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Abstract. This article studies a portfolio optimization problem, where the mar-
ket consisting of several stocks is modeled by a multi-dimensional jump diffusion
process with age-dependent semi-Markov modulated coefficients. We study risk
sensitive portfolio optimization on the finite time horizon. We study the problem
by using a probabilistic approach to establish the existence and uniqueness of the
classical solution to the corresponding Hamilton-Jacobi-Bellman (HJB) equation.
We also implement a numerical scheme to investigate the behavior of solutions for
different values of the initial portfolio wealth, the maturity, and the risk of aversion
parameter.
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1. Introduction

Following the seminal work of Markowitz [14], the problem of optimization of an
investor’s portfolio based on different criteria and market assumptions are being
studied by several authors. In the mean-variance optimization approach, as done by
Markowitz, either the expected value of the portfolio wealth is optimized by keeping
the variance fixed, or the variance is minimized by keeping the expectation fixed.
Though the Markowitz’s mean-variance approach to the portfolio optimization is
immensely useful in practice, its scope is limited by the fact that only Gaussian
distributions are completely determined by their first two moments. In a pioneer-
ing work, Merton [15], [16] has introduced the utility maximization to the optimal
portfolio selection. Merton’s approach is based on applying the method of stochastic
optimal control via an appropriate Hamilton-Jacobi- Bellman (HJB) equation. The
corresponding optimal dynamic portfolio allocation can also be obtained from the
same equation. Although this approach has greater mathematical tractability but
does not capture the tradeoff between maximizing expectation and minimizing the
variance of the portfolio value.

There is another approach, namely the risk sensitive optimization where a tradeoff
between the long run expected growth rate and the asymptotic variance is captured
in implicitly. The aforesaid utility maximization method can be employed to study
the risk-sensitive optimization by choosing a parametric family of exponential utility
functions. In such optimization, an appropriate value of the parameter is to be chosen
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by the investor depending on the investors degree of risk tolerance. We refer [1], [4],
[5], [13] for this criterion under the geometric Brownian motion (GBM) market model.

Risk sensitive optimization of portfolio value in a more general type of market is
also studied by various authors. The jump diffusion model is one of such general-
izations which captures the discontinuity of asset dynamics. The empirical results
support such models [3]. Terminal utility optimization problem under such a model
assumption is studied in [12]. In all these references, it is assumed that the market
parameters, i.e., the coefficients in the asset price dynamics, are either constant or
deterministic functions of time. We study a class of models where these parameters
are allowed to be finite state pure jump processes. We call each state of the coef-
ficients as a regime and the dynamics, as a regime switching model. The regime
switching can be of various types. It is known that for a Markov switching model,
the sojourn or holding times in each state are distributed as exponential random
variables, whereas the holding time can be any positive random variable for the
semi-Markov case. Thus the class of semi-Markov processes subsumes the class of
Markov chains. There are some statistical results in the literature (see [2], [11] and
the references therein), which emphasize the advantage of the applicability of semi-
Markov switching models over simple homogeneous Markov switching models. It is
mainly useful to deal with the impact of a changing environment, which exhibits
duration dependence. To understand this, consider a market situation where, if the
volatility of a certain stock price remains low for longer than certain duration, then
that observation discourages increasingly more traders to trade on that, depending
on the length of the duration. In that case, this type of duration dependence mass-
trading behavior might cause further low volume trading resulting in lack of volatility
boost. In this type of market behavior, the density function of holding time of low
volatility regime should exhibit heavier tail than exponential. It is important to note
that, a Markov chain either time homogeneous or inhomogeneous, does not exhibit
such age-dependent transition, whereas a generic semi-Markov process may exhibit
this phenomenon. It motivates us to consider the age-dependent transition of the
regimes.

Risk sensitive portfolio optimization in a GBM model with Markov regimes is
studied in [7] whereas [6] studies the same problem in a semi-Markov modulated
GBM model. In [6] the market parameters, r, µl and σl are driven by a finite-
state semi-Markov process {Xt}t≥0, where µl and σl denote the drift and volatility
parameters of the l-th asset in the portfolio. Strictly speaking, the assumption that all
the parameters from different assets are governed by a single semi-Markov process
is rather restrictive. Ideally, those could be driven by independent or correlated
processes in practice. Although two independent Markov processes jointly becomes
a Markov process, the same phenomena is not true for semi-Markov processes. For
this reason, the case of independent regimes are important where regimes are not
Markov.

In general, a pure jump process need not be a semi-Markov process. In particular,
the class of age-dependent processes (as in [8]) is much wider than the type of age
independent semi-Markov processes studied in [6]. In a recent paper [9], option
pricing is studied in a switching market where the regimes are assumed to be an
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age-dependent process. An age-dependent process X = {Xt}t≥0 on a finite state
space X := {1, 2, . . . , k} is specified by its instantaneous transition rate λ, which
is a collection of measurable functions λij : [0,∞) → (0,∞) where (i, j) ∈ X2 and
X2 := {(i, j)|i 6= j ∈ X}. Indeed, embedding X in R, an age-dependent process X
on X is defined as the strong solution to the following system of stochastic integral
equations (SIEs)

Xt = X0 +

∫
(0,t]

∫
R

hλ(Xu−, Yu−, z)℘(du, dz),

Yt = Y0 + t−
∫

(0,t]

∫
R

gλ(Xu−, Yu−, z)℘(du, dz),

 (1.1)

where ℘(dt, dz) is the Poisson random measure with intensity dtdz, independent of
X0, Y0, and

hλ(i, y, z) :=
∑

j∈X\{i}

(j − i)1Λij(y)(z), gλ(i, y, z) :=
∑

j∈X\{i}

y1Λij(y)(z),

and for every y > 0, Λij(y) :=
[∑

(i′,j′)≺(i,j) λi′j′(y), λij(y) +
∑

(i′,j′)≺(i,j) λi′j′(y)
)

,

using a strict total order ≺ on X2. In particular ≺ can be taken as lexicographic
ordering. The existence of unique strong solution of the SIEs (1.1) follows from ([10],
Chap. IV, p.231), since hλ and gλ are compactly supported in z variable. We refer
to [8] for a proof that λ indeed represents the instantaneous transition rate of X.

In this paper, we consider a regime switching jump diffusion model of a finan-
cial market, where an observed Euclidean space valued pure jump process drives
the regimes of every asset. Further, we assume that every component of that pure
jump process is an age-dependent semi-Markov process and the components are in-
dependent. We study the finite horizon portfolio optimization via the risk sensitive
criterion under the above market assumption. The optimization problem is solved by
studying the corresponding HJB equation, where we employ the technique of sepa-
ration of variables to reduce the HJB equation to a system of linear first order PDEs
containing some non-local terms. In the reduced equation, the nature of non-locality
is such that the standard theory of integro-pde is not applicable to establish the
existence and uniqueness of the solution. In this paper, to show well-posedness of
this PDE, a Volterra integral equation(IE) of the second kind is obtained and then
the existence of a unique C1 solution is shown. Then it is proved that the solution
to the IE is a classical solution to the PDE under study. The uniqueness of the PDE
is proved by showing that any classical solution also solves the IE. In the uniqueness
part, we use conditioning with respect to the transition times of the underlying pro-
cess. Besides, we also obtain the optimal portfolio selection as a continuous function
of time and underlying switching process. The expression of this function does not
involve the functional parameter λ. Thus the optimal selection is robust. Our ap-
proach of solving the PDE also enables us to develop a robust numerical procedure
to compute the optimal portfolio wealth using a quadrature method.
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The rest of the paper is organized as follows. In the next section, we give a rigorous
description of the model of a financial market dynamics and then derive the wealth
process of an investor’s portfolio. The problem of optimizing the portfolio wealth
under the risk sensitive criterion on the finite time horizon is also stated in Section 2.
In Section 3 we have established a characterization of the optimal wealth using the
corresponding Hamilton-Jacobi-Bellman equation. An optimal portfolio strategy is
also shown to exist in the class of Markov feedback control. Furthermore, an optimal
feedback control is produced as a minimizer of a certain functional associated with
the HJB equation. We illustrate the theoretical results by performing numerical
experiments with an example and obtain some relevant results in Section 4. Section
5 contains some concluding remarks. The proofs of certain important lemmata are
given in the Appendix.

2. Model Description

2.1. Model parameters. Let X denote a finite subset of R. Without loss of gener-
ality, we choose X = {1, 2, . . . , k} and X2 as defined above (1.1). Consider for each
l = 0, 1, . . . , n, λl : X2 × [0,∞) → (0,∞) a continuously differentiable function in y
with λlii(y) = −

∑
j 6=i λ

l
ij(y) and

lim
y→∞

Λl
i(y) =∞,where Λl

i(y) :=

y∫
0

∑
j 6=i

λlij(v)dv.

Assume that for each j = 1, 2, . . . ,m2, νj denotes a finite Borel measure on R. Let
r : [0, T ]×X n+1 → [0,∞), µl : [0, T ]×X n+1 → R, and σl : [0, T ]×X n+1 → (0,∞)1×m1

be continuous functions of the time variable for each l = 1, . . . , n, where m1 and
m2 are the positive integers. We also consider a collection of measurable functions
ηlj : R→ (−1,∞) for each l = 1, . . . , n, j = 1, . . . ,m2.

We further introduce some more notations. Fix x = (x0, x1, . . . , xn) ∈ X n+1 and
t ∈ [0, T ] and we denote b(t, x) := [µ1(t, x) − r(t, x), . . . , µn(t, x) − r(t, x)]1×n, and
σ(t, x) := [σlj(t, x)]n×m1 , where σlj is the j-th component of σl function. For each
z = (z1, . . . , zm2) ∈ Rm2 , we denote η(z) := [ηlj(zj)]n×m2 . We use [·]∗ to denote
transpose of a vector.

2.2. Asset price model. Let (Ω,F , P ) be a complete probability space. Let {X l
0 |

l = 0, . . . , n} be a collection of (n+1) many X valued random variables, and {Y l
0 | l =

0, . . . , n} be a collection of (n+1) non negative random variables. LetW = {Wt}t≥0 =
{[W 1

t , . . . ,W
m1
t ]∗}t≥0 be a standard m1-dimensional Brownian motion. We further

assume that, {Nj(dt, dz)|j = 1, . . . ,m2} on (0,∞)×R and {℘l(dt, dz0) | l = 0, . . . , n}
on (0,∞) × R are two sets of Poisson random measures with intensities νj(dz)dt
and dtdz0 respectively defined on the same probability space. We recall that νj
denotes a finite Borel measure for each j. It is important to note that the random
variables, processes and measures are defined in such a way that they are independent.
We denote the compensated measures by Ñj(dt, dzj) := Nj(dt, dzj) − νj(dzj)dt for
j = 1, . . . ,m2 and ℘̃l(dt, dz0) := ℘l(dt, dz0) − dtdz0 for l = 0, . . . , n. For each l =
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0, 1, . . . , n, let {X l
t}t≥0 be the solution to (1.1) with ℘ replaced by ℘l, λ by λl, X0 by

X l
0, and Y0 by Y l

0 . In other words

X l
t = X l

0 +

∫
(0,t]

∫
R

hl(X l
u−, Y

l
u−, z0)℘l(du, dz0) (2.1)

Y l
t = Y l

0 + t−
∫

(0,t]

∫
R

gl(X l
u−, Y

l
u−, z0)℘l(du, dz0), (2.2)

where hl := hλl and gl := gλl . We denote the tuple (X0
t , X

1
t , . . . , X

n
t ) by Xt and

(Y 0
t , Y

1
t , . . . , Y

n
t ) by Yt. Hence, W , {Nj(dt, dz), j = 1, . . . ,m2} and X are indepen-

dent. The process {Z l
t}t≥0 := {(X l

t , Y
l
t )}t≥0 is a time homogeneous strong Markov

process.
Let the filtration {Ft}t≥0 be the right continuous augmentation of the filtration

generated by W,X,Nj j = 1, . . . ,m2 such that F0 contains all the P -null sets. We
consider a frictionless market consisting of (n + 1) assets whose prices are denoted
by S0

t , S
1
t , . . . , S

n−1
t and Snt and are traded continuously. We model the hypothetical

state of the assets at time t by the pure jump process X = {Xt}t≥0. The state of the
asset indicates its mean growth rate and volatility. We assume

dS0
t = r(t,Xt)S

0
t dt, S0

0 = s0 ≥ 0.

Thus the corresponding asset is (locally) risk free, which refers to the money market
account with the floating interest rate r(t, x) at time t corresponding to regime x. The
other n asset prices are assumed to be given by the following stochastic differential
equation

dSlt = Slt−

µl(t,Xt)dt+

m1∑
j=1

σlj(t,Xt) dW
j
t +

m2∑
j=1

∫
R

ηlj(zj)Nj(dt, dzj)

 , (2.3)

Sl0 = sl, sl ≥ 0, l = 1, 2, . . . , n.

These prices correspond to n different risky assets. Therefore, µl represents the
growth rate of the l-th asset and σ the volatility matrix of the market. Here we
further assume the following.
Assumptions :

(A1) For each l = 1, . . . , n and j = 1, . . . ,m2, we assume ηlj ∈ L2(νj).
(A2) For each l = 1, . . . , n and j = 1, . . . ,m2, we further assume ln(1+ηlj) ∈ L2(νj).
(A3) Let a(t, x) := σ(t, x)σ(t, x)∗ denote the diffusion matrix. Assume that there

exists a δ1 > 0 such that for each t and x, ξ∗a(t, x)ξ ≥ δ1‖ξ‖2, where ‖ · ‖
denotes the Euclidean norm.

The next lemma asserts the existence and uniqueness of the solution to the SDE
(2.3). The proof is deferred to the appendix.

Lemma 2.1. Under the assumption (A2) the equation (2.3) has a strong solution,
which is adapted, a.s. unique and an rcll process.
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Remark 2.2. We note that (A1) and (A2) follow for the special case where

−1 < inf
z∈R

ηlj(z) ≤ sup
z∈R

ηlj(z) <∞.

By (A3) the diffusion matrix a(t, x) is uniformly positive definite, which ensures
that a(t, x) is invertible. We will use this condition in Section 3. This condition also
implies that m1 ≥ n.

2.3. Portfolio value process. Consider an investor who is employing a self-financing
portfolio of the above (n+ 1) assets starting with a positive wealth. If the portfolio
at time t comprises of πlt number of units of l-th asset for every l = 0, . . . , n, then for
each ω ∈ Ω the value of the portfolio at time t is given by

Vt :=
n∑
l=0

πlt S
l
t.

We allow πlt be real valued, i.e., borrowing from the money market and short selling
of assets are allowed. We further assume that {πlt}t≥0 is an {Ft}t≥0 adapted, rcll
process for each l. Then the self-financing condition implies that

dVt =
n∑
l=0

πlt− dS
l
t.

If πlt are such that Vt remains positive, we can set ult :=
πltS

l(t)

Vt
, the fraction of

investment in the l-th asset. Then we have
∑n

l=0u
l
t = 1 and hence u0

t = 1−
∑n

l=1u
l
t.

We call ut = [u1
t , u

2
t , . . . , u

n
t ]∗ as the portfolio strategy of risky assets at time t. Then

the wealth process, {Vt}t≥0, now onward denoted by V u := {V u
t }t≥0, takes the form

dV u
t

V u
t−

=
n∑
l=0

ult−
dSlt
Slt−

.

Thus we would consider the following SDE for the value process,

dV u
t = V u

t

(
r(t,Xt) +

n∑
l=1

[
µl(t,Xt)− r(t,Xt)

]
ult

)
dt

+ V u
t

n∑
l=1

m1∑
j=1

σlj(t,Xt) u
l
tdW

j
t + V u

t−

n∑
l=1

m2∑
j=1

ult−

∫
R

ηlj(zj)Nj(dt, dzj)

= V u
t (r(t,Xt) + b(t,Xt)ut)dt+ V u

t u
∗
tσ(t,Xt)dWt

+ V u
t−

m2∑
j=1

∫
R

[
u∗t−η(z)

]
j
Nj(dt, dzj), (2.4)

where u∗tη(z) =
[∑n

l=1 u
l
tηl1(z1), . . . ,

∑n
l=1 u

l
tηlm2(zm2)

]
1×m2

. Note that, some addi-

tional assumptions on u are needed for ensuring a positive strong solution of (2.4).

Remark 2.3. As before, we need to assume that ut is such that for each j =
1, . . . ,m2, and z ∈ Rm2,

[
u∗t−η(z)

]
j
> −1 to ensure a positive solution to (2.4).
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For some technical reasons we require a stronger condition on ut. We would require
that the the portfolio should be chosen from

Uδ := {u ∈ Rn| [u∗η(z)]j ≥ −1 + δ,∀j, z} for some 0 < δ ≤ 1. (2.5)

It is clear from the definition and the above derivation that V u, the portfolio wealth
process, is a controlled process. Let A ⊆ Rn be a convex set containing the origin,
denoting the range of portfolio. The range is determined based on the investment
restrictions. For example, A = Rn in the case of unrestricted short selling. The
restrictions on short selling makes A = {u ∈ Rn | ul ≥ cl,

∑
l≥1 u

l ≤ 1− c0∀l}, where
cl ≤ 0 for l = 0, . . . , n. Clearly, cl = 0 for l = 0, . . . , n, correspond to no short selling.

Definition 2.4. An rcll and adapted process u = {ut}t∈[0,T ] is said to be admissible
portfolio strategy if:

(i) the process u takes values from the convex set A1 := A
⋂
Uδ, where Uδ is as

in (2.5),
(ii) (2.4) has an almost sure unique strong solution,

(iii) ess sup
Ω

sup
[0,T ]

‖ut(ω)‖ <∞.

Proposition 2.5. Under (A1) and with admissible control u, (i) the SDE (2.4) has
an almost sure unique positive strong solution, (ii) the solution has finite moments
of all positive and negative orders, which are also bounded on [0, T ] uniformly in u.

Proof. (i) We first note that, since ut ∈ Uδ and satisfies Definition 2.4(iii),

| ln(1 + [u∗s−η(z)]j)| < max (| ln δ|, C‖η·j(zj)‖) ,
where C := ess sup

Ω
sup
[0,T ]

‖ut(ω)‖ and η·j is the j-th column of the matrix η. Again

using (A1) and the finiteness of the measure νj, the integration of the above upper

bound with respect to Nj has finite expectation. This implies that E
t∫

0

∫
R

ln(1 +

[u∗s−η(z)]j)Nj(ds, dzj) <∞. Therefore in the similar line of the proof of Lemma 2.1,
we can show, under the assumption (A1) and the admissibility of u, (2.4) has an a.s.
unique positive rcll solution, which is an adapted process, and the solution is given
by

V u
t = V u

0 exp

[ t∫
0

(
r(s,Xs) + b(s,Xs)us −

1

2
u∗sa(s,Xs)us

)
ds +

t∫
0

u∗sσ(s,Xs) dWs

+

m2∑
j=1

t∫
0

∫
R

ln(1 + [u∗s−η(z)]j)Nj(ds, dzj)

]
. (2.6)

(ii) We first consider the first order moment. To prove for each t, V u
t has a bounded

expectation, we first note that the right hand side can be written as a product of a con-

ditionally log-normal random variable and exp

 m2∑
j=1

t∫
0

∫
R

ln(1 + [u∗s−η(z)]j)Nj(ds, dzj)

,
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where both are conditionally independent, given the process u. We further note that
the log-normal random variable has bounded parameters on [0, T ] uniformly in u.
Therefore it is sufficient to check if

E

exp

 t∫
0

∫
R

ln(1 + C‖η·j(zj)‖)Nj(ds, dzj)

 ,
is bounded on [0, T ], for all j = 1, . . . ,m2. By applying Lemma A.1, one can show
that the above expectation is bounded on [0, T ]. Thus V u

t has bounded expectation
on [0, T ], uniformly in u. Now for the moments of general order, we note that for
any α ∈ R, (V u

t )α can also be written in a similar form of (2.6) where each of the
integrals inside the exponential would be multiplied by the constant α. Thus the rest
of the proof follows in a similar line of that of first order case, given above. �

Our goal is to study a risk sensitive optimal control problem on the above wealth
process. We would see in the next section that, in order to obtain a classical solution
to the corresponding HJB equation, to be defined shortly, certain regularity of the
conditional c.d.f of holding time of X is needed. We devote the next subsection to
establishing some smoothness of relevant density functions.

2.4. Regularity properties of holding time distributions. Let T ln be the time of
n-th transition of the l-th component of Xt, whereas T l0 = −Y l

0 and τ ln := T ln− T ln−1.

We define the function F l : [0,∞) × X → [0, 1] as F l(ȳ|i) := 1 − e−Λli(ȳ) and let

f l(ȳ|i) := d
dȳ
F l(ȳ|i) and for each i 6= j, plij(ȳ) :=

λlij(ȳ)

|λlii(ȳ)| with plii(ȳ) = 0 for all i and ȳ.

Set

p̂lij =

∞∫
0

plij(ȳ)dF l(ȳ|i).

We assume further conditions on the transition rate so that the unconditional tran-
sition probability matrix is irreducible.
Assumption: (A4) The matrix (p̂lij) is irreducible, for all l = 0, . . . , n.

From the definition of F l and the assumptions on λ, we observe F l(ȳ|i) < 1, for all

ȳ > 0. We also note that λlij(ȳ) = plij(ȳ) f l(ȳ|i)
1−F l(ȳ|i) hold for all i 6= j. For a fixed t, let

nl(t) := max{n : T ln ≤ t}. Hence T l
nl(t)
≤ t ≤ T l

nl(t)+1
and Y l

t = t− T l
nl(t)

. It is shown

in [8] that λl : X2 × [0,∞)→ (0,∞) is the instantaneous transition rate function of
the semi-Markov process X l, i.e.,

λlij(ȳ) = lim
δ→0

1

δ
P
(
X l
T ln+1

= j, τ ln+1 ∈ (ȳ, ȳ + δ)|X l
T ln

= i, τ ln > ȳ
)
.

Furthermore, F l(ȳ|i) is the conditional c.d.f of the holding time of X l and plij(ȳ) is

the conditional probability that X l transits to j from i given the fact that it is at i
for a duration of ȳ. Let τ l(t) := the remaining life of l-th component i.e., the time
period from time t after which the l-th component of X would have the subsequent
transition. Note that τ l(t) is independent of every component of X other than l-th
one. We denote the conditional c.d.f and p.d.f of τ l(t) given X l

t = i and Y l
t = ȳ

as Fτ l(·|i, ȳ) and fτ l(·|i, ȳ) respectively. It is important to note that this c.d.f does
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not depend on t, mainly because (Xt, Yt) is time-homogeneous. We also notice that
τ l(t) + Y l

t is the duration of stagnancy of X l
t at present state before it moves to

another. From now we denote P (·|Xt = x, Yt = y) by Pt,x,y(·) and the corresponding
conditional expectation as Et,x,y(·). Let `(t) be the component of Xt, where the
subsequent transition happens. Therefore, Pt,x,y(`(t) = l) represents the conditional
probability of observing next transition to occur at the l-th component given that
Xt = x and Yt = y. We find the expressions of the c.d.f and the probability defined
above and obtain some properties in the following lemma. The proof is deferred to
the appendix. In order to state the lemma, we introduce some more notations. We
define an open set

D := {(t, x, y) ∈ (0, T )×X n+1 × (0,∞)n},
and a linear operator

Dt,yϕ(t, x, y) := lim
ε→0

1

ε
{ϕ(t+ ε, x, y + ε1)− ϕ(t, x, y)},

where dom(Dt,y), the domain of Dt,y is the subspace of C(D) such that for each
ϕ ∈ dom(Dt,y) above limit exists for every (t, x, y) ∈ D and Dt,yϕ ∈ C(D), and
1 ∈ R(n+1) is a vector with each component 1.

Lemma 2.6. Consider F l, f l, Pt,x,y as given above.
(i) For each l,

Pt,x,y(`(t) = l) =

∞∫
0

∏
m 6=l

1− Fm(s+ ym|xm)

1− Fm(ym|xm)

f l(s+ yl|xl)
1− F l(yl|xl)

ds.

(ii) Let Fτ l|l(·|x, y) be the conditional c.d.f of τ l(t) given Xt = x, Yt = y and `(t) = l.
Then

Fτ l|l(r|x, y) =

r∫
0

∏
m6=l

(1− Fm(s+ ym|xm))f l(s+ yl|xl)ds

∞∫
0

∏
m6=l

(1− Fm(s+ ym|xm))f l(s+ yl|xl)ds

, (2.7)

and is C2 in r variable.
(iii)

fτ l|l(r|x, y) :=
d

dr
Fτ l|l(r|x, y) =

∏
m6=l(1− Fm(r + ym|xm))f l(r + yl|xl)

∞∫
0

∏
m 6=l

(1− Fm(s+ ym|xm))f l(s+ yl|xl)ds

, (2.8)

is differentiable with respect to r.
(iv) Fτ l|l(T − t|x, y) and Pt,x,y(`(t) = l) are in dom(Dt,y) . Furthermore,

Dt,yPt,x,y(`(t) = l) =
n∑

m=0

fτm(0|xm, ym)Pt,x,y(`(t) = l)− fτ l(0|xl, yl)
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Dt,yFτ l|l(T − t|x, y) =fτ l|l(0|x, y)(Fτ l|l(T − t|x, y)− 1).

(v) fτ l|l(0|x, y)Pt,x,y(`(t) = l) = f l(yl|xl)
1−F l(yl|xl) = fτ l(0|xl, yl).

2.5. Optimal Control Problem. In this paper we consider a risk sensitive opti-
mization criterion of the terminal portfolio wealth corresponding to a portfolio u,
that is given by

Ju,Tθ (x, y, v) := −
(

2

θ

)
lnE

[
exp

(
−θ

2
ln (V u

T )

) ∣∣∣∣ X0 = x, Y0 = y, V u
0 = v

]
= −

(
2

θ

)
lnE

[
(V u

T )−
θ
2

∣∣∣∣ X0 = x, Y0 = y, V u
0 = v

]
,

which is to be maximized over all admissible portfolio strategies with constant risk
aversion parameter θ > 0. Since logarithm is increasing, it suffices to consider the
following cost function

E
[
(V u

T )−
θ
2

∣∣∣∣ X0 = x, Y0 = y, V u
0 = v

]
,

which is to be minimized. For all (t, x, y, v) ∈ D × (0,∞), let

J̃u,Tθ (t, x, y, v) := E
[
(V u

T )−
θ
2

∣∣∣∣ Xt = x, Yt = y, V u
t = v

]
,

ϕθ(t, x, y, v) := infu J̃
u,T
θ (t, x, y, v),

 (2.9)

where the infimum is taken over all admissible strategies as in Definition 2.4. Hence,
ϕθ corresponds to the optimal value.

Let u = {ut}t∈[0,T ] be an admissible strategy such that it has the following form
ut := ũ(t,Xt, Yt, Vt) for some measurable ũ : D × (0,∞)→ A1. We call such controls
as Markov feedback control. Then the augmented process {(Xt, Yt, V

u
t )}t∈[0,T ] is

Markov where, Xt, Yt, V
u
t are as in (2.1), (2.2), (2.4). We note that for any measurable

ũ : D × (0,∞) → A1, the equation (2.4) may not have a strong solution. However,
we will show the existence of a Markov feedback control which is optimal and under
which (2.4) has an a.s. unique strong solution.

Let A ũ be the infinitesimal generator of {(t,Xt, Yt, V
u
t )}t∈[0,T ], and ϕ be a C∞

function with compact support, then we have

A ũϕ(t, x, y, v)

= Dt,yϕ(t, x, y, v) + v [r(t, x) + b(t, x) ũ(t, x, y, v)]
∂

∂v
ϕ(t, x, y, v)

+
1

2
v2 [ũ∗(t, x, y, v)a(t, x)ũ(t, x, y, v)]

∂2

∂v2
ϕ(t, x, y, v)

+

m2∑
j=1

∫
R

[ϕ (t, x, y, v (1 + [ũ∗(t, x, y, v)η(z)]j))− ϕ(t, x, y, v)] νj(dzj)

+
n∑
l=0

∑
j 6=xl

λlxlj(y
l)
[
ϕ(t, Rl

jx,R
l
0y, v)− ϕ(t, x, y, v)

]
, (2.10)
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where the linear operator Rl
z is given by Rl

zx := x + (z − xl)el, l = 0, . . . , n, z ∈ R
and {el : l = 0, . . . , n} is the standard basis of Rn+1. For a given u ∈ A1, by abuse
of notation, we write A u, when ũ(t, x, y, v) = u for all t, x, y, v. We consider the
following HJB equation

inf
u∈A1

A uϕ(t, x, y, v) = 0, (2.11)

with the terminal condition

ϕ(T, x, y, v) = v−
θ
2 , x ∈ X n+1, y ∈ [0, T ]n+1, v > 0. (2.12)

To study the HJB equation we now define following classes of functions

V := {ψ ∈ C ((0,∞)) | sup
v∈(0,∞)

|v
θ
2ψ(v)| <∞}.

Definition 2.7. Let G ⊂ {ϕ : D × (0,∞) → R} be such that for every ϕ ∈ G the
following hold:

(i) ϕ(t, x, y, v) is twice continuously differentiable with respect to v ∈ (0,∞) for
all t ∈ (0, T ), x ∈ X n+1, y ∈ (0, t)n+1 and ϕ is in dom(Dt,y) for each v,x,

(ii) for fixed (t, x, y) ∈ D , ϕ(t, x, y, ·) ∈ V,
(iii) for each (t, x, y), v 7→ v ∂ϕ

∂v
is in V.

We now define a classical solution to the problem (2.11)-(2.12).

Definition 2.8. We say ϕ : D × (0,∞)→ R is a classical solution to (2.11)-(2.12)
if ϕ ∈ G and for all (t, x, y, v) ∈ D × (0,∞), ϕ satisfies (2.11)-(2.12).

3. Hamilton-Jacobi-Bellman Equation

We look for a solution to (2.11)-(2.12) of the form

ϕ(t, x, y, v) = v−
θ
2ψ(t, x, y), (3.1)

where ψ ∈ dom(Dt,y). Clearly, the left hand side of (3.1) is in class G . We will
establish the following result in first two subsections.

Theorem 3.1. The Cauchy problem (2.11)-(2.12) has a unique classical solution,
ϕM , of the form (3.1).

Substitution of (3.1) into (2.11), yields

Dt,yψ(t, x, y) +
∑
l

∑
j 6=xl

λlxlj(y
l)
[
ψ(t, Rl

jx,R
l
0y)− ψ(t, x, y)

]
+ hθ(t, x)ψ(t, x, y) = 0,

(3.2)

for each (t, x, y) ∈ D with the condition

ψ(T, x, y) = 1, (3.3)

where the map hθ : [0, T ]×X n+1 → R is given by

hθ(t, x) := inf
u∈A1

[gθ(t, x, u)] , (3.4)
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the infimum of a family of continuous functions

gθ(t, x, u) :=

(
−θ

2

)
[r(t, x) + b(t, x) u] +

1

2

(
−θ

2

)(
−θ

2
− 1

)
[u∗ a(t, x) u]

+

m2∑
j=1

∫
R

(
(1 + [u∗η(z)]j)

(− θ2) − 1
)
νj(dzj).

It is important to note that the linear first order equation (3.2) is nonlocal due to
the presence of the term ψ(t, Rl

jx,R
l
0y) in the equation. It implies that Dt,yψ(t, x, y)

depends on the value of ψ at the point (t, ·, Rl
0y), which does not lie in the neigh-

bourhood of (t, ·, y). We now define a classical solution to (3.2)-(3.3) below.

Definition 3.2. We say ϕ : D → R is a classical solution to (3.2)-(3.3) if ϕ ∈
dom(Dt,y) and for all (t, x, y) ∈ D , ϕ satisfies (3.2)-(3.3).

Remark 3.3. It is interesting to note that other than the terminal condition (3.3),
no additional boundary conditions are imposed. The remaining part of the boundary
is D̄ ∩ {(t, x, y)|yl = 0, x ∈ X n+1, t ∈ [0, T ]}. We note from (2.2) that, 0 ≤ Y l

t , for
all t ∈ [0, T ]. Hence {Yt}t≥0 does not cross the boundary. Thus the value of solution
on the boundary is obtained from the terminal condition (3.3).

Theorem 3.4. The Cauchy problem (3.2)-(3.3) has a unique classical solution in
Cb(D̄).

Remark 3.5. Note that Theorem 3.1 may be treated as a corollary of Theorem 3.4
in view of the substitution (3.1) and subsequent analysis. Thus it suffices to establish
Theorem 3.4. We establish Theorem 3.4 in the subsection 3.2 via a study of an
integral equation which is presented in subsection 3.1. The following result would be
useful to establish well-posedness of (3.2)-(3.3).

Proposition 3.6. Consider the map hθ : [0, T ] × X n+1 → R, given by, (3.4). Then
under (A3), we have

(i) hθ is continuous, negative valued and bounded below;

(ii) Hθ(t1, t2, x) :=
∫ t2
t1
hθ(s, x)ds is C1 in both t1 and t2 for each x;

(iii) For every (t, x), there exists a unique u?(t, x) ∈ A1 such that hθ(t, x) =
gθ(t, x, u

?(t, x)) and u? : [0, T ]×X n+1 → A1 is continuous in t;
(iv) ū? := {u?(t,Xt)}t≥0 is admissible.

Proof. (i) We recall that, A1, the range of portfolio includes the origin. Therefore

hθ(t, x) ≤ gθ(t, x, 0) = −θ
2
r(t, x) < 0.

Thus hθ is negative valued. By the continuity assumptions on r, b and a, for fixed u
and each x ∈ X n+1, r(t, x), b(t, x), and a(t, x) are bounded on [0, T ]. Let M ≥ 0 be
such that

max
t∈[0,T ]

{|r(t, x)|, ‖b(t, x)‖, ‖a(t, x)‖} ≤M.
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We also observe that for each u ∈ A1,∑
j

∫
R

((1 + [u∗η(z)]j)
− θ

2 − 1) νj(dzj) ≥ −
∑
j

∫
R

νj(dzj)

= −
∑
j

νj(R) > −∞,

using the finiteness of the measure νj. Also, (A3) gives u∗a(t, x)u ≥ δ1‖u‖2. Hence
by using the above mentioned bounds, we can write, gθ(t, x, u) ≥ ḡθ(u), where

ḡθ(u) =

(
−θ

2
(M +M‖u‖) +

θ

4
(1 +

θ

2
)δ1‖u‖2 −

∑
j

νj(R)

)
.

Since ḡθ(u) is independent of t and ↑ ∞ as ‖u‖ ↑ ∞, hθ(t, x) is bounded below. Now
we will show that for fixed t and x, gθ(t, x, u) is a strictly convex function of variable
u ∈ A1. For fixed t and x, let H denote the Hessian matrix for gθ. Then (p, q)-th
element of H,

Hpq =
∂2gθ
∂up∂uq

=
1

2

θ

2

(
θ

2
+ 1

)
apq(t, x) +

∑
j

∫
R

θ

2

(
θ

2
+ 1

)
ηpj(zj)ηqj(zj) (1 + [u∗η(z)]j)

− θ
2
−2 νj(dzj).

Since u is in A1, (1 + [u∗η(z)]j is bounded below by a positive δ. Hence, in addition
to that using (A3), there exists m > 0 such that H − mI is a positive definite
matrix and this proves the strict convexity of gθ(t, x, u) on variable u. Therefore
A2 := A1

⋂
ḡ−1
θ ((−∞, 1]) is a non-empty convex compact set. Hence, (t, x) � A2 is

a compact-valued correspondence. Since hθ is negative, from (3.4), we can write

hθ(t, x) = inf{gθ(t, x, u)|u ∈ A2}.
We also note that (t, x, u) 7→ gθ(t, x, u) is jointly continuous. Since (t, x) � A2 is
continuous, then it follows from the Maximum Theorem ([18],Th. 9.14) that hθ(t, x)
is continuous with respect to (t, x). Hence (i) is proved.

(ii) Follows from the continuity of hθ(t, x).
(iii) The set of minimizers is defined by

u?(t, x) = argmin{gθ(t, x, u)|u ∈ A2}.
Again by using ([18],Th. 9.14), (t, x) � u?(t, x) is upper semi-continuous. Since
gθ(t, x, u) is strictly convex in u, for each t ∈ [0, T ] and x ∈ X n+1 there exist only one
element in u?(t, x). By abuse of notation, we denote that element by u?(t, x) itself.
Since a single-valued upper semi-continuous correspondence is continuous, u?(t, x) is
a continuous function.

(iv) Since u? is continuous in t, there exists a positive constant M such that
‖u?(t, x)‖ < M for all t ∈ [0, T ], x ∈ X n+1. Thus ū? is bounded. Since ū? does not
depend on v, the Lipschitz conditions of Theorem 1.19 of [17] are satisfied. Again
since ū? is bounded, all growth conditions are also satisfied. Therefore Definition
2.4(ii) is satisfied and this completes the proof. �
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3.1. Volterra Integral equation. In order to study (3.2)-(3.3) we consider the
following integral equation with the previous notations and for all (t, x, y) ∈ D̄

ψ(t, x, y) =
n∑
l=0

Pt,x,y(`(t) = l)
[
(1− Fτ l|l(T − t|x, y))eHθ(t,T,x) +

∫ T−t

0

eHθ(t,t+r,x)×∑
j 6=xl

plxlj(y
l + r)ψ(t+ r, Rl

jx,R
l
0(y + r1))fτ l|l(r|x, y)dr

]
. (3.5)

Equation (3.5) is a Volterra integral equation of second kind. We note that the
boundary of D̄ has many facets. For t = T , we directly obtain from (3.5), ψ(T, x, y) =
1. Hence no additional terminal conditions are required. Although the values of ψ
in facets D̄ ∩ {(t, x, y)|yl = 0, x ∈ X n+1, t ∈ [0, T ]} are not directly followed but can
be obtained by solving the integral equation on the facets.

Proposition 3.7. (i) The integral equation (3.5) has a unique solution in Cb(D̄),
and (ii) the solution is in the dom(Dt,y).

Proof. (i) We first observe that the solution to the integral equation (3.5) is a fixed
point of the operator A, where

Aψ(t, x, y) :=
n∑
l=0

Pt,x,y(`(t) = l)
[
(1− Fτ l|l(T − t|x, y))eHθ(t,T,x)

+

∫ T−t

0

eHθ(t,t+r,x)
∑
j 6=xl

plxlj(y
l + r)ψ(t+ r, Rl

jx,R
l
0(y + r1))fτ l|l(r|x, y)

]
dr.

It is easy to check that for each ψ ∈ Cb(D̄), Aψ : D̄ → (0,∞) is bounded continuous.
Now

‖Aψ − Aψ̃‖
= sup

D̄

|Aψ − Aψ̃|

= sup
D̄

∣∣∣ n∑
l=0

Pt,x,y(`(t) = l)[

∫ T−t

0

eHθ(t,t+r,x)
∑
j 6=xl

plxlj(y
l + r)×

[ψ(t+ r, Rl
jx,R

l
0(y + r1))− ψ̃(t+ r, Rl

jx,R
l
0(y + r1))]fτ l|l(r|x, y)dr]

∣∣∣
≤

n∑
l=0

Pt,x,y(`(t) = l)

∫ T−t

0

eHθ(t,t+r,x)
∑
j 6=xl

plxlj(y
l + r)fτ l|l(r|x, y)dr‖ψ − ψ̃‖

< K1‖ψ − ψ̃‖,

where K1 :=
n∑
l=0

Pt,x,y(`(t) = l)

∫ T−t

0

fτ l|l(r|x, y)dr, since the row sum of conditional

probability matrix is 1 and hθ < 0 by Proposition 3.6(i). Since F l(ȳ) is strictly less
than 1, (2.7) implies that Fτ l|l(r|x, y) < 1, for all r ≥ 0. Hence K1 < 1. Therefore,
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A is a contraction. Thus a direct application of Banach fixed point theorem ensures
the existence and uniqueness of the solution to (3.5).
(ii) We denote the unique solution by ψ. Next we show that ψ ∈ dom(Dt,y). To this
end, it is sufficient to show that A : Cb(D)→ dom(Dt,y). The first term of Aψ is in
dom(Dt,y), which follows from Lemma 2.6 (iv) and Proposition 3.6 (ii). Now to show
that the remaining term

βl(t, x, y) :=

∫ T−t

0

eHθ(t,t+r,x)
∑
j 6=xl

plxlj(y
l + r)ψ(t+ r, Rl

jx,R
l
0(y + r1))fτ l|l(r|x, y)]dr,

is also in the dom(Dt,y) for any ψ ∈ C(D), we need to check if the following limit

lim
ε→0

1

ε

[ ∫ T−t−ε

0

eHθ(t+ε,t+r+ε,x)
∑
j 6=xl

plxlj(y
l + r + ε)ψ(t+ r + ε, Rl

jx,R
l
0(y + (r + ε)1))

× fτ l|l(r|x, y + ε))dr −
∫ T−t

0

eHθ(t,t+r,x)
∑
j 6=xl

plxlj(y
l + r)ψ(t+ r, Rl

jx,R
l
0(y + r1))

× fτ l|l(r|x, y)dr
]
,

exists and, the limit is continuous in D . If the limit exists, the limiting value is clearly
Dt,yβl(t, x, y). By a suitable substitution of variables in the integral, the expression
in the above limit can be rewritten, using (2.8), as

1

ε

[ ∫ T−t

ε

eHθ(t+ε,t+r,x)
∑
j 6=xl

plxlj(y
l + r)ψ(t+ r, Rl

jx,R
l
0(y + r1))fτ l|l(r − ε|x, y + ε)dr

−
∫ T−t

0

eHθ(t,t+r,x)
∑
j 6=xl

plxlj(y
l + r)ψ(t+ r, Rl

jx,R
l
0(y + r1))fτ l|l(r|x, y)dr

]
=

∫ T−t

0

eHθ(t,t+r,x)
∑
j 6=xl

plxlj(y
l + r)ψ(t+ r, Rl

jx,R
l
0(y + r1))

×1

ε

(
e−Hθ(t,t+ε,x)fτ l|l(r − ε|x, y + ε)− fτ l|l(r|x, y)

)
dr − 1

ε

∫ ε

0

eHθ(t+ε,t+r,x) ×∑
jxl

plxlj(y
l + r)ψ(t+ r, Rl

jx,R
l
0(y + r1))fτ l|l(r − ε|x, y + ε)dr. (3.6)

By Lemma 2.6 (iv), fτ l|l(T − t|x, y) is in dom(Dt,y). Thus Dt,yfτ l|l(T − t|x, y) is
bounded on [0, T − t] by a positive constant K2. Hence by the mean value theorem
on fτ l|l(T − t|x, y), the integrand of the first integral of (3.6) is uniformly bounded.
Therefore, using the bounded convergence theorem, the integral converges as ε→ 0.
The second integral of (3.6) converges as the integrand is continuous at r = 0. Now
we compute

Dt,yβl(t, x, y)
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=

∫ T−t

0

eHθ(t,t+r,x)
∑
j 6=xl

plxlj(y
l + r)ψ(t+ r, Rl

jx,R
l
0(y + r1))

( d

dw
e−Hθ(t,t+w,x)

∣∣
w=0

fτ l|l(r|x, y) + fτ l|l(r|x, y)×

lim
ε→0

1

ε

[ ∫∞
0

∏
m6=l(1− Fm(s+ ym|xm))f l(s+ yl|xl)ds∫∞

0

∏
m6=l(1− Fm(s+ ym + ε|xm))f l(s+ yl + ε|xl)ds

− 1

])
dr

−
∑
j 6=xl

plxlj(y
l)ψ(t, Rl

jx,R
l
0y)fτ l|l(0|x, y),

using Lemma 2.6 (iii). From (A.9) we know ∂
∂y

∫∞
0

∏
m 6=l(1− Fm(s+ ym|xm))f l(s+

yl|xl)ds = −
∏

m 6=l(1−Fm(ym|xm))f l(yl|xl), therefore Dt,yβl(t, x, y) can be rewritten

using (2.8) as∫ T−t

0

eHθ(t,t+r,x)
∑
j 6=xl

plxlj(y
l + r)ψ(t+ r, Rl

jx,R
l
0(y + r1))(−hθ(t, x) + fτ l|l(0|x, y))×

fτ l|l(r|x, y)dr −
∑
j 6=xl

plxlj(y
l)ψ(t, Rl

jx,R
l
0y)fτ l|l(0|x, y)

=[−hθ(t, x) + fτ l|l(0|x, y)]βl(t, x, y)−
∑
j 6=xl

plxlj(y
l)ψ(t, Rl

jx,R
l
0y)fτ l|l(0|x, y). (3.7)

Clearly, (3.7) is in C(D). Hence βl(t, x, y) is in the dom(Dt,y). Hence the right hand
side of (3.5) is in the dom(Dt,y) for any ψ ∈ Cb(D̄). Thus (ii) holds. �

3.2. The linear first order equation.

Proposition 3.8. The unique solution to (3.5) also solves the terminal value problem
(3.2)-(3.3).

Proof. Let ψ be the solutions of the integral equation (3.5). Then by substituting t =
T in (3.5), (3.3) follows. Using the results from the proof of Lemma 2.6, Proposition
3.7, Lemma 2.6(iv) and (3.7), we have

Dt,yψ(t, x, y) =
n∑
l=0

[ n∑
m=0

fτm(0|xm, ym)Pt,x,y(`(t) = l)− fτ l(0|xl, yl)
]
[1− Fτ l|l(T − t|x, y)]×

eHθ(t,T,x) −
n∑
l=0

Pt,x,y(`(t) = l)
[
fτ l|l(0|x, y)(Fτ l|l(T − t|x, y)− 1)

]
×

eHθ(t,T,x) − hθ(t, x)
n∑
l=0

Pt,x,y(`(t) = l)[1− Fτ l|l(T − t|x, y)]×

eHθ(t,T,x) +
n∑
l=0

[∑
r

fτm(0|xm, ym)Pt,x,y(`(t) = l)− fτ l(0|xl, yl)
]
βl(t, x, y)

+
n∑
l=0

Pt,x,y(`(t) = l)

((
− hθ(t, x) + fτ l|l(0|x, y)

)
βl(t, x, y)
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−
∑
j 6=xl

plxlj(y
l)ψ(t, Rl

jx,R
l
0y)fτ l|l(0|x, y)

)
.

Using (3.5) and the equality in Lemma 2.6(v), the right hand side of above equation
can be rewritten as

n∑
l=0

f l(yl|xl)
1− F l(yl|xl)

[
ψ(t, x, y)−

∑
j 6=xl

plxlj(y
l)ψ(t, Rl

jx,R
l
0y)
]
− hθ(t, x)ψ(t, x, y)

= −
n∑
l=0

∑
j 6=xl

λlxlj(y
l)
[
ψ(t, Rl

jx,R
l
0y)− ψ(t, x, y)

]
− hθ(t, x)ψ(t, x, y).

Hence ψ satisfies (3.2). �

Proposition 3.9. Let ψ be a bounded classical solution to (3.2)-(3.3). Then ψ solves
the integral equation (3.5).

Proof. If the PDE (3.2) has a classical solution ψ, then ψ is also in the domain of A,
where A is the infinitesimal generator of the Markov family {(r,Xr, Yr)}r≥0 starting
from (0, x0, y0) (say). Then we have from (3.2)

Aψ(t, x, y) + hθ(t, x)ψ(t, x, y) = 0. (3.8)

Consider
M̃t := e

∫ t
0 hθ(s,Xs)dsψ(t,Xt, Yt).

Then by Itô’s formula,

dM̃t = hθ(t,Xt)e
∫ t
0 hθ(s,Xs)dsψ(t,Xt, Yt)dt+ e

∫ t
0 hθ(s,Xs)ds(Aψdt+ dM

(1)
t ),

where {M (1)
t }t≥0 is a local martingale with respect to {Ft}t≥0, the usual filtration

generated by {(Xt, Yt)}t≥0. Thus from (3.8) {M̃t}t≥0 is a local martingale. From

definition of M̃t, sup[0,T ] M̃t < ‖ψ‖e‖hθ‖T a.s. Thus {M̃t}t≥0 is a martingale. Therefore
by using (3.3), we obtain

ψ(t,Xt, Yt) = e
∫ t
0 −hθ(s,Xs)dsM̃t = E[e

∫ T
t hθ(s,Xs)ds|Ft] = [e

∫ T
t hθ(s,Xs)ds|Xt, Yt]

using the Markov property of (X, Y ). Thus

ψ(t, x, y) = Et,x,y[e
∫ T
t hθ(s,Xs)ds], ∀(t, x, y) ∈ D̄ . (3.9)

By conditioning on the component of Xt where the transition happens,

ψ(t, x, y) = Et,x,y[Et,x,y[e[
∫ T
t hθ(s,Xs)ds]|`(t)]]

=
n∑
l=0

Pt,x,y(`(t) = l)Et,x,y[e[
∫ T
t hθ(s,Xs)ds]|`(t) = l] (3.10)

where `(t) is described in subsection 2.4 below (A4). Next by conditioning on τ l(t)
we rewrite

Et,x,y[e
∫ T
t hθ(s,Xs)ds|`(t) = l]

= Et,x,y[Et,x,y[e
∫ T
t hθ(s,Xs)ds|`(t) = l, τ l(t)]|`(t) = l]
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= Pt,x,y(τ
l(t) > T − t|`(t) = l)e

∫ T
t hθ(s,x)ds

+

∫ T−t

0

Et,x,y[e
∫ T
t hθ(s,Xs)ds|`(t) = l, τ l(t) = r]fτ l|l(r|x, y)dr.

Since X is constant on [t, t + r) provided `(t) = l, τ l(t) = r, the above expression is
equal to

[1− Fτ l|l(T − t|x, y)]eHθ(t,T,x) +

∫ T−t

0

eHθ(t,t+r,x)

×Et,x,y[Et,x,y[e
∫ T
t+r hθ(s,Xs)ds|X l

t+r, `(t) = l, τ l = r]|`(t) = l, τ l = r]fτ l|l(r|x, y)dr

= [1− Fτ l|l(T − t|x, y)]eHθ(t,T,x)

+

∫ T−t

0

eHθ(t,t+r,x) ×
∑
j 6=xl

plxlj(y
l + r)ψ(t+ r, Rl

jx,R
l
0(y + r1))fτ l|l(r|x, y)dr.

From (3.10) and the above expression, the desired result follows. �

Proof of Theorem 3.4. The result follows from Proposition 3.7, Proposition 3.8, and
Proposition 3.9. �

3.3. Optimal portfolio and verification theorem. Now we are in a position to
derive the expression of optimal portfolio value under risk sensitive criterion. The
optimal value is given by

ϕ̃θ(v, x, y) := sup
u
Ju,Tθ (v, x, y)

= −2

θ
ln(ϕθ(0, x, y, v))

= ln(v)− 2

θ
ln(ψ(0, x, y)), (3.11)

where the function ϕθ is defined in (2.9) and ψ is the unique classical solution to
(3.2) - (3.3) obtained in Theorem 3.4.

Remark 3.10. We note that the study of (3.2)-(3.3) becomes much simpler if the
coefficients r, µ, σ are independent of time t. For time homogeneous case, Proposition
3.6 is immediate. Furthermore, the proof of Theorem 3.4 does not need the results
given in Proposition 3.7, Proposition 3.8, and Proposition 3.9. Indeed Theorem 3.4
can directly be proved by noting the smoothness of terminal condition.

We conclude this section with a proof of the verification theorem for optimal control
problem (2.9). The main result is given in Theorem 3.12.

Proposition 3.11. Let ϕM be as in Theorem 3.1, then

(i) ϕM(t, x, y, v) ≤ J̃ ū,Tθ (t, x, y, v) for every admissible Markov feedback control ū.
(ii) Let ū? be as in Proposition 3.6(iv), then

ϕM(t, x, y, v) = J̃ ū
?,T

θ (t, x, y, v).

Hence ū? is optimal in the class of Markov feedback control.
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Proof. (i) Consider an admissible Markov feedback control ū := {ūt}t≥0, where ūt =
ũ(t,Xt, Yt, Vt) and ϕM , the classical solution to (2.11)-(2.12) as in (3.1). Now by Itô’s
formula

ϕM(s,Xs, Ys, V
ū
s )− ϕM(t,Xt, Yt, V

ū
t )−

∫ s

t

[A ũϕM(r,Xr, Yr, V
ū
r )]dr

=

m1∑
j=1

∫ s

t

∂

∂v
ϕM(r,Xr, Yr, V

ū
r )V ū

r [ũ(r,Xr, Yr, Vr)
∗σ(r,Xr)]jdW

j
r

+

m2∑
j=1

∫ s

t

∫
R

[
ϕM(r,Xr, Yr, V

ū
r−(1 + [ũ(r,Xr−, Yr−, Vr−)∗η(z)]j))− ϕM(r,Xr, Yr, V

ū
r−)

]

Ñj(dr, dzj) +
n∑
l=0

∫ s

t

∫
R

[
ϕM(r, Rl

Xl
r−+hl(Xl

r−,Y
l
r−,z0)(Xr−), Rl

Y lr−−gl(Xl
r−,Y

l
r−,z0)(Yr−), V ū

r−)

− ϕM(r,Xr−, Yr−, V
ū
r−)

]
℘̃l(dr, dz0). (3.12)

We would first show that the right hand side is an {Fs}s≥0 martingale. Since ū
is admissible, using definition 2.4(iii), it is sufficient to show, the following square
integrability condition

E
∫ s

t

[
V ū
r

∂

∂v
ϕM(r,Xr, Yr, V

ū
r )

]2

dr <∞,

to prove that the first term is a martingale. Again since ϕM(t, x, y, v) = v−
θ
2ψ(t, x, y),

v ∂ϕM
∂v

= − θ
2
ϕM = − θ

2
v−

θ
2ψ(t, x, y). Thus using the boundedness of ψ the above would

follow if

E
∫ s

t

[V ū
r ]
−θ
dr <∞ (3.13)

holds. Now we consider the second integral. Rewriting that term, we obtain
m2∑
j=1

∫ s

t

∫
R

(
V ū
r−
)− θ

2 ψ(r,Xr, Yr)
[
(1 + [ũ(r,Xr−, Yr−, Vr−)∗η(z)]j)

− θ
2 − 1

]
Ñj(dr, dzj).

(3.14)

We first observe that (1 + [ũ(r,Xr−, Yr−, Vr−)∗η(z)]j) > δ, and this implies

(1 + [ũ(r,Xr−, Yr−, Vr−)∗η(z)]j)
− θ

2 < δ−
θ
2 .

Thus the integrand of (3.14) is a product of a bounded function and
(
V ū
r−
)− θ

2 . Since

νj, the Lévy measure of Ñj is a finite measure for each j, to show (3.14) is an {Fs}s≥0

martingale, it is enough to verify (3.13). Similarly the third integral can be rewritten
as

n∑
l=0

∫ s

t

∫
R

(
V ū
r−
)− θ

2

[
ψ(r, Rl

Xl
r−+hl(Xl

r−,Y
l
r−,z0)(Xr−), Rl

Y lr−−gl(Xl
r−,Y

l
r−,z0)(Yr−))
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− ψ(r,Xr−, Yr−)

]
℘̃l(dr, dz0). (3.15)

In (3.15) the integrand is a product of a bounded function with compact support and(
V ū
r−
)− θ

2 . Since, the compensator of ℘̃l(dr, dz0) is drdz0, (3.15) is also an {Fs}s≥0

martingale if (3.13) holds. Thus (3.13) is the sufficient condition for the right side of
(3.12) to be a martingale. However (3.13) readily follows from the Proposition 2.5(ii)
and an application of Tonelli’s Theorem.

Taking conditional expectation on both sides of (3.12) given Xt = x, Yt = y, V ū
t = v

and letting s ↑ T , we obtain

E
[
(V ū

T )
θ
2 |Xt = x, Yt = y, V ū

t = v
]
− ϕM(t, x, y, v)

= E
∫ T

t

[
A ũϕM(r,Xr, Yr, V

ū
r )

∣∣∣∣Xt = x, Yt = y, V ū
t = v

]
dr ≥ 0. (3.16)

The above non-negativity follows, since ϕM is the classical solution to (2.11)-(2.12)
and ūr ∈ A1 for all r. Hence (2.9) and (3.16) imply result (i).

(ii) The right hand side of (3.16) becomes zero by considering ũ(t, x, y, v) = u?(t, x)
and this completes the proof of (ii). �
Finally we show in the following theorem that ϕM as in Theorem 3.1 indeed gives
the optimal performance under all admissible controls.

Theorem 3.12. Let ϕM be as in Theorem 3.1 and ϕA := inf{J̃u,Tθ (t, x, y, v) : u =
u(t, ω) admissible control}. Then ϕM(t, x, y, v) = ϕA(t, x, y, v).

Proof. We first note that in the proof of Proposition 3.11(i), we have only used the
properties (ii) and (iii) of Definition 2.4 of the Markov control. Since these two
properties are true for a generic admissible control u, we can get as in Proposition
3.11(i).

ϕM(t, x, y, v) ≤ J̃u,Tθ (t, x, y, v)

for every admissible control u. By taking infimum, we get ϕM ≤ ϕA. The other
side of inequality is rather straight forward. Using Proposition 3.11(ii) and Theorem

3.6(iv), ū? is admissible, and ϕM(t, x, y, v) = J̃ ū
?,T

θ (t, x, y, v). Thus ϕM ≥ ϕA. Hence
the result is proved. �
Now we establish a characterisation of ϕM using the HJB equation in the following
Proposition.

Proposition 3.13. Let ϕ be any classical solutions to (2.11)-(2.12). Let ϕM be
as in Theorem 3.1. Then ϕM(t, x, y, v) ≥ ϕ(t, x, y, v), for all t, x, y, v. Thus the
unique solution ϕM obtained in Theorem 3.1 is maximal among all classical solution
to (2.11)-(2.12).

Proof. Note that in the Proof of Proposition 3.11(i), to show that the right hand
side of (3.12) is a martingale, we have only effectively used the fact that ϕM satisfies
conditions (i),(ii) and (iii) of Definition 2.7. Hence for any ϕ ∈ G and ū? as in
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Proposition 3.6(iv),

ϕ(s,Xs, Ys, V
ū?

s )− ϕ(t,Xt, Yt, V
ū?

t )−
∫ s

t

[A u?ϕ(r,Xr, Yr, V
ū?

r )]dr, (3.17)

is an {Fs}s≥0 martingale. Taking conditional expectation in (3.17), given Xt =
x, Yt = y, V ū?

t = v and letting s ↑ T , we have

E
[
(V ū?

T )−
θ
2 |Xt = x, Yt = y, V ū?

t = v
]
− ϕ(t, x, y, v)

= E
∫ T

t

[
A u?ϕ(r,Xr, Yr, V

u
r )

∣∣∣∣Xt = x, Yt = y, V ū?

t = v

]
dr,

using ϕ(T,XT , YT , V
ū?

T ) =
(
V ū?

T

)− θ
2 . Now using nonnegativity of right side and

Proposition 3.11(ii), we obtain ϕM(t, x, y, v) ≥ ϕ((t, x, y, v). �

4. Numerical Example

We have seen that the optimal portfolio value with risk sensitive criterion is given
by (3.11) and (3.2) - (3.3). For illustration purpose, we are considering a simple
model in which all the parameters for all assets are governed by a single semi-Markov
process. Then hθ(t, x) = hθ(t, x̄) if x̄0 = x0, and we denote that value as h̄θ(t, x

0)
where x0 and y0 are the first components of x, and y respectively. Hence (3.9) implies
ψ(t, x, y) = ψ(t, x̄, ȳ) provided x̄0 = x0 and ȳ0 = y0. In other words ψ(t, x, y) depends
only on (t, x0, y0). In view of this, we may introduce a new function ψ̄(t, x0, y0) to
denote ψ(t, (x0, . . . , xn), (y0, . . . , yn)). Therefore (3.2) gets reduced to

Dt,yψ(t, x, y) +
∑
j 6=x

λ0
xj(y)

[
ψ(t, j, 0)− ψ(t, x, y)

]
+ h̄θ(t, x)ψ(t, x, y) = 0, (4.1)

for every x ∈ X , y ∈ (0, t), t ∈ (0, T ). We further assume that n = 1, i.e., the
portfolio includes a single stock and a money market instrument. We also specify
the state space X = {1, 2, 3}, i.e., the semi-Markov process has three regimes. The
drift coefficient, volatility and instantaneous interest rate at each regime are chosen
as follows:

(µ(i), σ(i), r(i)) =

 (0.3, 0.2, 0.2) : i = 1
(0.6, 0.4, 0.5) : i = 2
(0.8, 0.3, 0.7) : i = 3.

The transition rates for i 6= j are assumed to be given by

λ0
ij(y) = (y − ln(1 + y))pij

where

(pij)ij =

 0 2/3 1/3
1/2 0 1/2
1/3 2/3 0

 .

Hence the holding time of the first component in each regime has the conditional
probability density function f(y | i) = y exp(−y) and the conditional c.d.f f(y | i) =

1− (1 + y)e−y. We also assumed η(z) = z and ν(dz) :=
1[a,b](z)

b−a dz.
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It is shown separately in [6] that the classical solution to (4.1) with ψ̄θ(T, x, y) = 1,
satisfies the following integral equation

ψ̄(t, x, y) =
1− F (T − t+ y | x)

1− F (y | x)
exp

 T∫
t

h̄θ(s, x) ds

+

T−t∫
0

exp

 t+r∫
t

h̄θ(s, x) ds

×
∑
j 6=x

pxj(y + r)ψ̄(t+ r, j, 0)
f(y + r | x)

1− F (y | x)
dr, (4.2)

which also follows from (3.5). Here we compute ψ̄θ(t, x, y) by discretization of above
integral equation using an implicit step-by-step quadrature method as developed in
[6]. We take T = 1, ∆t = 0.002 so m = 0, 1, 2, . . . ,M = b T

∆t
c. The discretization is

given by

ψm(i, y) ≈ ψ̄(T −m∆t, i, y).

Therefore from (4.2) we get

ψm(i, y) =
1− F (m∆t+ y | i)

1− F (y | i)
exp

[
H0
θ (i)−Hm

θ (i)
]

+ ∆t
m∑
l=0

wm(l)

f(y + l∆t | i)
1− F (y | i)

(
exp

[
Hm−l
θ (i)−Hm

θ (i)
] ∑
j∈X ,j 6=i

pijψ
m−l(j, 0)

)
, (4.3)

where wm(l) are weights, chosen as below

wm(l) = 1 for l = 1, 2, . . . ,m− 1, wm(0) = wm(m) =
1

2
,

and

Hm
θ (i) :=

T−m∆t∫
0

h̄θ(s, i) ds,

h̄θ(t, i) = inf
u∈A1

[
−θ

2
[r(t, i) + b(t, i) u] +

1

2

(
−θ

2

)(
−θ

2
− 1

)
u2σ2(t, i)

−1 +
(1 + bu)1− θ

2 − (1 + au)1− θ
2

u(1− θ
2
)(b− a)

]
.

For a given initial portfolio value v, from (3.11) and (4.3) we get

ϕ̃θ(v, i, y) ≈ ln(v)− 2

θ
ln(ψM(i, y)). (4.4)

Thus the numerical approximation of risk sensitive optimal wealth is given by (4.3)-
(4.4).

In Proposition 3.6 we have seen that there exists a unique u ∈ A1 which gives
hθ(t, i) and that we can find by using any convex optimization technique. Here we
have used the interior-point method to find the optimal u.
We use above mentioned numerical scheme to compute the risk sensitive optimal
wealth function given in (4.4). In all 3 figures each line corresponds to a particular
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Figure 1. Finite horizon risk sensitive optimal wealth function

Figure 2. Optimal wealth function vs risk aversion parameter

value of i. To be more precise the cross line corresponds to i = 1, whereas the box and
circle lines are for i = 2 and i = 3. Figure 1 describes the behavior of risk sensitive
optimal wealth for different values of initial portfolio wealth and maturity. The left
side plot in figure 1 shows that the optimal wealth is increasing and concave with the
value of initial investment. This is due to the concavity of our objective function. On
the other hand the right side plot shows linearity of the optimal wealth with respect
to the the maturity of investment. We also note a strict hierarchy of optimal wealth
according to the market parameter values at different regimes. However a detailed
analysis based on series of numerical experiments may reveal some finer sensitivity
results. We refrain to discuss those in this paper. Figure 2 shows the movement in
risk sensitive optimal wealth for different values of risk aversion parameter. The plot
shows the strict diminishing behavior of risk sensitive optimal wealth for increasing
risk aversion parameter value. This observation is consistent to the common sense
“no risk, no gain”.
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5. Conclusion

In this paper a portfolio optimization problem, without any consumption and
transaction cost, where stock prices are modelled by multi dimensional geometric
jump diffusion market model with semi-Markov modulated coefficients is studied.
We find the expression of optimal wealth for expected terminal utility method with
risk sensitive criterion on finite time horizon. We have studied the existence of
classical solution of HJB equation using a probabilistic approach. We have obtained
the implicit expression of optimal portfolio. It is important to note that, the control
is robust in the sense that the optimal control does not depend on the transition
function of the regime. We have also implemented a numerical scheme to see the
behavior of solutions with respect to initial portfolio value, maturity and risk of
aversion parameter. The results of the numerical scheme are in agreement with
the theory of financial market. The corresponding problem in infinite horizon is
needs further investigation. This would require appropriate results on large deviation
principle for semi-Markov processes which need to be carried out.

Appendix A. Proof of Lemmata

Lemma A.1. Let N̄ be a Poisson random measure on [0,∞) × R defined on the
probability space (Ω,F , P ) with intensity dtν̄(dz), where ν̄ is a finite measure. If
η̄ ∈ L1(ν), then there exists a positive constant c such that

E

exp

 t∫
0

∫
R

ln(1 + η̄(z)) N̄(ds, dz)

 = exp (ctν̄(R)) .

Proof. We first note that |N̄t| := N̄([0, t] × R) is finite a.s. as |ν̄| < ∞. Therefore

the integral
∫ t

0

∫
R ln(1 + η̄(z)) N̄(ds, dz) can be written as

∑|N̄t|
i=1 ln(1 + η̄(zi)), where

{(ti, zi) | i = 1, . . . , |N̄t|} are the point masses of N̄ on [0, t]×R. To be more precise,

N̄(A) =
∑|N̄t|

i=1 δ{(ti,zi)}(A) for all A ∈ B([0, t]× R). Therefore

E

exp

 t∫
0

∫
R

ln(1 + η̄(z)) N̄(ds, dz)

 = E

|N̄t|∏
i=1

(1 + η̄(zi))


= E

E
|N̄t|∏
i=1

(1 + η̄(zi))

∣∣∣∣|N̄t|
∣∣∣∣
 . (A.1)

Since (1 + η̄(z1)), . . . , (1 + η̄(z|N̄t|)) are conditionally independent and identically dis-

tributed given |N̄t| = n, the right side is equal to

∞∑
n=1

E[(1 + η̄(z1))]nP (|N̄t| = n).
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Now using E [η̄(z1)] = c < ∞, and P (|N̄t| = n) = e−tν̄(R) (tν̄(R))n

n!
, the above sum is

equal to

∞∑
n=1

(1 + c)ne−tν̄(R) (tν̄(R))n

n!

= e−tν̄(R) exp (tν̄(R)(1 + c))

= exp (ctν̄(R)) .

Hence the proof. �

Proof of Lemma 2.1. First we show the uniqueness by assuming that the SDE (2.3)
admits a solution, {Slt}t≥0, say, the stopping time τ = min{t ∈ [0,∞) | Slt ≤ 0}.
Using Itô Lemma (Theorem 1.16 of [17]) for 0 ≤ s < t ∧ τ we get,

d ln(Sls) =
Sls−
Sls−

[
µl(s,Xs−)ds+

m1∑
j=1

σlj(s,Xs−) dW j
s

]
− 1

2
(Sls−)−2(Sls−)2all(s,Xs−)ds

+

m2∑
j=1

∫
R

[
ln(Sls− + ηlj(zj)S

l
s−)− ln(Sls−)

]
Nj(ds, dzj).

Integrating both sides from 0 to t ∧ τ yields,

ln
(
Slt∧τ

)
− ln sl =

t∧τ∫
0

(
µl(s,Xs−)− 1

2
all(s,Xs−)ds

)
+

m1∑
j=1

t∧τ∫
0

σlj(s,Xs−) dW j
s

+

m2∑
j=1

t∧τ∫
0

∫
R

ln(1 + ηlj(zj))Nj(ds, dzj),

where all the integrals have finite expectations almost surely by using (A2).

Slt∧τ = sl exp

[ t∧τ∫
0

(
µl(s,Xs−)− 1

2
all(s,Xs−)

)
ds+

m1∑
j=1

t∧τ∫
0

σlj(s,Xs−) dW j
s

+

m2∑
j=1

t∧τ∫
0

∫
R

ln(1 + ηlj(zj))Nj(ds, dzj)

]
(A.2)

Thus any solution to (2.3) has the above expression. Under (A2),

τ∫
0

∫
R

ln(1 +

ηlj(zj))Nj(ds, dzj) has finite expectation for any finite stopping time τ .
Let Ω1 := {ω ∈ Ω : τ(ω) < ∞}. Now if possible, assume P (Ω1) > 0. By letting

t → ∞ in the above expression, we obtain that Slτ(ω)− is exponential of a random

variable which is finite for almost every ω ∈ Ω1. Thus Slτ(ω)− > 0. But for almost

every ω ∈ Ω1 S
l
τ(ω) ≤ 0. Hence non-positivity occurred only by jump. In other
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words ηlj(zj) ≤ −1 for some zj. But that is contrary to the assumption on η. Hence
τ =∞ P a.s. Therefore, Slt > 0 P a.s. for all t ∈ (0,∞) and is given by

Slt = Sl0 exp

 m1∑
j=1

t∫
0

σlj(s,Xs−) dW j
s +

m2∑
j=1

t∫
0

∫
R

ln(1 + ηlj(zj)) N̄j(ds, dzj)

+

t∫
0

(
µl(s,Xs−)− 1

2
(σl(s,Xs−)σl(s,Xs−)∗)

+

m2∑
j=1

∫
|zj |<1

(ln(1 + ηlj(zj))− ηlj(zj)) νj(dzj)

)
ds

 . (A.3)

Thus by equation (A.3), Sl = {Slt}t≥0 is an adapted and rcll process and is uniquely
determined with the initial condition Sl0 = s0. Hence the solution is unique.
It is easy to show by a direct calculation that the process Sl, given by (A.3) indeed
solves the SDE (2.3). �

Proof of Lemma 2.6. (i) One can compute the conditional c.d.f Fτ l(·|i, ȳ) in the fol-
lowing way

Fτ l(s|i, ȳ) = P (0 ≤ τ l(t) ≤ s|X l
t = i, Y l

t = ȳ)

= P (τ l(t) + Y l
t ≤ s+ ȳ|X l

t = i, Y l
t = ȳ)

= P (Y l
T l
nl(t)+1

− ≤ s+ ȳ|Y l
T l
nl(t)
− ≥ ȳ, X l

t = i, Y l
t = ȳ)

=
F l(s+ ȳ|i)− F l(ȳ|i)

1− F l(ȳ|i)
l = 0, 1, . . . , n. (A.4)

We also denote the derivative of Fτ l(s|i, ȳ) by fτ l(s|i, ȳ), given by

fτ l(·|i, ȳ) =
f l(·+ ȳ|i)
1− F l(ȳ|i)

. (A.5)

From the definition of Fτ l|l(v|x, y) we have,

Fτ l|l(v|x, y) = Pt,x,y(τ
l(t) ≤ v|`(t) = l)

=
Pt,x,y(τ

l(t) ≤ v, `(t) = l)

Pt,x,y(`(t) = l)
. (A.6)

We also introduce a new variable τ−l(t) := minm6=l τ
m(t). We denote the conditional

c.d.f of τ−l(t) given Xt = x and Yt = y as Fτ−l(·|x, y) which is equal to 1−
∏

m 6=l(1−
Fτm(·|xm, ym)).

It is easy to see that Pt,x,y(τ
l(t) ≤ v, `(t) = l) = Pt,x,y(τ

−l(t) > τ l(t), τ l(t) ≤ v).
To compute this probability we use a conditioning on τ l(t). Thus

Pt,x,y(τ
l(t) ≤ v, `(t) = l) = Et,x,y[Pt,x,y(τ−l(t) > τ l(t), τ l(t) ≤ v|τ l(t))]
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=

v∫
0

Pt,x,y(τ
−l(t) > τ l(t)|τ l(t) = s)fτ l(s|xl, yl)ds

=

v∫
0

(1− Pt,x,y(τ−l(t) ≤ s))fτ l(s|xl, yl)ds

=

v∫
0

∏
m6=l

(1− Fτm(s|xm, ym))fτ l(s|xl, yl)ds. (A.7)

Again, Pt,x,y(`(t) = l) = Pt,x,y(τ
l(t) ≤ ∞, `(t) = l) and from (A.4), (A.5) we have (i).

(ii) From (A.6), one gets (2.7). Since λl is C1 in s,
∏

m 6=l(1− Fm(s+ ym|xm))f l(s+

yl|xl) is C1 in s ∈ [0, T ]. Thus by fundamental theorem of calculus, Fτ l|l(v|x, y) is
twice differentiable wrt v.
(iii) Follows directly from (ii).
(iv) In order to show that Pt,x,y(`(t) = l) and Fτ l|l(T − t|x, y) belong to Dt,y we

introduce a new function zl
v(x, y) :=

∫ v
0

∏
m6=l(1−Fm(s+ym|xm))f l(s+yl|xl)ds and

zl
∞(x, y) := lim

v→∞
zl
v(x, y). Consider another function

zl′

v (x, y) :=
∏
m6=l

(1− Fm(v + ym|xm))f l(v + yl|xl). (A.8)

We note that zl′
v (x, y) is the derivative of zl

v(x, y) with respect to v and it is contin-
uous. Now we show that zl

v(x, y) is C1 in y. To this end we first show the existence
of the following limit

lim
ε→0

1
ε

[ ∫ v
0

∏
m6=l(1− Fm(s+ ym + ε|xm))f l(s+ yl + ε|xl)ds

−
∫ v

0

∏
m 6=l(1− Fm(s+ ym|xm))f l(s+ yl|xl)ds

]
.

By a suitable substitution of variable, the expression in the above limit is

1
ε

[ ∫ v+ε

v

∏
m6=l(1− Fm(s+ ym|xm))f l(s+ yl + ε|xl)ds

−
∫ ε

0

∏
m 6=l(1− Fm(s+ ym|xm))f l(s+ yl|xl)ds

]
.

Using (A.8) the above expression converges to zl′
v (x, y)−zl′

0 (x, y) as ε→ 0 and the
limit is continuous in y. Thus

Dt,yzl
v(x, y) = zl′

v (x, y)−zl′

0 (x, y).

If v is a differentiable function of t, then

Dt,yzl
v(x, y) = zl′

v (x, y)

(
1 +

∂v

∂t

)
−zl′

0 (x, y).

Hence

Dt,yzl
v(x, y) =

{
zl′
v (x, y)

(
1 + ∂v

∂t

)
−zl′

0 (x, y) 0 < v <∞
−zl′

0 (x, y) v =∞.
(A.9)
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Since

Dt,y

∏
m

(1− Fm(v + ym|xm)) = −
∑
r

f r(yr|xr)
∏
m6=r

(1− Fm(ym|xm)

it follows from Lemma 2.6 (i), (ii) and the above notations Pt,x,y(`(t) = l) =
zl∞(x,y)∏

m(1−Fm(ym|xm))
and Fτ l|l(T − t|x, y) =

zlT−t(x,y)

zl∞(x,y)
. Hence Pt,x,y(`(t) = l) and Fτ l|l(T −

t|x, y) are in the dom(Dt,y). Now operating Dt,y on Pt,x,y(`(t) = l) and using (A.5),
(A.8) we have

Dt,yPt,x,y(`(t) = l) =
Dt,yz∞(x, y)∏

m(1− Fm(v + ym|xm))

+

z∞(x, y)×
∑
r

f r(yr|xr)
∏
m6=r

(1− Fm(ym|xm))

(
∏

m(1− Fm(v + ym|xm)))2

= − z′0(x, y)∏
m(1− Fm(v + ym|xm))

+
n∑
r=0

f r(yr|xr)
(1− F r(v + yr|xr))

Pt,x,y(`(t) = l)

=
n∑
r=0

fτr(0|xr, yr)Pt,x,y(`(t) = l)− fτ l(0|xl, yl).

Operating Dt,y on Fτ l|l(T − t|x, y)

Dt,yFτ l|l(T − t|x, y) =
Dt,yzT−t(x, y)

z∞(x, y)
− zT−t(x, y)Dt,yz∞(x, y)

z2
∞(x, y)

= − z′0(x, y)

z∞(x, y)
+

zT−t(x, y)z′0(x, y)

z2
∞(x, y)

= fτ l|l(0|x, y)(Fτ l|l(T − t|x, y)− 1).

This completes the proof of (iv).
(v) Follows from a direct calculation.
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