in terms of both the decrease of the cost function and the decrease of the norm of
the gradient of the cost function. The results complement the worst-case analysis of the OGM [15,16],
and expands our understanding of OGM-type first-order methods.

This paper analyzes the worst-case rate of the gradient norm (in addition to that of the cost function)
because it is important when dealing with dual problems, considering that the dual gradient norm
corresponds to the primal distance to feasibility (see e.g., [6,22,27]). While FGM has not been shown
previously to satisfy a rate O(1/N1.5) for decreasing the gradient norm, modified versions of FGM with
such rate were studied in [11,21,27]. This paper proves that FGM in fact does have that rate, building
upon [31] that numerically conjectured such rate for FGM using the gradient norm version of PEP. For
further acceleration of the worst-case gradient norm rate, we optimize the step coefficients of first-order
methods with respect to the gradient norm using PEP and propose an algorithm named OGM-OG that
belongs to the GOGM family and has the best known analytical worst-case bound on rate of decrease
of the gradient norm among fixed-step first-order methods.

One can extend some aspects of the approaches for generalizing OGM described in this paper to other
optimization algorithms and problems. One direction we have already taken in [17] aims to improve the
fast iterative shrinkage/thresholding algorithm (FISTA) [2] (that reduces to FGM for smooth convex
problems) for nonsmooth composite convex problems. Naturally, this paper and [17] use some similar
approaches, but they are different; the methods in [17] when simplified to the smooth case correspond
to a generalization of FGM that differs from the GOGM. Another direction we have recently taken in
[18] focuses on optimizing the step coefficients of first-order methods with respect to the gradient norm
under the initial bounded function condition that is different from the initial bounded distance condition
used in this paper.

Sec. 2 defines the smooth convex problem and the first-order methods. Sec. 3 reviews and discusses
worst-case analyses of a gradient method (GM), FGM, and OGM for both the function value and the
gradient norm. Sec. 3 also reviews first-order methods that guarantee an O(1/N1.5) rate for the gradient
decrease. Sec. 4 reviews the cost function form of PEP [9] and reviews how the OGM [15] is derived
using such PEP. Sec. 4 then proposes a generalized version of OGM (GOGM) using the cost function
form of PEP, and Sec. 5 provides a worst-case gradient norm bound for the GOGM using the gradient
form of PEP. Then, Sec. 5 optimizes the step coefficients using the gradient form of PEP and proposes
the OGM-OG that belongs to the GOGM family. Sec. 5 also proves that FGM decreases the gradient
norm with a rate O(1/N1.5). Sec. 6 and Sec. 7 provide discussion and conclusion.

2 Smooth convex problem and first-order methods

2.1 Smooth convex problem

We focus on the following smooth convex minimization problem

min
x∈Rd

f(x), (M)

2 The original PEP was intractable to solve, so a series of relaxation on the PEP was introduced in [9] to make it
possibly solvable, which we review in Sec. 4.1.
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where the following additional conditions are assumed:

– f : R
d → R is a convex function of the type C1,1

L (Rd), i.e., continuously differentiable with
Lipschitz continuous gradient:

||∇f(x)−∇f(y)|| ≤ L||x− y||, ∀x,y ∈ R
d, (2.1)

where L > 0 is the Lipschitz constant.
– The optimal set X∗(f) = argminx∈Rd f(x) is nonempty, i.e., the problem (M) is solvable.

We use FL(R
d) to denote the class of functions that satisfy the above conditions. We also assume that

the distance between an initial point x0 and an optimal solution x∗ ∈ X(f) is bounded by some R > 0,
i.e.,

||x0 − x∗|| ≤ R. (2.2)

2.2 First-order methods

To solve (M), we consider the following class of fixed-step (or non-apdative-step) first-order methods
(FSFOM), where the update step at (i + 1)th iteration is a weighted sum of the previous and current
gradients {∇f(xk)}ik=0 scaled by 1

L
with fixed constant step coefficients {hi+1,k}ik=0 that are not adaptive

to the given f and x0 (and thus L and R). This class FSFOM includes GM, FGM, OGM, and the methods
proposed in this paper, but excludes line-search-type methods.

Algorithm Class FSFOM

Input: f ∈ FL(R
d), x0 ∈ R

d.

For i = 0, . . . , N − 1

xi+1 = xi −
1

L

i
∑

k=0

hi+1,k∇f(xk).

3 Review of the worst-case analysis of FSFOM

This section reviews the worst-case analysis of existing FSFOMs (and simple variants thereof) in terms of
bounds on the cost function and gradient norm. Sec. 3.1 reviews the worst-case cost function decrease of
GM, FGM, and OGM. Sec. 3.2 presents both FSFOMs (including GM, FGM, OGM and some variants)
that have either O(1/N) or O(1/N1.5) rate for the worst-case gradient decrease; it also reviews an
O(1/N2) lower bound of the worst-case rates of first-order methods for decreasing the gradient norm.

3.1 Function value worst-case analysis of FSFOM

The simplest example of a FSFOM is the following GM that uses only the current gradient and the
Lipschitz constant L for the update.

Algorithm GM

Input: f ∈ FL(R
d), x0 ∈ R

d.

For i = 0, 1, . . .

xi+1 = xi −
1

L
∇f(xi)

3



This GM monotonically decreases the cost function [25] and satisfies the following tight3 worst-case
bound [9, Thm. 1], for any i ≥ 0,

f(xi)− f(x∗) ≤
LR2

4i+ 2
. (3.1)

Among the class FSFOM, the following two equivalent forms of FGM [24,26] have been used widely
because they decrease the cost function with the optimal rate O(1/N2).

Algorithm FGM1

Input: f ∈ FL(R
d), x0 = y0 ∈ R

d,

t0 = 1.

For i = 0, 1, . . .

yi+1 = xi −
1

L
∇f(xi)

ti+1 =
1 +

√

1 + 4t2i

2
,

xi+1 = yi+1 +
ti − 1

ti+1
(yi+1 − yi)

Algorithm FGM2

Input: f ∈ FL(R
d), x0 = y0 ∈ R

d,

t0 = 1.

For i = 0, 1, . . .

yi+1 = xi −
1

L
∇f(xi)

zi+1 = x0 − 1

L

i
∑

k=0

tk∇f(xk)

ti+1 =
1 +

√

1 + 4t2i

2
,

xi+1 =

(

1− 1

ti+1

)

yi+1 +
1

ti+1
zi+1

Specifically, the FGM1 and FGM2 iterates satisfy the following worst-case cost function bounds [15,24,
26] for any i ≥ 1:

f(yi)− f(x∗) ≤
LR2

2t2i−1

≤ 2LR2

(i+ 1)2
, and f(xi)− f(x∗) ≤

LR2

2t2i
≤ 2LR2

(i + 2)2
, (3.2)

where the parameter ti satisfies

t2i =
i
∑

l=0

tl and ti ≥
i+ 2

2
for all i. (3.3)

A generalized form of FGM in [3] uses parameters ti satisfying t0 = 1 and t2i ≤ t2i−1 + ti, including

the choice ti = i+a
a

for any a ≥ 2. There is another generalized form of FGM in [26], and these gen-
eralized forms of FGM have been widely used and studied (e.g., [1,3,29]). Similarly this paper studies
generalizations of the OGM.

Building upon [9] that optimized numerically the step coefficients over the cost function form of PEP,
the authors [15] developed the following two equivalent forms of OGM, as reviewed in Sec. 4.

Algorithm OGM1

Input: f ∈ FL(R
d), x0 = y0 ∈ R

d,

θ0 = 1.

For i = 0, . . . , N − 1

yi+1 = xi −
1

L
∇f(xi)

θi+1 =











1+
√

1+4θ2i
2

, i ≤ N − 2

1+
√

1+8θ2i
2

, i = N − 1

xi+1 = yi+1 +
θi − 1

θi+1
(yi+1 − yi)

+
θi

θi+1
(yi+1 − xi)

Algorithm OGM2

Input: f ∈ FL(R
d), x0 = y0 ∈ R

d,

θ0 = 1.

For i = 0, . . . , N − 1

yi+1 = xi −
1

L
∇f(xi)

zi+1 = x0 − 1

L

i
∑

k=0

2θk∇f(xk)

θi+1 =











1+
√

1+4θ2i
2

, i ≤ N − 2

1+
√

1+8θ2i
2

, i = N − 1

xi+1 =

(

1− 1

θi+1

)

yi+1 +
1

θi+1
zi+1

3 A tight worst-case bound denotes an inequality where the equality holds for some function f . For example, [9, Thm. 2]
shows the bound (3.1) is tight.
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The OGM iterates satisfy the following worst-case cost function bounds [15,16]:

f(yi)− f(x∗) ≤
LR2

4θ2i−1

≤ LR2

(i+ 1)2
, (3.4)

for any 1 ≤ i ≤ N , and

f(xN)− f(x∗) ≤
LR2

2θ2N
≤ LR2

(N + 1)(N + 1 +
√
2)
. (3.5)

The parameter sequence θi satisfies

θ2i =

{

∑i+1
l=0 θl, i ≤ N − 1,

2
∑N−1

l=0 θl + θN , i = N,
and θi ≥

{

i+2
2 , i ≤ N − 1,

i+1√
2
, i = N,

(3.6)

which is equivalent to ti (3.3) except at the final iteration. The bounds (3.4) and (3.5) of OGM are about
twice smaller than the bounds (3.2) of FGM, so OGM decreases the cost function faster than FGM in
the worst case (and often in practice [14]). In addition, the bound (3.5) on the final iterate xN is tight
and satisfies the optimal worst-case bound of general first-order methods including both FSFOM and
adaptive-step first-order methods, when the condition d ≥ N + 1 holds [7].

The additional term θi
θi+1

(yi+1 − xi) of OGM1 and the additional constant 2 for the update of zi
of OGM2, compared to FGM1 and FGM2 respectively, along with the parameter θN , are what make
OGM optimal (for d ≥ N + 1). One of the main goals of this paper is to generalize the form of OGM
and analyze the worst-case rate of such generalized OGM in terms of both the function value and the
gradient norm, complementing the bounds (3.4) and (3.5) on the function value of OGM.

The next section studies the worst-case rate of the gradient of FSFOM.

3.2 Gradient norm worst-case analysis of FSFOM

When tackling dual problems, it is known that the gradient norm worst-case rate is important in addition
to the function value worst-case rate because the dual gradient norm is related to the primal distance to
feasibility (see e.g., [6,22,27]). One simple way to find a (loose) worst-case bound for the gradient norm is
to use the well-known convex inequality for convex functions with L-Lipschitz continuous gradients [25]:

1

2L
||∇f(x)||2 ≤ f(x)− f

(

x− 1

L
∇f(x)

)

≤ f(x)− f(x∗), ∀x ∈ R
d, (3.7)

as discussed in [25,31]. Combining the bounds (3.1), (3.2) and the inequality (3.7), for any i ≥ 1, the
GM iterates satisfy

||∇f(xi)|| ≤
√

2L(f(xi)− f(x∗)) ≤
LR√
2i+ 1

, (3.8)

and the iterates of FGM satisfy

||∇f(yi)|| ≤
LR

ti−1
≤ 2LR

i+ 1
, and ||∇f(xi)|| ≤

LR

ti
≤ 2LR

i+ 2
. (3.9)

Similarly for any 1 ≤ i ≤ N , the OGM iterates with the bounds (3.4) and (3.5) satisfy

||∇f(yi)|| ≤
LR√
2θi−1

≤
√
2LR

i+ 1
, and ||∇f(xN )|| ≤ LR

θN
≤

√
2LR

N + 1
. (3.10)

Unfortunately, using the inequality (3.7) provides at best an O(1/N) bound due to the optimal rate
O(1/N2) of the function decrease. Furthermore, in general using (3.7) need not lead to tight worst-case
bounds on the gradient norm.

Using a different approach, a smaller O(1/N) worst-case bound for the gradient norm of GM was
derived in [27], as reviewed in next section. While the bounds (3.8), (3.9), and (3.10) are not guaranteed
to be tight, the next section shows that the worst-case gradient bound (3.10) on the final iterate xN

of OGM is in fact tight and thus has the same disappointingly slow O(1/N) worst-case bound on the
gradient norm as GM.

5



3.2.1 FSFOM with rate O(1/N) for decreasing the gradient norm

This section uses the following lemma stating that GM monotonically decreases the gradient.

Lemma 1 [22, Lemma 2.4] The GM monotonically decreases the gradient norm, i.e.,
∣

∣

∣

∣

∣

∣

∣

∣

∇f
(

x− 1

L
∇f(x)

) ∣

∣

∣

∣

∣

∣

∣

∣

≤ ||∇f(x)||. (3.11)

The following theorem reviews a simple proof in [27] that provides a worst-case gradient norm bound
for GM with rate O(1/N) that is smaller than (3.8), where [22, Thm. 6.1] additionally considers Lemma 1.

Theorem 1 [22, Thm. 6.1], [27] Let f : R
d → R be FL(R

d) and let x0, · · · ,xN ∈ R
d be generated by

GM. Then for any N ≥ 1,

min
i∈{0,...,N}

||∇f(xi)|| = ||∇f(xN )|| ≤
√
2LR

√

N(N + 2)
. (3.12)

Proof Lemma 1 implies the first equality in (3.12). Using (3.1), (3.7), (3.11) yields:

LR2

4m+ 2

(3.1)

≥ f(xm)− f(x∗)
(3.7)

≥ f(xN+1)− f(x∗) +
1

2L

N
∑

i=m

||∇f(xi)||2

(3.11)

≥ N −m+ 1

2L
||∇f(xN )||2,

which is equivalent to (3.12) using m = ⌊N/2⌋ for which m ≥ N−1
2 and N −m ≥ N

2 .

Inspired by the conjecture in [31, Sec. 4.1.3], the following theorem shows that the O(1/N) rate of
the worst-case gradient norm bound (3.12) of GM is tight up to a constant.

Theorem 2 Let x0, · · · ,xN ∈ R
d be generated by GM. Then for any N ≥ 1,

LR

N + 1
≤ max

f∈FL(Rd),
x∗∈X(f),

||x0−x∗||≤R

min
i∈{0,...,N}

||∇f(xi)|| = max
f∈FL(Rd),
x∗∈X(f),

||x0−x∗||≤R

||∇f(xN )||, (3.13)

where the inequality in (3.13) is achieved by the following function in FL(R
d):

ψ(x) =

{

LR
N+1 ||x|| − LR2

2(N+1)2 , ||x|| ≥ R
N+1 ,

L
2 ||x||2, ||x|| < R

N+1 .
(3.14)

Proof Lemma 1 implies the equality in (3.13). Starting from x0 = Rν, where ν is a unit vector, the GM
iterates are

xi =

(

1− i

N + 1

)

Rν, ∇ψ(xi) =
LR

N + 1
ν, i = 0, . . . , N,

which implies the inequality (3.13).

We next show that the bound (3.10) for the gradient norm at the final iterate xN of OGM is tight
and and that its worst-case function is a simple quadratic function. Note that OGM was derived by
optimizing a worst-case bound on the cost function decrease and its behavior in terms of gradient norms
was not investigated previously.

Theorem 3 Let x0, · · · ,xN ∈ R
d be generated by OGM. Then for any N ≥ 1,

max
f∈FL(Rd),
x∗∈X(f),

||x0−x∗||≤R

min
i∈{0,...,N}

||∇f(xi)|| = max
f∈FL(Rd),
x∗∈X(f),

||x0−x∗||≤R

||∇f(xN)|| = LR

θN

(

≤
√
2LR

N + 1

)

, (3.15)

where the worst-case function in FL(R
d) for OGM in terms of the gradient norm is the quadratic function

φ(x) = L
2 ||x||2.
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Proof See Appendix A.

Comparing (3.12) and (3.15), we see that GM and OGM have essentially similar worst-case gradient
norm bounds. This is a dilemma because OGM is the fastest FSFOM in terms of the worst-case cost
function bound, but is as slow as GM in terms of the worst-case gradient norm bound. Therefore, one
of the main goals of this paper is to study optimizing the step coefficients of FSFOM using PEP with
respect to the gradient norm in Sec. 5.4.

We next discuss the specific FSFOM in [27] that decreases the gradient norm with a faster O(1/N1.5)
rate.

3.2.2 FSFOM with rate O(1/N1.5) for decreasing the gradient norm

Searching for a FSFOM that decreases the gradient norm faster than the O(1/N) rate of GM (and
OGM), Nesterov [27] (among other variants of FGM [11,21]) considered performing FGM for the first m
iterations, and GM for the remaining iterations. He showed that this method, which we denote FGM-m
, satisfies a fast rate O(1/N1.5) for decreasing the gradient norm. In [6,22,27], FGM-m for m = ⌊N/2⌋
was used to solve dual problems. To pursue a faster worst-case rate (in terms of the constant factor), we
consider here another variant that performs OGM for the first m iterations and GM for the remaining
iterations, which we denote OGM-m .

Algorithm OGM-m

Input: f ∈ FL(R
d), x0 = y0 ∈ R

d, ϑ0 = 1, m ∈ {1, . . . , N − 1}.
For i = 0, . . . ,m− 1

yi+1 = xi −
1

L
∇f(xi)

ϑi+1 =











1+
√

1+4ϑ2
i

2
, i ≤ m− 2

1+
√

1+8ϑ2
i

2
, i = m− 1

xi+1 = yi+1 +
ϑi − 1

ϑi+1
(yi+1 − yi) +

ϑi

ϑi+1
(yi+1 − xi)

For i = m, . . . ,N − 1

xi+1 = xi −
1

L
∇f(xi)

The following theorem bounds the gradient norm of the OGM-m iterates, inspired by the proof in [22,
27] for the worst-case gradient norm bound of the FGM-m iterates. The worst-case bound of FGM-m
in [22,27] is asymptotically

√
2-times larger than the following new bound (3.16) for OGM-m .

Theorem 4 Let f : R
d → R be FL(R

d) and let x0, · · ·xN ∈ R
d be generated by OGM-m for

1 ≤ m ≤ N − 1. Then for any N ≥ 1,

min
i∈{0,...,N}

||∇f(xi)|| ≤ ||∇f(xN )|| ≤
√
2LR

(m+ 1)
√
N −m+ 1

. (3.16)

Proof Using (3.5), (3.7), (3.11) yields:

LR2

2ϑ2m

(3.5)

≥ f(xm)− f(x∗)
(3.7)

≥ f(xN+1)− f(x∗) +
1

2L

N
∑

i=m

||∇f(xi)||2

(3.11)

≥ N −m+ 1

2L
||∇f(xN )||2,

which is equivalent to (3.16) using ϑm ≥ m+1√
2

that is implied by (3.6).

The bound (3.16) is minimized at a point close to m = ⌊2N/3⌋, leading to its (approximately) smallest

constant 3
√
6

2 with the rate O(1/N1.5).
Other variants of FGM having O(1/N1.5) worst-case gradient bounds were derived in [11,21]. Such

variations of FGM (including FGM-m) were derived since, prior to this paper, it was unknown whether
or not FGM decreases the gradient norm with the rate O(1/N1.5); this rate for the gradient norm of

7



FGM was conjectured numerically in [31]. Sec. 5.2 below uses the PEP to show for the first time the
rate O(1/N1.5) for the gradient decrease of the FGM. The bound (3.16) of OGM-m for decreasing the
gradient is smaller than the bounds for the FGM variants in [11,21], and Sec. 5.4 below shows that our
proposed methods have worst-case bounds even lower than (3.16).

The preceding sections have focused on tight or upper worst-case bounds of the gradient norm decrease
of first-order methods, whereas the next section reviews a lower bound for the worst-case gradient norm
decrease in [23], illustrating the best achievable worst-case rate of the gradient norm decrease for any
first-order method (with either fixed-step or adaptive-step approaches).

3.2.3 A lower bound of the worst-case rates of first-order methods for decreasing the gradient norm

For completeness, this section reviews a lower bound on the worst-case rate of any first-order method
in terms of the gradient norm values for smooth convex quadratic functions [23]. Lower bounds on the
function value were studied for convex quadratic functions in [23], and for smooth convex functions in [7,
25].

When the condition d ≥ 2N + 3 holds, a worst-case gradient norm bound of any first-order method
generating xN after N iterations has rate O(1/N2) at best, for convex quadratic f , i.e., has the following
lower bound [23, Sec. 2.3.B]:

LR

4e2(N + 1)2
≤ max

f∈QL(Rd),
x∗∈X(f),

||x0−x∗||≤R

||∇f(xN )||, (3.17)

where QL(R
d) :=

{

f : f(x) ≡ 1
2x

⊤Qx+ p⊤x+ r for x ∈ Rd, Q � 0, ||Q|| ≤ L
}

. Since QL(R
d) ⊂

FL(R
d), the lower bound (3.17) for convex quadratic functions also applies to smooth convex functions.

A regularization technique in [27] achieves the rate O(1/N2) up to a logarithmic factor. However,
its adaptive step coefficients require knowing R in advance which is undesirable in practice. To our
knowledge, whether there exists any FSFOM satisfying such rate is an open question. Instead, this paper
discusses a way to develop FSFOM that achieves an O(1/N1.5) gradient norm bound with the smallest
constant among known FSFOM.

4 Relaxation and optimization of the cost function form of PEP

This section reviews a relaxation of the cost function form of PEP [9] and reviews how [9,15,16] optimized
the step coefficients of the FSFOM class over the cost function form of PEP, leading to OGM. Then,
we propose a parameterized family of algorithms that generalizes OGM, and analyze the worst-case cost
function decrease of the generalized OGM family.

4.1 Review: Relaxation for the cost function form of PEP

The worst-case bound on the cost function for a FSFOM having given step coefficients h := {hi+1,k}
corresponds to a solution of the following PEP problem [9, Prob. (P)]:

BP(h, N, d, L,R) := max
f∈FL(Rd),

x0,··· ,xN∈R
d,

x∗∈X∗(f),
||x0−x∗||≤R

f(xN )− f(x∗) (P)

s.t. xi+1 = xi −
1

L

i
∑

k=0

hi+1,k∇f(xk), i = 0, . . . , N − 1.

Since problem (P) is impractical to solve due to its functional constraint f ∈ FL(R
d), [9] relaxed it by

the following finite set of inequalities satisfied by f [25, Thm. 2.1.5]:

1

2L
||∇f(xi)−∇f(xj)||2 ≤ f(xi)− f(xj)− 〈∇f(xj), xi − xj〉 (4.1)
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for i, j = 0, 1, . . . , N, ∗. Then, a matrix G = [g0, · · · , gN ]⊤ ∈ R
(N+1)×d and a vector δ = [δ0, · · · , δN ]⊤ ∈

R
N+1 with

gi :=
1

L||x0 − x∗||
∇f(xi), and δi :=

1

L||x0 − x∗||2
(f(xi)− f(x∗))

are introduced to represent gradient vectors and function values respectively in the set of (4.1). This
leads to a finite-dimensional relaxation of problem (P) [9, Prob. (Q)]:

BP1(h, N, d, L,R) := max
G∈R

(N+1)×d,

δ∈R
N+1

LR2δN (P1)

s.t. Tr
{

G⊤Ai,j(h)G
}

≤ δi − δj, i < j = 0, . . . , N,

Tr
{

G⊤Bi,j(h)G
}

≤ δi − δj , j < i = 0, . . . , N,

Tr
{

G⊤CiG
}

≤ δi, i = 0, . . . , N,

Tr
{

G⊤Di(h)G + νu⊤
i G
}

≤ −δi, i = 0, . . . , N,

for any given unit vector ν ∈ R
d, where ui = ei+1 ∈ R

N+1 is the (i + 1)th standard basis vector. Note
that Tr

{

G⊤uiu
⊤
j G
}

= 〈gi, gj〉 by definition. The matrices Ai,j(h),Bi,j(h),Ci,Di(h) are defined as



















Ai,j(h) :=
1
2 (ui − uj)(ui − uj)

⊤ + 1
2

∑j
l=i+1

∑l−1
k=0 hl,k(uju

⊤
k + uku

⊤
j ),

Bi,j(h) :=
1
2 (ui − uj)(ui − uj)

⊤ − 1
2

∑i
l=j+1

∑l−1
k=0 hl,k(uju

⊤
k + uku

⊤
j ),

Ci :=
1
2uiu

⊤
i ,

Di(h) :=
1
2uiu

⊤
i + 1

2

∑i
j=1

∑j−1
k=0 hj,k(uiu

⊤
k + uku

⊤
i ).

(4.2)

In [9, Prob. (Q′)], problem (P1) is further relaxed by discarding some constraints to yield

BP2(h, N, d, L,R) := max
G∈R

(N+1)×d,

δ∈R
N+1

LR2δN (P2)

s.t. Tr
{

G⊤Ai−1,i(h)G
}

≤ δi−1 − δi, i = 1, . . . , N,

Tr
{

G⊤Di(h)G + νu⊤
i G
}

≤ −δi, i = 0, . . . , N,

for any given unit vector ν ∈ R
d. We explicitly illustrate the relaxation from (P1) to (P2) because Sec. 5

uses a similar but different relaxation. Taylor et al. [31] avoided this step to analyze a tight worst-case
bound of (P) (under a large-scale condition d ≥ N + 2 [31, Thm. 5]); however, this relaxation (P2)
facilitates the analysis in [9,15,16] and in this paper.

Replacing maxG,δ LR
2δN by minG,δ{−δN} for convenience in (P2), the Lagrangian of the corre-

sponding constrained minimization problem with dual variables λ = (λ1, · · · , λN )⊤ ∈ R
N and τ =

(τ0, · · · , τN )⊤ ∈ R
N+1 for the first and second constraint inequalities of (P2) respectively becomes

L(G, δ,λ, τ ;h) =− δN +

N
∑

i=1

λi(δi − δi−1) +

N
∑

i=0

τiδi (4.3)

+ Tr
{

G⊤S(h,λ, τ )G+ ντ⊤G
}

,

where

S(h,λ, τ ) :=

N
∑

i=1

λiAi−1,i(h) +

N
∑

i=0

τiDi(h). (4.4)

Then, we have the following dual problem of (P2) that one could use to compute a valid upper bound
of (P) using a semidefinite program (SDP) for given h [9, Prob. (DQ′)]:

BD(h, N, L,R) := min
(λ,τ)∈Λ,

γ∈R

{

1

2
LR2γ :

(

S(h,λ, τ ) 1
2τ

1
2τ

⊤ 1
2γ

)

� 0

}

, (D)
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where

Λ =

{

(λ, τ ) ∈ R
2N+1
+ :

τ0 = λ1, λN + τN = 1,
λi − λi+1 + τi = 0, i = 1, . . . , N − 1,

}

. (4.5)

The next section reviews the analytical solution to this upper bound (D) for OGM, instead of using a
numerical SDP solver.

4.2 Review: Optimizing step coefficients for the cost function form of PEP

Drori and Teboulle [9] optimized numerically the step coefficients h over the simple SDP problem (D)
as follows [9, Prob. (BIL)]:

ĥD := argmin
h∈RN(N+1)/2

BD(h, N, L,R). (HD)

The problem (HD) is bilinear, and [9, Thm. 3]4 used a convex relaxation technique to make it solvable
by numerical methods.

In [15, Lemma 4], we solved (HD) analytically yielding the optimized step coefficients

hi+1,k =







1
θi+1

(

2θk −
∑i

j=k+1 hj,k

)

, k = 0, . . . , i− 1,

1 + 2θi−1
θi+1

, k = i,
(4.6)

for θi in (3.6). Fortuitously, the optimized coefficients (4.6) lead to equivalent computationally efficient
OGM1 and OGM2 forms [15, Prop. 3, 4 and 5], and the bound (3.5) for the final secondary iterate xN

of OGM is implied by [15, Lemma 4]. Recently, Drori [7] showed that the OGM is optimal for d ≥ N +1,
implying that optimizing over the relaxed bound (D) in (HD) for simplicity is equivalent to optimizing
over the exact worst-case cost function bound (P) when d ≥ N + 1.

One could use a SDP solver to compute a numerical bound from (D) for any FSFOM; however,
deriving an analytical bound using (D) is difficult for the primary sequence {yi} of OGM. Therefore, we
devised a new relaxed bound in [16] similar to (D), which we review next.

4.3 Review: Another cost function form of relaxed PEP for the primary sequence of OGM

An upper bound of the worst-case bound on f(yN+1) − f(x∗) for FSFOM with step coefficients h and
yN+1 = xN − 1

L
f(xN ) could be computed using (D) by a SDP solver. However, we found it difficult to

find its analytical worst-case bound for the primary sequence {yi} of OGM, so [16, Prob. (D′)] provided
the following alternate upper bound on f(yN+1)− f(x∗):

BD′(h, N, L,R) := min
(λ,τ)∈Λ,

γ∈R

{

1

2
LR2γ :

(

S(h,λ, τ ) + 1
2uNu⊤

N
1
2τ

1
2τ

⊤ 1
2γ

)

� 0

}

, (D′)

which led to the bound (3.4) for the primary sequence {yi} of OGM in [16].
Similar to [15, Lemma 4], we found a feasible point of (D′) in [16, Lemma 3.1], along with feasible

step coefficients h of a FSFOM:

hi+1,k =







1
ti+1

(

2tk −
∑i

j=k+1 hj,k

)

, k = 0, . . . , i− 1,

1 + 2ti−1
ti+1

, k = i,
(4.7)

for ti in (3.3). Then, [16, Thm. 3.1] showed the bound (3.4) using [16, Lemma 3.1]. The step coeffi-
cients (4.6) and (4.7) are identical except the final iteration, since ti (3.3) and θi (3.6) are equivalent for
i < N .

We are now done reviewing the portions of papers [15,16] that are the ingredients for specifying a
parameterized family of algorithms that generalizes OGM in the next two sections.

4 [9, Thm. 3] has typos that are fixed in [15, Eq. (6.3)].
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4.4 Feasible points of (D) and (D′) for the generalized OGM

This section specifies feasible points of (D) and (D′) that lead to a generalized version of OGM. Specifi-
cally, the following lemma presents additional feasible points of (D); this lemma reduces to [15, Lemma 4]
(and the step coefficients (4.6) of OGM) when θ2i = Ωi for all i.

Lemma 2 For the following step coefficients:

hi+1,k =







θi+1

Ωi+1

(

2θk −
∑i

j=k+1 hj,k

)

, i = 0, . . . , N − 1, k = 0, . . . , i− 1,

1 + (2θi−1)θi+1

Ωi+1
, i = 0, . . . , N − 1, k = i,

(4.8)

the choice of variables:

γ =
1

2
τ0, λi = Ωi−1τ0, i = 1, . . . , N, τi =











2
ΩN

, i = 0,

θiτ0 i = 1, . . . , N − 1,
θN
2 τ0, i = N,

(4.9)

is a feasible point of (D) for any choice of θi such that

θ0 = 1, θi > 0, and θ2i ≤ Ωi :=

{

∑i
l=0 θl, i = 0, . . . , N − 1,

2
∑N−1

l=0 θl + θN , i = N.
(4.10)

Proof See Appendix B.

The following lemma also specifies some feasible points of (D′); this lemma reduces to [16, Lemma 3.1]
(and (4.7)) when t2i = Ti for all i.

Lemma 3 For the following step coefficients:

hi+1,k =







ti+1

Ti+1

(

2tk −
∑i

j=k+1 hj,k

)

, i = 0, . . . , N − 1, k = 0, . . . , i− 1,

1 + (2ti−1)ti+1

Ti+1
, i = 0, . . . , N − 1, k = i,

(4.11)

the choice of variables:

γ =
1

2
τ0, λi = Ti−1τ0, i = 1, . . . , N, τi =

{

1
TN
, i = 0,

tiτ0 i = 1, . . . , N,
(4.12)

is a feasible point of (D′) for any choice of ti such that

t0 = 1, ti > 0, and t2i ≤ Ti :=

i
∑

l=0

tl. (4.13)

Proof See Appendix C.

Similar to the relationship between the step coefficients (4.6) and (4.7), the step coefficients (4.8)
and (4.11) are identical (when θi = ti for i < N) except for the final iteration, implying that the iterates
{xi}N−1

i=0 of the two FSFOMs with (4.8) and (4.11) are equivalent; only the final iterate xN is different.
The step coefficients (4.6) and (4.7) lead to computationally efficient equivalent OGM forms; similarly
the next section provides computationally efficient generalized forms of OGM that each correspond to
a FSFOM with either (4.8) or (4.11), and we analyze their cost function worst-case bounds.
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4.5 Generalized OGM

This section proposes a generalized OGM using lemmas 2 and 3. The FSFOM with the step coeffi-
cients (4.8) has the following two equivalent efficient generalized forms of OGM, named GOGM1 and
GOGM2, that reduce to the standard OGM when θ2i = Ωi for all i.

Algorithm GOGM1

Input: f ∈ FL(R
d), x0 = y0 ∈ R

d,

θ0 = Ω0 = 1.

For i = 0, . . . , N − 1

yi+1 = xi −
1

L
∇f(xi)

Choose θi+1 > 0

s.t. θ2i+1 ≤ Ωi+1, where

Ωi+1 =

{

∑i+1
l=0 θl, i ≤ N − 2

2
∑N−1

l=0 θl + θN , i = N − 1

xi+1 = yi+1 +
(Ωi − θi)θi+1

θiΩi+1
(yi+1 − yi)

+
(2θ2i −Ωi)θi+1

θiΩi+1
(yi+1 − xi)

Algorithm GOGM2

Input: f ∈ FL(R
d), x0 = y0 ∈ R

d,

θ0 = Ω0 = 1.

For i = 0, . . . , N − 1

yi+1 = xi −
1

L
∇f(xi)

zi+1 = x0 − 1

L

i
∑

k=0

2θk∇f(xk)

Choose θi+1 > 0

s.t. θ2i+1 ≤ Ωi+1, where

Ωi+1 =

{

∑i+1
l=0 θl, i ≤ N − 2

2
∑N−1

l=0 θl + θN , i = N − 1

xi+1 =

(

1− θi+1

Ωi+1

)

yi+1 +
θi+1

Ωi+1
zi+1

Proposition 1 The sequence {x0, · · · ,xN} generated by the FSFOM with (4.8) is identical to the cor-
responding sequence generated by GOGM1 and GOGM2.

Proof See Appendix D. Note that this proof is independent of the choice of θi and Ωi.

Because the proof of Prop. 1 for the FSFOM with step coefficients (4.8) is independent of the choice
of θi and Ωi, it is straightforward to show that the FSFOM with step coefficients (4.11) has the following
two efficient equivalent forms, named GOGM1′ and GOGM2′, that reduce to [16, Alg. OGM1′ and
OGM2′] when t2i = Ti for all i.

Algorithm GOGM1′

Input: f ∈ FL(R
d), x0 = y0 ∈ R

d,

t0 = T0 = 1.

For i = 0, . . . , N − 1

yi+1 = xi −
1

L
∇f(xi)

Choose ti+1 > 0

s.t. t2i+1 ≤ Ti+1 =

i+1
∑

l=0

tl

xi+1 = yi+1 +
(Ti − ti)ti+1

tiTi+1
(yi+1 − yi)

+
(2t2i − Ti)ti+1

tiTi+1
(yi+1 − xi)

Algorithm GOGM2′

Input: f ∈ FL(R
d), x0 = y0 ∈ R

d,

t0 = T0 = 1.

For i = 0, . . . , N − 1

yi+1 = xi −
1

L
∇f(xi)

zi+1 = x0 − 1

L

i
∑

k=0

2tk∇f(xk)

Choose ti+1 > 0

s.t. t2i+1 ≤ Ti+1 =

i+1
∑

l=0

tl

xi+1 =

(

1− ti+1

Ti+1

)

yi+1 +
ti+1

Ti+1
zi+1

Clearly when θi = ti for i < N , the primary iterates {yi}Ni=0 and the intermediate secondary iterates
{xi}N−1

i=0 of GOGM and GOGM′ are equivalent. Although illustrating two similar algorithms GOGM
and GOGM′ might seem redundant, presenting both formulations with lemmas 2 and 3 completes the
story of generalized OGM here and in Sec. 5.

Using lemmas 2 and 3, the following theorem bounds the cost function decrease of the GOGM and
GOGM′ iterates.
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Theorem 5 Let f : R
d → R be FL(R

d) and let y0, · · · ,yN ,xN ∈ R
d be generated by GOGM1 and

GOGM2. Then for any 1 ≤ i ≤ N ,

f(yi)− f(x∗) ≤
LR2

4Ωi−1
, (4.14)

f(xN )− f(x∗) ≤
LR2

2ΩN

. (4.15)

The iterates y0, · · · ,yN ∈ R
d generated by GOGM1′ and GOGM2′ also satisfy the bound (4.14) when

θi = ti for i < N .

Proof Using Lemma 3, the FSFOM with h in (4.11) of GOGM′ satisfies

f(yN+1)− f(x∗) ≤ BD′(h, N, L,R) =
1

2
LR2γ =

LR2

4TN
, (4.16)

where yN+1 = xN − 1
L
∇f(xN ). Since the coefficients h in (4.11) are recursive and do not depend on

a given N , we can extend (4.16) for all iterations. By letting θi = ti for i < N , the bound (4.16) also
satisfies for the iterates {yi} of GOGM, as in (4.14).

Using Lemma 2, the FSFOM with the step h in (4.8) of GOGM satisfies

f(xN)− f(x∗) ≤ BD(h, N, L,R) =
1

2
LR2γ =

LR2

2ΩN

, (4.17)

which is equivalent to (4.15).

GOGM and Thm. 5 reduce to OGM and its bounds (3.4) and (3.5), when θ2i = Ωi for all i. Similar

to general forms of FGM in [3,26], the GOGM family includes the choice θi =

{

i+a
a
, i < N,√

2(N+a−1)
a

, i = N
for

any a ≥ 2, because such parameter θi satisfies the following conditions for GOGM:

Ωi − θ2i =
(i+ 1)(i + 2a)

2a
− (i+ a)2

a2
=

(a− 2)i2 + a(2a− 3)

2a2
≥ 0, (4.18)

for i < N , and ΩN − θ2N = 2ΩN−1 + θN − θ2N ≥ 2θ2N−1 + θN − θ2N = θN ≥ 0. Similarly, the GOGM′

family includes the choice ti =
i+a
a

for any a ≥ 2, which we denote as OGM-a.

Corollary 1 Let f : R
d → R be FL(R

d) and let y0, · · · ,yN ∈ R
d be generated by GOGM′ with ti =

i+a
a

(OGM-a) for any a ≥ 2. Then for any 1 ≤ i ≤ N ,

f(yi)− f(x∗) ≤
aLR2

2i(i+ 2a− 1)
. (4.19)

Proof Thm. 5 implies (4.19), since Ti =
(i+1)(i+2a)

2a and the condition Ti − t2i ≥ 0 satisfies in (4.18) for
any a ≥ 2.

5 Relaxation and optimization of the gradient form of PEP

This section analyzes a worst-case bound for the gradient of any GOGM (and GOGM′) using the gradient
form of PEP. We use relaxations on the gradient form of PEP that are similar but slightly different from
those of PEP for the cost function in the previous section. Using this relaxed PEP, we prove that FGM
has an O(1/N1.5) rate for the worst-case gradient decrease, and analyze the worst-case gradient bound
for the GOGM. Then, we optimize the step coefficients with respect to the gradient form of PEP and
propose an algorithm named OGM-OG that lies in the GOGM family and that has the best known
analytical worst-case bound for decreasing the gradient norm among the class FSFOM.
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5.1 Relaxation for the gradient form of PEP

To analyze a worst-case bound on the gradient for a FSFOM with a given h, we consider the following
gradient-form version of PEP that is similar to (P):

BP′′(h, N, d, L,R) := max
f∈FL(Rd),

x0,··· ,xN∈R
d,

x∗∈X∗(f),
||x0−x∗||≤R

min
i∈{0,...,N}

||∇f(xi)||2 (P′′)

s.t. xi+1 = xi −
1

L

i
∑

k=0

hi+1,k∇f(xk), i = 0, . . . , N − 1.

Here, we use the smallest gradient norm squared among all iterates (mini∈{0,...,N} ||∇f(xi)||2) as a crite-
ria, as considered in [31, Sec. 4.3]. We could instead consider the final gradient norm squared (||∇f(xN )||2)
as a criteria, but our proposed relaxation on (P′′) in this section for such criteria provided only an O(1/N)
worst-case bound at best even for the corresponding optimized step coefficients (results not shown); we
leave studying the gradient form of the tight PEP as future work.

As in [31], we replace mini∈{0,...,N} ||∇f(xi)||2 in (P′′) by L2||x0 − x∗||2α with the condition α ≤
1

L2||x0−x∗||2 ||∇f(xi)||2 = Tr
{

G⊤(uiu
⊤
i )G

}

for all i. Then, we relax this reformulated (P′′) similar to the

relaxation from (P) to (P2) with the additional constraint Tr
{

G⊤CNG
}

≤ δN in (P1) as follows:

BP2′′(h, N, d, L,R) := max
G∈R

(N+1)d,

δ∈R
N+1,

α∈R

L2R2α (P2′′)

s.t. Tr
{

G⊤Ai−1,i(h)G
}

≤ δi−1 − δi, i = 1, . . . , N,

Tr
{

G⊤CNG
}

≤ δN ,

Tr
{

G⊤Di(h)G + νu⊤
i G
}

≤ −δi, i = 0, . . . , N,

Tr
{

G⊤(−uiu
⊤
i )G

}

≤ −α, i = 0, . . . , N.

Replacing maxG,δ L
2R2α by minG,δ{−α} for convenience, the Lagrangian of the corresponding con-

strained minimization problem with dual variables λ ∈ R
N
+ , η ∈ R+, τ ∈ R

N+1
+ , and β = (β0, · · · , βN )⊤ ∈

R
N+1
+ for the first, second, third, and fourth set of constraint inequalities of (P2′′) respectively becomes

L′′(G, δ,λ, η, τ ,β;h) =− α+

N
∑

i=1

λi(δi − δi−1)− ηδN +

N
∑

i=0

τiδi +

N
∑

i=0

βiα (5.1)

+ Tr
{

G⊤S′′(h,λ, η, τ ,β)G+ ντ⊤G
}

,

where

S′′(h,λ, η, τ ,β) := S(h,λ, τ ) +
1

2
ηuNu⊤

N −
N
∑

i=0

βiuiu
⊤
i . (5.2)

Then similar to (D), we have the following dual problem of (P2′′) that one could use to compute an
upper bound of the PEP (P′′) of the smallest gradient norm squared among all iterates by a numerical
SDP solver:

BD′′(h, N, L,R) := min
(λ,η,τ ,β)∈Λ′′,

γ∈R

{

1

2
L2R2γ :

(

S′′(h,λ, η, τ ,β) 1
2τ

1
2τ

⊤ 1
2γ

)

� 0

}

, (D′′)

where

Λ′′ :=

{

(λ, η, τ ,β) ∈ R
3N+3
+ :

τ0 = λ1, λN + τN = η,
∑N

i=0 βi = 1,
λi − λi+1 + τi = 0, i = 1, . . . , N − 1

}

. (5.3)

The next two sections use a valid upper bound (D′′) of (P′′) for given step coefficients h, providing
an analytical solution to (D′′) for the step coefficients h of FGM and GOGM′, superseding the use of a
SDP solver.
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5.2 A worst-case bound for the gradient norm of FGM

FGM is equivalent to a FSFOM with the step coefficients [15, Prop. 1]:

hi+1,k =







1
ti+1

(

tk −
∑i

j=k+1 hj,k

)

, k = 0, . . . , i− 1,

1 + ti−1
ti+1

, k = i,
(5.4)

for ti in (3.3). The following lemma provides a feasible point of (D′′) associated with the step coeffi-
cients (5.4) of FGM to provide a worst-case bound for the gradient of FGM.

Lemma 4 For the step coefficients (5.4), the following choice of variables:

γ = τ0, λi = t2i−1τ0, i = 1, . . . , N, τi =







(

1
2

∑N
k=0 t

2
k

)−1

, i = 0,

tiτ0, i = 1, . . . , N,
(5.5)

η = t2Nτ0, βi =
1

2
t2i τ0, i = 0, . . . , N, (5.6)

is a feasible point of (D′′) for ti in (3.3).

Proof See Appendix E.

Using Lemma 4, the following theorem bounds the gradient norm of the FGM iterates, proving for
the first time an O(1/N1.5) rate of decrease.

Theorem 6 Let f : R
d → R be FL(R

d) and let y0, · · · ,yN ,x0, · · · ,xN ∈ R
d be generated by FGM.

Then for any N ≥ 1,

min
i∈{0,...,N+1}

||∇f(yi)|| ≤ min
i∈{0,...,N}

||∇f(xi)|| (5.7)

≤ LR
√

∑N
k=0 t

2
k

≤ 2
√
3LR

√

(N + 1)(N2 + 6N + 12)
,

where yN+1 = xN − 1
L
∇f(xN ).

Proof Lemma 1 implies the first inequality in (5.7). Using Lemma 4, the FSFOM with the step coefficients
h (5.4) of FGM satisfies

min
i∈{0,...,N}

||∇f(xi)||2 ≤ BD′′(h, N, L,R) =
1

2
L2R2γ =

L2R2

∑N
k=0 t

2
k

, (5.8)

which is equivalent to (5.7) using
∑N

k=0 t
2
k ≥∑N

k=0
(k+2)2

4 = (N+1)(2N2+13N+24)
24 .

5.3 A worst-case bound for the gradient norm of GOGM

Having established the gradient bound (5.7) for FGM, this section and the next seek to improve on it
by studying GOGM. To bound the gradient decrease of GOGM (and GOGM′), the following lemma
illustrates one possible set of feasible points of (D′′).

Lemma 5 For the step coefficients (4.11), the following choice of variables:

γ =
1

2
τ0, λi = Ti−1τ0, i = 1, . . . , N, τi =







(

∑N
k=0

(

Tk − t2k
)

)−1

, i = 0,

tiτ0, i = 1, . . . , N,
(5.9)

η = TNτ0, βi =
(

Ti − t2i
)

τ0, i = 0, . . . , N (5.10)

is a feasible point of (D′′) for any choice of ti and Ti that satisfies (4.13) and for which there exists some
i such that t2i < Ti.
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Proof See Appendix F.

Using Lemma 5, the following theorem bounds the worst-case gradient norm for the iterates of GOGM
and GOGM′.

Theorem 7 Let f : R
d → R be FL(R

d) and let y0, · · · ,yN ,x0, · · · ,xN ∈ R
d be generated by GOGM′.

Then for any N ≥ 1,

min
i∈{0,...,N+1}

||∇f(yi)|| ≤ min
i∈{0,...,N}

||∇f(xi)|| ≤
LR

2
√

∑N
k=0 (Tk − t2k)

, (5.11)

where yN+1 = xN− 1
L
∇f(xN ). The bound (5.11) can be generalized to the intermediate iterates {xi}N−1

i=0

and {yi}Ni=0 of both GOGM and GOGM′ when θi = ti (for i < N).

Proof Lemma 1 implies the first inequality in (5.11). Using Lemma 5, FSFOM with the step coefficients
h (4.11) of GOGM′ satisfies

min
i∈{0,...,N}

||∇f(xi)||2 ≤ BD′′(h, N, L,R) =
1

2
L2R2γ =

L2R2

4
∑N

k=0 (Tk − t2k)
,

which implies (5.11). Since the iterates of GOGM′ are recursive and do not depend on a given N , the
bound (5.11) easily generalizes to the intermediate iterates of GOGM′ (and GOGM when θi = ti).

5.4 Optimizing step coefficients over the gradient form of PEP

In search of a FSFOM that decreases the gradient norm the fastest, we optimize the step coefficients in
terms of the gradient form of the relaxed (D′′) by solving the following problem:

ĥD′′ := argmin
h∈RN(N+1)/2

BD′′(h, N, L,R). (HD′′)

The problem (HD′′) is bilinear, similar to (HD), and a convex relaxation technique [9, Thm. 3] makes
this problem solvable using numerical methods.

We solved (HD′′) for many choices of N using a numerical SDP solver [4,12], and observed that the
following choice of ti:

ti =















1, i = 0,
1+

√
1+4t2i−1

2 , i = 1, . . . , ⌊N/2⌋ − 1,
N−i+1

2 , i = ⌊N/2⌋ , . . . , N,
(5.12)

makes the feasible point in Lemma 5 optimal for the problem (HD′′). Based on that numerical evidence,

we conjecture that ĥD′′ in (HD′′) corresponds to the step coefficients (4.11) with the parameter ti (5.12).
The ti factors in (5.12) start decreasing after i = ⌊N/2⌋ − 1, whereas the usual ti in (3.3) and ti =

i+a
a

for any a ≥ 2 increase with i indefinitely.
In addition, we found numerically that minimizing the gradient bound (5.11) of GOGM′, i.e., solving

the following constrained quadratic problem:

max
{ti}

N
∑

k=0

(

k
∑

l=0

tl − t2k

)

s.t. ti satisfies (4.13) for all i, (5.13)

is equivalent to solving the problem (HD′′). In other words, the solution of (5.13) numerically appears
equivalent to (5.12), the (conjectured) solution of (HD′′). The unconstrained maximizer of the cost
function of (5.13) is ti =

N−i+1
2 , and this term partially appears in the constrained maximizer (5.12) for

⌊N/2⌋ ≤ i ≤ N .
We denote the resulting GOGM′ with (5.12) as OGM-OG (OG for optimized over gradient). The

following theorem bounds the cost function and gradient norm of the OGM-OG iterates.
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Theorem 8 Let f : R
d → R be FL(R

d) and let y0, · · · ,yN ,x0, · · · ,xN ∈ R
d be generated by OGM-OG.

Then,

f(yN+1)− f(x∗) ≤
2LR2

(N + 2)2
, (5.14)

min
i∈{0,...,N+1}

||∇f(yi)|| ≤ min
i∈{0,...,N}

||∇f(xi)|| ≤
√
6LR

N
√
N + 1

, (5.15)

where yN+1 = xN − 1
L
∇f(xN ).

Proof OGM-OG is an instance of GOGM′ and thus Thm. 5 implies that OGM-OG satisfies

f(yN+1)− f(x∗) ≤
LR2

4TN
,

which is equivalent to (5.14), since

TN = Tm +
N
∑

l=m+1

tl = t2m +
(N −m)(N −m+ 1)

4

≥ (N + 3)2 +N(N + 2)

16
=

2N2 + 8N + 9

16

for m = ⌊N/2⌋, using m ≥ N−1
2 , N −m ≥ N

2 , and tm ≥ m+2
2 ≥ N+3

4 in (3.3).

Thm. 7 implies (5.15), using the above inequalities for m, the equality t2i = Ti for i ≤ m, and

N
∑

k=m+1

(

Tk − t2k
)

=

N
∑

k=m+1

(

t2m +

k
∑

l=m+1

tl − t2k

)

=(N −m) t2m +

N
∑

k=m+1

(

k
∑

l=m+1

N − l + 1

2
−
(

N − k + 1

2

)2
)

=(N −m) t2m +

N−m
∑

k′=1





k′
∑

l′=1

N − l′ −m+ 1

2
−
(

N − k′ −m+ 1

2

)2




=(N −m) t2m

+

N−m
∑

k=1

(

2(N −m+ 1)k − k(k + 1)

4
− (N −m+ 1)2 − 2(N −m+ 1)k + k2

4

)

=(N −m) t2m +

N−m
∑

k=1

(

−k
2

2
+ (N −m+ 3/4)k − (N −m+ 1)2

4

)

=(N −m) t2m − (N −m)(N −m+ 1/2)(N −m+ 1)

6

+
(N −m)(N −m+ 3/4)(N −m+ 1)

2
− (N −m)(N −m+ 1)2

4

≥(N −m)(m+ 2)2

4
+

(N −m)2(N −m+ 1)

3
− (N −m)(N −m+ 1)2

4

≥(N −m)2(N −m+ 1)

3
≥ 1

24
N2(N + 1).

The gradient bound (5.15) of OGM-OG is asymptotically
√
2-times smaller than that of FGM in Thm. 6

and 1.5-times smaller than that of OGM-m= ⌊2N/3⌋ in Thm. 4. Regarding the cost function decrease,
the bound (5.14) of OGM-OG is asymptotically the same as the bound (3.2) of FGM, and both are twice
larger than the bounds (3.4) and (3.5) of OGM.
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5.5 Decreasing the gradient norm with rate O(1/N1.5) using GOGM without selecting N in advance

Although OGM-OG satisfies a small worst-case gradient bound with a rate O(1/N1.5), OGM-OG (and
FGM-m and OGM-m ) must select N in advance, unlike FGM. Using Thm. 7, the following corollary
shows that OGM-a with a > 2 can decrease the gradient with a rate O(1/N1.5) without selecting N
in advance. (Cor. 1 showed that OGM-a algorithm with a ≥ 2 can decrease the cost function with an
optimal rate O(1/N2).)

Corollary 2 Let f : R
d → R be FL(R

d) and let y0, · · · ,yN ,x0, · · · ,xN ∈ R
d be generated by GOGM′

with ti =
i+a
a

(OGM-a) for any a ≥ 2. Then for N ≥ 1,

min
i∈{0,...,N+1}

||∇f(yi)|| ≤ min
i∈{0,...,N}

||∇f(xi)|| (5.16)

≤ a
√
6LR

2
√

N(N + 1) ((a− 2)N + (3a2 − 4a− 2))
,

where yN+1 = xN − 1
L
∇f(xN ).

Proof Using Ti =
(i+1)(i+2a)

2a and (4.18), Thm. 7 implies (5.16) since

N
∑

k=0

(Tk − t2k) =

N
∑

k=0

(a− 2)k2 + a(2a− 3)k

2a2

=
N(N + 1)

(

(a− 2)N + (3a2 − 4a− 2)
)

6a2
.

OGM-a for any a > 2 has a gradient bound (5.16) that is about a
2
√
a−2

-times larger than the bound (5.15)

of OGM-OG. This constant factor minimizes to
√
2 when a = 4, and this OGM-a=4 has a worst-case

gradient bound that is asymptotically equivalent to the bound (5.7) of FGM. Therefore, when one does
not want to select N in advance, both FGM and OGM-a=4 (and OGM-a for any a > 2) will be useful
for decreasing the gradient with a rate O(1/N1.5).

6 Discussion

This section summarizes analytical worst-case bounds of FSFOM discussed in the previous sections. This
section also reports tight numerical worst-case bounds for exact comparison of algorithms because many
of the analytical bounds are not guaranteed to be tight.

6.1 Summary of analytical worst-case bounds on the cost function and gradient norm

Table 1 summarizes the asymptotic rate of analytical worst-case bounds of all algorithms described in this
paper. As discussed, OGM and OGM-OG have the best known worst-case bounds for the cost function
and gradient decrease respectively in Table 1. However, since OGM has a slow worst-case rate for the
gradient decrease, other algorithms such as FGM, OGM-m , OGM-OG, and OGM-a that satisfy both
the optimal rate O(1/N2) for the function decrease and a fast rate O(1/N1.5) for the gradient decrease
could be preferable over OGM when one is interested in both the gradient decrease as well as the function
decrease, particularly when solving dual problems. In addition, when one does not want to choose N in
advance, FGM and OGM-a could be preferable.

6.2 Tight worst-case bounds on the cost function and the gradient norm

Since many worst-case bounds presented in Table 1 are not guaranteed to be tight, we used the code
in Taylor et al. [31] (with SDP solvers [20,28]) to compare tight (numerical) worst-case bounds for
N = 1, 2, 4, 10, 20, 30, 40, 47, 50. These numerical worst-case bounds are guaranteed to be tight, i.e.,
equivalent to the bounds of either (P) or (P′′), when the large-scale condition d ≥ N + 2 is satisfied [31,
Thm. 5], and we assume this condition hereafter. Tables 2 and 3 provide tight worst-case bounds for
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Algorithm
Asymptotic worst-case bound Require selecting
Cost function Gradient norm N in advance

GM 1
4
N−1

√
2N−1 No

FGM 2N−2 2
√
3N−1.5 No

OGM N−2
√
2N−1 No

OGM-m=⌊2N/3⌋ 9
4
N−2 3

√
6

2
N−1.5 Yes

OGM-OG 2N−2
√
6N−1.5 Yes

OGM-a (a > 2) a
2
N−2 a

√
6

2
√

a−2
N−1.5

No
OGM-a=4 2N−2 2

√
3N−1.5

Table 1 Asymptotic worst-case bounds on the cost function 1
LR2 (f(xN ) − f(x∗)) and the gradient norm

mini∈{0,...,N}
1

LR
||∇f(xi)|| of GM, FGM, OGM, OGM-m , OGM-OG, and OGM-a. (The worst-case cost function bound

for OGM-m in the table corresponds to the bound for OGM after m iterations, because we do not have an analytical
bound for the final iterate.

the decrease of the cost function f(xN )− f(x∗) and the gradient norm decrease mini∈{0,...,N} ||∇f(xi)||
respectively. Although most of the bounds in Table 1 are not guaranteed to be tight, the worst-case rate
formulas in Table 1 are similar to the tight numerical results in Tables 2 and 3, except that the gradient
bounds of OGM-m in Table 1 are relatively looser than those of OGM-m in Table 3. In particular,
the tight numerical gradient bound of OGM-m is smaller than that of FGM in Table 3, which was not
expected from their known (possibly loose) analytical bounds in Table 1.

N GM FGM OGM OGM-m OGM-OG OGM-a
1 6.0 6.0 8.0 6.0 7.3 6.5
2 10.0 11.1 16.2 12.0 13.2 15.1
4 18.0 24.7 39.1 24.2 28.6 32.3
10 42.0 90.7 159.1 86.6 99.9 106.4
20 82.0 283.6 525.1 275.3 310.4 308.9
30 122.0 578.6 1095.6 565.1 604.9 610.9
40 162.0 975.1 1869.2 899.0 1009.9 1012.8
47 190.0 1312.9 2531.1 1227.9 1352.8 1353.6
50 202.0 1472.8 2845.1 1374.4 1516.0 1514.6

Empi. O(·) N−1.0 N−1.9 N−1.9 N−1.8 N−1.8 N−1.8

Known O(·) N−1 N−2 N−2 N−2 N−2 N−2

Table 2 Tight worst-case bounds on LR2

f(xN )−f(x∗)
, the reciprocal of the cost function, of GM, FGM, OGM, OGM-

m=⌊2N/3⌋, OGM-OG, and OGM-a=4. We computed empirical rates by assuming that the bounds follow the form bN−c

with constants b and c, and then by estimating c from points N = 47, 50. Note that the corresponding empirical rates are
underestimated due to its simple modeling of bounds.

N GM FGM OGM OGM-m OGM-OG OGM-a
1 2.0 2.0 2.0 2.0 2.3 1.8
2 3.0 3.3 2.8 3.5 3.7 3.3
4 5.0 5.9 4.4 6.4 6.8 5.7
10 11.0 13.8 8.9 18.0 18.9 15.3
20 21.0 32.8 16.2 43.1 45.4 35.2
30 31.0 56.4 23.4 74.4 78.6 59.4
40 41.0 83.6 30.6 110.7 116.9 87.1
47 48.0 104.7 35.6 138.9 146.6 108.4
50 51.0 114.2 37.7 151.4 160.0 118.0

Empi. O(·) N−1.0 N−1.4 N−0.9 N−1.4 N−1.4 N−1.4

Known O(·) N−1 N−1.5 N−1 N−1.5 N−1.5 N−1.5

Table 3 Tight worst-case bounds on LR
mini∈{0,...,N} ||∇f(xi)|| , the reciprocal of the gradient norm, of GM, FGM, OGM,

OGM-m=⌊2N/3⌋, OGM-OG, and OGM-a=4. Empirical rates were computed as described in Table 2.
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6.3 Tight worst-case bounds on the gradient norm at the final iterate

To be clear, Sec. 5 and Tables 1, 3 have focused on analyzing the smallest gradient norm among all
iterates using the gradient form of PEP, whereas the gradient analysis in Sec. 3.2 considers the final
gradient in addition to the smallest gradient among all iterates. As mentioned before, we have not yet
found a relaxation on the final gradient form of the PEP that provides as comparable results as for the
relaxation on the smallest gradient form of the PEP (P′′) in Sec. 5. To complete comparisons on the
worst-case gradient bounds, Table 4 uses the code provided by Taylor et al. [31] (with SDP solvers [20,
28]) to compare tight (numerical) worst-case bounds on the final gradient of the FSFOMs presented
in this paper.5 The worst-case smallest gradient norm bounds (3.12) and (3.16) of GM and OGM-m
respectively (among algorithms considered) extend to the final gradient bounds.

In Table 4, FGM and OGM-a=4 have slow O(1/N) tight worst-case bounds on the final gradient,
unlike OGM-m=⌊2N/3⌋ and OGM-OG roughly having O(1/N1.5) bounds for both the smallest and final
gradients. Thm. 4 has shown that the final gradient of OGM-m satisfies a worst-case rate O(1/N1.5),
but this is unknown yet for OGM-OG, which we leave as future work. We also leave as future work
the challenge of developing a FSFOM that has O(1/N1.5) or even faster worst-case rates for the final
gradient decrease that are lower than those of OGM-m and OGM-OG, possibly without requiring to
choose N in advance.

N GM
FGM OGM OGM OGM OGM-a

yN xN yN xN -m -OG yN xN

1 2.0 2.0 2.0 2.0 2.0 2.0 2.3 2.0 1.8
2 3.0 3.0 3.3 3.2 2.8 3.5 3.7 3.6 3.3
4 5.0 5.8 5.9 5.5 4.4 6.4 6.8 6.8 5.1
10 11.0 15.1 8.2 11.9 8.9 18.0 18.9 15.9 8.7
20 21.0 25.1 13.1 22.2 16.2 43.1 44.4 26.3 13.8
30 31.0 35.1 18.2 32.4 23.4 74.4 74.1 36.3 18.8
40 41.0 45.2 23.2 42.5 30.6 110.7 107.0 46.3 23.8
47 48.0 52.2 26.7 49.6 35.6 138.9 131.6 53.3 27.3
50 51.0 55.3 28.2 52.6 37.7 151.4 142.6 56.3 28.8

Empi. O(·) N−1.0 N−0.9 N−0.9 N−1.4 N−1.3 N−0.9

Known O(·) N−1 N−1 N−1 N−1.5 N−1 N−1

Table 4 Tight worst-case bounds on LR
||∇f(xN )||

(

and LR
||∇f(yN )||

)

, the reciprocal of the final gradient norm, of GM,

FGM, OGM, OGM-m=⌊2N/3⌋, OGM-OG, and OGM-a=4. Empirical rates were computed as described in Table 2. The
known bounds of OGM-OG and OGM-a=4 are derived based on Sec. 3.2, where the empirical bounds of OGM-OG are
comparable to the bounds of OGM-m=⌊2N/3⌋ with known rate O(1/N1.5).

6.4 Non-optimality of OGM-OG in terms of the worst-case gradient bound

Because OGM is optimal in terms of the function decrease when d ≥ N +1 [7], one might hope that the
OGM-OG would achieve the optimal worst-case bound in terms of the gradient decrease, since OGM-OG
is also derived by optimizing the step coefficients over the gradient form of relaxed PEP. However, the
OGM-OG is apparently not optimal as explained next.

Taylor et al. [31] numerically studied an optimal fixed-step GM using their tight PEP in terms of
both the cost function and gradient decrease. In other words, they searched for an optimal step h of GM:

xi+1 = xi −
h

L
∇f(xi)

for i = 0, . . . , N − 1 and a given N with respect to either f(xN)− f(x∗) or ||f(xN)||. In the special case
of N = 1, Taylor et al. [31] numerically conjectured that the step size h = 1.5 is optimal in terms of the

5 Table 4 reports tight worst-case gradient bounds for both the final primary iterate yN and the final secondary iterate
xN (if necessary), unlike Tables 2 and 3. We observed that numerical tight worst-case cost function bounds on both final
iterates yN and xN have similar values for the algorithms in Table 2 (unlike Table 4), so we did not report the bounds on
yN for simplicity. We also did not report numerical tight smallest worst-case gradient norm bounds mini∈{0,...,N} ||∇f(yi)||
of the primary iterates {yi} because the code provided by Taylor et al. [31] does not support computing their values, unlike
that of the secondary iterates {xi} in Table 3.
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cost function decrease. The corresponding GM is equivalent to OGM for N = 1, and this (numerically)
confirms the optimality of OGM [7] for N = 1. They also numerically conjectured that the optimal step
size of GM for N = 1 in terms of the gradient decrease is h =

√
2 with a worst-case bound

||∇f(x1)|| ≤
LR√
2 + 1

≈ LR

2.4
. (6.1)

However, OGM-OG for N = 1 reduces to GM with h = 4
3 ≈ 1.3 with a bound LR

2.3 in Tables 3 and 4,
implying that OGM-OG is not optimal even for N = 1 based on the numerical evidence in [31].

This analysis for N = 1 illustrates that there is still room for improvement in accelerating the worst-
case rate of first-order methods in terms of gradients, which we leave as future work possibly with a
tighter relaxation on the gradient form of PEP. In addition, we leave as future work studying the optimal
worst-case bound for the gradient decrease of first-order methods building upon [7,23], and developing
a FSFOM that achieves such optimal bound. Nevertheless, the OGM-OG is the best known FSFOM for
decreasing the gradient norm among the class FSFOM, and will be useful when decreasing the gradient
is key.

7 Conclusion

We generalized the formulation of OGM and analyzed its worst-case bounds on the function value and
gradient, using the cost function form and the gradient form of relaxed PEP. We then proposed OGM-OG
by optimizing the step coefficients of FSFOM using a relaxed PEP with respect to the gradient, similar
to the development of the (optimal) OGM. To the best of our knowledge, the worst-case bound on the
gradient of the OGM-OG is the best known analytical worst-case bound for decreasing the gradient norm
among the class FSFOM.

However, this OGM-OG is not optimal for decreasing the gradient norm, and further accelerating
the worst-case rate of FSFOM in terms of the gradient possibly with a tight relaxation on the gradient
form of PEP is a possible research direction. On the other hand, deriving an optimal worst-case bound
for the gradient norm of first-order methods, similar to that for the function decrease [7] will be useful.
Nonetheless, the proposed OGM-OG (and OGM-a) may be useful when one finds minimizing gradients
important, particularly in dual problems. In addition, we used the proposed gradient form of PEP to show
that FGM decreases the (smallest) gradient with a rate O(1/N1.5), implying that FGM is comparable
in a big-O sense to OGM-m , OGM-OG and OGM-a for the gradient decrease.

Our analysis considers unconstrained smooth convex minimization; extending such gradient norm
worst-case analysis to constrained problems or nonsmooth composite convex problems is a natural di-
rection to pursue, which is studied for FGM (or FISTA [2]) by the authors [17]. In addition, extending
the analyses on the general form of FGM in [1,3,29] to GOGM is a possible research direction. Lastly,
investigating a new relaxation of the PEP approach that allows adaptive step size such as backtracking
line-search or exact line-search [5,8] is of interest.

Software

https://gitlab.eecs.umich.edu/michigan-fast-optimization has Matlab codes for the algorithms
considered and the SDP approaches in Sec. 5.4 and Sec. 6.

A Proof of Thm. 3

Due to (3.10), we have

max
f∈FL(Rd),
x∗∈X(f),

||x0−x∗||≤R

min
i∈{0,...,N}

||∇f(xi)|| ≤ max
f∈FL(Rd),
x∗∈X(f),

||x0−x∗||≤R

||∇f(xN )|| ≤ LR

θN
,
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and the rest of the proof shows that the following inequality holds

LR

θN
= min

i∈{0,...,N}
||∇φ(xi)|| = ||∇φ(xN )|| (A.1)

≤ max
f∈FL(Rd),
x∗∈X(f),

||x0−x∗||≤R

min
i∈{0,...,N}

||∇f(xi)|| ≤ max
f∈FL(Rd),
x∗∈X(f),

||x0−x∗||≤R

||∇f(xN )||,

which then implies (3.15) with θN ≥ N+1√
2

(3.6).

Starting from x0 = Rν, where ν is a unit vector, we first use induction to show that the following iterates:

xi = (−1)i
1

θi
Rν, i = 0, . . . , N, (A.2)

correspond to the iterates of OGM applied to φ(x). We use [15, Prop. 4] that the sequence generated by OGM is identical
to the sequence generated by FSFOM with

hi+1,k =















θi−1
θi+1

hi,k, k = 0, . . . , i− 2,
θi−1
θi+1

(hi,i−1 − 1), k = i− 1,

1 + 2θi−1
θi+1

, k = i,

(A.3)

for i = 0, . . . , N − 1.
Assuming that (A.2) holds for i < N , we have

xi+1 = xi −
1

L

i
∑

k=0

hi+1,k∇φ(xk)

=xi −
1

L

(

1 +
2θi − 1

θi+1

)

∇φ(xi)−
1

L

i−1
∑

k=0

θi − 1

θi+1
hi,k∇φ(xk) +

1

L

θi − 1

θi+1
∇φ(xi−1)

=
1− 2θi

θi+1
xi +

θi − 1

θi+1
(xi − xi−1) +

θi − 1

θi+1
xi−1

=− θi

θi+1
xi = (−1)i+1 1

θi+1
Rν,

using (A.3) and ∇φ(x) = Lx. Therefore, after N iterations of OGM we have:

min
i∈{0,...,N}

||∇φ(xi)|| = ||∇φ(xN )|| =
∣

∣

∣

∣

∣

∣

∣

∣

∇φ

(

(−1)N
1

θN
Rν

) ∣

∣

∣

∣

∣

∣

∣

∣

=
LR

θN
, (A.4)

which is equivalent to (A.1). The first equality of (A.4) holds since OGM monotonically decreases the gradient norm of
φ(x), i.e. ||∇φ(xi)|| = LR

θi
monotonically decreases as i increases.

B Proof of Lemma 2

It is obvious that (λ, τ ) in (4.9) is in Λ (4.5). Using (4.2) and (4.4), we have

S(h,λ, τ ) =























1
2

(

(λi + τi)hi,k + τi
∑i−1

j=k+1 hj,k

)

, i = 2, . . . , N, k = 0, . . . , i− 2,
1
2

(

(λi + τi)hi,k − λi

)

, i = 1, . . . , N, k = i− 1,

λi+1, i = 0, . . . , N − 1, k = i,
1
2
, i = N, k = i,

(B.1)

and inserting (4.8) and (4.9), yields

S(h,λ, τ )

=















































1
2

(

Ωiτ0
θi
Ωi

(

2θk −
∑i−1

j=k+1 hj,k

)

+ θiτ0
∑i−1

j=k+1 hj,k

)

, i = 2, . . . , N − 1, k = 0, . . . , i− 2,

1
2

(

ΩN
2

τ0
θN
ΩN

(

2θk −∑N−1
j=k+1 hj,k

)

+ θN
2

τ0
∑N−1

j=k+1 hj,k

)

, i = N, k = 0, . . . , i− 2,

1
2

(

Ωiτ0
(

1 +
(2θi−1−1)θi

Ωi

)

−Ωi−1τ0
)

, i = 1, . . . , N − 1, k = i− 1,

1
2

(

ΩN
2

τ0
(

1 +
(2θN−1−1)θN

ΩN

)

−ΩN−1τ0
)

, i = N, k = i− 1,

Ωiτ0, i = 0, . . . , N − 1, k = i,
ΩN
4

τ0, i = N, k = i,
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=



















θiθkτ0, i = 1, . . . , N − 1, k = 0, . . . , i− 1,
θN θk

2
τ0, i = N, k = 0, . . . , i− 1,

Ωiτ0, i = 1, . . . , N − 1, k = i,
ΩN
4

τ0, i = N, k = i,

for θi and Ωi in (4.10). Then, using (4.9) and (4.10), we show the feasibility condition of (D):

(

S(h,λ, τ ) 1
2
τ

1
2
τ⊤ 1

2
γ

)

=
(

diag
{

Ω − θ2
}

+θθ⊤
)

τ0 � 0,

where θ =
(

θ0, · · · , θN−1,
θN
2

, 1
2

)⊤
and Ω =

(

Ω0, · · · , ΩN−1,
ΩN
4

, 1
4

)⊤
.

C Proof of Lemma 3

It is obvious that (λ, τ ) in (4.12) is in Λ (4.5). Inserting (4.11) and (4.12) to (B.1) yields

S(h,λ, τ ) +
1

2
uNu⊤

N

=















1
2

(

Tiτ0
ti
Ti

(

2tk −∑i−1
j=k+1 hj,k

)

+ tiτ0
∑i−1

j=k+1 hj,k

)

, i = 2, . . . , N − 1, k = 0, . . . , i− 2,

1
2

(

Tiτ0
(

1 +
(2ti−1−1)ti

Ti

)

− Ti−1τ0
)

, i = 1, . . . , N, k = i− 1,

Tiτ0, i = 0, . . . , N, k = i

=

{

titkτ0, i = 1, . . . , N, k = 0, . . . , i− 1,

Tiτ0, i = 1, . . . , N, k = i,

for ti and Ti in (4.13). Then, using (4.12) and (4.13), we show the feasibility condition of (D′):

(

S′(h,λ, τ ) 1
2
τ

1
2
τ⊤ 1

2
γ

)

=
(

diag
{

T − t2
}

+tt⊤
)

τ0 � 0,

where t =
(

t0, · · · , tN , 1
2

)⊤
and T =

(

T0, · · · , TN , 1
4

)⊤
.

D Proof of Prop. 1

The proof consists of three propositions and they follow the derivations in [15, Prop. 3, 4 and 5] respectively. Note that
this proof is independent of the choice of θi and Ωi.

Proposition 2 The step coefficient (4.8) satisfies the following recursive relationship

hi+1,k =



















(Ωi−θi)θi+1

θiΩi+1
hi,k k = 0, . . . , i− 2,

(Ωi−θi)θi+1

θiΩi+1
(hi,i−1 − 1), k = i− 1,

1 +
(2θi−1)θi+1

Ωi+1
, k = i,

(D.1)

for i = 0, . . . , N − 1.

Proof We use the notation h′
i,k

for the coefficients (4.8) to distinguish from (D.1). It is obvious that h′
i+1,i = hi+1,i, i =

0, . . . , N − 1, and we clearly have

h′
i+1,i−1 =

θi+1

Ωi+1

(

2θi−1 − h′
i,i−1

)

=
θi+1

Ωi+1

(

2θi−1 −
(

1 +
(2θi−1 − 1)θi

Ωi

))

=
(2θi−1 − 1)(Ωi − θi)θi+1

ΩiΩi+1
=

(Ωi − θi)θi+1

θiΩi+1
(hi,i−1 − 1) = hi+1,i−1.

We next use induction by assuming h′
i+1,k = hi+1,k for i = 0, . . . , n− 1, k = 0, . . . , i. We then have

h′
n+1,k =

θn+1

Ωn+1



2θk −
n
∑

j=k+1

h′
j,k



 =
θn+1

Ωn+1



2θk −
n−1
∑

j=k+1

h′
j,k − h′

n,k





=
θn+1

Ωn+1

(

Ωn

θn
h′
n,k − h′

n,k

)

=
(Ωn − θn)θn+1

θnΩn+1
hn,k = hn+1,k.

Proposition 3 The sequence {x0, . . . ,xN} generated by FSFOM with (D.1) is identical to the corresponding sequence
generated by GOGM1.
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Proof We use induction, and for clarity, we use the notation x′
0, · · · ,x′

N
for FSFOM with (D.1). It is obvious that

x′
0 = x0, and we have

x′
1 = x′

0 − 1

L
h1,0∇f(x′

0) = x0 − 1

L

(

1 +
(2θ0 − 1)θ1

Ω1

)

∇f(x0)

= y1 +
(Ω0 − θ0)θ1

θ0Ω1
(y1 − y0) +

(2θ20 −Ω0)θ1

θ0Ω1
(y1 − x0) = x1.

Assuming x′
i = xi for i = 0, . . . , n, we then have

x′
n+1 = x′

n − 1

L
hn+1,n∇f(x′

n) −
1

L
hn+1,n−1∇f(x′

n−1)−
1

L

n−2
∑

k=0

hn+1,k∇f(x′
k)

=xn − 1

L

(

1 +
(2θn − 1)θn+1

Ωn+1

)

∇f(xn)−
1

L

(Ωn − θn)θn+1

θnΩn+1
(hn,n−1 − 1)∇f(xn−1)

− 1

L

n−2
∑

k=0

(Ωn − θn)θn+1

θnΩn+1
hn,k∇f(xk)

=yn+1 − 1

L

(2θ2n −Ωn)θn+1

θnΩn+1
∇f(xn)

− 1

L

(Ωn − θn)θn+1

θnΩn+1

(

∇f(xn) −∇f(xn−1) +

n−1
∑

k=0

hn,k∇f(xk)

)

=yn+1 +
(2θ2n −Ωn)θn+1

θnΩn+1
(yn+1 − xn)

+
(Ωn − θn)θn+1

θnΩn+1

(

− 1

L
∇f(xn) +

1

L
∇f(xn−1) + xn − xn−1

)

=yn+1 +
(Ωn − θn)θn+1

θnΩn+1
(yn+1 − yn) +

(2θ2n −Ωn)θn+1

θnΩn+1
(yn+1 − xn) = xn+1.

Proposition 4 The sequence {x0, · · · ,xN} generated by FSFOM with (4.8) is identical to the corresponding sequence
generated by GOGM2.

Proof We use induction, and for clarity, we use the notation x′
0, · · · ,x′

N for FSFOM with (4.8). It is obvious that x′
0 = x0,

and we have

x′
1 = x′

0 − 1

L
h1,0∇f(x′

0) = x0 − 1

L

(

1 +
(2θ0 − 1)θ1

Ω1

)

∇f(x0)

=

(

1− θ1

Ω1

)(

x0 − 1

L
∇f(x0)

)

+
θ1

Ω1

(

x0 − 1

L
∇f(x0)−

1

L
(2θ0 − 1)∇f(x0)

)

=

(

1− θ1

Ω1

)

y1 +
θ1

Ω1
z1 = x1.

Assuming x′
i = xi for i = 0, . . . , n, we then have

x′
n+1 = x′

n − 1

L
hn+1,n∇f(x′

n)−
1

L

n−1
∑

k=0

hn+1,k∇f(x′
k)

=xn − 1

L

(

1 +
(2θn − 1)θn+1

Ωn+1

)

∇f(xn)−
1

L

n−1
∑

k=0

θn+1

Ωn+1



2θk −
n
∑

j=k+1

hj,k



∇f(xk)

=

(

1− θn+1

Ωn+1

)(

xn − 1

L
∇f(xn)

)

+
θn+1

Ωn+1



xn − 1

L

n
∑

k=0

2θk∇f(xk) +
1

L

n−1
∑

k=0

n
∑

j=k+1

hj,k∇f(xk)





=

(

1− θn+1

Ωn+1

)(

xn − 1

L
∇f(xn)

)

+
θn+1

Ωn+1

(

x0 − 1

L

n
∑

k=0

2θk∇f(xk)

)

=

(

1− θn+1

Ωn+1

)

yn+1 +
θn+1

Ωn+1
zn+1.
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E Proof of Lemma 4

It is obvious that (λ, η, τ ,β) in (5.5) and (5.6) is in Λ′′ (5.3). Using (5.2) and (B.1), we have

S′′(h,λ, η, τ ,β) (E.1)

=























1
2

(

(λi + τi)hi,k + τi
∑i−1

j=k+1 hj,k

)

, i = 2, . . . , N, k = 0, . . . , i− 1,
1
2

(

(λi + τi)hi,k − λi

)

, i = 1, . . . , N, k = i− 1,

λi+1 − βi, i = 0, . . . , N − 1, k = i,

η − βN , i = N, k = i,

and inserting (5.4), (5.5), and (5.6) yields

S′′(h, λ, η, τ ,β)

=















1
2

(

t2i τ0
1
ti

(

tk −
∑i−1

j=k+1 hj,k

)

+ tiτ0
∑i−1

j=k+1 hj,k

)

, i = 2, . . . , N, k = 0, . . . , i− 1,

1
2

(

t2i τ0
(

1 +
ti−1−1

ti

)

− t2i−1τ0
)

, i = 1, . . . , N, k = i− 1,
1
2
t2i τ0, i = 0, . . . , N, k = i,

=
1

2
titkτ0, i = 0, . . . , N, k = 0, . . . , i,

for ti in (3.3). Then, using (5.5), we finally show that the feasibility condition of (D′′) holds:

(

S′′(h,λ, η, τ ,β) 1
2
τ

1
2
τ⊤ 1

2
γ

)

=
1

2
tt⊤τ0 � 0,

where t = (t0, · · · , tN , 1)⊤.

F Proof of Lemma 5

It is obvious that (λ, η, τ ,β) in (5.9) and (5.10) is in Λ′′. Inserting (4.11), (5.9) and (5.10) to (E.1) yields

S′′(h,λ, η, τ ,β)

=















1
2

(

Tiτ0
ti
Ti

(

2tk −
∑i−1

j=k+1 hj,k

)

+ tiτ0
∑i−1

j=k+1 hj,k

)

, i = 2, . . . , N, k = 0, . . . , i− 1,

1
2

(

Tiτ0
(

1 +
(2ti−1−1)ti

Ti

)

− Ti−1τ0
)

, i = 1, . . . , N, k = i− 1,

Tiτ0 −
(

Ti − t2i
)

τ0, i = 0, . . . , N, k = i,

=titkτ0, i = 0, . . . , N, k = 0, . . . , i,

for ti and Ti in (4.13). Then, using (5.9), we finally show that the feasibility condition of (D′′) holds:

(

S′′(h,λ, η, τ ,β) 1
2
τ

1
2
τ⊤ 1

2
γ

)

= tt⊤τ0 � 0,

where t =
(

t0, · · · , tN , 1
2

)⊤
.
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