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Abstract. In this paper we combine concepts from Riemannian Optimization [P.-A. Absil,
R. Mahony, R. Sepulchre, Optimization algorithms on matrix manifolds, Princeton University Press,
2008] and the theory of Sobolev gradients [J. W. Neuberger, Sobolev gradients, Springer 2010] to
derive a new conjugate gradient method for direct minimization of the Gross-Pitaevskii energy func-
tional with rotation. The conservation of the number of particles in the system constrains the
minimizers to lie on a manifold corresponding to the unit L2 norm. The idea developed here is to
transform the original constrained optimization problem to an unconstrained problem on this (spher-
ical) Riemannian manifold, so that fast minimization algorithms can be applied as alternatives to
more standard constrained formulations. First, we obtain Sobolev gradients using an equivalent
definition of an H1 inner product which takes into account rotation. Then, the Riemannian gradient
(RG) steepest descent method is derived based on projected gradients and retraction of an inter-
mediate solution back to the constraint manifold. Finally, we use the concept of the Riemannian
vector transport to propose a Riemannian conjugate gradient (RCG) method for this problem. It is
derived at the continuous level based on the “optimize-then-discretize” paradigm instead of the usual
“discretize-then-optimize” approach, as this ensures robustness of the method when adaptive mesh
refinement is performed in computations. We evaluate various design choices inherent in the formu-
lation of the method and conclude with recommendations concerning selection of the best options.
Numerical tests carried out in the finite-element setting based on Lagrangian piecewise quadratic
space discretization demonstrate that the proposed RCG method outperforms the simple gradient
descent (RG) method in terms of rate of convergence. While on simple problems a Newton-type
method implemented in the Ipopt library exhibits a faster convergence than the (RCG) approach,
the two methods perform similarly on more complex problems requiring the use of mesh adaptation.
At the same time the (RCG) approach has far fewer tunable parameters. Finally, the RCG method is
extensively tested by computing complicated vortex configurations in rotating Bose-Einstein conden-
sates, a task made challenging by large values of the non-linear interaction constant and the rotation
rate as well as by strongly anisotropic trapping potentials.
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1. Introduction. The rotating Bose-Einstein condensate (BEC) represents a
highly-controllable quantum system offering an ideal framework to study quantized
vortices at a macroscopic level. A rich variety of vortex states, from a single vortex line
to dense Abrikosov vortex lattices and giant vortices, were experimentally observed
and extensively studied in the last two decades (e. g. [56]). A standard mathematical
approach to describe equilibrium configurations with quantized vortices in rotating
BEC is the minimization of the Gross-Pitaevskii (GP) energy functional with rotation
[49, 42]. In addition to the global minima, the so-called “ground states”, local minima
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2 I. DANAILA, B. PROTAS

are also of interest as they represent excited, or meta-stable, states which are more
likely to be observed in experiments [20]. The minimizers have the form of complex-
valued wavefunction fields dependent on the space variable, resulting in an infinite-
dimensional minimization problem. The complexity of the minimization problem
is further compounded by a constraint imposed on the L2 norm of the minimizers
which reflects the conservation of the number of atoms in the condensate. For the
mathematical properties of the GP energy with rotation and the corresponding ground
states we refer the reader to [3, 6, 42, 15].

In this paper we address the problem of direct minimization of the GP energy
functional with rotation when large nonlinear interaction constants and high rota-
tion frequencies are considered. A number of approaches to direct minimization of
the GP energy have been proposed based on various standard and emerging math-
ematical methods for optimization problems in finite dimension: Optimal Damping
Algorithm [31, 38], Newton-like method based on Sequential Quadratic Programming
(SQP) [21], Interior Point Method (Ipopt) [57], Inertial Proximal Algorithm (iPiano)
[10] and regularized Newton method with trust region [60]. Alternative approaches
which do not involve direct minimization of energy rely instead on the solution of the
corresponding Euler-Lagrange system which has the form of a nonlinear eigenvalue
problem. In the latter context, a wide variety of classical integration and iterative
techniques have been employed such as Newton’s method [18], Runge-Kutta [22] and
continuation methods [24], etc. We also mention the “deflated” Newton’s method,
recently proposed in [25], which represents a systematic approach to determine several
distinct solution branches.

Another class of approaches, pioneered in [16], relies on a normalized gradient
flow for the GP functional and became popular due to their efficiency and ease of
implementation (see also the review papers [13, 15, 9, 14]). These methods consist
in first solving the gradient flow equation for the minimization of an unconstrained
energy followed by a normalization of this “predictor” solution to bring it back to
the constraint manifold. Solution of the gradient flow equation can be viewed as
a pseudo-time (or imaginary time) integration of the time-independent GP equa-
tion. Discretization of the gradient-flow equations using a (natural) steepest descent
method would result in a very inefficient explicit Euler scheme for the (imaginary-)
time integration. For this reason in [16] the gradient-flow equation was solved using
a semi-implicit backward Euler scheme which proved even more efficient than the
classical Crank-Nicolson scheme. The convergence of the original scheme suggested
in [16] was recently improved in [11, 12] by using different discrete preconditioners.
It is interesting to note that the gradient-flow equation for the GP functional has
structure similar to the complex-valued heat equation which makes it amenable to so-
lution with different classical time-integration schemes such as Runge-Kutta-Fehlberg
[34], backward Euler [16, 6, 17], second-order Strang time-splitting [16, 6], combined
Runge-Kutta-Crank-Nicolson scheme [4, 5, 28], etc.

As regards the development of numerical methods, there are two main paradigms,
namely, “optimize-then-discretize” and “discretize-then-optimize”, depending on whether
the gradient expressions are derived at the continuous or discrete level. In the first
case, the Sobolev gradient approach [45] represents the gradient-flow method formu-
lated with respect to a judiciously selected inner product in a Hilbert space, rather
than the classical L2 inner product. The required gradients are obtained via the Riesz
representation theorem. When discretized, the Sobolev gradient approach can be also
interpreted as suitable preconditioning applied to the L2 gradient [32]. However, the
key advantage of working with the “optimize-then-discretize” formulation is that the
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form of this preconditioning is dictated by the functional (Sobolev) setting of the
problem and thus avoids the technically complicated search for a good (and mesh-
independent) discrete preconditioner. Sobolev gradient methods were successfully
applied to minimize the GP energy in the presence of rotation in [34, 30].

The purpose of this contribution is to develop and validate an efficient computa-
tional approach to minimization of the GP energy by combining the Sobolev gradient
method with concepts of Riemannian optimization [1, 54]. This allows us to trans-
form the original constrained optimization problem to an unconstrained problem on
a Riemannian manifold with a very simple structure which is amenable to solution
using the conjugate gradient approach. We remark that while the “Riemannian struc-
ture” of an optimization problem may be exploited at various levels, in the present
study we will focus solely on the basic concepts of “retraction” and “vector transport”
describing how information travels along a manifold, and will not, in particular, con-
sider endowing the constraint manifold with a Riemannian metric. In other words,
we will assume that the constraint manifold is equipped with the metric induced by
the embedding space. We begin by formulating a Riemannian version of the Sobolev
gradient approach in which the retraction operation ensures that the norm constraint
is satisfied at all discrete times. Then, convergence is accelerated using a Riemannian
version of the conjugate gradient method which relies on the notion of the vector
transport applied to the gradient and the descent direction. Such approaches are
already well established in the context of problems formulated in finite dimensions
[19], but have received only limited attention in the context of problems in infinite
dimension. Convergence of the Riemannian versions of the BFGS quasi-Newton ap-
proach and of the Fletcher-Reeves conjugate gradients method was established in [51],
whereas some applications were considered in [7, 48, 8, 44]. To the best of our knowl-
edge, they represent a new direction as regards minimization of the GP energy. In our
study, we carefully evaluate various design choices inherent in the formulation of the
method and come up with recommendations concerning selection of the best options.
Then, we demonstrate that in combination with a flexible finite-element discretiza-
tion involving adaptive grid refinement [29, 57], the proposed approach outperforms a
number of first-order techniques and performs on a par with a Newton-type method
implemented in the Ipopt library [59].

The structure of the paper is as follows: in the next section we state the mathe-
matical model describing minimization of the GP energy; in §3 we recall the Sobolev
gradient method with its projected gradient variant, whereas the Riemannian gra-
dient and conjugate gradient methods are introduced in §4; numerical discretization
based on adaptive finite elements and its software implementation are discussed in §5;
design choices to be explored in the formulation of the method are identified in §6; in
§7 we use the method of the manufactured solutions to estimate the speeds of con-
vergence of the different approaches; in §8 we compute a number of challenging BEC
configurations with vortices in various arrangements; discussions and conclusions are
deferred to §9.

2. Mathematical Model. The energy of a rotating homogeneous BEC at zero
temperature is given in terms of the Gross-Pitaevskii (GP) energy functional [49, 42].
After applying standard scaling and dimension reduction [49, 15], its non-dimensional
form defined here on a two-dimensional domain D ⊂ R2 becomes

(1) E(u) =

∫
D

[
1

2
|∇u|2 + Ctrap |u|2 +

1

2
Cg|u|4 − iCΩ u

∗At ·∇u

]
dx,
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where u : D → C is a complex-valued wavefunction and u∗ its complex conju-
gate, At = (y,−x), Ctrap : D → R is the trapping potential. Cg and CΩ are real
constants characterizing the strength of the nonlinear interactions and rotation fre-
quency, respectively. The wavefunction u vanishes outside the trap and is therefore
assumed to satisfy the homogeneous Dirichlet boundary conditions u = 0 on ∂D. The
conservation of the number of atoms in the condensate is expressed as

(2) ‖u‖2 := ‖u‖L2(D,C) =

√∫
D

|u(x)|2 dx = 1

and serves as a constraint on u. For the energy functional (1) to be well-defined, the
wavefunction u must belong to the Sobolev space H1

0 (D,C) of functions with square-
integrable gradients [2] and vanishing traces on the boundary (precise definitions of
the norms in this function space will be provided in §3 below). The constraint (2)
may now be interpreted as defining a manifold M in the solution space, i. e.

(3) M :=
{
u ∈ H1

0 (D,C) : ‖u‖2 = 1
}
.

We assume the trapping potential to have the following general form allowing us to
represent different trapping potentials used in experiments

(4) Ctrap(x, y) =
1

2

(
axx

2 + ayy
2 + a4r

4
)
, r2 = (x2 + y2),

for some ax, ay, a4 ∈ R. Along with the energy (1), another important integral quan-
tity describing the rotating BEC is the total angular momentum

(5) L := Lz = i

∫
D

u∗At ·∇u dx

which under the assumed homogeneous Dirichlet boundary conditions is real-valued.
Global minimizers of the energy functional (1) defined through

(6) ug = arg min
u∈M

E(u), E(ug) <∞,

are called ground states. Local minimizers, with energy larger than that of the ground
state, are referred to as excited or meta-stable states. The Euler-Lagrange system
corresponding to the minimization problem (6) is derived using standard techniques
and leads to the stationary Gross-Pitaevskii equation

−1

2
∇2u+ Ctrapu+ Cg|u|2u− iCΩAt ·∇u = µu in D,(7a)

u = 0 on ∂D,(7b)

‖u‖2 = 1.(7c)

The ground state and excited states are therefore eigenfunctions of the nonlinear
eigenvalue problem (7).

3. Gradient Flows and Steepest Descent Sobolev Gradient Methods.
Numerical techniques for the solution of optimization problem (6) can be derived
from a form of the gradient-flow equation which for practical reasons we state here
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in terms of the gradient of the energy functional (1) rather than the gradient of the
corresponding Lagrangian functional

(8)

du

dt
= −∇XE(u), t > 0,

u(0) = u0,

where u0 ∈ M is an initial guess and ∇XE(u) represents the gradient of the GP
energy functional (1) at u, computed with respect to the topology of the Hilbert
space X (to be made specific below). The gradient flow needs to be additionally
constrained to ensure that u(t) ∈ M for t > 0. This approach is similar to the so-
called normalized gradient-flow method [16], which first evolves (8) and then projects
the intermediate solution back onto the manifold. It can be viewed as a splitting
method for solving the continuous normalized gradient-flow equation [16] which is the
constrained version of problem (8) in which the gradient ∇XE(u) is replaced with the
gradient of the corresponding Lagrangian.

As shown below, many different computational approaches can be derived from
(8) by making specific choices of (i) the Hilbert space X, (ii) discretization of the
initial-value problem (8) with respect to pseudo-time t and (iii) how the constraint
u(t) ∈M is imposed.

As regards the expression of the gradient ∇XE(u), it can be derived from the
Gâteaux differential of energy (1) using the Riesz representation theorem [43] which
depends on the choice of the inner-product space X. Since energy (1) is a twice
continuously differentiable function from H1

0 (D,C) to R, a natural choice for the
inner product that will ensure the existence of a gradient is

(9) 〈u, v〉H1 =

∫
D

(u, v) + (∇u,∇v) dx,

where (u, v) = uv∗ is the complex (C or C2) inner product. A new inner product
equivalent (in the precise sense of norm equivalence) to (9) was suggested in [30]

(10) 〈u, v〉HA
=

∫
D

(u, v) + (∇Au,∇Av) dx, ∇A = ∇ + iCΩA,

and will be adopted in our considerations below. Its definition was motivated by the
following physically more revealing form of the energy functional equivalent to (1)

(11) E(u) =

∫
D

[
1

2
|∇u+ iCΩ Au|2 + Ceff

trap |u|2 +
1

2
Cg|u|4

]
dx,

where the effective non-dimensional trapping potential Ceff
trap is obtained from the

original potential by subtracting a term representing the centrifugal force [55]

(12) Ceff
trap(x, y) = Ctrap(x, y)− 1

2
C2

Ω r
2.

We add that, since the solution space H1
0 (D,C) is a subspace of both H1(D,C) and

HA(D,C), we will assume H1
0 (D,C) to be equipped with the inner product (9) or

(10), and the notation X = H1 or X = HA will make it clear which one is used.
For each u ∈ X, one can find an element of X denoted ∇XE(u), such that

the directional Gâteaux derivative of the energy at u in the direction v, which is a
continuous linear functional from X to R, is expressed as

(13) E′(u)v = < (〈∇XE(u), v〉X) , ∀v ∈ X,
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where <(·) denotes the real part of a complex number. We refer to such an element
of X as the gradient of E at u. Computing the Gâteaux derivative of the energy
functional (1), we obtain

(14) E′(u)v = 2<
(∫

D

[
1

2
(∇u,∇v) +

(
Ctrapu+ Cg|u|2u− iCΩAt ·∇u, v

)]
dx

)
which, together with (13), allows us to identify the gradient ∇XE(u). In particular,
the HA gradient, hereafter denoted G = ∇HA

E(u), will be computed by solving the
elliptic boundary-value problem resulting from (14), (13) and (10), which we state
here in the equivalent weak form

(15)

∀v ∈ H1
0 (D,R),

∫
D

[(
1 + C2

Ω(x2 + y2)
)

(G, v) + (∇G,∇v)− 2iCΩ(At ·∇G, v)
]
dx

= 2

∫
D

[
1

2
(∇u,∇v) +

(
Ctrapu+ Cg|u|2u− iCΩAt ·∇u, v

)]
dx.

3.1. Normalized gradient flow. We note from (13) and (14) that, in order for
E′(u) to be bounded in the L2(D,C) norm, stronger regularity assumptions must be
imposed on the solution u, namely u ∈ H2(D,C). In this case, from (14) we obtain
that

(16) E′(u)v = 2<
(∫

D

(
−1

2
∇2u+ Ctrapu+ Cg|u|2u− iCΩAt ·∇u, v

)
dx

)
,

which allows us to formally derive a ”L2-gradient” corresponding to the L2 inner
product

(17) 〈u, v〉L2 =

∫
D

(u, v) dx.

We add that this is the expression appearing on the left-hand side of the Euler-
Lagrange equation (7a). The gradient flow equation (8) with this L2-gradient was
discretized in [16] using a semi-implicit backward Euler (BE) method

(18)
ũ− un
δt

=
1

2
∇2ũ− Ctrapũ− Cg|un|2ũ+ iCΩAt ·∇ũ,

where un = u(tn) denotes the approximation obtained at the nth discrete time level,
ũ = ũ(tn+1) is an intermediate (predictor) field and δt is a fixed (pseudo-)time step.
The approximation un+1 at the time level tn+1 has to satisfy the unit-norm constraint
(2) and is therefore obtained by normalizing the predictor solution as

(19) un+1 =
ũ(tn+1)

‖ũ(tn+1)‖2
.

This approach is referred to as the normalized gradient flow method (see also [13, 15,
9, 14]). Different existing variants of this method use various numerical approaches
to integrate the gradient-flow equation (8), e. g. Runge-Kutta methods [34, 4, 5, 28],
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different implicit schemes [16, 6, 17] and Strang-type time-splitting approaches [16, 6].
Even though some of these schemes do possess the energy-decreasing property, they
typically do not preserve the gradient-flow structure at the discrete level, in the sense
that the expression on the right-hand side (RHS) of the gradient-flow equation (8)
discretized with respect to the pseudo-time t is no longer in the form of a gradient of
E(u) (this is because, as a result of the hybrid explicit/implicit treatment, different
terms in this expression may depend on the state u approximated at different time
levels, as happens in (18)). Therefore, such imaginary-time methods can be regarded
as solving the nonlinear eigenvalue problem (7), rather than directly minimizing the
GP energy. Another potential drawback of such approaches is that solutions of (7)
are in general critical points of the energy which are not necessarily minima.

3.2. Steepest Descent Sobolev Gradient Methods. Hereafter we focus on
techniques which do preserve the gradient-flow structure of (8) on the discrete level
while explicitly accounting for the presence of the unit-norm constraint (2). As a
starting point, we will thus consider an explicit discretization of (8) in the following
generic form

(20) un+1 = un − τnGn, n = 0, 1, . . . ,

where τn is a suitable descent step size, whereas Gn = G(un) = ∇XE(un) is a
Sobolev gradient defined for X = HA or H1. Below we discuss two ways in which the
information about the constraint u ∈M can be incorporated in the gradient method.

3.2.1. Projected Sobolev Gradient Method. By considering the following
identity derived from (20)

(21) ‖un+1‖22 = ‖un − τnGn‖22 = ‖un‖22 − 2τn<〈un, Gn〉L2 + τ2
n‖Gn‖22,

we note that using an unconstrained gradient Gn leads to an O(τn) error in the
satisfaction of the constraint (2) at each iteration. Normalization of the solution is
then necessary to bring it back onto the manifold M (see Figure 1a).

b

b

b

u
n−1 un+1 =

un−τnGn
‖un−τnGn‖2

un

−τ n
G n

(a)

b

b

b

u
n−1

un

−G
n

−τnPun,HA
Gn

(b)

=Run(−τnPun,HAGn)

un+1 =
un−τnPun,HA

Gn

‖un−τnPun,HA
Gn‖2

Fig. 1. Schematic illustration of the principle of the steepest descent method on the spherical
manifold M for (a) the simple (“unprojected”) gradient method and (b) the projected gradient (PG)
and the Riemannian gradient (RG) methods. In case (b), since the projected gradient Pun,HA

Gn

belongs to the subspace TunM tangent to the manifold at un, normalization is equivalent to Rie-
mannian retraction (27).

This error can be reduced to second order O(τ2
n) by requiring that 〈un, Gn〉L2 = 0,

which is achieved by projecting the gradient Gn onto the subspace

(22) Tun
M =

{
v ∈ H1

0 (D,C) : 〈un, v〉L2 = 0
}
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tangent to the constraint manifold M at un. As was shown in [30, 41], the associated
projection operator Pun,X can be expressed in the following general form

(23) Pun,XGn = Gn − λ vX , λ =
<〈un, Gn〉L2

<〈un, vX〉L2

,

where vX is a solution of the variational problem

(24) 〈vX , v〉X = 〈un, v〉L2 , ∀v ∈ X.

We note that if X = L2, vX = u in (24) and we recover the well-known explicit
expression of the projected L2-gradient (e. g. [7]).

Hereafter we will set X = HA and denote Gn = ∇HA
E(un). Replacing Gn with

Pun,HA
Gn in (20), we obtain the projected gradient (PG) method suggested in [30]

(25) (PG) un+1 = un − τn Pun,HA
Gn, n = 0, 1, . . . ,

While in [30] a fixed step size τn = τ > 0 was used, here we use an optimal step size
found through the solution of a line-minimization problem

(26) τn = argmin
τ>0

E (un − τ Pun,HA
Gn) .

An explicit expression for the optimal descent step was derived in [57] based on a
particular form of the GP energy. In this study, we prefer to solve problem (26) with
a general line-minimization approach such as Brent’s algorithm [50, 46] as it has the
advantage of being easily adapted to the Riemannian gradient methods presented in
the next section. To mitigate the O(τ2

n) drift away from the constraint manifold M

allowed by the (PG) iterations, normalization analogous to (19) may be applied to
the iterates un after a certain number of steps. The idea of the (PG) approach is
illustrated schematically in Figure 1b.

4. Riemannian Optimization. In this section we discuss some basic concepts
relevant to optimization on manifolds, known as Riemannian optimization [1, 54]. In
contrast to the perspective developed in the previous section, here we pursue a dif-
ferent, “intrinsic” approach where optimization is performed directly on the manifold
M. The main advantage of such a formulation is that it allows one to treat (6) as
an unconstrained optimization problem creating an opportunity to apply a suitable
modification of the conjugate gradient method as an alternative to more traditional
constrained approaches such as, e. g. Sequential Quadratic Programming (SQP) for
nonlinear optimization.

In addition to the definition of the projection on the tangent space TuM already
introduced above, cf. (23)–(24), we need to introduce two more concepts, namely, the
“retraction” (also referred to as “exponential mapping”) and the associated “vector
transport”. While in general these operators can have a rather complicated form, in
the present problem where the constraint manifold M is given by (3), they can be
reduced to fairly simple expressions. We refer the reader to the monograph [1] for
additional details concerning the differential–geometry foundations of this approach.

4.1. Riemannian Gradient Method. Given a tangent vector ξ ∈ TuM, where
u ∈ M is a state on the manifold, the retraction Ru : TuM → M is defined as the
operator

(27) Ru(ξ) =
u+ ξ

‖u+ ξ‖2
,
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where the norm used in the denominator is the same as the norm defining the con-
straint manifold in (3). We note that for the spherical manifold M the retraction
operator is equivalent to normalization (19) already used in the previous sections.

The Riemannian gradient (RG) method is then obtained applying relation (27)
to the projected gradient Pun,HA

Gn, cf. (23)–(24), used in the (PG) approach which
yields

(28) (RG) un+1 = Run (−τnPun,HA
Gn) , n = 0, 1, . . . .

The step size τn is found optimally by solving a generalization of the line-minimization
problem (26) which uses retraction (27) to constrain the samples to manifold M, i. e.

(29) τn = argmin
τ>0

E (Run
(−τPun,HA

Gn)) .

We refer to problem (29) as “arc-minimization”. It is solved using a straightforward
modification of Brent’s algorithm [50, 46]. In addition to application of retraction
(27) at every iteration in the latter case, the key difference between the (PG) and
(RG) approaches lies in how the optimal step size τn is determined, cf. (26) vs. (29).
The idea of the (RG) method is illustrated schematically in Figure 1b.

4.2. Riemannian Conjugate Gradient Method. As a point of reference,
we begin by recalling the nonlinear conjugate gradients method in the Euclidean
case. Given a function f : RN → R, this approach finds its local minimum u as
u = limn→∞ un, with the iterates un defined as follows [46]

(30) un+1 = un + τn dn, n = 0, 1, . . . ,

where u0 is the initial guess and the descent direction dn is constructed as

(31)
d0 = −g0,

dn = −gn + βn dn−1, n = 1, 2, . . .

in which gn = ∇f(un) and βn is a “momentum” term chosen to enforce the con-
jugacy of the search directions dk, k = 1, . . . , n. When the objective function is
convex-quadratic, i. e. f(u) = uTAu for some positive-definite matrix A ∈ RN×N ,
approach (30)–(31) reduces to the “linear” conjugate gradient method in which τn and
βn are given in terms of simple expressions involving A [46]. In the non-quadratic
setting, which is the case of problem (6), the step size τn needs to be found via line
minimization as described by (29), whereas the momentum term is typically computed
using one of the following expressions

βn = βFRn :=
〈gn,gn〉Y

〈gn−1,gn−1〉Y
(Fletcher-Reeves),(32a)

βn = βPRn :=
〈gn, (gn − gn−1)〉Y
〈gn−1,gn−1〉Y

(Polak-Ribière),(32b)

where 〈·, ·〉Y is the inner product defined with respect to the metric Y (in the sim-
plest case when u ∈ RN , 〈a,b〉Y = aTb for a,b ∈ RN ). The coefficient βn may
be periodically reset to zero which is known to improve convergence for convex, non-
quadratic problems [46]. It is well known that for optimization problems which are
locally quadratic the conjugate gradient approach exhibits faster (though still linear)
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convergence than the convergence characterizing the simple gradient method, espe-
cially for poorly scaled problems [46]. Similar observations have been also reported
for Riemannian optimization problems [1, 54].

We explain below how the conjugate gradients approach can be adapted to the
Riemannian case involving the energy functional (1) defined for infinite-dimensional
state variables u ∈ H1

0 (D). There are two key issues which must be addressed:
1. the two terms on the RHS of formula (31) belong to two different linear

spaces which are the tangent spaces constructed at two consecutive iterations,
i. e. gn ∈ Tun

M and dn−1 ∈ Tun−1
M; as a result, they cannot be simply

added; the same problem also concerns the inner-product expressions in the
numerator of the Polak-Ribière momentum term (32b),

2. while in the finite dimensions all norms are equivalent, this is no longer the
case in the infinite-dimensional setting where the choice of the metric does
play a significant role; in our approach, although the gradient-descent equa-
tions are discretized in space for the purpose of the numerical solution, their
specific form is derived in the infinite-dimensional setting (in other words,
we follow the “optimize-then-discretize” paradigm [35]); in addition to the
momentum term (32), the choice of the metric implied by the inner product
also plays a role in the construction of the projection (23)–(24) and the vector
transport which will be defined below.

The key concept required in order to address the first issue is the vector transport

(33) TM ⊕TM → TM : (η, ξ) 7−→ Tη(ξ) ∈ TM,

where TM = ∪x∈MTxM is the tangent bundle, describing how the vector field ξ
is transported along the manifold M by the field η [1]. It therefore generalizes the
concept of the parallel translation to the motion on the manifold and is also closely
related to the “affine connection” which is one of the key differential-geometric quan-
tities characterizing a manifold. The vector transport thus provides a map between
the tangent spaces Tun−1

M and Tun
M obtained at two consecutive iterations, so that

algebraic operations can be performed on vectors belonging to these subspaces.
In general, vector transport is not defined uniquely and in the present case when

the manifold is a sphere, the following two definitions lead to expressions particularly
simple from the computational point of view. Let u ∈ M and ηu, ξu ∈ TuM; the
transport of ξu by ηu can be expressed either by

• vector transport via differentiated retraction
(34)

Tηu(ξu) =
d

dt
Ru(ηu + tξu)

∣∣
t=0

=
1

‖u+ ηu‖

[
ξu −

〈u+ ηu, ξu〉
‖u+ ηu‖2

(u+ ηu)

]
,

• or by vector transport using Riemannian submanifold structure

(35) Tηu(ξu) = PRu(ηu)ξu =

[
ξu −

〈u+ ηu, ξu〉
‖u+ ηu‖2

(u+ ηu)

]
,

where Pu is the orthogonal projector on TuM. We note that these formulas differ only
by a scalar factor ‖u+ ηu‖−1 and expression (35) can be interpreted as a Riemannian
parallel transport. We further remark that the vector transport Tηu(ξu) is linear in the
field ξu, but not in ηu. The reader is referred to monograph [1] for details concerning
the derivation of formulas (34)–(35). The numerical results presented in §7 and §8 are
obtained using the vector-transport expression (34) or (35) with the L2 inner product
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b

b

u
n−1

un

−T−τn−1dn−1dn−1

(a)

b

u
n−1

un

−Pun,HA
Gn

(b)

−τ
n−

1
d n
−1 −G

n

−d
n−

1

b −βnT−τn−1dn−1dn−1

Fig. 2. Schematic illustration of the principle of Riemannian conjugate gradients (RCG)
method on a spherical manifold. (a) Riemannian vector transport of the anterior conjugate direction
dn−1; the transport of the anterior gradient Gn−1 is performed in a similar way. (b) Projection of
the new Sobolev gradient Gn onto the tangent subspace TunM resulting in Pun,HA

Gn. The linear
combination (37) of Pun,HA

Gn and the transported anterior direction is computed in TunM.

and norm. This choice of the metric is dictated by the norm defining the constraint
manifold, cf. (2).

Finally, the conjugate gradient method (30)–(32) can be rewritten in the Rieman-
nian infinite-dimensional setting as

(36) (RCG) un+1 = Run
(−τn dn) , n = 0, 1, . . . ,

where

(37)
d0 = −Pu0,HA

G0,

dn = −Pun,HA
Gn + βnT−τn−1dn−1

(dn−1), n = 1, 2, . . .

with the Polak-Ribière momentum term modified as follows (the corresponding term
in the Fletcher-Reeves approach remains unchanged)

(38) βn = βPRn :=

〈
Pun,HA

Gn,
(
Pun,HA

Gn −T−τn−1dn−1Pun−1,HA
Gn−1

) 〉
HA〈

Pun−1,HA
Gn−1, Pun−1,HA

Gn−1

〉
HA

.

The optimal descent step τn in (36) is computed as in (29) by solving the corresponding
arc-minimization problem

(39) τn = argmin
τ>0

E (Run
(−τdn))

using a generalization of Brent’s method. We refer to approach (36)–(39) as the Rie-
mannian Conjugate Gradients (RCG) method, and its idea is schematically illustrated
in Figure 2.

5. Space Discretization. We use a finite-element approximation constructed
as follows. Let Th be a family of triangulations of the domain D parametrized by the
mesh size h > 0. We assume that Th is a regular family in the sense of Ciarlet [26],
with h belonging to a generalized sequence converging to zero. We denote by P l(T )
the space of polynomial functions of degree not exceeding l ≥ 1 defined on triangles
T ∈ Th. We also introduce the finite-element approximation spaces

W l
h =

{
wh ∈ C0(D̄h); wh|T ∈ P l(T ), ∀T ∈ Th

}
,(40)

V lh =
{
wh ∈W l

h; wh|Γh
= 0
}
, where Γh = ∂Dh.(41)
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The finite dimensional space V lh is a subspace of H1
0 (D) and therefore will be used

to approximate the energy functional (1) and the different expressions representing
gradients and descent directions in algorithms (PG), (RG) and (RCG). In the following
we use P 4 (l = 4, piecewise quartic) finite elements to approximate the nonlinear terms
in (15) and the P 2 representation for the remaining terms, for evaluation of the GP
energy (1) and also to represent the approximate solution un. In addition, adaptive
mesh refinement suggested in [29] and tested in [29, 57] is used to adapt the grid during
iterations leading to a significant reduction of the computational time. The approach
is implemented in FreeFEM++ [36, 37], where mesh adaptivity relies on metric control
[23]. The main idea is to define a metric based on the Hessian and use a Delaunay
procedure to build a new mesh such that all the edges are close to the unit length with
respect to this new metric. We use the adaptive meshing strategy suggested in [29, 57].
The relative change of the energy of the solution (cf. (45)) is used as an indicator to
trigger mesh adaptation in which the metrics are computed simultaneously using the
real and imaginary part of the solution. The implementation of the Riemannian
retraction (27) and vector transport (34) or (35) is straightforward and was found to
work very well with arc-minimization (39) and adaptive mesh refinement.

6. Design Choices Inherent in the (RCG) Method. As is evident from
§4.2, the (RCG) method offers a number of design choices which can be exploited
to optimize its performance for a specific problem. One of the goals of this study is
to evaluate these options in the context of minimization of the GP energy, and we
will focus on the following choices most relevant for the Riemannian aspect of the
proposed approach:

(i) form of the momentum term βn: Fletcher-Reeves (32a) or Polak-Ribière
(32b), with the corresponding variants of the (RCG) method referred to as
(RCG)-(FR) and (RCG)-(PR), respectively;

(ii) form of the vector transport Tηu(ξu): defined via differentiated retraction (34)
or using the Riemannian submanifold structure (35), with the corresponding
variants of the (RCG) method referred to as (RCG)-(VtDR) and (RCG)-
(VtRS), respectively; in addition, we will also consider the classical conjugate
gradients (CG) method without vector transport (i. e. with Tηu(ξu) = ξu).

Combining these different choices yields already six distinct variants, i. e. (RCG)-
(FR)-(VtDR), (RCG)-(FR)-(VtRS), (RCG)-(FR), (RCG)-(PR)-(VtDR), (RCG)-(PR)-
(VtRS) and (RCG)-(PR). Evidently, there also exist other design choices which, how-
ever, will not be considered here, because they are less relevant for the Riemannian
aspect of the problem and/or have already been considered elsewhere before. For
example, the choice of the metric X defining the gradient in (13) and the projection
in (23)–(24) was extensively analyzed in [30, 29, 57], and here we will exclusively use
X = HA which was found to be the best choice for minimization of the GP energy
in the presence of rotation. For the Riemannian operators of retraction and vector
transport we use the L2 metric naturally induced by the spherical manifold defined
in (3).

In principle, we could also consider the frequency of retractions as yet another
design parameter, however, since this operation has a negligible cost, it is performed
at every iteration (which is also consistent with the need to reinterpolate the solution
once a grid adaptation has been taken place). On the other hand, we will consider
the effect of periodically resetting the momentum term βn to zero (cf. §4.2). In the
sections to follow we will analyze these different design choices in order to identify
the most robust (RCG) method capable of handling mesh adaptivity, which in earlier
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studies [29, 57] was shown to be indispensable for computational efficiency.

7. Convergence Speeds of Different Gradient Methods. We start by as-
sessing the convergence speed of the minimization algorithms (PG), (RG), (CG) and
the different variants of the (RCG) approach using fixed meshes with different resolu-
tions. We use the method of manufactured solutions [52], a general tool for verification
of calculations which has the advantage of providing an exact solution to a modified
problem, related to the true one. The general idea is that, by introducing an extra
source term, the original system of equations is modified to admit an exact solution
given by a convenient analytic expression. Even though in most cases exact solu-
tions constructed in this way are not physically realistic, this approach allows one to
rigorously verify computations. Here we manufacture such an exact solution in the
form

(42) uex(x, y) = U(r) exp(imθ), U(r) =
2
√

21√
π

r2 (R− r)
R4

, m ∈ N,

where (r, θ) are the cylindrical coordinates of the point (x, y) and R is the radius
of the circular domain D. We note that this solution satisfies constraint (2) and
qualitatively resembles a giant vortex in the condensate (see Figure 3 and §8). It also

Fig. 3. Manufactured solution (42) visualized with a 3D-rendering of the modulus |uex| color-
coded with (a) the modulus itself and (b) the phase of the solution for m = 3.

satisfies an inhomogeneous form of the nonlinear problem (7), i. e.

(43)
−1

2
∇2uex + Ctrapuex + Cg|uex|2uex − iCΩAt ·∇uex =f in D,

uex =0 on ∂D,

and is a critical point of the modified energy functional
(44)

E(u, f) =

∫
D

[
1

2
|∇u|2 + Ctrap |u|2 +

1

2
Cg|u|4 − iCΩ u

∗At ·∇u− (f∗u+ fu∗)

]
dx.

For this energy functional, the L2 gradient is expressed as discussed in §3.1, but
with a supplementary term −2f added. Given the form (42) of the manufactured
solution and assuming a harmonic trapping potential Ctrap = r2/2, from (43) we
obtain f(r, θ) = F (r) exp(imθ), where F (r) is a polynomial of degree 9. From this and
relations (44) and (5) we can deduce exact expressions for the energy Eex := E(uex)
and the angular momentum Lex := L(uex) = m.

The numerical tests are based on the manufactured solution (42) corresponding
to the following parameter values: Ctrap = r2/2, Cg = 500, R = 1, m = 3, CΩ = 10,
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where, to make the problem more challenging, large values of the nonlinear interaction
constant Cg and rotation frequency CΩ are used (cf. Figure 3). The step size τn is
determined at each iteration by line-minimization (26) for the (PG) method and arc-
minimization (29) or (39) for the (RG), (CG) and (RCG) methods.

In order to assess the mesh-independent effect of the Sobolev gradient precon-
ditioning, cf. §5, we perform computations using two grids: Mesh 1 consisting of
24,454 triangles with hmin = 0.0118 and Mesh 2 consisting of 99,329 triangles with
hmin = 0.0059, where hmin is the smallest grid size. In the present case no mesh
refinement was performed during iterations. The initial guess is taken as u0 = 0,
whereas iterations are declared converged once the following condition based on the
relative energy decrease is satisfied [29, 57]

(45) εE = |En+1 − En|/En < εst = 10−12, where En := E(un).

The performance of the approaches corresponding to the different design choices
discussed in §6 is summarized in Table 1 where all computations were performed on
Mesh 2. In this and in the following tables the CPU time reflects the computations
performed on a Linux workstation with two 3.10GHz Intel Xeon E5-2687w CPUs.

Method iter CPU

(RCG)-(PR)-(VtRS) 37 1270
(RCG)-(PR)-(VtDR) 38 1326

(CG)-(PR) 38 1529

(RCG)-(FR)-(VtRS) 54 1852
(RCG)-(FR)-(VtDR) 49 1668

(CG)-(FR) 31 1297

(RG) 180 5274
(PG) 219 3104

Table 1
Test case based on the manufactured solution (42). Performance of the gradient methods cor-

responding to the different design choices, cf. §6 measured in terms of the number of iterations
(iter) and the computational time in seconds (CPU) required for convergence. Note that the total
computational time depends both on the number of iterations and the number of evaluations of the
energy functional in the line- or arc-minimization procedures.

In the calculations reported in Table 1 for the (CG) and (RCG) methods we did
not reset the momentum term βn to zero. Firstly, we note that all variants of the
(RCG) and (CG) methods outperform the simple gradient methods (PG) and (RG).
The reduced CPU time of the (PG) method comes from the fact that it implements
a line-minimization strategy (26) based on analytical expressions derived from the
particular form of the GP energy (see [57] for details). This is not the case for the
arc-minimization used by all Riemannian gradient methods, where an adaptation of
Brent’s algorithm is employed. Secondly, we observe that the (RCG) algorithm with
the Polak-Ribière (PR) momentum term is least sensitive to the form of the vector
transport. On the other hand, the Fletcher-Reeves version of the (RCG) method
proves more sensitive to the form of the vector transport and, somewhat surprisingly,
the (CG)-(FR) approach (without vector transport) turns out to be the most efficient
in terms of the number of iterations (although not in terms of the computational
time). The method which converged in the shortest time was the (RCG)-(PR)-(VtRS)
approach and it will be used for further tests in the remainder of this section; for
brevity, we will refer to it simply as (RCG).
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To assess the speed of convergence of the (PG), (RG) and (RCG) approaches, the
quantities ‖un − uex‖2 and |En − Eex| are shown as functions of iterations n for the
two spatial discretizations in Figures 4a and 4b. In these figures we observe linear
convergence followed by a slower convergence at final iterations. The change of the
slope of error curves occurs at the level at which the minimization errors (un − uex)
are comparable to the errors related to the spatial discretization. In other words,
in the “optimize-then-discretize” setting adopted here, gradient expressions derived
based on the continuous formulation, cf. (15), may no longer accurately represent
the sensitivity of the discretized objective function, when the difference between un
and uex is of the order of the space discretization errors. This is also confirmed by
computing the errors ‖un − uex‖H1 at which convergence stagnates. These errors
drop by a factor of roughly 4 when the mesh is refined such that hmin is reduced
by approximately one half (cf. Figure 4a), as expected from the well-known error
estimates for the finite-element approximation.
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Fig. 4. Test case based on the manufactured solution (42). Convergence of the (PG), (RG)
and (RCG) methods: (a) ‖(un − uex)‖2 and (b) |En − Eex| are shown as functions of iterations n
for different discretizations. Dashed and dash-dotted lines indicate the least-squares fits (46).

In Figures 4a and 4b it is evident that the (RCG) method converges much more
rapidly (39 iterations) than the (RG) approach (180 iterations). As expected, the
convergence of the (PG) method (202 iterations) is similar to that of the (RG) method.
To quantify the convergence rates we use the following ansatz to represent the errors:

(46) ‖un − uex‖2 ∼ BuAnu, |En − Eex| ∼ BeAne .

The values of the parameters Au and Ae, which represent the factors by which the
corresponding errors are reduced between two iterations can be obtained from least-
squares fits of the data in Figures 4a,b in the linear regime. These results are collected
in Table 2 (the corresponding fits are also indicated in Figures 4a,b). First, these re-
sults demonstrate that the rate and speed of convergence are grid-independent as
expected from the general theory of Sobolev-gradient descent methods [45]. The data
in Table 2 can also be interpreted in terms of the classical theory of the conjugate
gradient method in the finite-dimensional Euclidean setting [46], which for the mini-
mization of quadratic functions predicts that Au ≈

√
Ae. We see that the data from

Table 2 satisfies this relationship with the accuracy of a few percent. For the simple
gradient and conjugate gradient methods we furthermore have the approximate rela-
tionships Au = (κ− 1)/(κ+ 1) and Au = (

√
κ− 1)/(

√
κ+ 1), respectively, where κ is
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the “effective” condition number characterizing the problem. It is defined in terms of
the condition number of the discrete Hessian of the GP energy (1) at the minimum
preconditioned by the metric of the Sobolev space HA(D), cf. (10), in which optimiza-
tion is performed. Using the data from Table 2 (Mesh 2), we infer that κ ≈ 42.37 for
the gradient (RG) and κ ≈ 3.2 for the conjugate gradient (RCG) method, indicating
that the convergence acceleration produced in the present problem by the Rieman-
nian conjugate gradient approach actually exceeds what can be expected from the
standard theory.

Mesh 1 Mesh 2

Ae
√
Ae Au Ae

√
Ae Au

(RG) 0.9167 0.9574 0.9496 0.9268 0.9627 0.9538
(RCG) 0.2909 0.5394 0.5275 0.2924 0.5408 0.5238

Table 2
Parameters characterizing the least-squares fits (46) of the data shown in Figure 4.

Since the exact solution uex is usually unavailable in physically relevant problems,
we now verify that convergence of iterations can be monitored based on quantities
which do not involve uex. Indeed, the evolution of ‖un+1 − un‖2 and |En+1 − En|
with iterations n shown in Figures 5a and 5b exhibits the same trends as the data
shown in Figures 4a and 4b, except for the slowdown observed in the latter case. This
demonstrates that either of these two quantities can be used to monitor convergence
and, in particular, check the stopping criterion (see also [16, 13, 15, 9, 14]).
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Fig. 5. Test case based on the manufactured solution (42). Convergence of the different quan-
tities with iterations n: (a) ‖(un+1 − un)‖2, (b) |En+1 −En|, (c) δn, cf. (47), drift away from the
constraint manifold and (d) τn, the optimal descent step.
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There are two additional aspects of the convergence of the different methods we
wish to comment on. In Figure 5c we show the evolution of the “drift” away from
the constraint manifold M exhibited by the intermediate approximations ûn before
retraction (27) is applied

(47) δn =
∣∣1− ‖ûn‖22∣∣ , n = 0, 1, . . . .

This quantity measures how far the intermediate steps diverge from the constraint
manifold. We see that, as compared to the (PG) and (RG) methods, in the (RCG) ap-
proach the intermediate approximations always remain closer to M . Finally, the step
size τn determined by the gradient approaches (PG), (RG) and (RCG) via line/arc-
minimization, cf. (26), (29) and (39), is shown in Figure 5d. We see that the step
sizes generated by the simple gradient methods, (PG) and (RG), tend to oscillate
between two values, a behavior indicating that the iterations are trapped in narrow
“valleys”. This is a common behavior of the steepest descent method when applied to
poorly conditioned problems and is not exhibited by the the (RCG) iterations where
on average the steps also tend to be longer. The data in Figure 5a,c,d offers interest-
ing insights about the behavior of iterations in different approaches. It follows from
relation (21) that ‖un+1‖22−‖un‖22 = τ2

n‖Gn‖22 is satisfied for all cases considered here,
whereas in Figure 5d it is evident that the corresponding step sizes τn are bounded
away from zero. We therefore deduce that the drift δn is directly linked to the mag-
nitude of the gradient ‖Gn‖2, which is smallest for the approach with the fastest
convergence, i. e. the RCG method (cf. Figure 5a). This demonstrates that the small
drift away from the constraint manifold M observed in this approach, cf. Figure 5c, is
a consequence of its rapid convergence. Performance of the different methods applied
to several realistic problems will be discussed in the next section.

8. Computation of Rotating Bose-Einstein Condensates. In this section
we compare the performance of the minimization algorithms (PG), (RG) and (RCG)
on a number of test cases involving configurations of rotating BEC with vortices.
We consider increasingly complex arrangements: a single vortex, Abrikosov vortex
lattices with more than one hundred vortices, giant vortices and, finally, conden-
sates in anisotropic trapping potentials. To make these test cases more challenging,
we consider large values of the nonlinear interaction constant Cg and large angular
frequencies CΩ. In some cases, we will provide comparisons between the gradient
methods and other state-of-the-art techniques, one of which is the (BE) approach
(18)–(19) implemented using the same P 2 finite-element setting. In addition, in order
to offer a comparison with a higher-order method, we will also solve the minimiza-
tion problem (6) using the library Ipopt which is interfaced with FreeFem++. This
approach, which we will refer to as (Ipopt), is based on a combination of an interior
point minimization [58], barrier functions [39] and a filter line-search [59]. For prob-
lems with equality constraints only (such as the present problem), (Ipopt) reduces to
a Newton-like method with an elaborate line-search used to optimally determine the
step size. Here we use (Ipopt) to solve the Euler-Lagrange system (7) in the course
of which it is provided with the expressions for the L2 gradient and the Hessian of
the GP energy, reformulated by separating the real and imaginary parts of the so-
lution (see also [57]). Computations with (Ipopt) are based on several calls of the
library where, for each call, the residual of the optimality condition (7), on which the
termination criterion is based, is progressively decreased.

8.1. Test Case #1: BEC with a Single Central Vortex. We consider the
case of a BEC trapped in a harmonic potential and rotating at low angular velocities:
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Ctrap = r2/2, Cg = 500, CΩ = 0.4. For this case, the Thomas-Fermi (TF) theory
[55] offers a good approximation of the atomic density ρ = |u|2 of the condensate
ρ ≈ ρTF =

(
(µ− Ceff

trap)/Cg
)

+
with the effective trapping potential Ceff

trap given by (12).

By imposing
∫
D
ρTF = 1, we can derive analytical expressions for the corresponding

approximation of the chemical potential µ ∈ R [57]. From the same TF approximation,
we can estimate the radius of the condensate as RTF =

√
2µ/(1− CΩ). Consequently,

we set up the computational domain D as a disk of radius R = 1.25RTF = 6.56. The
initial guess u0 is taken in the form of an off-center vortex placed at (xv = 0.25, yv =

0), see Figure 6a. We use the ansatz u0 =
√
ρTF uv, where uv = r/

√
r2 + 2ξ2 eiθ

with (r, θ) representing the polar coordinates centered at (xv, yv) and ξ = 1/
√

2µ
the non-dimensional healing length, which is a good approximation of the vortex
radius in rotating BEC [33]. A similar ansatz will also be used in subsequent sections
to set up initial guesses with vortices for the calculation of more complicated BEC
configurations. The stopping criterion (45) is used with the value εst = 10−12. In
these calculations the grid remains fixed (i. e. no grid adaptation is performed), with
9,578 vertices and 18,825 triangles. In the (BE) method the imaginary time step is
chosen as δt = 10, which proved to be optimal for convergence after testing values of
δt in the range from 0.01 to 100. In the (Ipopt) approach, two successive calls to the
library were sufficient to converge the solution to the same level of accuracy as with
other methods.

Fig. 6. Computation of a rotating BEC with a single central vortex (cf. §8.1). 3D rendering
of the atomic density ρ = |u|2 for: (a) the initial guess u0 and (b) the converged ground state.

For the considered physical parameters the ground state features a vortex cen-
tered at the origin. All considered methods, (PG), (RG), (RCG), (BE) and (Ipopt),
converged to the same ground state shown in Figure 6b. In order to assess their
respective rates of convergence, we compute a reference (“exact”) solution uex us-
ing the same grid and starting the minimization algorithms from the initial guess
u0 with (xv = 0, yv = 0). The corresponding energy and angular momentum are
Eex = 8.36059 and Lex = 1.

The performance of the approaches corresponding to the different design choices
discussed in §6 is summarized in Table 3, whereas their convergence monitored in
terms the error norm ‖un − uex‖2 is illustrated in Figure 7. As compared with the
results analyzed in §7, the difference here is that we now allowed for periodic resets
of the momentum term βn to zero and it was found by trial-and-error that the fastest
convergence in terms of the CPU time was obtained when such resets were performed
every 50 iterations. From Table 3 we conclude that the (RCG)-(PR) approach is more
robust than the (RCG)-(FR) approach with respect to the choice of the vector trans-
port and the reset frequency. We also note that ignoring the vector transport, which
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is the case in the (CG) methods, produces a significant increase of the computational
time resulting from slow convergence of the arc-minimization procedure. As regards
resetting the momentum term to zero, we note that it turns out to be particularly
important for the (FR) approaches, concurring with the insights about them already
known from the Euclidean setting [46]. In addition to being costly to determine, op-
timal momentum reset strategies also tend to be strongly problem-dependent. Thus,
with this in mind, we conclude that the (RCG)-(PR)-(VtRS) approach again turns
out to be the most efficient and is also characterized by the most consistent perfor-
mance. Therefore, it will be used for further tests in the remainder of this section and
we will continue to refer to is as (RCG).

Method Reset: none Reset: 50 iter
iter CPU iter CPU

(RCG)-(PR)-(VtRS) 196 913 190 903
(RCG)-(PR)-(VtDR) 186 954 180 868

(CG)-(PR) 198 1328 184 1271

(RCG)-(FR)-(VtRS) 242 1244 140 637
(RCG)-(FR)-(VtDR) 563 2652 359 1703

(CG)-(FR) 237 1583 150 1077

(RG) 2643 13872
(PG) 3631 8472
(BE) 2796 6838

(Ipopt) 18 99
Table 3

Computation of a rotating BEC with a single central vortex (cf. §8.1). Performance of the
gradient methods corresponding to the different design choices, cf. §6, and of the (Ipopt) approach
measured in terms of the number of iterations (iter) and the computational time in seconds (CPU)
required for convergence.

The quantities ‖un − uex‖2, |En − Eex| and |Ln − Lex| shown in Figures 8a, 8b
and 8c as functions of n indicate that while the (RG) and (BE) methods converge
with similar rates, the (RCG) approach converges much faster. The drift δn away
from the constraint manifold M at intermediate steps ûn, cf. (47), during the first
200 iterations is shown for different methods in Figure 8d. We note that for the (BE)
method this quantity is always O(1) which is due to the fact that the RHS of (18) is
based on an unprojected gradient further compounded by a large step size δt used.
The normalization step is therefore crucial in this approach. On the other hand, δn is
reduced faster in the (RCG) approach where it also attains lower values than in the
(PG) and (RG) methods.

Finally, let us note that, even though the (RCG) method outperforms all other
first-order methods, the (Ipopt) approach actually converges much faster, cf. Table 3.
Only 18 Hessian evaluations are needed during the two calls to Ipopt and the total
computational time is smaller by a factor of 10 as compared to the (RCG) methods.
However, we stress that this test was performed with a fixed grid and in fact this
remarkable performance of the (Ipopt) method will be lost when computing more
complicated cases that require mesh adaptivity (see the next section).

8.2. Test Case #2: BEC with a dense Abrikosov vortex lattice. We now
move on to consider more challenging test cases corresponding to a harmonic potential
(Ctrap = r2/2), high rotation rate (CΩ = 0.9) and large values of the nonlinear
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Fig. 7. Computation of a rotating BEC with a single central vortex (cf. §8.1). Comparison of
different design choices for the (RCG) method in terms of convergence of the error norm ‖un−uex‖2.
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Fig. 8. Computation of a rotating BEC with a single central vortex (cf. §8.1). Convergence of
the different quantities with iterations n: (a) ‖(un−uex)‖2, (b) |En−Eex|, (c) |Ln−Lex| and (d)
δn, cf. (47), the drift away from the manifold.

interaction constant (Cg = 1000 to 15000). We note that for the harmonic trapping
potential there is a physical limit occurring at the rotation frequency CΩ = 1 when
the trapping is canceled by the centrifugal force (i. e. Ceff

trap = 0, see eq. (12)). The
next section will consider cases with a modified trapping potential, allowing for higher
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rotation frequencies.
We start with the case with Cg = 1000 and CΩ = 0.9 for which the ground state

features over fifty vortices arranged in a regular triangular lattice called the Abrikosov
lattice. The difficulty here is to obtain a very regular lattice, in particular for the
vortices located near the border of the condensate where the atomic density is low.
This explains why the results previously reported for this case exhibit configurations
with somewhat different arrangements of the peripheral vortices which nevertheless
have very similar energy levels [61, 30, 11]. These differences can be attributed to
the use of different initial guesses u0. A nearly perfect arrangement of vortices on a
triangular/hexagonal lattice is reported in the recent study [60] and will be considered
here as a reference result used to validate our methods (the corresponding energy
level is Eref = 6.3607). Details of the computed stationary states depend on the
initial guess u0, and we used three distinct forms of u0: (i) “ansatz d” proposed
in [60] to model a central vortex using Gaussian functions, and the Thomas-Fermi
approximation described in §8.1 with (ii) one central vortex and (iii) six vortices. The
corresponding stationary solutions obtained using the (RCG)-(PR)-(VtRS) method
are shown in Figures 9a, 9b and 9c. We can see that the central parts of the vortex
lattices are in all cases essentially identical (modulo rotation) and some differences
are detected among the peripheral vortices. The values of energy corresponding to
these configurations differ by less than 0.01%.

Fig. 9. Computation of a rotating BEC with a dense Abrikosov vortex lattice (cf. §8.2). Sta-
tionary states obtained using the (RCG)-(PR)-(VtRS) method with mesh adaptivity and different
initial conditions u0: (a) “ansatz d” suggested in [60], (b) Thomas-Fermi atomic density with one
central vortex, (c) Thomas-Fermi atomic density with a ring of six vortices. The figures in the first
row show contours of the atomic density (normalized by its maximum value ρ/ρmax) and in the
second row they show the 3D-rendering of the same contours. The corresponding energies are: (a)
E = 6.3615, (b) E = 6.3621, (c) E = 6.3620, to be compared to the reference value Eref = 6.3607
from [60].

In the following we carry out computations starting from the initial guess (i) and
mesh adaptation is now performed during iterations which are declared converged
when the termination condition (45) with εst = 10−9 is met. For this challenging
test case the performance of a few selected design choices for the (RCG) and (CG)
approaches is summarized in Table 4. Since the (FR) methods with and without
momentum resets failed to converge to the same minimum as other approaches, we
focus here on the (PR) techniques and note the fast convergence of the (RCG)-(PR)-
(VtRS) approach which will be used in further tests in this section; for brevity, we will
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refer to it simply as (RCG). It is interesting to note in Table 4 that the performance of
the (Ipopt) method is significantly degraded as compared to the results from §8.1 and
is now comparable to that of the (RCG) method. The reason is that Ipopt is linked as
an external library to FreeFem++ and therefore we cannot directly use mesh adaptivity
in its internal algorithm. As a result, one has to use an external algorithm to couple
the computation of the minimizer with the mesh adaptivity procedure employed in
the other methods. The computations in the present case required 17 calls to Ipopt,
with a total of 354 Hessian evaluations and a large number of internal iterations.

Method E iter CPU

(RCG)-(PR)-(VtRS) 6.3615 1339 23192
(RCG)-(PR)-(VtDR) 6.3615 2684 59431

(CG)-(PR) 6.3615 1557 25693
(Ipopt) 6.3621 354 22943

Table 4
Computation of a rotating BEC with a dense Abrikosov vortex using mesh adaptivity and initial

condition u0 described by the “ansatz d” suggested in [60] (cf. §8.2). Performance of the gradient
methods corresponding to the indicated design choices, cf. §6, and of the (Ipopt) approach measured
in terms of the number of iterations (iter) and the computational time in seconds (CPU) required
for convergence.

Convergence of the iterations carried out with the (RG), (RCG) and (BE) meth-
ods is compared in Figures 10a and Figures 10b.
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Fig. 10. Computation of a rotating BEC with a dense Abrikosov vortex lattice (cf. §8.2).
Convergence of the different quantities with iterations n: (a) |(En+1 − En)/En| and (b, c) |En −
Eref |. All computations start from the initial guess suggested in [60] (”ansatz d”).

The gradient (RG) and the backward-Euler (BE) methods show a similar, but
markedly slower convergence (they were stopped after 5000 iterations) than the (RCG)
method. We note that the peaks in the curves shown in Figures 10a and 10b result
from reinterpolation of intermediate solutions after grid adaptation [29, 57]. In these
figures we see that in all cases convergence slows down at later iterations which is
related to the slow rearrangement of vortices near the boundary of the condensate.
Another possible reason is that since in [60] a different discretization was used (Fourier
spectral approach with periodic boundary conditions), the value of Eref taken from
that reference might not exactly correspond to ours. Since convergence is monitored
differently for the (Ipopt) method, in Figure 10c we show the decrease of the energy
with the number of calls to the library (we add that the energy also tends to exhibit
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significant oscillations during iterations performed within each such call). While the
energy level attained with the (Ipopt) method is a little higher than obtained with
the (RCG) and (CG) methods, the corresponding minimizer is similar to that shown
in Figure 9c.

8.3. Test Case #3: BEC with a large number of vortices. In this section,
we use the (RCG)-(PR)-(VtRS) method to compute fast rotating BEC (CΩ = 0.9)
corresponding to large values of the nonlinear interaction constant with Cg varying
from 1,000 to 15,000. For these difficult cases, a more physically relevant assessment of
the convergence of iterations is provided by the alignment of vortices on parallel lines
inside the vortex lattice. Since isocontours of atomic density do not always coincide
with these lines, we developed a post-processing approach to identify the centers of
vortices by detecting local minima of the function ρTF − ρ. This post-processing is
similar to that used for experimental data [27] or 3D numerical simulations [28] and
also allows to build the Delaunay triangulation of the lattice and compute the radius
of each vortex. The resulting stationary states are presented in this way in Figure 11.
We notice an arrangement of vortices on a nearly perfect lattice for Cg = 1, 000 and
5, 000, and a less regular arrangement for Cg = 10, 000 and 15, 000 with the presence of
some defects in the lattice. This effect could be related to physical theories addressing
the non-uniformity of the inter-vortex spacing in dense Abrikosov lattices [27, 53].
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Fig. 11. Computation of a fast rotating BEC (CΩ = 0.9) in a harmonic trapping potential
(cf. §8.2). The Abrikosov vortex lattice is represented using the Delaunay triangulation built from
the detected vortex centers. Configurations obtained for large values of the nonlinear interaction
constant: Cg = 1000 (55 vortices), Cg = 5000 (134 vortices), Cg = 10000 (193 vortices) and
Cg = 15000 (237 vortices).

8.4. Test Case #4: BEC with giant vortex. To overcome the limit CΩ = 1
imposed by the harmonic trapping potential, a modified “harmonic-plus-Gaussian”
potential was tested in experiments [20]. In [5, 28] this new experimental set-up was
modeled as

(48) Ctrap(x, y) = (1− α)r2 +
1

4
kr4,
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Fig. 12. Computation of a rotating BEC with giant vortices (cf. §8.4). 3D-rendering of the
atomic density (normalized by its maximum value ρ/ρmax) obtained in Regime 1 (a, b, c), Regime
2 (d, e, f) and Regime 3 (g, h, i) for different rotations CΩ = 0 (first column), CΩ = 3 (second
column) and CΩ = 4 (third column).

with the possibility to switch from a “quartic-plus-quadratic” potential (α < 1), which
corresponds to experiments, to a “quartic-minus-quadratic” potential (α > 1), which
is experimentally feasible but was never tested. Adapting the analysis from [5] to our
2D case, we obtain three possible regimes depending on the type of potential:
• Regime 1: “quartic-plus-quadratic” (or weak attractive) potential obtained for α < 1
and µ > 0 (see the Thomas-Fermi approximation in §8.1).
• Regime 2: weak “quartic-minus-quadratic” (or weak repulsive) potential obtained

when α > 1 and µ > 0; this regime appears when |1− α| <
(
k
√

3Cg/π
)
/2.

• Regime 3: strong “quartic-minus-quadratic” (or strong repulsive) potential obtained

when α > 1 and µ < 0; this regime appears when |1− α| >
(
k
√

3Cg/π
)
/2.

All computations are performed with the (RGC)-(PR)-(VrRS) method and the
obtained stationary states are presented in Figure 12. The parameters for these
simulations are: Cg = 1000, k = 1 and α = 1/2 (Regime 1), α = 11/2 (Regime 2),
α = 9 (Regime 3). In the first column of Figure 12 we notice that the atomic density
distribution in the condensate without rotation (CΩ = 0) changes from the classical
parabolic profile in Regime 1 to a Mexican-hat type profile in Regime 2 and, finally,
to a profile with a central hole in Regime 3. It is then expected that, when rotation is
applied, in Regimes 2 and 3 the condensate will develop a central hole (or giant vortex)
at lower rotations frequencies than in Regime 1. This prediction is indeed supported
by the results in Figure 12 (second and third column). When rotation is increased, the
condensate configuration evolves from a classical (Abrikosov) vortex lattice to a vortex
lattice with a central depletion and, finally, to a giant vortex surrounded by a ring of
individual vortices. The giant vortex is indeed obtained for lowest rotation frequencies
in Regimes 2 and 3. The existence of a giant vortex was predicted theoretically (e. g.
[33]) and was already observed in 2D [40] and 3D computations [5, 28].
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Fig. 13. Computation of a rotating BEC in a strongly anisotropic trapping potential (cf. §8.5).
3D-rendering of the atomic density (normalized by its maximum value ρ/ρmax) obtained for ε = 0.15
(a), ε = 0.35 (b), ε = 0.65 (c).

8.5. Test Case #5: Strongly Anisotropic BEC with Vortices. To demon-
strate the efficiency of the (RGC)-(PR)-(VrRS) method for the case without any sym-
metry, in this section we consider a rotating BEC trapped in a strongly anisotropic
(asymmetrical) potential of the form suggested in [47]

(49) Ctrap(x, y) =
1

2

[
(1 + η2)x2 + (1− η)y2

]
, η = 2(1− CΩ)ε,

where ε < 1 characterizes the anisotropy of the trap for very high rotation frequencies
CΩ ≈ 1. The theoretical analysis presented in [47] shows that, when the condensate
contains a large number of vortices, the deviation of the vortex lattice from a triangular
arrangement is small. This finding is supported by our computational results shown
in Figure 13 for three values of the anisotropy parameter ε. This example illustrates
the flexibility of the finite-element discretization, cf. §5, in handling highly deformed
computational domains D.

9. Conclusions. The difficulty of direct minimization of the Gross-Pitaevskii
energy functional with rotation comes from the unit-norm constraint (2). The novel
idea proposed here is to transform this problem to an unconstrained Riemannian op-
timization problem defined on a spherical manifold and then develop a Riemannian
conjugate gradient (RCG) method based on classical approaches. The key ingredients
of this new method are the following: (i) the gradient direction is derived using the
theory of Sobolev gradients and relies on a physically-inspired definition of the inner
product which accounts for rotation [30], thereby offering a good preconditioning for
the problem; (ii) the gradient is projected on the subspace tangent to the spherical
manifold before being used in simple gradient or conjugate gradient methods, which
ensures the iterates stay close to manifold M; (iii) the conjugate descent direction is
computed using classical approaches (i. e. the Polak-Ribière or Fletcher-Reeves vari-
ant of the nonlinear conjugate gradient method) and the Riemannian vector transport
is used to bring the gradient and descent directions determined at the previous itera-
tion to the current tangent subspace Tun

M; (iv) the optimal descent step is computed
by solving an arc-minimization problem (in which samples are constrained to lie on
the manifold), instead of the classical line-minimization; (v) finally, the updated solu-
tion is “retracted” back to the spherical manifold. In our study we carefully analyzed
the effect of the key design choices, namely, the form of the momentum term and
of the vector transport, on the performance of the Riemannian conjugate gradients
approach. Based on tests involving several different problems, we conclude that the
(RGC)-(PR)-(VrRS) approach, combining the Polak-Ribière form of the momentum
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term with the vector transport based on the Riemannian submanifold structure, ex-
hibited the most robust and efficient performance. The (RCG)-(PR) methods in
general also showed a systematic improvement over the (CG) approaches without
vector transport.

As demonstrated by our tests performed in the finite-element setting, several fea-
tures make the (RCG) method very appealing for practical computations: (i) since the
“optimize-then-discretize” paradigm is used, the preconditioning is mesh-independent;
(ii) the Riemannian retraction and transport operators are simple to implement; (iii)
for the arc-minimization problem a classical approach such as Brent’s method can be
easily adapted; (iv) there are no tuning parameters or trust-region tests involved. In
addition, general mesh refinement or mesh adaptivity strategies are compatible with
the RCG method without any modifications. Our extensive numerical experiments
showed a significant improvement of the convergence rate of the RCG method over
the simple gradient and imaginary-time methods. For more involved problems requir-
ing mesh adaptation the (RCG) approach exhibited performance comparable to the
(Ipopt) method which for equality-constrained problems implements a Newton-type
technique. The reason is that there is no straightforward way to incorporate mesh
adaptation in the (Ipopt) approach, something that can be done rather easily in the
(RCG) method. We stress that the use of mesh adaptation is essential for efficient
computational solution of problems of the type discussed in §§8.2–8.5 and, to the
best of our knowledge, implementation of mesh adaptation in Ipopt-type, or more
generally, in Newton-type methods, remains an open problem. We also emphasize
that the (RCG) approach has far fewer parameters than the (Ipopt) method which
greatly simplifies its performance optimization. Finally, as a challenging test, the
(RCG) method was used to compute vortex configurations in rotating BEC with high
values of the nonlinear interaction constants and very high rotation rates as well as
in configurations with strongly anisotropic trapping potentials.

Lastly, we reiterate that the approach presented in this study does not exploit
all opportunities inherent in the Riemannian formulation. In particular, it remains
an open question whether the use of a well-adapted Riemannian metric defined on
the constraint manifold could further improve the performance of the approach. In
addition, one can also consider the Riemannian formulations of Newton’s method and
of different variants of the quasi-Newton method. Work is already on-going on some
of these problems and results will be reported in the near future.

The authors are grateful to the anonymous referees for providing constructive
feedback on this manuscript.
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