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Abstract

The problem of phase synchronization is to estimate the phases (angles) of a
complex unit-modulus vector z from their noisy pairwise relative measurements
C = zz∗ + σW , where W is a complex-valued Gaussian random matrix. The
maximum likelihood estimator (MLE) is a solution to a unit-modulus constrained
quadratic programming problem, which is nonconvex. Existing works have pro-
posed polynomial-time algorithms such as a semidefinite relaxation (SDP) ap-
proach or the generalized power method (GPM) to solve it. Numerical experi-
ments suggest both of these methods succeed with high probability for σ up to
Õ(n1/2), yet, existing analyses only confirm this observation for σ up to O(n1/4).
In this paper, we bridge the gap, by proving SDP is tight for σ = O(

√
n/ log n),

and GPM converges to the global optimum under the same regime. Moreover, we
establish a linear convergence rate for GPM, and derive a tighter `∞ bound for
the MLE. A novel technique we develop in this paper is to track (theoretically) n
closely related sequences of iterates, in addition to the sequence of iterates GPM
actually produces. As a by-product, we obtain an `∞ perturbation bound for
leading eigenvectors. Our result also confirms intuitions that use techniques from
statistical mechanics.

Keywords: angular synchronization, nonconvex optimization, semidefinite relax-
ation, power method, maximum likelihood estimator, eigenvector perturbation bound.

1 Introduction

Phase synchronization is the problem of estimating n angles θ1, . . . , θn in [0, 2π) based on
noisy measurements of their differences θk−θ` mod 2π. This is equivalent to estimating
n phases eiθ1 , . . . , eiθn from measurements of relative phases ei(θk−θ`).

A typical noise model for this estimation problem is as follows. The target parameter
(the signal) is the vector z ∈ Cn with entries zk = eiθk . The measurements are stored
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in a matrix C ∈ Cn×n such that, for k < `,

Ck` = zkz̄` + σWk`, (1)

where σ ≥ 0 is the noise level and {Wk`}k<` are independent standard complex Gaussian
variables. Under this model, definingWkk = 0 andW`k = Wk` for consistency, the model
is compactly written in matrix notation as

C = zz∗ + σW, (2)

where both C and W are Hermitian. An easy derivation1 shows that a maximum
likelihood estimator (MLE) x̂ ∈ Cn for the signal z is a global optimum of the following
quadratically constrained quadratic program (we define [n] = {1, . . . , n}):

max
x∈Cn

x∗Cx subject to |xk| = 1 for k ∈ [n]. (P)

Problem (P) is non-convex and hard in general ([39, Prop. 3.5]). Yet, numerical exper-
iments in [3, 2] suggest that, provided σ = Õ(

√
n),2 the following convex semidefinite

relaxation for (P) admits x̂x̂∗ as its unique global optimum with high probability (more
generally, if the problem below admits a solution of rank 1, x̂x̂∗, then the relaxation is
said to be tight and x̂ is an optimum of (P)):

max
X∈Cn×n,X=X∗

trace(CX) subject to diag(X) = 1, X � 0. (SDP)

In this paper, we give a rigorous proof for this observation, improving on the previous
best result which only handles σ = O(n1/4) [2]. Our result also provides some justifi-
cation for the analytical prediction in [19] on optimality of the semidefinite relaxation
approach.3

Theorem 1. If σ = O
(√

n
logn

)
, with high probability for large n, the semidefinite

program (SDP) admits a unique solution x̂x̂∗, where x̂ is a global optimum of (P)
(unique up to phase.)

In the theorem statement, “up to phase” refers to the fact that the measurements
C are relative: the distribution of C does not change if z is replaced by zeiθ for any
angle θ, so that if x̂ is a solution of (P), then necessarily so is x̂eiθ for any θ, and z can
only be recovered up to a global phase shift.

Theorem 1 shows that the non-convex problem (P) enjoys what is sometimes called
hidden convexity, that is, in the proper noise regime, it is equivalent to a (tractable)

1Since W is Gaussian, an MLE minimizes the squared Frobenius norm: ‖C − xx∗‖2F = ‖C‖2F +
‖xx∗‖2F − 2x∗Cx. Owing to |xk| = 1∀k, this is equivalent to maximizing x∗Cx.

2The notation Õ suppresses potential log factors.
3To be precise, in [19], it is predicted—but not proved—via statistical mechanics arguments that

the SDP relaxation is nearly optimal when σ = O(
√
n). Instead of showing a solution of (SDP) has

rank one, a rescaled leading eigenvector of its solution is used as an estimator.
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Algorithm 1 Generalized power method (GPM) without shift

1: Input: Hermitian measurement matrix C ∈ Cn×n.
2: Initialize: Set x0 to be a leading eigenvector of C with ‖x0‖2 =

√
n.

3: for t = 1, 2 . . . do

4: xt = P(Cxt−1) . Apply entrywise P(a) =

{
a/|a| if a 6= 0,

1 otherwise.

5: end for

convex problem. As a consequence, it is not a hard problem in that regime, suggesting
local solvers may be able to solve it in its natural dimension. This is desirable, since
the relaxation (SDP), while convex, has the disadvantage of lifting the problem from
n− 1 to n(n− 1) dimensions.

And indeed, numerical experiments in [8] suggest that local optimization algorithms
applied to (P) directly succeed in the same regime as (SDP). This was confirmed
theoretically in [8] for σ = O(n1/6), using both a modification of the power method
called the generalized power method (GPM) and local optimization algorithms acting
directly on the search space of (P), which is a manifold. Results pertaining to GPM
have been rapidly improved to allow for σ = O(n1/4) in [23].

In this paper, we consider a version of GPM listed as Algorithm 1 and prove that it
works in the same regime as the semidefinite relaxation, thus better capturing the em-
pirical observation. Note that GPM, as a local algorithm, is a more desirable approach
versus semidefinite relaxation in practice. GPM and its variants are also considered in
a number of related problems [21, 15, 31, 11], and can be seen as special cases of the
conditional gradient algorithm [21, 24].

Theorem 2. If σ = O
(√

n
logn

)
, with high probability for large n, Algorithm 1 con-

verges at least linearly to the global optimum of (P) (unique up to phase.)

To establish both results, we develop an original proof technique based on following
n + 1 separate but closely related sequences of feasible points for (P), designed so
that they will have suitable statistical independence properties. Furthermore, as a
necessary step toward proving the main theorems, we prove an `∞ perturbation bound
for eigenvectors, which is of independent interest.

It is worth noting that for σ >
√
n, it is impossible to reliably detect, with prob-

ability tending to 1, whether C is of the form zz∗ + σW or if it is only of the form
σW [28, Thm. 6.11], which suggests that σ <

√
n is necessary in order for a good

estimator to exist. This can be made precise by considering the simpler problem of Z2

synchronization,4 where we have the stronger knowledge that zk ∈ {±1}. For the Z2

synchronization problem, non-rigorous arguments that use techniques from statistical

4The problem is formulated as follows: z ∈ {−1, 1}n, noise W is a real random matrix, e.g., a
Gaussian Wigner matrix, and the goal is to recover z from C = zzT + σW .
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mechanics show σ =
√
n is the information-theoretic threshold for mean squared esti-

mation error (MSE): when σ is above this threshold, no estimator is able to beat the
trivial estimator x = 0 as n → ∞ [19]. In [22], it was rigorously proved that σ =

√
n

is the threshold for a different notion of MSE. These results a fortiori imply, for phase
synchronization, that σ = O(

√
n) is necessary5 in order for an estimator to have non-

trivial MSE (better than the trivial estimator x = 0). It is also known that both the
eigenvector estimator and the MLE have nontrivial MSE as soon as σ <

√
n [10, 5, 19].

Whether the extra logarithmic factor is necessary to compute the MLE efficiently up
to the threshold remains to be determined.

To close this introduction, we state the relevance of the MLE x̂ as an estimator for
z.

Theorem 3. Let x̂ be a global optimum of (P), with global phase such that z∗x̂ = |z∗x̂|.
Then, deterministically,

‖x̂− z‖2 ≤ 4σ
‖W‖2√

n
. (3)

Furthermore, if σ = O(
√
n/ log n), then with high probability for large n,

‖x̂− z‖2 = O(σ), and (4)

‖x̂− z‖∞ = O(σ
√

log n/n). (5)

The bound on `2 error appears in [2, Lem. 4.1], while the bound on `∞ error improves
on [2, Lem. 4.2] as a by-product of the results obtained here. We remark that σ =
O(
√
n/ log n) is necessary for a nontrivial `∞ error (smaller than 1, which is trivially

attained by x = 0) due to [2, 1].6

It is important to state that the eigenvector estimator mentioned above is order-
wise as good an estimator as the MLE, in that it satisfies the same error bounds as in
Theorem 3 up to constants. From the perspective of optimization, the main merit of
Theorems 1 and 2 is that they rigorously explain the empirically observed tractability
of (P) despite non-convexity.

The difficulty: statistical dependence

As will be argued momentarily, the main difficulty in the analysis is proving a sharp
bound for ‖Wx̂‖∞, which involves two dependent random quantities: the noise matrix
W and a solution x̂ of (P), which is a nontrivial function of W . While in the `2-norm

5Suppose the prior is supported and uniformly distributed on {−1, 1}n. By independence, the
Bayes-optimal estimator for phase synchronization is a function of Re(C), so we can use information-
theoretic results about the Z2 synchronization problem.

6In [2, 1], it is suggested information-theoretically exact recovery with high probability is impossible
for synchronization over Z2 if σ >

√
n/(2− ε) log n. We can use this result to show O(

√
n/ log n) is

necessary for a nontrivial `∞ error by putting a uniform prior on {−1, 1}n.
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the simple bound ‖Wx̂‖2 ≤ ‖W‖2‖x̂‖2 is sharp, no such simple argument is known to
bound the `∞-norm. The need to study perturbations in `∞-norm appears inescapable,
as it arises from the entry-wise constraints of (P) and the aim to control ‖x̂ − z‖∞ as
well as ‖x̂− z‖2.

This issue has already been raised in [2, §4], which focuses on the relaxation (SDP).
Specifically, in [2, eq. (4.10)], it is shown that the relaxation is tight in particular if

n− 216σ2 − 3σ
√
n− σ‖Wx̂‖∞ > 0, (6)

where x̂ is an optimum of (P) which is then unique up to phase. From this expression,
it is apparent that if σ = O(

√
n/ log n), it only remains to show that ‖Wx̂‖∞ =

O(
√
n log n) to conclude that solving (SDP) is equivalent to solving (P). This reduces

the task to that of carefully bounding this scalar, random variable:

‖Wx̂‖∞ = max
k∈[n]
|w∗kx̂|, (7)

where w1, . . . , wn ∈ Cn are the columns of the random noise matrix W . If W and x̂ were
statistically independent, this would be bounded with high probability by O(

√
n log n),

as desired. Indeed, since the vector x̂ contains only phases and since the Gaussian
distribution is isotropic (the distribution is invariant under rotation in the complex
plane), w∗kx̂ would be distributed identically to a sum of n − 1 independent standard
complex Gaussians. The modulus of such a variable concentrates close to

√
n. Taking

the maximum over k ∈ [n] incurs an additional O(
√

log n) factor.
Unfortunately, the intricate dependence between W and x̂ has not been satisfacto-

rily resolved in previous work, where only suboptimal bounds have been produced for
‖Wx̂‖∞, eventually leading to suboptimal bounds on the acceptable noise levels σ [2,
eq. (4.11)][8, Lemma 12][23, Proof of Thm. 2].

As a key step to overcome this difficulty, we (theoretically) introduce auxiliary
problems to transform the question of controlling ‖Wx̂‖∞ into one about the sensitivity
of the optimum x̂ to perturbations of the data C. This is outlined next.

Introducing auxiliary problems to reduce dependence

Since the main concern in controlling ‖Wx̂‖∞ is the statistical dependence between W
and x̂, we introduce n new optimization problems of the form (P), where, for each value
of m in [n], the cost matrix C is replaced by

C(m) = zz∗ + σW (m), with W
(m)
k` = Wk`1{k 6=m}1{` 6=m}, (8)

where 1 is the indicator function. In other terms, W (m) is W with the mth row and
column set to 0, so that C(m) is statistically independent from wm. As a result, a global
optimum x̂(m) of (P) with C set to C(m) is also independent from wm. This usefully
informs the following observation, where the global phases of x̂ and x̂(m) are chosen so
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that x̂∗x̂(m) = |x̂∗x̂(m)|:

|(Wx̂)m| = |w∗mx̂| ≤ |w∗mx̂(m)|+ |w∗m(x̂− x̂(m))|
≤ |w∗mx̂(m)|+ ‖wm‖2‖x̂− x̂(m)‖2. (9)

Crucially, independence of wm and x̂(m) implies the first term is O(
√
n log n) with high

probability, by the argument laid out after eq. (7). In the second term, a standard
concentration argument shows ‖wm‖2 = O(

√
n) with high probability—see Section 3.

Hence, to control ‖Wx̂‖∞, it is sufficient to show that, with high probability for all m,
the solutions x̂ and x̂(m) are within distance O(1) of each other, in the `2 sense.

This claim about the proximity of x̂ and x̂(m) turns out to be a delicate statement
about the sensitivity of the global optimum of (P) to perturbations of only measure-
ments which involve the mth phase, zm. To establish it, we need precise control of
the properties of the optima of (P). To this end, we develop a strategy to track the
properties of sequences which converge to x̂ as well as to x̂(m) for each m.

To ease further discussion about `2 distances up to phase, consider the following
distance-like function:

d2(x, y) := min
θ∈R
‖xeiθ − y‖2, x, y ∈ Cn.

Restricted to complex vectors of given `2-norm or to complex vectors with unit-modulus
entries, d2 is a true metric on the quotient space induced by the equivalence relation ∼:

x ∼ y ⇐⇒ ∃ θ : x = yeiθ. (10)

Thus, d2 is appropriate as a distance between estimators for (P) and as a distance
between candidate eigenvectors, being invariant under global phase shifts. Moreover,
the quotient space is a complete metric space with d2. More details will follow.

Coming back to our problem, the core argument is an analysis of recursive error
bounds of GPM, and this analysis leads to the proof that all iterates stay in N :=
N1 ∩N2, where

N1 = {x ∈ Cn : ‖Wx‖∞ ≤ κ2
√
n log n}, (11)

N2 = {x ∈ Cn : d2(x, z) ≤ κ3
√
n}, (12)

and κ2, κ3 > 0 are some constants (determined in Section 4). On one hand, we show
that, with high probability, the nonlinear mapping T x = P(Cx) iterated by GPM
is Lipschitz continuous over N with constant ρ ∈ (0, 1). On the other hand, we show
that, with high probability, all iterates of GPM are inN . Together, these two properties
imply that, with high probability, T is a contraction mapping over the set of iterates of
GPM. By a completeness argument, this implies that the sequence of iterates of GPM
converges in N . The roadmap of our proof is the following:

1. x0 ∈ N (this requires developing new `∞ bounds for eigenvector perturbation—see
Theorem 8),
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2. xt ∈ N =⇒ xt+1 ∈ N (this is done in two stages,7 for small and large t—see
Theorems 15 and 17),

3. T is ρ-Lipschitz with ρ < 1 on N with respect to d2 (by completeness, this implies
limt→∞ x

t = x∞ ∈ N—see Lemma 14), and

4. any fixed point x∞ of T in N is a global optimum of (P) (see Lemma 18).

On top of securing results about GPM, this will imply that (P) admits a solution
x̂ = x∞ which is in N and hence, a fortiori, satisfies ‖Wx̂‖∞ ≤ κ2

√
n log n, yielding

the announced results about the SDP relaxation as per (6).
As hinted above, we follow this reasoning not only for the sequence xt which is

expected to converge to x̂, but also for auxiliary sequences xt,m expected to converge
to x̂(m). It is only through exploitation of the strong links between these sequences and
reduction in statistical dependence they offer that we are able to go through with the
proof program above.

Note that T might not be a contraction mapping on all of N since we do not show
that T (N ) ⊂ N . Nevertheless, T is a contraction on the iterates, which is sufficient
for our purpose; henceforth, we say the mapping has the local contraction property.

We remark that, in the study of high-dimensional M -estimation [4], the idea of
introducing auxiliary problems (and associated optimizers) is also used to tackle de-
pendence, and it yields powerful analysis. While sharing similarity with that approach,
our analysis relies on studying n auxiliary sequences of iterates, as will be discussed
soon—also see Figure 1.

As a necessary and useful warm-up, we first focus on the task of showing that x0 (a
leading eigenvector of C) is in N , via analysis of the related x0,m (leading eigenvectors
of C(m)). This requires sharp bounds for d2(x

0, x0,m). The outcome of this analysis is
an eigenvector perturbation bound in the `∞-norm, which is another motivation for the
introduction of auxiliary problems.

First analysis: an `∞ perturbation bound for eigenvectors

As the initializer of Algorithm 1, the leading eigenvector of C has several good properties
necessary for analysis, and we will discuss them in depth in Section 3. Theorems and
lemmas in this direction are stated separately and proved first, because their proof is
illustrative of the techniques deployed to prove results about (P). Most notably, we
prove a sharp `∞ perturbation bound for leading eigenvectors.

Theorem 4. If σ = O(
√
n/ log n), then, with high probability for large n, a leading

eigenvector x0 of the data matrix C (2) scaled such that ‖x0‖2 =
√
n satisfies

‖x0 − z‖∞ = O(σ
√

log n/n), (13)

7To be precise, for large t, we consider a slightly larger N (the constants in (11) and (12) are larger),
and prove that all xt stay in this larger region. This is a technical issue which does not affect the
overall plan.
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where the global phase of x0 is suitably chosen (e.g., such that z∗x0 = |z∗x0|.)

The crux of the proof lies in a sharp bound on d2(x
0, x0,m). This is obtained by

using (a suitable version of) the Davis–Kahan theorem (Lemma 11): when σ �
√
n,

d2(x
0, x0,m) = O

(
σ‖(W −W (m))x0,m‖2

n

)
= O(σ

√
log n/n), whereas

d2(x
0, z) = O

(
σ‖Wz‖2

n

)
= O(σ).

To reach the first conclusion, we view x0 as the perturbed version of x0,m due to per-
turbation σ(W −W (m)). Note that W −W (m) has nonzero entries only in the mth row
and mth column, and they are independent of x0,m. Compared to the full perturbation
σW which perturbs the eigenvector z to x0, the matrix σ(W −W (m)) results in a much
smaller d2 distance between x0,m and x0. Notice that, as will be detailed later, these
results combined with the reasoning of (9) imply that x0 is in N , as desired.

Comparing Theorem 4 to Theorem 3 readily shows that the eigenvector x0 is an ex-
cellent estimator for z (up to the fact that its entries are not necessarily unit-modulus,
which can be easily corrected—see Theorem 8). Further efforts in this paper are dedi-
cated to characterizing the performance and tractability of the MLE x̂.

Analysis of iterations: tracking n auxiliary sequences

While analyzing the eigenvector x0 is relatively straightforward, the optima of (P)
are more difficult to tame due to the unit-modulus constraints. As hinted above, the
novel idea we develop in this paper is to track the sequences {xt,m}∞t=0 produced by
Algorithm 1 with inputs C(m) (8) instead of C, for each m ∈ [n]. These auxiliary
sequences—which only serve for the analysis and are not (and could not be) computed
in practice—enjoy the crucial proximity property desired in the previous subsection—
see Figure 1.

Indeed, we will show by induction that there exist absolute constants κ1, κ2, κ3 such
that, for all m and for t = 0, 1, 2, . . .,

1. d2(x
t, xt,m) ≤ κ1, proximity property

2. xt ∈ N1 = {x ∈ Cn : ‖Wx‖∞ ≤ κ2
√
n log n},

3. xt ∈ N2 = {x ∈ Cn : d2(x, z) ≤ κ3
√
n}.

contraction region

The proximity and local contraction properties8 are both crucial and complementary
for the analysis: the proximity property allows to control `∞ quantities in the presence
of the random matrix W despite statistical dependence (as shown in (9)), and the local

8Formally, we only prove xt ∈ N ; but proximity implies xt,m is also in a (slightly larger) contraction
region, with different constants κ2, κ3.
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Figure 1: Sequence {xt}∞t=0 (in black) produced by Algorithm 1, and n auxiliary se-
quences {xt,m}∞t=0 (in red) produced (conceptually) by Algorithm 1 with modified in-
puts. Crucial properties along the paths: (i) proximity: xt and xt,m stay close; (ii) local
contraction: xt and xt,m remain in the contraction region N with high probability and
converge in it.

contraction property is used to establish (14) below, making sure d2(x
t, xt,m) remains

small.
For the high-level idea, consider the nonlinear operators T and T (m) implicitly

defined by Algorithm 1 so that xt+1 = T xt and xt+1,m = T (m)xt,m. If we can show
that T is ρ-Lipschitz with constant ρ ∈ (0, 1) with respect to d2, then a recursive error
bound follows:

d2(x
t+1, xt+1,m) = d2(T xt, T (m)xt,m)

≤ d2(T xt, T xt,m) + d2(T xt,m, T (m)xt,m)

≤ ρ · d2(xt, xt,m) + discrepancy error. (14)

This ensures d2(x
t, xt,m) does not accumulate with t, provided the discrepancy error—

which is caused by the difference between T and T (m)—is small enough. This is assured
with high probability, because C−C(m) is independent of xt,m, causing the discrepancy
error to be O(σ

√
log n/n)—considerably smaller than d2(x

t+1, z) = O(σ). In spirit,
this is the same argument as in the analysis of the eigenvector estimator.

The above recursive error bound hinges on the other important property, that is,
xt staying in the contraction region. Crucially, to establish xt ∈ N1, we need a tight
bound on ‖Wxt‖∞. Fortunately, we have seen how to control this quantity in (9): for
any m ∈ [n],

|(Wxt)m| ≤ |w∗mxt,m|+ ‖wm‖2 · d2(xt, xt,m). (15)

This, in turn, requires a proximity result for d2(x
t, xt,m). This insight naturally moti-

vates an analysis of each iteration by induction.
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There are two technical issues we briefly address before ending this introduction
with a remark.

The first issue concerns the probabilistic argument in the proof. In (14) and (15),
we invoke concentration inequalities to obtain tight bounds. However, since there
is a (small) probability that such inequalities fail, we cannot use union bounds for
t = 1, 2, . . ., which is infinite. To overcome this obstacle, we use concentration inequal-
ities only for the first T = O(n2) iterations, and resort to a deterministic analysis for
iterations t > T . The critical observation is that, d2(x

t+1, xt) decays exponentially for
t ≤ T due to contraction, so the amount of update is tiny after T iterations. Using
another inductive argument, we can secure exponential decay for t > T as well. The
rationale is that we already established good properties about xT , and d2(x

t, xT ) is
tiny for t > T , so we can easily relate xt to xT and show xt also has good properties.
Essentially, xt remains in a contraction region with slightly larger constants.

The second issue is identifying the limit x∞ = limt→∞ x
t with a solution of (P).

We will verify the optimality and uniqueness (up to phase) of x∞ via a known dual
optimality certificate S = Re{ddiag(Cx∞(x∞)∗)} − C [2].

We close with a remark about the initializer x0 (and x0,m). Algorithm 1 uses the
leading eigenvector of C for initialization, and our analysis relies on `∞ perturbation
bounds to verify the base case of the induction. However, we point out that, even in the
absence of such perturbation results, we could set x0 = x0,m = z in theory, deduce that
x̂ ∈ N and thus prove Theorem 1 about the SDP relaxation. In other words, even if we
leave out the discussion about the initializer altogether, there is still enough material
to secure tightness of the SDP relaxation. The proof augmented with the analysis of
the eigenvector perturbation has the advantage of also providing a statement about
Algorithm 1 which is actually runnable in practice.

2 Main results

In this section we will state our main theorems formally. The assumption on random
noise W will also be relaxed to a broader class of random matrices. To begin with, let
us first clarify the “up to phase” statements in Section 1.

The quotient space For any θ ∈ R, whether the true phases are z or zeiθ does
not affect the measurements C (2). As a result, the available data are insufficient to
distinguish z from zeiθ. Clearly the program (P) is invariant to global phase shifts
as well. It thus makes sense to ignore the global phase in defining distances between
estimators. A reasonable notion of `2 error then becomes

d2(x, y) = min
θ∈R
‖xeiθ − y‖2 =

√
‖x‖22 + ‖y‖22 − 2|x∗y|, (16)

10



where the optimal phase eiθ is the phase (Arg) of x∗y. Similarly, a notion of `∞ error
can be defined:

d∞(x, z) = min
θ∈R
‖xeiθ − z‖∞. (17)

Formally, one can partition all points in Cn into equivalence classes via the equivalence
relation ∼ (10). The resulting quotient space Cn/∼ contains the equivalence classes
[x] = {xeiθ : θ ∈ R} for all x ∈ Cn. Specifically, the feasible set of (P),

Cn
1 := {x ∈ Cn : |x1| = · · · = |xn| = 1}, (18)

reduces to Cn
1/∼ under this equivalence relation. It is easily verified that d2 defines a

distance on Cn
1/∼. In particular, it satisfies the triangular inequality (where d2(x, y) is

understood to mean d2([x], [y])):

∀x, y, z ∈ Cn
1 , d2(x, y) = min

θ1,θ2
‖xeiθ1 − z + z − yeiθ2‖2

≤ min
θ1
‖xeiθ1 − z‖2 + min

θ2
‖z − yeiθ2‖2 = d2(x, z) + d2(z, y).

Moreover, Cn
1/ ∼ is a complete metric space under d2 (see Theorem 17). Similarly,

d∞ is also a distance. As will be shown, the sequence {xt}∞t=1 described in Section 1
satisfies the local contraction property (see (14)) on the metric space (Cn

1/∼, d2), hence
converges to a fixed point which is exactly x̂ (understood as [x̂]).

The noise matrix In Section 1 we assume that W has independent standard complex
Gaussian variables above its diagonal. However, this restricted assumption is only for
expository convenience, and can be relaxed to the class of Hermitian Wigner matrices
with sub-gaussian entries. Statements about Algorithm 1 and about tightness of the
SDP relaxation continue to hold, although of course the solution of (P) now no longer
necessarily corresponds to the MLE.

The class of sub-gaussian variables subsumes Gaussian variables, but has one defin-
ing feature similar to Gaussian variables, that is, the tail probability decaying no slower
than Gaussian variables. In our model, each entry of W satisfies the tail bound

P(|ξ| > t) ≤ exp(1− t2/K2) (19)

for both real and imaginary parts, where K > 0 is an absolute constant. Formally,
we assume the Hermitian matrix W satisfies the following: {Re(Wk`), Im(Wk`)}k<` are
jointly independent, have zero mean, and satisfy the sub-gaussian tail bound (19); the
diagonal elements are zero, and W`k = Wk` for any k < `. Note there are equivalent
definitions of sub-gaussian variables (up to constants) [36].

This random model is a much richer class of noise matrices, containing the Gaus-
sian model introduced in Section 1 as a special case. Each random variable in
{Re(Wk`), Im(Wk`)}k≤` can be, for example, a symmetric Bernoulli variable, any other
centered and bounded variable, or simply zero.
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SDP approach The SDP approach tries to solve (P) via its convex semidefinite
relaxation (SDP). It is a relaxation of (P) in the following sense. For any feasible
x ∈ Cn, the corresponding matrix X = xx∗ is feasible for (SDP). Likewise, any feasible
matrix X of rank 1 can be factored as X = xx∗ such that x is feasible for (P). Thus, the
relaxation consists in allowing solutions of rank more than 1 in (SDP). Consequently,
if (SDP) admits a solution of rank 1, X = x̂x̂∗, then the corresponding x̂ is a global
optimum for (P). Furthermore, if the rank-1 solution of (SDP) is unique, it can be
recovered in polynomial time. For this reason, the regime of interest is one where (SDP)
admits a unique solution of rank 1.

The following theorem—a statement of Theorem 1 which holds in the broadened
noise model—closes the gap in previous papers [3, 2, 23, 8].

Theorem 5. There exists an absolute constant c0 > 0 such that, if σ ≤ c0
√
n/ log n,

then, with probability 1 − O(n−2), the semidefinite program (SDP) admits a unique
solution x̂x̂∗ where x̂ is the unique global optimum of (P) up to phase.

Note that the exponent 2 in the failure probability O(n−2) can be replaced by any
positive numerical constant, only affecting other absolute constants in the theorem (and
all other theorems).

GPM approach The generalized power method (Algorithm 1) is an iterative algo-
rithm similar to the classical power method, but instead of projecting vectors onto
a sphere after matrix-vector multiplication Cxt−1, it extracts the phases from Cxt−1,
which is an entry-wise projection. It is much faster than SDP, and converges linearly
to a limit, which is the optimum x̂ up to phase (optimality is stated in Theorem 7).
The next theorem is a precise version of Theorem 2.

Theorem 6. There exists an absolute constant c0 > 0 such that, if σ ≤ c0
√
n/ log n,

then, with probability 1 − O(n−2), the sequence {xt} produced by Algorithm 1 has a
linear convergence rate to some x̂ ∈ Cn

1 (up to phase):

d2(x
t, x̂) ≤ 22−t√n, t = 0, 1, 2 . . .

The proof is based on induction: in each iteration, we will establish the proximity
property and the contraction property for xt. The proof is simply a rigorous justification
of the heuristics we discussed in Section 1. It also leads to `2 and `∞ error bounds for
x̂. The following theorem is a precise version of Theorem 3.

Theorem 7. Under the same conditions and notation as in Theorem 6, with probability
1−O(n−2), x̂ is the unique optimum of (P) up to phase. If we choose the global phase
of x̂ such that x̂∗z = |x̂∗z|, then

d2(x̂, z) = ‖x̂− z‖2 ≤ C0σ, and d∞(x̂, z) ≤ ‖x̂− z‖∞ ≤ C0σ
√

log n/n,

where C0 > 0 is an absolute constant.
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Eigenvector estimator We denote, henceforth, the leading eigenvector of C by x̃,
and similarly the leading eigenvector of C(m) by x̃(m). Note that x̃ and x0 (similarly
x̃(m) and x0,m) are identical.9 We highlight the significance of the eigenvector estimator
in the following theorem, which is a precise version of Theorem 4.

Theorem 8. Let x̃ be a leading eigenvector of C with scale and global phase chosen
such that ‖x̃‖2 =

√
n and x̃∗z = |x̃∗z|. There exists an absolute constant c′0 > 0 such

that, if σ < c′0
√
n/ log n, then, with probability 1−O(n−2),

d2(x̃, z) = ‖x̃− z‖2 ≤ C ′0σ, and d∞(x̃, z) ≤ ‖x̃− z‖∞ ≤ C ′0σ
√

log n/n,

where C ′0 > 0 is some absolute constant. Moreover, the projected leading eigenvector,
namely, Px̃, satisfies the same bounds with C ′0 replaced by 2C ′0.

The eigenvector estimator has been studied extensively in recent years, prominently
in the statistics literature [27, 20], under the spiked covariance model. While the per-
turbation x̃ − z is usually studied under `2 norms, the `∞ norm received much less
attention. A recent `∞ perturbation result appeared in [16], but it is a deterministic
bound and would produce a suboptimal result here.

3 Proof organization for eigenvector perturbations

We begin with some concentration lemmas, which will also be useful in Section 4. Recall
the definition of W (m) (8). We also define ∆W (m) := W −W (m), which has nonzero
entries only in the mth row and mth column, given by wm.

Concentration lemmas

The first concentration result is standard and is a direct consequence of, for example,
Proposition 2.4 in [32].

Lemma 9. With probability 1−O(n−2), the following holds for any m ∈ [n]:

‖W‖2 ≤ C ′2
√
n, ‖W (m)‖2 ≤ C ′2

√
n, ‖∆W (m)‖2 ≤ C ′2

√
n, ‖wm‖2 ≤ C ′2

√
n, (20)

where C ′2 > 0 is an absolute constant.

Let Sn−1 be the set of unit vectors in Cn. Suppose for each m ∈ [n] we have a
finite (random) set U (m) ⊂

√
nSn−1 whose elements are independent of ∆W (m), and

the cardinality of U (m) is not random. Concentration inequalities enable us to bound
‖∆W (m)u‖2 uniformly over all u ∈ U (m) with high probability. We state this formally
in the next lemma.

9We use notation x̃ (similarly x̃(m)) to emphasize the leading eigenvector as an estimator, as opposed
to merely an initializer.
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Lemma 10. Suppose |U (m)| ≤ 3n2 for all m ∈ [n]. Let um be the mth entry of a vector
u ∈ U (m) and denote Mm = maxu∈U(m) |um|. Then, with probability 1−O(n−2),

max
u∈U(m)

‖∆W (m)u‖2 ≤ C ′1
√
n log n+ C ′1

√
nMm, ∀m ∈ [n], (21)

where C ′1 > 0 is an absolute constant. In particular, we can choose C ′1 > 0 such that,
if U (m) ⊂ Cn

1 (defined in (18)), then, with probability 1−O(n−2),

max
m∈[n]

max
u∈U(m)

‖∆W (m)u‖2 ≤ C ′1
√
n log n. (22)

A straightforward application of Hoeffding’s inequality for sub-gaussian vari-
ables [36] shows maxu∈U(m) |w∗mu| = O(

√
n log n) with probability 1−O(n−2). Lemma 10

is more general, because |w∗mu| ≤ ‖∆W (m)u‖2, and it will be useful in later proofs.
For the eigenvector problem, we will choose U (m) = {ũ(m)} (a singleton) where

ũ(m) is a leading eigenvector of C(m) = zz∗ + σW (m) scaled to have norm
√
n. For

problem (P), for each m ∈ [n], the set U (m) will be {xt,m}Tt=0, namely, the first T + 1
iterates of Algorithm 1 with input C(m), where T := 3n2−1. By construction, elements
of the set U (m) are independent of ∆W (m).

Introducing auxiliary eigenvector problems

As is well known, the leading eigenvectors of C are the solutions to the following
optimization problem (note that this problem is a relaxation of (P)):

max
x∈Cn

x∗Cx

s.t. ‖x‖2 =
√
n.

(P̃)

We aim to show that a solution x̃ of (P̃) is close to z in the sense of d∞. As before, the
major difficulty of the analysis is obtaining a sharp bound on ‖Wx̃‖∞. This is apparent
when we write λ1(C) for the leading eigenvalue of C and use Cx̃ = λ1(C)x̃ to obtain
(choosing the global phase of x̃ such that z∗x̃ = |z∗x̃|):

|x̃m − zm| =
∣∣∣∣(Cx̃)m
λ1(C)

− zm
∣∣∣∣ ≤ ∣∣∣∣ |z∗x̃|λ1(C)

− 1

∣∣∣∣+
σ|(Wx̃)m|
λ1(C)

, ∀m ∈ [n].

While it is easy to analyze λ1(C) and |z∗x̃|, bounding ‖Wx̃‖∞ requires more work.
For m ∈ [n], let x̃(m) be the solution to an auxiliary problem (P̃) in which C is

replaced by C(m) = zz∗ + σW (m)—thus, x̃(m) is equivalent to x0,m. Following the same
strategy as in (9), we can now split Wx̃ into two terms and try to bound separately:

|(Wx̃)m| = |w∗mx̃| ≤ |w∗mx̃(m)|+ ‖wm‖2 · d2(x̃, x̃(m)) (23)

where |w∗mx̃(m)| is the dominant term, and can be easily bounded—see the paragraph
below Lemma 10; and ‖wm‖2 · d2(x̃, x̃(m)) = O(

√
n d2(x̃, x̃

(m))) is the higher-order dis-
crepancy error, which is the price we pay for replacing x̃ with x̃(m).
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The crucial point is that d2(x̃, x̃
(m)) = O(σ

√
log n/n), which is much smaller than

d2(x̃, z) = O(σ). This is because the difference between x̃ and x̃(m) results from a
sparse perturbation ∆W (m), whose effect on the leading eigenvector is small. This
point is formalized in the next lemma, which follows from [14].10

Lemma 11 (Davis–Kahan sin Θ Theorem). Suppose that A,E ∈ Cn×n are Hermitian
matrices, and Ã = A + E. Let δ := λ1(A) − λ2(A) be the gap between the top two
eigenvalues of A, and u, ũ be leading eigenvectors of A and Ã respectively, normalized
such that ‖u‖2 = ‖ũ‖2 =

√
n. If δ > ‖E‖2, then

d2(ũ, u) ≤
√

2 ‖Eu‖2
δ − ‖E‖2

. (24)

The benefit of this perturbation result is pronounced when E is a sparse ran-
dom matrix: if we set A = C(m), E = σ∆W (m), then the numerator in (24) be-
comes

√
2σ‖∆W (m)x̃(m)‖2 = O(σ

√
n log n) with high probability (by Lemma 10 and

a bound on Mm). If, however, we set A = zz∗, E = σW , then the numerator is√
2σ‖Wz‖2 = O(σn) with high probability. This is why d2(x̃, x̃

(m)) is so small and
(23) yields a tight bound.

We remark that in many later uses of perturbation results (e.g., [37, 29]), especially
in statistics and theoretical computer science, it is common to invoke a variant of the
Davis–Kahan theorem in which ‖Eu‖2 is replaced by ‖E‖2 in (24), which would lead to
a suboptimal result here. This is because ‖Eu‖2 � ‖E‖2 with high probability when
E is a random sparse matrix and ‖u‖∞ is not large. Our analysis here is an example
that shows the merit of using the more precise version of the Davis–Kahan theorem.

4 Proof organization for phase synchronization

We begin with some useful lemmas about the local contraction property. These will
prove useful to establish the desired properties of the iterates xt of Algorithm 1, by
induction. These properties extend to the limit x∞ = limt→∞ x

t by continuity. Finally,
we will use a known optimality certificate for (SDP) to validate x∞.

Local contraction lemmas

First let us denote the rescaled matrix C/n by L, which can also be viewed as a linear
operator in Rn:

Lx :=
1

n
Cx =

z∗x

n
z +

σ

n
Wx, ∀x ∈ Cn.

This is a linear combination of z (signal) and Wx (noise). When σ‖W‖2 is small
compared to n, L is Lipschitz continuous on the sphere around z, with respect to d2.

10By Davis-Kahan Theorem and Weyl’s inequality, sin θ(ũ, u) ≤ ‖Eu‖2/
√
n (δ − ‖E‖2). Thus, the

lemma follows from d2(ũ, u)2/n = 2− 2|ũ∗u|/n = 2− 2 cos θ(ũ, u) ≤ 2 sin2 θ(ũ, u).
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Lemma 12. Suppose ε ∈ (0, 1/2), and x, y ∈
√
nSn−1, with d2(x, z) ≤ ε

√
n, d2(y, z) ≤

ε
√
n. Then,

d2(Lx,Ly) ≤
(

6ε+
σ‖W‖2
n

)
d2(x, y). (25)

This lemma is instrumental in establishing the key local contraction property
(Lemma 14). It is related to the contraction mapping theorem, in which an iteratively
defined sequence converges to a fixed point. We could use this lemma to easily show
(using [23, Proof of Thm. 2] for example) that the normalized version L̄x := Lx/‖Lx‖2
is a contraction mapping in a neighborhood of z on

√
nSn−1—L̄ is the power method

operator.
However, our problem is more complicated due to the unit-modulus constraints

in (P) which call for the entry-wise operator P(·) in Algorithm 1. Consequently, an
analysis of Algorithm 1 requires entry-wise bounds on key quantities in each iteration,
which are more involved than `2 bounds. In the next two lemmas, we will see which
entry-wise bounds we need in order to establish the local contraction property.

Recall that P : Cn → Cn
1 maps each entry of a vector to the unit circle in the

complex plane:

∀ k ∈ [n], (P(x))k =

{
xk/|xk| if xk 6= 0,

1 if xk = 0.

The case xk = 0 will not appear in the proofs because it can be excluded with high
probability. Henceforth, we also drop parentheses in P(x) for simplicity.

In the next two lemmas, we establish the local contraction property of PL (the
GPM operator) under the distance d2. Under certain conditions on the input points,
PL shrinks the d2 distance between points by a ratio in (0, 1). In a rigorous sense, this
does not imply that PL is a contraction mapping, because the output points do not
necessarily satisfy the conditions themselves. However, for the sequences of interest,
the conditions are satisfied with high probability and this is all we need to ascertain
convergence—see Theorems 15 and 17.

Lemma 13. Suppose ε ∈ [0, 1). For any x, y ∈ C, if |x| ≥ 1− ε, |y| ≥ 1− ε, then∣∣∣∣ x|x| − y

|y|

∣∣∣∣ ≤ (1− ε)−1|x− y|. (26)

As a consequence, for any w, v ∈ Cn with mink |wk| ≥ 1− ε and mink |vk| ≥ 1− ε,

d2(Pw,Pv) ≤ (1− ε)−1d2(w, v). (27)

This lemma says P is Lipschitz continuous (in the quotient space Cn/∼) in a region
where |wk| and |zk| are uniformly lower bounded. The composition PL, will have the
local contraction property as long as the contraction ratio in (25) is small enough, and
the ε in (27) is not too close to 1. The next lemma formalizes this result. For later
use in the proofs, we also introduce an additional notation: for a Hermitian matrix
W ′ ∈ Cn×n, we let L′ = (zz∗ + σW ′)/n.
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Lemma 14. Suppose x, y ∈
√
nSn−1, K1, K2 > 0 and ε1, ε2 ∈ (0, 1/2) with

d2(x, z) ≤ ε1
√
n, d2(y, z) ≤ ε2

√
n, (28)

‖Wx‖∞ ≤ K1

√
n log n, ‖W ′y‖∞ ≤ K2

√
n log n. (29)

Let ε = max{ε21/2 +K1σ
√

log n/n, ε22/2 +K2σ
√

log n/n}. If ε < 1, then

d2(PLx,PL′y) ≤ (1− ε)−1d2(Lx,L′y). (30)

In particular, when L = L′, if ε < 1 we have

d2(PLx,PLy) ≤ ρ · d2(x, y), (31)

where ρ = (1− ε)−1(6 max{ε1, ε2}+ σ‖W‖2/n).

This deterministic lemma states that T := PL has the local contraction property
in a region where (28) and (29) are satisfied, as long as ρ < 1. Note that we have to
require `∞ bounds in (29) because of the entry-wise nature of P . In the next subsection,
we use this lemma to show that, with high probability, d2(T xt, T xt,m) is controlled by
ρ · d2(xt, xt,m) where the ratio ρ lies in (0, 1).

Convergence analysis

Let us denote the rescaled matrix C(m)/n by L(m), where m ∈ [n]. Also let T (m) =
PL(m). Recall that x0 is identical to the leading eigenvector x̃ of L, and x0,m is identical
to the leading eigenvector x̃(m) of L(m); and they are normalized such that ‖x0‖2 =
‖x0,m‖2 =

√
n. Algorithm 1 iterates xt+1 = T xt. The auxiliary sequences defined

for theoretical analysis (not implemented in practice) follow a similar update rule:
xt+1,m = T (m)xt,m (Figure 1). Note that, for all t ≥ 1, each entry of xt and xt,m has
unit modulus, i.e., xt, xt,m ∈ Cn

1 , but x0, x0,m are not in Cn
1 in general.

As shown in Lemma 14, the local contraction property of T hinges on the condition
that the vectors to be updated are in the contraction region N = N1

⋂
N2, where

N1 and N2 are defined in (11) and (12). The absolute constants κ2, κ3 > 0 in their
definitions will be specified in Theorem 15.

In order to show the iterates xt stay in N , we analyze the dependence between the
random quantities T and xt by making use of the auxiliary sequences xt,m, as illustrated
by eq. (15). As shown in the analysis of eigenvectors in Section 3, we know d2(x

0, x0,m) is
small. Owing to the local contraction property (Lemma 14), we can prove the recursive
error bound (14), which ensures that d2(x

t,m, xt) is bounded throughout all iterations.
The analysis is based on induction.

As discussed in Section 1, a technical issue is that we cannot use concentration results
infinitely many times for all t = 1, 2, . . ., because we use the union bound to achieve a
high probability result. We study first T +1 := 3n2 iterates using concentration results,
and resort to deterministic analysis for later iterations. In the following theorems,
constants C ′1, C

′
2 are those constants in Lemmas 9 and 10.
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Theorem 15. Suppose n ≥ 2 and σ satisfies

σ ≤ min

{ √
n

120
√

2C ′2
,

1

240κ2

√
n

log n

}
. (32)

Then, with probability 1−O(n−2), for any t in {0, 1, 2, . . . , T},

d2(x
t,m, xt) ≤ κ1, ∀m ∈ [n], (33)

‖Wxt‖∞ ≤ κ2
√
n log n, (34)

d2(x
t, z) ≤ κ3

√
n. (35)

Here κ1, κ2, κ3 are absolute constants: κ1 = κ3 = 1/60 and κ2 = 4C ′1 + 2C ′2κ1.

Note that (34) and (35) guarantee {xt}Tt=0 ⊂ N . Considering (14) from our proof
map,

d2(x
t+1,m, xt+1) ≤ d2(T xt,m, T xt) + d2(T (m)xt,m, T xt,m).

Assuming (34) and (35) for the case t, by the local contraction property (Lemma 14),
the first term is bounded by ρ · d2(xt,m, xt) where ρ < 1. By the concentration bounds
(Lemma 10), the second term is bounded by O(σ‖∆W (m)xt,m‖2/n) = O(σ

√
log n/n) =

O(1) with high probability. Therefore, it is expected that (33) continues to hold for the
case t+ 1.

This proximity property (33) is crucial to show that xt+1 stays in the local region N .
To bound ‖Wxt+1‖∞, we use the concentration bounds (Lemma 10) and the proximity
property (33) in the inequality (15).

To bound d2(x
t+1, z), we derive an entry-wise bound on Lxt, then use Lemma 13.

This is straightforward once we have a bound on ‖Wxt‖∞.
The next result says d2(x

t+1, xt) decreases geometrically for t = 0, . . . , T − 1, which
is notably useful to analyze later iterations (t ≥ T ).

Theorem 16. Under the same assumption as in Theorem 15, with probability 1 −
O(n−2), we have

d2(x
t+1, xt) ≤ 1

2
d2(x

t, xt−1), ∀t ∈ {1, 2, . . . , T − 1}, (36)

and as a consequence, d2(x
T , xT−1) ≤ 22−T√n.

This result is similar to the contraction mapping theorem (though we cannot prove
T x ∈ N for all x ∈ N ), which says the sequence produced by a contraction mapping
is a Cauchy sequence and satisfies an inequality similar to (36). After T = 3n2 − 1
iterations, the update from xt to xt+1 is almost negligible. Although we no longer rely
on concentration results, we will show, by induction again, that d2(x

t, xT ) remains very
small for all t ≥ T . This ensures that xt stays in a slightly larger contraction region for
all t (with larger constants). The next theorem depends crucially on the conclusions of
Theorem 15 and 16.
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Theorem 17. Suppose ‖W‖2 ≤ C ′2
√
n, ‖WxT−1‖∞ ≤ κ2

√
n log n, d2(x

T−1, z) ≤ κ3
√
n

and σ is bounded as in Theorem 15. Also suppose d2(x
T , xT−1) ≤ κ3/4. Then,

d2(x
T+k, xT+k−1) ≤ 2−kd2(x

T , xT−1), ∀ k ≥ 0. (37)

Furthermore, in the quotient space Cn
1/∼ equipped with distance d2, the sequence [xt]

(t ≥ 1) converges to a limit [x∞] where x∞ ∈ Cn
1 is a fixed point of T , i.e., T x∞ = x∞.

This fixed point satisfies

d2(x
∞, z) ≤ 3

2
κ3
√
n, and ‖Wx∞‖∞ ≤ (κ2 + C ′2κ3)

√
n log n. (38)

Moreover,

Cx∞ = diag(µ)x∞, (39)

where µk = |(Cx∞)k|.

Under the stated conditions, this theorem is a deterministic result. By Theorems 15
and 16, the conditions hold with high probability (note that 22−T√n ≤ κ3/4 when n ≥
2). This theorem establishes the convergence of [xt] and, importantly, the bounds (38)
extend to the limit [x∞] by continuity. This strong characterization of the limit point
puts us in a favorable position to verify optimality.

Verifying optimality

To verify optimality of x∞, it is convenient to use a known dual certificate for the SDP
relaxation. The following is a combination of Lemmas 4.3 and 4.4 in [2].

Lemma 18. A feasible X for (SDP) is optimal if and only if

S(X) := Re{ddiag(CX)} − C (40)

is positive semidefinite, where ddiag sets all off-diagonal entries to zero. If furthermore
rank(S) = n − 1, then X is the unique solution of (SDP), it is of the form X = x̂x̂∗

and x̂ is the unique global optimum of (P) up to global phase.

To simplify notation, let x = x∞. Using the same developments as in [2, §4.4], we
verify that S = S(xx∗) is positive semidefinite and has rank n− 1 under condition (32)
on σ and the conclusions of Theorem 17, namely, inequalities (38) and equation (39).
By construction, Sx = 0. Hence, it is sufficient to verify that u∗Su > 0 for all u ∈ Cn

with ‖u‖2 = 1 and u∗x = 0:

u∗Su =
∑
k∈[n]

|uk|2 Re{(Cx)kxk} − u∗Cu

(39)
=
∑
k∈[n]

|uk|2|(Cx)k| − |u∗z|2 − σu∗Wu

≥ |z∗x| − σ‖Wx‖∞ − d22(z, x)− σ‖W‖2.
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(Owing to u∗x = 0, we used |u∗z| = |u∗(z − xeiθ)| ≤ ‖z − xeiθ‖2 = d2(z, x), with
appropriate choice of θ.) Now using |z∗x| = n− 1

2
d22(z, x) and assuming ‖W‖2 ≤ C ′2

√
n

and the bounds (38) hold, it follows that

u∗Su ≥ n− 3

2
d22(z, x)− σ‖Wx‖∞ − σ‖W‖2

≥ n− 27

8
κ23n− σ(κ2 + C ′2κ3)

√
n log n− σC ′2

√
n.

Assume σ satisfies inequality (32). Then, using κ1 = κ3 = 1/60 and κ2 = 4C ′1 +
2C ′2κ1 ≥ 2C ′2κ3 as in Theorem 15,

u∗Su ≥ n

(
1− 27

8
κ23 −

κ2 + κ2/2

240κ2
− 1

120
√

2

)
> 0

Thus, S is positive semidefinite and has rank n−1—which implies xx∗ is the unique
solution of (SDP) and x is the unique solution of (P) up to phase by Lemma 18—
provided σ satisfies (32), ‖W‖2 ≤ C ′2

√
n and the conclusions of Theorem 17 hold.

Theorem 5 follows directly; details for Theorems 6–7 are in the appendix.

5 Conclusions and perspectives

We proved that both semidefinite relaxation and the generalized power method are
able to find the global optimum of (P) under the regime σ = O(

√
n/ log n) with high

probability. In other words, the maximum-likelihood estimator of phase synchroniza-
tion is computationally feasible under noise level σ = O(

√
n/ log n), which (nearly)

matches the information-theoretic threshold, thus closing the gap in previous papers.
We also derived `2 and `∞ bounds on the optimum x̂, and the `∞ bound improves upon
previous results. The proof is based on tracking n auxiliary sequences, which is a novel
technique developed in this paper. As a by-product, we also proved an `∞ bound for
the eigenvector estimator, which is of independent interest.

An interesting problem for future work is to prove (or disprove) that second-order
necessary optimality conditions are sufficient for (P). If this is true, then any algorithm
that finds a second-order critical point also solves the nonconvex problem (P). This
was proved in [8] for σ = O(n1/6) then in [23] for σ = O(n1/4). Numerical experiments
in [8] suggest that a local optimization method (namely, the Riemannian trust-region
method) with random initialization finds the global optimum with σ = Õ(n1/2) and
random initialization. The analysis presented here does not apply directly though,
because it hinges on a characterization of the limit points of GPM: a priori, this does
not allow to characterize all second-order critical points.

A natural extension of our work is to establish similar results for synchronization over
SO(d) [9, 38] and SE(d) [26]. The general synchronization problem is to recover group
element g1, . . . , gn ∈ G from their noisy pairwise measurements g−1k g`. Our work here
addresses synchronization over the group SO(2) (equivalently, the group U(1)), that is,
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in-plane rotations (equivalently, points on the unit complex circle). Another important
group in practice is the rotation group SO(3), which is often used to describe the
orientation of an object [25, 12, 33]. It is shown empirically in [7] that the Riemannian
trust-region method performs well. The analysis may be complicated by the fact that
SO(3) is a non-commutative group.

Another important problem in practice is to handle incomplete measurement sets.
In this paper, we suppose all entries of C are known. A more realistic setting is that
some pairs of phase differences are measured, forming edges of a graph. This appears
in many applications [35, 17], and is addressed in a number of papers [34, 13]. The
effect of an incomplete measurement graph on fundamental bounds is well understood
as being related to the Laplacian of the graph [6]. See [30] for robotics applications.

Finally, another problem of practical concern is robustness of estimation methods.
Here, (P) minimizes the sum of squared errors. However, in practice, more robust
methods may be required to deal with outliers. In [38] for example, the authors minimize
a sum of unsquared errors. A common way to solve such problems is via iterative
reweighted least squares (IRLS), which is widely used in statistics [18]. IRLS solves a
weighed least squares problem in each step, where the weights depend on the current
iterate. In this regard, our analysis could be a first step toward understanding robust
methods with IRLS for synchronization problems.
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A Proofs

Proofs for Section 3

Proof of Lemma 9. Let Mu be the upper triangular part of W , i.e., (Mu)ij = Wij1i≤j,
and Ml = W − Mu. Then Re(Mu), Im(Mu),Re(Ml), Im(Ml) are all matrices with
independent and sub-gaussian entries, whose sub-gaussian moments are bounded by an
absolute constant (see [36] for equivalent definitions of sub-gaussian variables). We can
then apply Proposition 2.4 in [32] and obtain the desired concentration bound on W .
For W (m), we take a union bound over choice of m. The bound on ∆W (m) follows from
those on W and W (m). The bound on ‖wm‖2 follows from that on ‖W‖2, since

‖W‖2 = sup
‖u‖2=1

‖Wu‖2 ≥ sup
‖u‖2=1

|w∗mu| = ‖wm‖2.

Proof of Lemma 10. We will prove this lemma in the case where U (m) is a deterministic
set. The case where U (m) is random follows easily from the deterministic case, since
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we can first condition on U (m) and use independence between ∆W (m) and U (m). In
the proof, notations C1, C

′
1, C2, c1, c2 > 0 denote some absolute constants. For a fixed

m ∈ [n] and u ∈ U (m),

‖∆W (m)u‖22 = |(∆W (m)u)m|2 +
∑
k 6=m

|(∆W (m)u)k|2. (41)

We will bound the two parts on the right-hand side separately. We can expand
(∆W (m)u)m into a sum: (∆W (m)u)m =

∑
kWmkuk. By assumption, Re(Wmk) is a

sub-gaussian random variable. By Hoeffding’s inequality for sub-gaussian variables
[36],

P

(∣∣∣∣∣
n∑
k=1

Re(Wmk) Re(uk)

∣∣∣∣∣ ≥ t

)
≤ exp

(
1− c1t

2

n

)
.

For sums of random variables of Re(Wmk) Im(uk), Im(Wmk) Re(uk) or Im(Wmk) Im(uk)
over k, similar concentration results hold. Thus, we can set t = C1

√
n log n, where

C1 > 0 is some large absolute constant such that c1C
2
1 ≥ 5, and deduce that with

probability at least 1− 4e · n−5,

|(∆W (m)u)m| ≤ 4C1

√
n log n.

Now let us bound the second term in the right-hand side of (41). Observe∑
k 6=m

|(∆W (m)u)k|2 =
∑
k 6=m

|Wkmum|2 =
∑
k 6=m

(
Re(Wkm)2 + Im(Wkm)2

)
|um|2. (42)

Since Re(Wkm) is sub-gaussian, it follows that Re(Wkm)2 is sub-exponential with
a bounded sub-exponential norm. So we can use Bernstein’s inequality for sub-
exponential random variables [36],

P

(∣∣∣∣∣
n∑
k=1

(Re(Wkm)2 − E[Re(Wkm)]2)

∣∣∣∣∣ ≥ t

)
≤ 2 · exp

(
−c2 min

{ t2
4n
,
t

2

})
.

A similar concentration bound holds for
∑

k Im(Wkm)2. Setting t = n, we know that
with probability at least 1− 4e−c2n/4,∣∣∣∣∣

n∑
k=1

(|Wkm|2 − E|Wkm|2)

∣∣∣∣∣ ≤ 2n.

From an equivalent definition of sub-gaussian variables (see [36]), we obtain∑n
k=1 E|Wkm|2 ≤ C2n, so it follows that

∑
k 6=m |(∆W (m)u)k|2 ≤ (2 + C2)nM

2
m, where

Mm is a bound on |um|, uniform over U (m). Therefore, combining the upper bounds for
the two terms in (41), we deduce that for some large absolute constant C ′1 > 0,

‖∆W (m)u‖2 ≤
(
16C2

1n log n+ (2 + C2)nM
2
m

)1/2 ≤ C ′1
√
n log n+ C ′1

√
nMm
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holds with probability 1 − 4en−5 − 4e−c2n/4. Taking a union bound over the choice of
u ∈ U (m) and m, we conclude that (21) holds with probability 1−12en−2−12n3e−c2n/4,
or equivalently 1−O(n−2).

Proof of Theorem 8. In this proof, we use a(n) . b(n) to mean there exists an absolute
constant C such that a(n) ≤ Cb(n). We also suppose σ < c′0

√
n where c′0 < (8C ′2)

−1,
and C ′2 is the absolute constant in Lemma 9. With probability 1 − O(n−2), Lemma 9
and Lemma 10 hold, so we can safely use the concentration bounds. First we note the
second part of Theorem 8 (about Px̃) follows directly from [23, Prop. 1] once the first
part is proved.

It is also straightforward to bound d2(x̃, z). Since zz∗ is a rank-1 matrix, the eigen-
gap δ(zz∗) = λ1(zz

∗)−λ2(zz∗) is simply its leading eigenvalue, which is n, From Lemma
11, clearly

d2(x̃, z) ≤
√

2σ‖Wz‖2
n− σ‖W‖2

≤
√

2σC ′2n

n− C ′2σ
√
n
≤ 8
√

2

7
C ′2σ . σ.

This leads to the first claim of the theorem.
Now let us consider bounding ‖Wx̃‖∞. Following the inequality (23), we only

need to bound the two parts separately in (23). By Weyl’s inequality, δ(C(m)) =
λ1(C

(m))− λ2(C(m)) ≥ λ1(zz
∗)− 2σ‖W (m)‖2, so Lemma 11 implies

d2(x̃, x̃
(m)) ≤

√
2σ‖∆W (m)x̃(m)‖2

δ(C(m))− σ‖∆W (m)‖2
≤ 8
√

2 c′0
5
√
n
‖∆W (m)x̃(m)‖2 (43)

Therefore, from (23) we have ‖Wx̃‖∞ . maxm(|w∗mx̃(m)| + ‖∆W (m)x̃(m)‖2). Note the
first term within the parenthesis is dominated by the second, since w∗mx̃

(m) is exactly
the mth coordinate of ∆W (m)x̃(m). Lemma 10 implies that with probability 1−O(n−2),

‖Wx̃‖∞ . max
1≤m≤n

‖∆W (m)x̃(m)‖2 .
√
n log n+

√
n max

1≤m≤n
|x̃(m)
m |. (44)

We claim that maxm |x̃(m)
m | < 8/7. Indeed, for any m ∈ [n], by definition of x̃(m),

λ1(C
(m))x̃(m) = C(m)x̃(m) = (z∗x̃(m))z + σW (m)x̃(m).

Since W (m) has zero entries in its mth row, the mth coordinate of W (m)x̃(m) vanishes,
and we deduce

|x̃(m)
m | =

|(z∗x̃(m))zm|
λ1(C(m))

=
|z∗x̃(m)|
λ1(C(m))

≤ |z∗x̃(m)|
n− σ‖W (m)‖2

≤ n

n− C ′2σ
√
n
< 8/7, (45)

where we used Weyl’s inequality λ1(C
(m)) ≥ λ1(zz

∗) − σ‖W (m)‖2. This leads to

maxm |x̃(m)
m | < 8/7, and therefore ‖Wx̃‖∞ .

√
n log n. This `∞ bound is directly

related to d∞(x̃, z). We choose the global phase of x̃ such that x̃∗z = |x̃∗z|, and thus
d2(x̃, z)

2 = 2(n− |x̃∗z|). For any m ∈ [n], (Cx̃)m = (z∗x̃)zm + σ(Wx̃)m, so

|x̃m − zm| =
∣∣∣∣(Cx̃)m
λ1(C)

− zm
∣∣∣∣ ≤ ∣∣∣∣ z∗x̃λ1(C)

− 1

∣∣∣∣+
σ‖Wx̃‖∞
λ1(C)

.
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From d2(x̃, z) . σ and the identity d2(x̃, z)
2 = 2(n − |x̃∗z|), we have n ≥ |z∗x̃| ≥

n−O(σ2). By Weyl’s inequality |λ1(C)− n| ≤ σ‖W‖2 . σ
√
n, and therefore,

‖x̃− z‖∞ .
σ2 + σ

√
n

n
+
σ
√
n log n

n
. σ

√
log n/n.

Proofs for Section 4

Proof of Lemma 12. Let us decompose x, y into two parts that are orthogonal:

x = az +
√
nα, y = bz +

√
nβ, (46)

where a, b ∈ C;α, β ∈ Cn, and α∗z = β∗z = 0. Without loss of generality, we assume
a, b are real and a, b ≥ 0, since we can freely choose the global phases of x and y. Also
suppose we choose θ ∈ R such that ‖eiθx−y‖2 is minimized, i.e., ‖eiθx−y‖2 = d2(x, y).
The key part of the proof is to show:

1

n
|z∗(eiθx− y)| = |eiθa− b| ≤ 6ε‖eiθα− β‖2. (47)

While the above equality is easily obtained by expressing x, y according to (46), the
difficulty lies in showing the inequality. Once proved, this immediately leads to the
desired inequality (25), because (using ‖eiθα− β‖2 ≤ d2(x, y)/

√
n)

‖eiθLx− Ly‖2 ≤
1√
n
|z∗(eiθx− y)|+ σ

n
‖W (eiθx)−Wy‖2

≤ 6ε
√
n ‖eiθα− β‖2 +

σ‖W‖2
n
‖eiθx− y‖2

=

(
6ε+

σ‖W‖2
n

)
d2(x, y).

Since d2(Lx,Ly) ≤ ‖eiθLx−Ly‖2, the proof will be complete. Note that using Cauchy–
Schwarz inequality is futile as it leads to |z∗(eiθx− y)| ≤

√
n d2(x, y), which cannot be

used to show that L is Lipschitz with a constant ρ < 1. An important intuition is that,
if x and y are close to z, and eiθ is close to 1, then eiθx− y cannot be aligned too much
with z. The rest of the proof is devoted to showing (47).

Since d2(x, z)
2 = 2n(1−a), d2(y, z)

2 = 2n(1− b), the conditions d2(x, z) ≤ ε
√
n and

d2(y, z) ≤ ε
√
n are equivalent to

a ≥ 1− ε2/2, b ≥ 1− ε2/2. (48)

Since ε < 1/2, we must have a+ b > 2(1− 1/8) > 1, and thus |a− b| ≤ (a+ b)|a− b| =
|a2 − b2|. Since ‖x‖2 = ‖y‖2 =

√
n, we know a2 + ‖α‖22 = 1 and b2 + ‖β‖22 = 1, so we
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have a2 − b2 = ‖β‖22 − ‖α‖22. Using the inequalities ‖α‖2 ≤ d2(x, z)/
√
n ≤ ε, ‖β‖2 ≤

d2(y, z)/
√
n ≤ ε, we derive

|a− b| ≤ (‖α‖2 + ‖β‖2) |‖α‖2 − ‖β‖2| ≤ 2ε‖eiθα− β‖2, (49)

where we used the triangular inequality in the second inequality. By the choice of θ,
we have ‖eiθx− y‖22 ≤ ‖x− y‖22, or equivalently

|eiθa− b|2 + ‖eiθα− β‖22 ≤ |a− b|2 + ‖α− β‖22.

Since |eiθa− b|2−|a− b|2 = 2ab(1− cos θ), and by the triangular inequality, ‖α−β‖2−
‖eiθα− β‖2 ≤ |1− eiθ|‖α‖2 ≤ ε|1− eiθ|, we obtain

2ab(1− cos θ) ≤ ‖α− β‖22 − ‖eiθα− β‖22
≤ ε|1− eiθ|

(
‖α− β‖2 + ‖eiθα− β‖2

)
≤ ε|1− eiθ|

(
ε|1− eiθ|+ 2‖eiθα− β‖2

)
.

Notice that 2(1− cos θ) = |1− eiθ|2, and thus we derive

(ε−1ab− ε)|1− eiθ| ≤ 2‖eiθα− β‖2.

From (48), we have ab ≥ (1− ε2/2)2 > 1− ε2, so

ε−1ab− ε ≥ ε−1(1− ε2)− ε = ε−1(1− 2ε2) > (2ε)−1,

where the last inequality is due to the condition ε < 1/2. Therefore, we deduce |1−eiθ| ≤
4ε‖eiθα− β‖2. Combining with (49), we obtain (recall that a ≤ 1)

|eiθa− b| = |eiθa− a+ a− b| ≤ |eiθ − 1|a+ |a− b| ≤ 6ε‖eiθα− β‖2.

This verifies (47) and completes the proof.

Proof of Lemma 13. By the cosine formula of triangles,

|x− y|2 = |x|2 + |y|2 − 2|x||y| cos θ,

where θ = |Arg(x) − Arg(y)| is the angle formed by x and y. Using the AM-GM
inequality (i.e., |x|2 + |y|2 ≥ 2|x||y| which follows from ||x| − |y||2 ≥ 0), we have

|x− y|2 ≥ 2|x||y| − 2|x||y| cos θ ≥ 2(1− ε)2(1− cos θ). (50)

Using the same cosine formula, we also have∣∣∣∣ x|x| − y

|y|

∣∣∣∣2 = 2− 2 cos θ.

This equality, together with (50), leads to the desired inequality (26). Using (26) for
all k ∈ [n], it follows that ‖Pw − Pv‖2 ≤ (1 − ε)−1‖w − v‖2. The same is true if we
replace w by weiθ with an arbitrary θ ∈ R. The second inequality (27) is obtained by
minimizing ‖weiθ − v‖2 over θ.
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Proof of Lemma 14. We will first show that the moduli of (Lx)k and (L′y)k are
uniformly lower bounded for all k ∈ [n], so that we can use Lemma 13. Since
d2(z, x)2 = 2(n − |z∗x|) and d2(z, x)2 ≤ nε21, it follows that 2|z∗x| ≥ n(2 − ε21). Thus,
for any k ∈ [n],

|(Lx)k| =
1

n
|(z∗x)zk + σ(Wx)k| ≥

1

n
|z∗x| − σ

n
|(Wx)k| ≥ 1− 1

2
ε21 −K1σ

√
log n

n
.

Similarly, we have |(L′y)k| ≥ 1− ε22/2−K2σ
√

log n/n. Now that |(Lx)k| and |(L′y)k|
are uniformly lower bounded by 1 − ε, where ε := max{ε21/2 + K1σ

√
log n/n, ε22/2 +

K2σ
√

log n/n} is assumed smaller than 1, we are able to invoke Lemma 13, and deduce

d2(PLx,PL′y) ≤ (1− ε)−1d2(Lx,L′y).

This proves the first claim of the lemma; and the second claim follows directly from
Lemma 12.

Proof of Theorem 15. Denote C ′′1 = 4C ′1. We note that x0,m requires special treatment
in the proof. Indeed, for t ≥ 1, xt,m has unit-modulus entries, whereas x0,m does not
(in general). From Lemma 9, we deduce that with probability 1−O(n−2), the matrix
norm bounds (20) hold. In Lemma 10, we set U (m) = {xt,m ∈ Cn : t = 0, . . . , T}. By
construction, xt,m is a function of W (m), and is independent of ∆W (m). Besides, we
have |U (m)| = T + 1 ≤ 3n2. This means the conditions in Lemma 10 are satisfied, so
with probability 1−O(n−2),

max
0≤t≤T

|w∗mxt,m| ≤ max
0≤t≤T

‖∆W (m)xt,m‖2 ≤ C ′′1
√
n log n, ∀m ∈ [n]. (51)

This is because for t ≥ 1, we can use (22) directly; and for t = 0, we use (21) and derive
‖∆W (m)x0,m‖2 ≤ C ′1

√
n log n+ 2C ′1

√
n ≤ C ′′1

√
n log n due to maxm∈[n]Mm ≤ 2 (derived

in (45)).
First we verify (33)–(35) for t = 0. The initializers x0 and x0,m are simply eigenvec-

tors of C and C(m), and their bounds have been studied in Section 3. Recall that x0,m

is independent of σ∆W (m), so applying Lemma 11 (Davis–Kahan) yields

d2(x
0,m, x0) ≤

√
2σ‖∆W (m)x0,m‖2

δ(C(m))− σ‖∆W (m)‖2
≤
√

2C ′′1σ
√
n log n

n− 3σ‖∆W (m)‖2
≤
√

2κ2σ
√
n log n

n/2
< κ1,

Here, in the second inequality, we used the bounds ‖∆W (m)x0,m‖2 ≤ C ′′1
√
n log n

by (51), ‖∆W (m)‖2 ≤ C ′2
√
n, and δ(C(m)) = λ1(C

(m)) − λ2(C(m)) ≥ n − 2σ‖∆W (m)‖2
by Weyl’s inequality. In the third inequality, we used C ′′1 ≤ κ2 and 3σ‖∆W (m)‖2 ≤
3C ′2σ

√
n < n/2. The final inequality is due to the condition (32). This verifies (33) for

the base case t = 0.
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This immediately leads to (34), since by the reasoning in (23), we derive

‖Wx0‖∞ ≤ max
1≤m≤n

[
|w∗mx0,m|+ ‖wm‖2 · d2(x0,m, x0)

]
≤ C ′′1

√
n log n+ C ′2

√
n · d2(x0,m, x0)

≤ (C ′′1 + 2C ′2κ1)
√
n log n

= κ2
√
n log n.

Finally, applying Lemma 11 (Davis–Kahan) again, we obtain (35):

d2(x
0, z) ≤

√
2σ‖Wz‖2

n− σ‖W‖2
≤
√

2σ · C ′2n
n− C ′2

√
nσ
≤ n3/2/120

n/2
= κ3
√
n.

Now suppose (33)–(35) are true for t, and our goal is to derive the same inequalities
for t+ 1, until t reaches T .

(i) Verifying (33) for t+ 1: notice that

d2(x
t+1,m, xt+1) ≤ d2(T (m)xt,m, T xt,m) + d2(T xt,m, T xt).

We shall use Lemma 14 to bound the above two terms. Before doing so, let us examine
the conditions required in Lemma 14. In order to bound the first term, notice that

d2(x
t,m, z) ≤ d2(x

t,m, xt) + d2(x
t, z) ≤ κ1 + κ3

√
n ≤ (κ1 + κ3)

√
n.

Furthermore, let us check

‖Wxt,m‖∞ ≤ min
θ
‖W (eiθxt,m − xt)‖∞ + ‖Wxt‖∞

≤ ‖W‖2 · d2(xt,m, xt) + ‖Wxt‖∞
≤ C ′2κ1

√
n+ κ2

√
n log n,

where we used the trivial inequality ‖ · ‖∞ ≤ ‖ · ‖2. Moreover, using (51),

‖W (m)xt,m‖∞ ≤ ‖∆W (m)xt,m‖∞ + ‖Wxt,m‖∞
≤ ‖∆W (m)xt,m‖2 + ‖Wxt,m‖∞
≤ C ′′1

√
n log n+ C ′2κ1

√
n+ κ2

√
n log n

≤ (C ′′1 + 2C ′2κ1 + κ2)
√
n log n = 2κ2

√
n log n.

where we used the definition κ2 = C ′′1 +2C ′2κ1. Applying Lemma 14, we obtain, by (51)

d2(T (m)xt,m, T xt,m) ≤ (1− η1)−1d2(L(m)xt,m,Lxt,m)

≤ (1− η1)−1‖(L(m) − L)xt,m‖2
= (1− η1)−1σ‖∆W (m)xt,m‖2/n
≤ (1− η1)−1σC ′′1

√
log n/n,
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where by condition (32),

η1 := (κ1 + κ3)
2/2 + 2κ2σ

√
log n/n ≤ 1

1800
+

1

120
< 1/2.

This now leads to

d2(T (m)xt,m, T xt,m) ≤ 2σC ′′1
√

log n/n ≤ 2σκ2
√

log n/n ≤ 1

120
=
κ1
2
, (52)

by (32) again. We can bound d2(T xt,m, T xt) similarly. From the inequalities

d2(x
t, z) ≤ κ3

√
n, d2(x

t,m, z) ≤ κ3
√
n+ κ1 ≤ (κ1 + κ3)

√
n,

‖Wxt‖∞ ≤ κ2
√
n log n, ‖Wxt,m‖∞ ≤ C ′2κ1

√
n+ κ2

√
n log n,

and Lemma 14, we derive

d2(T xt,m, T xt) ≤ (1− η2)−1(6(κ1 + κ3) + σ‖W‖2/n) · d2(xt,m, xt)
≤ 2 · (0.2 + σ‖W‖2/n)κ1,

where, since 2C ′2κ1 < C ′′1 + 2C ′2κ1 = κ2,

η2 := (κ1 + κ3)
2/2 + (2C ′2κ1 + κ2)σ

√
log n/n < η1 ≤ 1/2.

Since 0.2 + σ‖W‖2/n ≤ 0.2 + σC2/
√
n < 1/4 by condition (32), it follows that

d2(T xt,m, T xt) ≤ κ1/2. (53)

Therefore, bounds (52) and (53) imply that d2(x
t+1,m, xt+1) ≤ κ1.

(ii) Verifying (34) for t+ 1: Following (15), for any m ∈ [n], we obtain

|(Wxt+1)m| ≤ |w∗mxt+1,m|+ ‖wm‖2 · d2(xt+1, xt+1,m)

≤ C ′′1
√
n log n+ C ′2

√
n · κ1,

where we used d2(x
t+1, xt+1,m) ≤ κ1 (proved in (i)). Thus,

‖Wxt+1‖∞ ≤ (C ′′1 + 2C ′2κ1)
√
n log n = κ2

√
n log n.

(iii) Verifying (35) for t+ 1: since Pz = z, by Lemma 13, we deduce

d2(x
t+1, z) = d2(PLxt,Pz) ≤ (1− ε0)−1d2(Lxt, z), (54)

where ε0 = 1−mink |(Lxt)k|. This is only informative if mink |(Lxt)k| > 0. Observe

min
θ
‖eiθLxt − z‖∞ ≤ min

θ
‖(eiθ(z∗xt)/n− 1)z‖∞ + σ‖Wxt‖∞/n,

≤ min
θ
|eiθ(z∗xt)/n− 1|+ κ2σ

√
log n/n,
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where we used ‖Wxt‖∞ ≤ κ2
√
n log n (by the induction hypothesis). Since

min
θ
|eiθ(z∗xt)/n− 1| = 1− |z∗xt|/n =

d2(x
t, z)2

2n
≤ κ23/2,

and κ2σ
√

log n/n ≤ 1/240 = κ3/4, and also κ3 = 1/60, it follows that

d∞(Lxt, z) = min
θ
‖eiθLxt − z‖∞ ≤ κ3/120 + κ3/4 < κ3/2.

This a fortiori verifies mink |(Lxt)k| ≥ 1− κ3/2 > 1/2, and thus from (54),

d2(x
t+1, z) ≤ 2d2(Lxt, z) ≤ 2

√
n d∞(Lxt, z) < κ3

√
n. (55)

Here, the inequality d2(w, v) ≤
√
n d∞(w, v) (∀w, v ∈ Cn

1 ) is obtained by considering
d2(w, v) ≤ ‖eiθw− v‖2 ≤

√
n‖eiθw− v‖∞ = d∞(w, v) for the choice of θ determined by

d∞.
Finally, we use induction and deduce that, for any t = 0, 1 . . . , T , the desired bounds

(33)–(35) hold with probability 1−O(n−2).

Proof of Theorem 16. In Theorem 15, we showed that with probability 1 − O(n−2),
xt ∈ N for t ≤ T . Now we can use Lemma 14, which yields

d2(T xt, T xt−1) ≤ ρ · d2(xt, xt−1), ∀ 1 ≤ t ≤ T − 1,

where ρ = (1 − ε)−1(6κ3 + σ‖W‖2/n), and ε = κ23/2 + κ2σ
√

log n/n < 1/2. Thus,

ρ ≤ 2 · (0.1 + σC ′2/
√
n) ≤ 2 · (0.1 + 1/120

√
2) < 1/2. This leads to

d2(x
t+1, xt) ≤ 1

2
d2(x

t, xt−1), ∀1 ≤ t ≤ T − 1,

and thus d2(x
T , xT−1) ≤ 21−Td2(x

1, x0) ≤ 21−T (‖x1‖2 + ‖x0‖2) = 22−T√n.

Proof of Theorem 17. Consider the first part of the theorem. Let us use induction
on k to establish (37). Trivially, (37) holds for k = 0. Now suppose for all ` ≤ k,
d2(x

T+`, xT+`−1) ≤ 2−`d2(x
T , xT−1). We now show the same for k + 1. First,

d2(x
T+k, xT−1) ≤

k∑
`=0

d2(x
T+`, xT+`−1) ≤ κ3

4

k∑
`=0

2−` <
κ3
2
.

Similarly, d2(x
T+k−1, xT−1) < κ3/2. By assumption, d2(x

T−1, z) ≤ κ3
√
n, so

d2(x
T+k, z) ≤ 3κ3

√
n/2, d2(x

T+k−1, z) ≤ 3κ3
√
n/2. (56)

Moreover,

‖WxT+k‖∞ ≤ ‖WxT−1‖∞ + min
θ
‖W (eiθxT+k − xT−1)‖2

≤ κ2
√
n log n+ ‖W‖2 · d2(xT+k, xT−1)

≤ (κ2 + C ′2κ3)
√
n log n, (57)
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and similarly ‖WxT+k−1‖∞ ≤ (κ2 + C ′2κ3)
√
n log n. Using Lemma 14, we have

d2(T xT+k, T xT+k−1) ≤ (1− ε)−1(9κ3 + σ‖W‖2/n) · d2(xT+k, xT+k−1)

≤ 2

(
9

60
+

1

120
√

2

)
· d2(xT+k, xT+k−1)

≤ 1

2
d2(x

T+k, xT+k−1), (58)

where ε ≤ (3
2
κ3)

2/2 + (κ2 + C ′2κ3)σ
√

log n/n < 1/2. By the induction hypothesis,
d2(x

T+k, xT+k−1) ≤ 2−kd2(x
T , xT−1), so d2(T xT+k, T xT+k−1) ≤ 2−k−1d2(x

T , xT−1). This
completes the induction and proves (37).

Now consider the second part of the theorem. The existence of the limit follows if
we can show the metric space Cn

1/∼ is complete. For any Cauchy sequence {[ut]}∞t=1 in
Cn

1/∼, we can choose a subsequence {[utk ]}∞k=1 such that d2([u
tk ], [utk+1 ]) ≤ 2−k. Now

we define a sequence {yk}∞k=1 in Cn
1 by fixing the phases of [utk ] iteratively. Given an

arbitrary representative ut1 in the equivalence class [ut1 ], we set y1 = ut1 . Given yk,
we can choose a suitable θ ∈ R such that ‖eiθutk+1 − yk‖2 attains d2(u

tk+1 , yk). Then
we set yk+1 = eiθutk+1 . This produces a Cauchy sequence {yk}∞k=1 in Cn

1 , so it admits a
limit y∞ = limk y

k ∈ Cn
1 . It follows, thus, that [y∞] is the limit of {[utk ]}∞k=1 in Cn

1/∼.
Moreover, it is easy to see that [y∞] is also the limit of {[ut]}∞t=1.

Hence, [xt] converges to a limit [x∞] in Cn
1/∼. The inequalities in (38) follows from

(56), (57) and the continuity argument.
Finally, we will show that x∞ is a fixed point of T . Because all iterates (including

x∞) satisfy (56) and (57), we can use Lemma 14 and derive d2(T x∞, T xT+k−1) ≤
d2(x

∞, xT+k−1)/2 (similarly as in (58)). The right-hand side is vanishing as k →∞, so

d2(T x∞, x∞) ≤ lim
k→∞

(
d2(T x∞, xT+k) + d2(x

T+k, x∞)
)

= 0.

This implies that there exists some θ ∈ R such that eiθT x∞ = x∞. Since
mink |(Lx∞)k| > 1− ε > 0 (as in (58)), we can rewrite it as

eiθLx∞ = n−1diag(µ)x∞,

where µk = n|(Lx∞)k|. The above identity implies eiθ(x∞)∗Lx∞ =
∑n

k=1 µk/n > 0.
Since L is Hermitian, the left-hand side must be real, so eiθ ∈ {±1}. Note that eiθ must
be 1, since

(x∞)∗Lx∞ =
1

n
|(x∞)∗z|2 +

1

n
σx∗Wx ≥ 1

n
(n− d2(x∞, z)2/2)2 − σ‖W‖2

≥ n(1− (3κ3/2)2/2)2 − C ′2σ
√
n = n(1− 1

3200
)2 − C ′2σ

√
n,

which is positive under condition (32). Replacing L with C/n, we finish the proof.
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Proofs for Section 2

This subsection presents the proofs of the main results Theorems 6–7. Note Theorem
8 is already proved in Section 3, and Theorem 5 is proved in Section 4.

Proof of Theorem 6. With probability 1−O(n−2), (36) and (37) hold. With the trivial
inequality d2(x

1, x0) ≤ 2
√
n, we have d2(x

t, xt−1) ≤ 22−t√n for all t. By the triangular
inequality,

d2(x
t, x∞) ≤

∞∑
k=t

d2(x
k+1, xk) ≤

∞∑
k=t

21−k√n = 22−t√n.

This proves Theorem 6.

Proof of Theorem 7. Without loss of generality, suppose n ≥ 2 and fix the global phase
of x∞ such that z∗x∞ = |z∗x∞|. Also suppose the constant c0 satisfies (32).

(i) We first show ‖x∞ − z‖2 ≤ 4C ′2σ. This follows from the same argument in [2,
Lemma 4.1]. Note that due to the sub-gaussian assumption in this paper, a difference
is the bound on ‖W‖2: ‖W‖2 ≤ C ′2

√
n by Lemma 9 (whereas ‖W‖2 ≤ 3

√
n in [2]).

(ii) In the last subsection “Verifying optimality” of Section 4, we showed, using the
conclusions of Theorem 17, that x∞ is the unique optimum of (P) up to phase with
probability 1−O(n−2).

(iii) Next we show ‖x∞− z‖∞ ≤ Cσ
√

log n/n where C > 0 is some constant. From
(i), |z∗x∞| = n − ‖x∞ − z‖22/2 ≥ n − 8(C ′2)

2σ2. In the proof of Lemma 4.2 in [2], it is
shown that

|z∗x∞|‖x∞ − z‖∞ ≤ 2σ‖Wx∞‖∞.

Therefore, it follows that

‖x∞ − z‖∞ ≤ 2n−1σ‖Wx∞‖∞ + 8(C ′2)
2n−1σ2‖x∞ − z‖∞

≤ 2n−1σ(κ2 + C ′2κ3)
√
n log n+ 16(C ′2)

2n−1σ2,

where we used (38) in Theorem 17 and a trivial bound ‖x∞ − z‖∞ ≤ 2. Since σ =
O(
√
n/ log n), we conclude that there exists a constant C such that ‖x∞ − z‖∞ ≤

Cσ
√

log n/n.
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inite relaxations. In Csaba Szepesvári Maria Florina Balcan, Vitaly Feldman, editor, Proceedings
of the 27th Conference on Learning Theory, volume 35 of JMLR W&CP, pages 1265–1267, 2014.

31



[4] Derek Bean, Peter J Bickel, Noureddine El Karoui, and Bin Yu. Optimal m-estimation in high-
dimensional regression. Proceedings of the National Academy of Sciences, 110(36):14563–14568,
2013.

[5] Florent Benaych-Georges and Raj Rao Nadakuditi. The eigenvalues and eigenvectors of finite, low
rank perturbations of large random matrices. Advances in Mathematics, 227(1):494–521, 2011.

[6] N. Boumal. On intrinsic Cramér-Rao bounds for Riemannian submanifolds and quotient mani-
folds. Signal Processing, IEEE Transactions on, 61(7):1809–1821, 2013.

[7] N. Boumal. A Riemannian low-rank method for optimization over semidefinite matrices with
block-diagonal constraints. arXiv preprint arXiv:1506.00575, 2015.

[8] N. Boumal. Nonconvex phase synchronization. SIAM Journal on Optimization, 26(4):2355–2377,
2016.

[9] N. Boumal, A. Singer, and P.-A. Absil. Robust estimation of rotations from relative measurements
by maximum likelihood. In Decision and Control (CDC), 2013 IEEE 52nd Annual Conference
on, pages 1156–1161, Dec 2013.
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