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Abstract

We study the problem of uncertainty quantification for the numerical solution of elliptic partial differential
equation boundary value problems posed on domains with stochastically varying boundaries. We also use the
uncertainty quantification results to tackle the efficient solution of such problems. We introduce simple trans-
formations that map a family of domains with stochastic boundaries to a fixed reference domain. We exploit
the transformations to carry out a prior and a posteriori error analyses and to derive an efficient Monte Carlo
sampling procedure.

1 Introduction
In this paper, we study uncertainty quantification and efficient solution of boundary value problems for elliptic
partial differential equations (PDEs) posed on domains with stochastically perturbed boundaries. The problem
of stochastic boundaries occurs for a variety of reasons, e.g. from physical stresses, manufacturing deficiencies,
and uncertainty in measurements of a fixed geometry. Specific applications are found in transport in tubes with
rough boundaries [28], aerodynamic studies in the design of wind turbines [10], heat diffusion across irregular
and fractal-like surfaces [6, 7], structural analysis studies [26], acoustic scattering on rough surfaces [27, 30],
seismology and oil reservoir management [4], various civil and nuclear engineering studies [3], chemical transport
in rough domains [9], and electromechanical studies for nanostructures [1].

This paper focuses on two key issues that arise in such problems:

• Since the geometric properties of the domain has a strong effect on solution behavior and smoothness,
significant variation in solution behavior for different realizations of the domain is to be expected. Corre-
spondingly, significant variation in the error arising from discretization and sampling is also to be expected;
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• Each realization of a domain nominally requires construction of a new discretization mesh, at a signifi-
cant computational cost. Hence, solving such problems using a Monte Carlo approach is computationally
intensive.

We deal with these issues using two ideas. First, motivated by the technique of isoparametric finite elements
[12], we describe a family of simple, locally determined, well-behaved transformations that map a given elliptic
problem posed on a family of stochastic domains {Ω(θ)}θ∈Θ to an elliptic problem with stochastic coefficients
posed on a fixed reference domain Ω. We then construct finite element approximations for the solution of sample
elliptic problems on the reference domain and use these to formulate a Monte Carlo method to compute the sample
cumulative distribution function for a specified Quantity of Interest (QoI). We carry out a full a priori analysis
of the finite element method. Second, we carry out an uncertainty quantification by deriving a posteriori error
estimates both for a QoI computed from a numerical solution that take into account all sources of deterministic and
stochastic errors and for the approximate cumulative distribution function computed from the QoI. The estimate
is sufficiently detailed that we can efficiently balance computational work, e.g. mesh resolution versus sample
numbers, to achieve a desired accuracy. This provides a way to tackle computational efficiency by describing
an efficient adaptive strategy that leads to a mesh that produces acceptable accuracy for all realizations of the
problem.

The analysis of elliptic problems posed on stochastic domains has received much less attention than elliptic
problems with stochastic coefficients. An approach that has received substantial attention is based on postulating
global transformations between a reference domain and the random domains that satisfy certain regularity con-
ditions and the use of Karhunen-Loeve expansions, stochastic Galerkin methods, stochastic collocation, etc., to
compute numerical approximations. Some of the earlier references are [28, 30, 31, 1, 27], which considers elliptic
problems posed on a domain whose boundary is parameterized by a stochastic process. Some of the key technical
issues were analyzed in subsequent work, e.g., [20, 11, 21, 22].

The mathematical analysis of the method considered in this paper and the methods studied in [28, 30, 31, 1,
27, 20, 11, 21, 22] deal with similar technical challenges since all the methods employ transformations between
random domains and a reference domain. However, the method analyzed in this paper has several fundamental
differences to these other methods. The great difficulty involved in constructing smooth global transformations
between two domains places constraints on the formulation of the random domain problem. The method analyzed
in this paper avoids construction of global transformations between the random domain realizations and a fixed
reference domain, instead employing simple, easily computed transformations confined to a neighborhood of the
random boundary. This makes the method well-suited for the class of problems where data describing the bound-
ary of each realization of the random domain is given, e.g., determined through physical measurement. Some of
the analysis is focused on dealing with the technical issues that arise from the use of a localized transformation.
With the goal of accurately computing a sample cumulative distribution function as opposed to a couple of statis-
tics, we employ Monte Carlo sampling, and we consider the issue of increasing the efficiency of this approach.
Finally, in addition to a priori convergence analysis, we present and implement a posterior error analysis as well
as an adaptive method based on the estimates.

Of course, transforming a domain of a given elliptic problem to another domain is a classic analytic approach,
e.g., Schwarz-Christoffel transformations [14, 29] provide a global and smooth map. However, conformal maps
involve significant complications in practice, e.g., the resulting maps may introduce complications such as singu-
larities at boundaries of a doman and they are difficult and expensive to compute. This motivates the very simple
transformations studied in this manuscript.

The rest of the paper is organized as follows. In Section 2, we present the problem formulation and modeling
assumptions. We construct a piecewise-smooth transformation to a deterministic domain Ω, provide details for
the finite element method, formulate the adjoint problem and an error estimate in Section 3. The estimate is
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extended to analyze Lions domain decomposition on a transformed domain in Section 4. A posteriori estimates
of the various sources of errors for each realization and for the empirical distribution function are obtained in
Section 5. Section 6 discusses the construction of a finite element mesh suitable for all realizations of θ. Numerical
experiments are performed and presented throughout the paper.

2 Problem formulation

2.1 Stochastically perturbed domains
We describe the domains with stochastic boundaries as random perturbations of a nominal deterministic reference
domain Ω. The reference domain Ω is a convex polygonal domain in R2 with sides formed by straight edges
joining a collection of nodes {v̂j}Jj=1. To define the stochastic perturbations, we let {θ̂j}Jj=1 denote a collection
of random vectors θ̂j ∈ R2 such that θ̂j ∼ (Λj ,Fj , Pj), where (Λj ,Fj , Pj) is a probability space with compact
domain Λj ⊂ R2, σ-algebra Fj , and probability measure Pj . We abuse notation to let θ = {θ̂j}Jj=1 and let θ ∈ Θ
denote the set of admissible perturbation vectors. The stochastic perturbation Ω(θ) is the polygonal domain with
boundaries defined by straight edges connecting nodes {v̂j + θ̂j}Jj=1, ; see FIG. 1. We note that Ω(θ) → Ω as

v
j
^

θ
j
^

ΩΛ
j

Ω∗

Ω∗

Figure 1: Left: Stochastic perturbation of a boundary node. Middle: A collection of perturbed boundary nodes.
Right: A collection of stochastic perturbations of the nominal domain.

‖θ‖ = max ‖θ̂j‖ → 0, where ‖ ‖ in the second quantity denotes the Euclidean norm.
To enforce the assumption that the domains Ω(θ) share the same gross shape, we let Ω∗ and Ω∗ denote convex

polygonal domains with J boundary nodes and nonzero volume obtained by scaling Ω so that Ω∗ ⊆ Ω ⊆ Ω∗. We
assume that for all θ,

Ω∗ ⊆ Ω(θ) ⊆ Ω∗, ∀θ ∈ Θ,

see Fig. 1. As we demonstrate, the solution technique described below can be applied to relatively large pertur-
bations and to nonconvex domains. However, there are well known analytic difficulties associated with elliptic
problems on non-convex polygonal domains with “sharp” inset angles. By reducing the volume of Ω∗ \ Ω∗, we
can limit the degree of non-convexity in Ω(θ) that may occur.

We emphasize that the numerical method does not depend on identifying a “true” nominal domain Ω. Under
these assumptions, given a collection of sample domains {Ω(θn)} corresponding to a collection of samples {θn},

3



we can simply choose one sample domain to use as a reference domain. As we discuss, some choices may yield
improved numerical accuracy.

2.2 The elliptic problem
In defining the elliptic problem, we wish to avoid situations in which there is a radical change in material properties
from one domain to the next. So, we assume that the coefficients and right-hand side of the elliptic equation are
defined in the largest domain Ω∗. The elliptic problem on Ω(θ) is: Find w satisfying{

−∇ · (a(x)∇w(x;θ)) = f(x), x ∈ Ω(θ),

w(x;θ) = 0, x ∈ ∂Ω(θ),
(2.1)

where a is a 2 × 2 symmetric positive definite matrix with coefficients that are continuous functions on Ω∗ such
that there is a constant a0 > 0 with w>aw ≥ a0‖w‖2 for all w ∈ R2 and x ∈ Ω∗ and f is continuous on Ω∗. We
assume that both a and f are independent of θ, though extensions to the cases when a and f are also stochastic
are straightforward [16, 17]. Having obtained the solution, we evaluate the quantity of interest (QoI),

Q(w;θ) =

∫
Ω(θ)

w(x;θ)ψ(x) dx, (2.2)

where ψ ∈ L2(Ω∗). By standard resultsw(x;θ) depends continuously on θ. Hence,Q(w;θ) is a random variable
and the stochastic version of (2.1) and (2.2) is to compute the probability distribution of Q(w;θ),

P (t) = Pr(Q(u;θ) ≤ t).

Since we are dealing with a collection of domains, there are some restrictions on possible QoIs. For example, it
is inappropriate to choose the value at a point that is not in all the sample domains. Some choices of QoI vary as
the domain varies, e.g., ψ = 1.

2.3 Basic properties of the elliptic problem
The variational formulation of (2.1) reads: Find w ∈ H1

0 (Ω(θ)) such that

BΩ(θ)(w, v) = FΩ(θ)(v), ∀v ∈ H1
0 (Ω(θ)), (2.3)

where the bilinear form

BΩ(θ)(w, v) =

∫
Ω(θ)

a(x)∇w · ∇v dx

is bounded and coercive for all θ ∈ Θ, i.e.,

|BΩ(θ)(w, v)| ≤ C1(θ)‖w‖H1
0 (Ω(θ))‖v‖H1

0 (Ω(θ)), ∀w, v ∈ H1
0 (Ω(θ)),

BΩ(θ)(w,w) ≥ C2(θ)‖w‖2H1
0 (Ω(θ)), ∀w ∈ H1

0 (Ω(θ)),

and the linear form

FΩ(θ)(v) =

∫
Ω(θ)

f(x)v(x) dx
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is bounded, i.e.,

|FΩ(θ)(v)| ≤ C3(θ)‖v‖H1
0 (Ω(θ)).

We assume uniform boundedness and coercivity with respect to θ, i.e., there are constants C1, C2, C3 with

C1(θ) ≤ C1,max <∞ C2(θ) ≥ C2,min > 0, C3(θ) ≤ C3,max <∞. (2.5)

The Lax-Milgram lemma ([23]) grants a unique weak solution w to (2.3) for all θ ∈ Θ. Moreover, by (2.5),

sup
θ∈Θ
‖w‖H1

0 (Ω(θ)) ≤
1

C2,max
‖f‖L2(Ω∗).

Under the convexity assumption, the standard regularity result holds, i.e.,

‖w‖H2
0 (Ω(θ)) ≤ C(θ)‖f‖L2(Ω(θ)).

3 Transformed Problem
The problem is transformed by mapping Ω(θ) back to the reference domain Ω using a piecewise affine map. As
mentioned, we can choose any sample domain to be the reference domain. To create the map, we partition Ω into
D triangular subdomains {Ωd}Dd=1 such that Ω =

⋃D
d=1 Ωd. The subdomains in the partition are chosen so that

they are non-intersecting and the vertices of subdomains do not intersect interiors of edges of other subdomains
or interiors of boundary edges. Under these assumptions, there is a corresponding partition {Ωd(θ)}Dd=1 of each
Ω(θ) that is obtained by perturbing only the nodes of the partition {Ωd}Dd=1 that lie on the boundary of Ω by θ.

There are many choices of such partitions but some choices yield better numerical results than others. In
particular, we use the partition to make a domain decomposition formulation of the original elliptic problem and
the difficulty in obtaining accurate numerical solutions is affected by the shape of the subdomains. Consequently,
the angles in the subdomains and number of subdomains impact the convergence of the domain decomposition
iteration and the condition numbers of the resulting linear systems. Likewise, the properties of the transformations
affect the accuracy of the finite element approximation. We illustrate some of the issues with an example in §3.6.

3.1 Random samples
We select N independent realizations {θn}Nn=1, which corresponds to a set of sample domains {Ω(θn))}.

3.2 Transformation to a reference domain
Rather than discretizing the elliptic problem on each sample domain Ω(θn) directly, we first apply a piecewise
affine map ϕ : Ω(θn) → Ω. The map is determined by D invertible affine maps ϕd(θn) = ϕnd : Ωd(θ

n) → Ωd,
1 ≤ d ≤ D. Let y ∈ Ωd denote the image of x ∈ Ωd(θ

n) under the map ϕnd and let Jnd denote the Jacobian
matrix of ϕnd . We denote the three vertices of Ωd(θ

n) by rnd,1, rnd,2, and rnd,3 and the three corresponding vertices
of Ωd by sd,1, sd,2, and sd,3, see Fig. 2. The transformation is defined,

ϕnd (x) = Jnd (x− rnd,1) + sd,1, (3.1)

where

Jnd =
(
sd,2 − sd,1 −(sd,3 − sd,1)

) (
rnd,2 − rnd,1 −(rnd,3 − rnd,1)

)−1
= Sd(R

n
d )−1.
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Figure 2: Left: Ωd and Ωd(θ). Right: The transformation ϕ : Ω(θ) → Ω. We have dropped the superscript
indicating sample.

Both Sd and Rn
d are invertible since Ωd(θ

n) and Ωd are non-degenerate triangles.
We constrain the partitions {Ωd(θn)}Dd=1 so that for constants M∗,M∗,

0 < M∗ ≤ min
n,d
|det(Jnd )| ≤ max

n,d
|det(Jnd )| ≤M∗ <∞, (3.2)

uniformly for all samples {θn}. We note that (3.2) implies uniform bounds on ‖Jnd‖ and ‖(Jnd )−1‖.

3.3 Transformation of the problem
We next reformulate the elliptic problem by applying the transformation ϕ.

Let nd denote the outward pointing normal vector to the boundary of Ωd(θ
n), a|Ωd

≡ ad and f |Ωd
≡ fd.

Then, for 1 ≤ d ≤ D, compute wd on Ωd(θ
n) solving,

−∇ · (ad(x)∇wnd (x;θn)) = fd(x), x ∈ Ωd(θ
n),

wnd (x;θn) = 0, x ∈ ∂Ω(θn) ∩ ∂Ωd(θ
n),

wnd (x;θn) = wn
d̃

(x;θn), x ∈ ∂Ωd(θ
n) ∩ ∂Ωd̃(θ

n), ∀d̃ ∈ d′,

nd · (ad(x)∇wnd (x;θn)) = −nd̃ · (ad(x)∇wn
d̃

(x;θn)), x ∈ ∂Ωd(θ
n) ∩ ∂Ωd̃(θ

n), ∀d̃ ∈ d′,

(3.3)

where d′ is the set of {1, . . . , D}\{d} such that Ωd(θ
n) and Ωd̃(θ

n) share a boundary. The last two lines in
(3.3) are interface conditions guaranteeing continuity of the solution and normal flux across the boundaries. The
analysis of the existence, uniqueness, and regularity of the solution of (3.3) is discussed in [2, 5, 8, 24, 25]. We
have w|Ωd

≡ wd.
Using (3.1) in (3.3), we obtain the transformed problem on Ω,
−∇ · (An

d (y;θn)∇und (y;θn)) = Fnd (y;θn), y ∈ Ωd,

und (y;θn) = 0, y ∈ ∂Ω ∩ ∂Ωd,

und (y;θn) = un
d̃
(y;θn), y ∈ ∂Ωd ∩ ∂Ωd̃, ∀d̃ ∈ d

′,

nd · (Ad(y;θn)∇und (y;θn)) = −nd̃ · (Ad̃(y;θn)∇un
d̃
(y;θn)), y ∈ ∂Ωd ∩ ∂Ωd̃, ∀d̃ ∈ d

′,

(3.4)
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where ud(y;θn) = wd((ϕ
n
d )−1(y);θn),

An
d (y;θn) = |detJnd |−1 Jnd ad((ϕ

n
d )−1(y)) (Jnd )>, and, Fnd (y;θn) = |detJnd |−1fd((ϕ

n
d )−1(y)).

Equivalently, we can write (3.4) in compact form as,{
−∇ · (An(y;θn)∇un(y;θn)) = Fn(y;θn), y ∈ Ω,

un(y;θn) = 0, y ∈ ∂Ω ∩ ∂Ω,
(3.5)

where un(y;θn) = und (y;θn), An(y;θn) = An
d (y;θn) and Fn(y;θn) = Fnd (y;θn) for y ∈ Ωd. We note that

(3.1) implies that An
d and Fnd can be computed without constructing Ω(θn) explicitly.

The QoI in terms of the transformed variables becomes,

Q(un;θ) =

∫
Ω

un(y;θ)ψ̃(y) dy, (3.6)

where ψ̃(y) = ψ((ϕnd )−1(y)) |detJnd |−1 for y ∈ Ωd.

3.3.1 Weak form of the transformed problem

For the variational formulation of (3.5), we let V = H1
0 (Ω) and seek u ∈ V , we have,∫

Ω

An(y;θn)∇un · ∇v dy =

∫
Ω

Fn(y;θn)v dy, (3.7)

for all v ∈ V . The matrix An is symmetric, positive definite.
We now show that the bilinear form

∫
Ωd

An(y;θn)∇und · ∇vd dy is continuous and coercive. Let κd :=

diam(Ωd), ρd := sup{diam(S)|S ⊂ Ωd, κd(θn) := diam(Ωd(θ)), ρd(θn) := sup{diam(S)|S ⊂ Ωd(θ
n). We

utilize the following properties of the Jacobians Jnd [12],

‖Jnd‖ ≤
κd

ρd(θn)
, ‖(Jnd )−1‖ ≤ κd(θ

n)

ρd
. (3.8)

Further,

|detJnd | =
meas(Ω)

meas(Ω(θn))
, (3.9)

and
πρd(θ

n)2 ≤ meas(Ωd(θ
n)) ≤ πκd(θn)2, πρ2

d ≤ meas(Ωd) ≤ πκ2
d, (3.10)

where meas denotes the Lebesgue measure on R2.
We have from (3.9) and (3.10),

ρ2
d

κ(θn)2
| ≤ |det Jd|≤

κ2
d

ρd(θn)2
. (3.11)

Lemma 1. The bilinear form

BΩ(un, v) =

∫
Ω

An(y;θn)∇un · ∇v dy
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is bounded and coercive, i.e.,

BΩ(un, v) ≤ C1,n‖un‖H1
0 (Ω)‖v‖H1

0 (Ω), ∀un, v ∈ H1
0 (Ω), (3.12a)

BΩ(un, un) ≥ C2,n‖un‖2H1
0 (Ω), ∀u ∈ H1

0 (Ω), (3.12b)

where the constants C1,n and C2,n depend on the transformations ϕd(θn).

Proof. Let λn,d,max and λn,d,min denotes the largest and smallest eigenvalues of Jnd and amax and amin be the
ones for the symmetric positive definite matrix a. Then,

BΩ(un, v) ≤ max
d

(
|det J−1

d |λ
2
n,d,max

)
amax ‖un‖H1

0 (Ω)‖v‖H1
0 (Ω). (3.13)

By (3.8)

λ2
n,d,max = ‖Jnd (Jnd )>‖ ≤ ‖Jnd‖2 ≤

κ2
d

ρd(θn)2
. (3.14)

Combining (3.11), (3.13) and (3.14) we have,

BΩ(un, v) ≤ amax max
d

(
κ2
d

ρ2
d

κd(θ)2

ρd(θn)2

)
‖un‖H1

0 (Ω)‖v‖H1
0 (Ω),

which proves (3.12a) with

C1,n = amax max
d

(
κd κd(θ

n)

ρd ρd(θn)

)2

. (3.15)

Now we prove coercivity of the bilinear form. We have,

BΩ(un, un) ≥ γmin
d

(
|det J−1

d |λ
2
n,d,min

)
amin ‖un‖2H1

0 (Ω) (3.16)

where γ is the constant arising from Poincaré’s inequality. By (3.8),

λ2
n,d,min =

1

‖(Jnd (Jnd )>)−1‖
≥ 1

(‖Jnd )−1‖2
≥ ρ2

d

κd(θn)2
.

Combining this with (3.11) and (3.16),

BΩ(un, un) ≥ aminγmin
d

(
ρ2
d

κ2
d

ρd(θ)2

κd(θn)2

)
‖un‖2H1

0 (Ω),

which proves (3.12b) with

C2,n = γamin min
d

(
ρd ρd(θ

n)

κd κd(θn)

)2

. (3.17)

A similar argument shows that the linear form
∫

Ωd
Fn(y;θ)vd(y) dy is bounded.
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3.4 Finite element discretization
We next discretize each transformed problem (3.5) using a standard finite element method corresponding to a
triangulation of Ω. We let Th denote a triangulation of Ω that is a refinement of the partition {Ωd}, that is Th is a
collection of non-overlapping triangular elements {Km}Mm=1 that is constructed by starting with {Ωd} and refining
into smaller triangles such that no node of one Km intersects and interior edge of another Km′ and Ω = ∪mKm.
We let hK denote the length of the maximum side of element K, define the mesh function h(x) = hK for x ∈ K,
and set h = maxhK for all K in Th. We let αK denote the maximum of the interior angles in element K, and
assume there is a constant α < π such that αK < α for all K ∈ Th. The maximum angle condition insures that
the finite element solution corresponding to the mesh converges at the expected rate. We let Vh(Ω) denote the
space of continuous piecewise linear functions on Th. We note that the restriction of Vh(Ω) is a subset of V . The
finite element discretization reads: Compute Un ∈ Vh(Ω) such ∀v ∈ Vh(Ω),∫

Ω

An
d (y;θn)∇Un · ∇v dy =

∫
Ω

Fnd (y;θn)v dy. (3.18)

3.5 Convergence properties
The restriction on the partitions Ωd in (3.2), along with the maximum angle condition implies that the finite
element approximation converges at a first order rate in the energy norm and a second order rate in the L2(Ω)
norm uniformly with respect to θn. However, the choice of partitioning has a significant effect on the magnitude
of the error, even if the mesh satisfies the maximum angle condition which can be observed by consideration of
the constants in the convergence for the H1(Ω) norm. A standard result from finite element analysis is that the
H1(Ω) norm is bounded by,

‖un − Un‖H1
0 (Ω) ≤

√
C1,n

C2,n
min

v∈Vh(Ω)
‖un − v‖H1

0 (Ω), (3.19)

where C1,n and C2,n are the continuity and coercivity constants for the transformed problem, see Lemma 1. The
factor minv∈Vh(Ω) ‖un− v‖H1

0 (Ω) depends on the order of the polynomials used in constructing Vh(Ω) as well as
the properties of the triangulation Th. This term is well understood and here we focus on the effect on the error
due to the transformation. Substituting the values of the constants C1,n and C2,n from the proof of Lemma 1 we
have,

‖un − Un‖H1
0 (Ω) ≤

√
amax
γamin

max
d

(
κd κd(θ

n)

ρd ρd(θn)

)
·
[
min
d

(
ρd ρd(θ

n)

κd κd(θn)

)]−1

min
v∈Vh(Ω)

‖un − v‖H1
0 (Ω)

=

√
amax
γamin

max
d

(
κd κd(θ

n)

ρd ρd(θn)

)2

min
v∈Vh(Ω)

‖un − v‖H1
0 (Ω) (3.20)

If we assume that we have the same domain Ω with partitions Ωd for the transformed domain, then the bound
(3.20) indicates that the error is adversely affected by the shape of the random domain Ω(θ). In particular, sliver-
like partitions, that is partitions which have a large κd(θ)/ρd(θ) ratio, reflect a boundary geometry that can have
large impact on the accuracy of the finite element approximation.

3.6 Construction of the transformation and a numerical example
As indicated, there is a great deal of flexibility in the construction of the transformations to a reference domain.
We choose transformations that are the identity except for a neighborhood of the boundary. We construct the sub-
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domains Ωd using a uniform partition of Ω. The affine maps ϕnd are defined to be the identity for the subdomains
which do not intersect with the boundary of the domain, that is, the subdomains Ωd(θ

n) and Ωd coincide in this
case. This effectively localizes the domain transformation to a neighborhood of the boundary. The maps ϕnd for
the subdomains which intersect the boundary are specified by the the formula (3.1). Thus as the points on the
boundary change, the subdomains Ωd(θ

n) which intersect with the boundary and the maps ϕnd change while the
corresponding subdomains Ωd remain fixed. We illustrate in Figure 3.

(a) Ω(θ1) (b) Ω(θ2) (c) Ω

Figure 3: The random domains Ω(θ1) and Ω(θ2) and the reference domain Ω to which they are mapped. The
transformations are the identity on the cells in the grey shaded region.

The random domain Ω(θ1) is sliver like and max
d

(
κd(θ

1)

ρd(θ1)

)
= 32.3. The random domain Ω(θ2) is more

regular and max
d

(
κd(θ

2)

ρd(θ2)

)
= 4.8.

Reflecting boundary geometry, a transformation may have a strong effect on the difficulty in obtaining an
accurate approximation. We illustrate by solving an elliptic problem with a = 1, f(x, y) = 200x(1 − x) +
200y(1−y) on the two random domains Ω(θ1) and Ω(θ2) shown in Figure 3. For the QoI, we choose ψ = χ10xy
in (2.2) where χ is the characteristic function of [0.50, 0.75]× [0.50, 0.75].

We compute numerical approximations for both θ1 and θ2 using the transformed problem formulation on Ω in
§3. The mesh for Ω has 681 vertices and was generated using Gmsh [19]. The numerical solutions are computed
using the standard space of piecewise linear continuous functions.

The plots of the transformed numerical solutions, U1 and U2, corresponding to θ1 and θ2 respectively are
shown in Figure 4. The effects of sliver like subdomains present in Ω(θ1) are apparent in the plot of U1 while
the plot of U2 exhibits a much smoother solution. The error in the QoI for U1 is 8.6E − 3 whereas the error in
the QoI for U2 is 7.4E − 3. These errors are approximated by using more accurate reference values of the QoI
computed using piecewise quadratic continuous elements on a refined mesh of the untransformed domain. The
error in the QoI for U1 is greater than the error in the QoI for U2. The large error for U1 is expected since the

ratio max
d

(
κd(θ

1)

ρd(θ1)

)
is quite large and hence the error is adversely affected in light of (3.20).
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(a) U1 (b) U2

Figure 4: Solutions of the two transformed problems on Ω obtained by mapping the random domains Ω(θ1) and
Ω(θ2) shown in Figure 3.

3.7 A posteriori analysis of the transformed problem
We derive an accurate, computable a posteriori error estimate for the QoI computed from a numerical solution.
The estimate employs computable residuals and a generalized Green’s function satisfying an adjoint equation.
The Green’s function quantifies the effects of stability in the accumulation, cancellation and propagation of the
errors in the QoI. The strong form of the adjoint problem corresponding to the transformed problem (3.5) is,{

−∇ · (An(y;θn)∇ηn(y;θn)) = Fn(y;θn), y ∈ Ω,

ηn(y;θn) = ψ̃(y), y ∈ ∂Ω ∩ ∂Ω,
(3.21)

where ψ̃(y) is given as in (3.6).

Theorem 1 (Error Representation for the Transformed Problem). Let en = un − Un. Then we have the error
representation,

Q(en;θn) =

∫
Ω

Fnηn dy −
∫

Ω

An∇Un · ∇ηn dy. (3.22)

Proof. The proof is standard, e.g. see Section 8.1 in [15].

3.7.1 Numerical Example for error estimate of the transformed problem

In the earlier numerical example in §3.6, the errors in the QoI corresponing to the solutions U1 and U2 were
Q(e1;θ1) = 8.6E − 3 and Q(e2;θ2) = 8.6E − 3 respectively. We now estimate the error using the error
estimate obtained from (3.22). The adjoint solution is computed using the standard space of piecewise quadratic
continuous functions. The error estimate obtained for Q(e1;θ1) is 8.06E − 3 while for Q(e1;θ1) is 7.2E − 3.
These have effectivity ratios of 0.93 and 0.97 and hence are quite accurate.
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4 Lions Non-overlapping Domain Decomposition
Equation (3.18) yields a large coupled system of discrete equations for the finite element approximation. Follow-
ing [16, 17], it is natural to solve the discrete equations using a non-overlapping domain decomposition iteration.
In this case, the a posteriori error analysis must be extended to include the effects of the iterative solution of the
accuracy of the approximation. For notational simplicity, we drop the superscript n indicating the sample number.
In particular, (3.7) is rewritten as, ∫

Ω

A(y;θ)∇u · ∇v dy =

∫
Ω

F (y;θ)vd dy, (4.1)

The non-overlapping domain decomposition solution is formed by employing the Lions domain decomposi-
tion algorithm [25]. The continuous Lions problem is to find an iterative solution u(i)

d , where the superscript (i)

refers to the approximation at iteration i.. That is, given an set of initial guesses {u(0)
d , d = 1, . . . , D} for the D

subdomains, we solve for i = 1, 2, . . .,
−∇ ·Ad∇u(i)

d = Fd, y ∈ Ωd,

λu
(i)
d + nd ·Ad∇u(i)

d = λui−1

d̃
− nd̃ ·Ad̃(y)∇ui−1

d̃
, y ∈ ∂Ωd ∩ ∂Ωd̃,

ud = 0, y ∈ ∂Ωd ∩ ∂Ω,

(4.2)

where nd = −nd̃ is the unit normal and λ is some constant. Lions proved that as i→∞, u(i)
d (y)→ u(y) [25].

The discrete analog of Lions domain decomposition involves finding a numerical solution for a finite number
of iterations I . We let the restriction of T dh on Ωd be T dh and define V h(Ωd) ⊂ H1(Ωd) as the set of contin-
uous piecewise linear functions on T dh . That is, given an set of initial guesses {U (0)

d , d = 1, . . . , D} for the D
subdomains and fixed λ ≥ 0, we solve for U (i)

d ∈ Vh(Ωd), i = 1, 2, . . . , I ,

(Ad∇U (i)
d ,∇v)d +

∑
d̃∈d′

λ〈U (i)
d , v〉d∩d̃

= (Fd, v)d +
∑
d̃∈d′

(
λ〈U (i−1)

d̃
, v〉d∩d̃ − 〈nd̃ ·Ad̃∇U

(i−1)

d̃
, v〉d∩d̃

) (4.3)

for all v ∈ V h(Ωd) where,

(f, g)d =

∫
Ωd

f(y)g(y) dy and 〈f, g〉d∩d̃ =

∫
∂Ωd∩∂Ωd̃

f(y)g(y) dy.

4.1 A posteriori analysis of Lions Domain Decomposition

We denote the numerical solution after i iterations as U (i) so that U (i)|Ωd
= U

(i)
d . Then the computed value of the

QoI at iteration is obtained from (3.6) as,

Q(U (i)) =

∫
Ω

U (i)ψ̃ dy =

D∑
d=1

∫
Ωd

U
(i)
d ψ̃ dy =

D∑
d=1

(U
(i)
d , ψ̃)d. (4.4)

12



Theorem 2. Let s(i) = u − U (i). Then the error in the QoI at iteration i of Lion’s domain decomposition
algorithm is represented as,

Q(u− U (i)) = DE(i) + IE(i) + CE(i), (4.5)

where DE(i), IE(i), CE(i) represent the discretization, iteration and transformation contributions to the total
error and are given as,

DE(i) =

D∑
d=1

[
(F, η)d +−(Ad∇U (i)

d ,∇η)d +
∑
d̃∈d′

(
〈−λU (i)

d + λU
(i−1)

d̃
− nd̃ ·Ad̃∇U

(i−1)

d̃
, η〉d∩d̃

)]
,

IE(i) =

D∑
d=1

∑
d̃∈d′

(
〈λU (i)

d − λU
(i−1)
d , η〉d∩d̃ + 〈nd · ∇U (i−1)

d − nd · ∇U (i)
d , η〉d∩d̃

)
,

CE(i) =
1

2

D∑
d=1

∑
d̃∈d′

(
〈nd ·Ad∇U (i)

d − nd ·Ad̃∇U
(i)

d̃
, η〉d∩d̃ + 〈nd ·Ad∇η, U (i)

d − U
(i)

d̃
〉d∩d̃

)

Proof. Multiplying (3.21) by e(i)
d and integrating by parts on Ωd yields,

(e(i), ψ̃)d = (Ad∇e(i)
d ,∇η)d −

∑
d̃∈d′
〈nd ·Ad∇η, e(i)

d 〉d∩d̃. (4.6)

Summing (4.6) over all domains, and noting that since u is the true solution, we have 〈nd · Ad∇η, u〉d∩d̃ =
−〈nd̃ ·Ad∇η, u〉d∩d̃,

Q(e(i)) =

D∑
d=1

[
(F, η)d − (Ad∇U (i)

d ,∇η)d +
∑
d̃∈d′
〈nd ·Ad∇η, U (i)

d 〉d∩d̃

]
. (4.7)

where we also used (3.7). Now consider,

D∑
d=1

∑
d̃∈d′
〈−λU (i)

d + λU
(i−1)
d , η〉d∩d̃ =

D∑
d=1

∑
d̃∈d′
〈λU (i)

d − λU
(i−1)
d , η〉d∩d̃ (4.8)

Also,
D∑
d=1

∑
d̃∈d′
〈nd ·Ad∇U (i−1)

d , η〉d∩d − 〈nd ·Ad∇U (i)
d , η〉d∩d,

=

D∑
d=1

∑
d̃∈d′
〈nd̃ ·Ad̃∇U

(i−1)

d̃
, η〉d∩d − 〈nd ·Ad∇U (i)

d , η〉d∩d.

=

D∑
d=1

∑
d̃∈d′
〈nd̃ ·Ad̃∇U

(i−1)

d̃
, η〉d∩d −

1

2
〈nd ·Ad∇U (i)

d + nd̃ ·Ad̃∇U
(i)

d̃
, η〉d∩d,

=

D∑
d=1

∑
d̃∈d′
〈nd̃ ·Ad̃∇U

(i−1)

d̃
, η〉d∩d −

1

2
〈nd ·Ad∇U (i)

d − nd ·Ad̃∇U
(i)

d̃
, η〉d∩d,

(4.9)
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where we used nd = −nd̃ in the last step. Similarly,

D∑
d=1

∑
d̃∈d′
〈nd ·Ad∇η, U (i)

d 〉d∩d̃ =
1

2

D∑
d=1

∑
d̃∈d′
〈nd ·Ad∇η, U (i)

d − U
(i)

d̃
〉d∩d̃ (4.10)

Combining (4.8), (4.9), (4.10) with (4.7) and grouping terms proves the theorem.

4.1.1 Numerical Example of Lions Domain Decomposition

The setup is similar to 3.6 corresponding to the parameter θ1. Lions domain decomposition is carried out on the
transformed problem on Ω. The parameter λ = 5.0 is used.

The results are shown in Table 4.1.1.

i Comp. Err Eff. Rat. DE(i) IE(i) CE(i)

1 0.3642 1.002 0.001795 0.8971 -0.5347
3 -0.0678 0.9699 0.003994 0.525 -0.5968
5 -0.1984 0.9913 0.006685 0.0838 -0.2889
7 -0.08888 0.9928 0.007465 -0.1487 0.05233
9 0.02633 1.008 0.006977 -0.138 0.1573

11 0.07065 0.9981 0.00638 -0.03515 0.09943
13 0.04921 0.9983 0.0061 0.0281 0.015
15 0.02459 1.001 0.006136 0.02659 -0.008139
17 0.02107 1.005 0.006222 0.001381 0.01346
19 0.02831 1.004 0.006238 -0.008807 0.03088
21 0.0324 1.003 0.006215 -0.00388 0.03007
23 0.03097 1.002 0.0062 0.002108 0.02267
25 0.02886 1.003 0.006205 0.002413 0.02024
27 0.02858 1.003 0.006211 6.454e-05 0.0223
29 0.02935 1.003 0.006212 -0.0009761 0.02411
31 0.02976 1.003 0.006209 -0.0004158 0.02396
33 0.0296 1.003 0.006207 0.0002579 0.02313

5 A posteriori error analysis for Cumulative Distribution Function (CDF)
computations

In this section, we construct a posteriori error estimates of the error in the computed distribution of a given QoI.
The estimate takes into account stochastic sources of error arising from finite sampling and deterministic sources
arising from discretization of the differential equation.

5.1 Approximating the CDF
The solution u depends implicitly on a random vector θ and hence the QoI, Q(u), is a random variable. We
approximate the CDF,

P (t) = P
(
{θ : Q(un(θ)) ≤ t}

)
= P

(
Q ≤ t

)
,
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using a finite number of approximate sample values
{
Q(Un)}Ni=1:

PN (t) =
1

N

N∑
n=1

I
(
Q(Un) ≤ t

)
,

where I is the indicator function. The formal Monte Carlo solution algorithm is given in Algorithm 1.

Algorithm 1: Formal Monte Carlo algorithm

Draw samples {θn}Nn=1 from the distribution of θ
for n = 1, · · · ,N (number of samples) do

Compute solutions {Un} to produce samples {Q(Un)}
end
Approximate the output distribution using a standard nonparametric

technique, e.g. via binning

5.2 Motivating examples
In general, there is a balance between the error arising from finite sampling and discretization that should be struck
for efficiency. The results are often surprising in the sense that despite the slow convergence of the Monte Carlo
method, numerical discretization error is often the most significant source of error. We refer to [16, 17] for further
discussion. For the case of uniform refinement, we define the normalized mesh parameter, h̃ as the ratio: (h of
given mesh / h of coarsest mesh). In the numerical examples h̃ = 1.0 corresponds to a mesh with 249 vertices
while h̃ = 0.5 corresponds to a mesh of 945 vertices.

5.2.1 Poisson Equation

We illustrate with an the Poisson equation from §3.6 with a = 1 and f(x, y) = 200x(1− x) + 200y(1− y). For
the QoI, we choose ψ = χ10xy in (2.2) where χ is the characteristic function of [0.50, 0.75] × [0.50, 0.75]. The
nominal reference domain is a unit square [0, 1]×[0, 1]. The boundary points are perturbed according to a uniform
distribution [−0.08, 0.08] × [−0.08, 0.08] centered around each boundary point. The random perturbations are
graphically illustrated in Figure 5(a), where each boundary point is sampled uniformly in the square around each
boundary point. Examples of two perturbed domains are shown in Figures 5(b) and 5(c).

Two mesh configurations are used, a coarse mesh with normalized mesh parameter h̃ = 1.0 and a finer mesh
with h̃ = 0.5. The ranges of the 2-norm condition numbers of the linear systems arising from the finite element
discretizations are [70.65, 275.97] and [318.378, 1466.17] corresponding to h̃ = 1.0 and h̃ = 0.5 respectively.
To approximate the true error, we compute a reference distribution using a fine discretization with h̃ = .25 and
10,000 samples. We plot the distributions obtained using fewer samples, N = 100 and N = 1000, and coarser
meshes, h̃ = 1 and h̃ = 0.5 in Fig. 6.

These results demonstrate that the discretization and finite sampling can result in significant bias and variance
in the estimated distributions. Variance can be reduced effectively by increasing N , while reducing bias involves
refining the mesh for the differential equation solve. The a posteriori error estimate provides a way to quantity the
contributions of finite sampling and discretization to the error in the computed distribution.
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(a) (b) (c)

Figure 5: (a) Random domains are obtained by perturbing the boundary points uniformly 0.08 in each direction
as indicated by the squares around each point. (b) and (c) Two randomly perturbed domains.

5.2.2 Convection-Diffusion Equation

We consider the equation,{
−∇ · (a(x)∇w(x;θ)) + b(x) · ∇w = f(x), x ∈ Ω(θ),

w(x;θ) = 0, x ∈ ∂Ω(θ).
(5.1)

Here b is a convective vector field while rest of the variables have the same meaning as in (2.1). The transformed
problem reads, {

−∇ · (An(y;θn)∇un(y;θn)) + b̂n(y;θn) · ∇un(y;θn) = Fn(y;θn), y ∈ Ω,

un(y;θn) = 0, y ∈ ∂Ω.
(5.2)

Here b̂n(y;θn) = b̂nd (y;θn) for y ∈ Ωd defined by,

b̂nd (y;θn) = |detJnd |−1 Jnd b(ϕnd )−1(y)), y ∈ Ωd

while rest of the variables have similar definitions as in § 3.3.
We choose b = [−80, 0]> is the convection vector field. Other parameters are set as a = 1, f(x, y) =

200 sin(2πx) sin(2πy). For the QoI, we choose ψ = χ10xy in (2.2) where χ is the characteristic function of
[0.50, 0.75]× [0.50, 0.75]. We plot the distributions obtained using N = 100 and N = 1000 samples, and h̃ = 1
and h̃ = 0.5 in Fig. 7. The ranges of the 2-norm condition numbers of the linear systems arising from the finite
element discretizations are [12.8628, 46.1225] and [51.654, 224.635] corresponding to h̃ = 1.0 and h̃ = 0.5
respectively. The reference distribution is computed using 4000 samples and h̃ = 0.125.

These results numerically demonstrate the claim that numerical error in CDF computations is dominated by
discretization errors. Refining the spatial mesh once has a huge impact on reducing the error in the computed
CDF, whereas increasing the samples has a relatively minor effect in computing a more accurate CDF.
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Figure 6: The reference distribution (dashed line) plotted with several approximate empirical distributions. The
normalized mesh parameters are h̃ = 1 (left) and h̃ = 0.5 (right). The number of samples are N = 100 (top) and
N = 1000 (bottom).
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Figure 7: The reference distribution (dashed line) plotted with several approximate empirical distributions. From
left to right, distributions are computed using h̃ = 1, h̃ = 0.5, The number of samples are N = 100 (top) and
N = 1000 (bottom).
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5.3 A posteriori error analysis for a computed distribution function
We approximate P (t) by the approximate sample distribution function,

P̂N (t) =
1

N

N∑
n=1

1(−∞,t](Q(Ũn;θn)),

where {Ũn} are the solutions corresponding to samples {θn}Nn=1 and 1S denotes the indicator function for the
set S. For the purpose of error analysis, we introduce the “nominal” sample distribution using exact model solves
by,

PN (t) =
1

N

N∑
n=1

1(−∞,t](Q(u;θn)),

and decompose the error into contributions arising from finite sampling and discretization of the differential
equation,

P (t)− P̂N (t) = (P (t)− PN (t)) + (PN (t)− P̂N (t)).

This decomposition is used to derive the following error bound

Theorem 3 ([16, 17]). For 0 < ε < 1,

|P (t)− P̂N (t)| ≤

(
P̂N (t)(1− P̂N (t))

Nε

)1/2

+
2

N

∣∣∣∣∣
N∑
n=1

1[−|En|,|En|](t−Q(Ũn;θn))

∣∣∣∣∣+
1

2Nε
, (5.3)

with probability greater than or equal to 1 − ε, where En is an error estimate for the QoI computed from the
sample numerical solution, i.e.,

En ≈ Q(un;θn)−Q(Ũn;θn). (5.4)

The first term on the right of (5.3) is a standard bound on error arising from finite sampling. There is a
discussion of such bounds in [16, 17] as well as computations illustrating its accuracy. The second term quantifies
bias in the computed distribution arising from numerical error as “shifts” in the distribution function. Evaluating
the second term requires a computational error estimate for each sample value.

5.4 Numerical experiments
5.4.1 Poisson Equation

We present a numerical experiment showing the behavior of the complete error estimate as the number of samples
is increased and the finite element mesh is refined. Figure 8(a) shows the error bound and the actual error in
the CDF for the example in §5.2.1 with ε = 0.05. The error bound is around six times larger than the actual
error. Figure 8(b) shows the stochastic and the discretization contributions. Increasing the number of samples or
refining the mesh both decrease the error in the CDF as observed in Figure 9. The figure also indicates that adding
more samples decreases the variance, making the CDF smoother, while refining the mesh primarily targets the
discretization contribution.
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Figure 8: (a) Actual error and bound for distribution computed using h̃ = 1, N = 100. (b) The solid, dashed and
dotted lines indicate the total error bound, the discretization contribution and the stochastic contributions.
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Figure 9: Actual error and bound. From left to right, distributions are computed using h̃ = 1, N = 1000 and
h̃ = 0.5, N = 100.
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5.4.2 Convection-Diffusion Equation

A similar experiment is performed for the convection-diffusion problem in § 5.2.2. The weak form of the adjoint
equation to (5.2) is ∫

Ω

An∇ηn · ∇v + b̂n · ∇v ηn dy =

∫
Ω

ψ, v dy, ∀v ∈ H1
0 (Ω)

The corresponding error representation (compare to (3.22)) is

Q(en;θ) =

∫
Ω

Fnηn dy −
∫

Ω

An∇Un · ∇ηn dy − b̂n · ∇Un ηn. (5.5)

Figure 10(a) shows the error bound and the actual error in the CDF. The error bound is around six times larger
than the actual error. Figure 10(b) shows the stochastic and the discretization contributions.
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Figure 10: (a) Actual error and bound for distribution computed using h̃ = 1, N = 100. (b) The solid, dashed
and dotted lines indicate the total error bound, the discretization contribution and the stochastic contributions.

6 Adaptive Mesh Refinement
We note that the use of a different triangulation T nh for each sample θn is indicated in situations in which the
solution behavior - and therefore numerical accuracy - depends on the shape of the domain Ω(θn). On the other
hand, meshing is often a computationally demanding aspect of discretization, so there is incentive to employ one
mesh for all samples. As an alternative to the use of a computationally inefficient heavily refined uniform mesh,
we now describe an adaptive algorithm that attempts to optimize across samples.

A posteriori error estimates are well-suited to guide adaptive mesh refinement algorithms [18]. The general
approach is iterative: Start with a coarse mesh, compute the solution, evaluate the estimate, use the estimate to
select elements for refinement, refine the mesh, and then iterate.

Nominally, a straightforward adaptive algorithm based on the a posteriori error estimate would require com-
puting a sequence of adaptive meshes for each sample computation. This would appear to be inefficient however.
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We describe a “greedy” adaptive algorithm that seeks to find an adaptive mesh that works for all realizations at
the cost of some loss of efficiency. The idea is to construct an adapted mesh for the first realization. We use the
adapted mesh as the initial mesh for the computation of the second realization. The initial mesh is refined (but
not coarsened) as necessary to control the error in the second sample. This repeats, where at each step the mesh
is further refined and is described in Algorithm 2. In practice, we find that within 10-50 iterations, the algorithm
constructs a mesh that works for all subsequent realizations.

Algorithm 2: Constructing a universal finite element mesh

Start with an initial (uniform) mesh T 0
h

for n = 1, . . . ,M (loop through the set of M test problems) do
T nh = T n−1

h

Compute solution Un and error estimate En
while |En| > TOL do

Refine the mesh, i.e., T nh = refine(T nh )
Compute solution Un and error estimate En

end
end

Algorithm 2 is demonstrated for the problem in §5.4.2. The per element error indicator EK measures the error
on element K and is defined as

EK =

∣∣∣∣∫
K

Fnηn −An∇Un · ∇ηn dy − b̂n · ∇Un ηn
∣∣∣∣ . (6.1)

The Dörfler strategy is used for marking elements with large elemental error indicators [13]. If the QoI error at
a parameter value is above a specified tolerance, which is taken to be 0.0004 for this example, then the mesh
is adapted for that parameter till the error falls below the tolerance, TOL. The mesh is only refined for four
parameter values, and after iteration 28, there is no further refinement for the remaining 972 iterations as shown
in Figure 11. The refinement pattern indicates that the mesh is refined around the region [0.50, 0.75]× [0.50, 0.75]
where the support of the QoI function ψ lies and to the right of this region. The mesh is not refined around all
the boundary nodes even though they are all perturbed. This is because the error indicator (6.1) describes the
sensitivity of the QoI to different parts of the domain and for this example the refined region contributes the most
to the error. The results may be explained heuristically by noting that the direction of the vector field b is from
right to left, and hence the QoI is affected the most from the region to its right.

The CDF computed using the adaptive algorithm with 1000 samples is plotted in Figure 12(a). This CDF
compares well with the CDF computed a twice uniformly refined mesh corresponding to h̃ = 0.25 with 4000
samples (labeled “Actual” in the plot). The adaptive algorithm is carried out on a mesh of 992 vertices (after 41
iterations) compared to 945 vertices for the mesh corresponding to h̃ = 0.5. Although the number of vertices in
the meshes are similar, and hence the computational effort is similar, the CDF computed using the adaptive method
is significantly more accurate. The dramatic increase in the accuracy of the CDF is explained by observing the
error contributions in Figure 12. Now the discretization contribution is significantly than the CDF computed with
no refinement, e.g. see Figure 10(b).

7 Summary
We study elliptic partial differential equation boundary value problems for which the domain where the equations
are posed is uncertain. In order to model this uncertainty, we formulate a class of problems that are posed
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Figure 11: In panel (a) The number of vertices in the finite element mesh is plotted against parameter number.
Panels (b) and (c) show the initial mesh and the final refined mesh respectively.
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Figure 12: (a) CDF computed using adaptive refinement with 1000 samples (solid line) against the CDF computed
using a h̃ = 1, N = 1000, h̃ = 0.5, N = 1000 and “Actual” CDF computed thrice uniformly refined mesh
(h̃ = 0.125) and 4000 samples. (b) Error bound and contributions.
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on stochastic domains. Of particular interest is the nonparametric density estimation problem for a quantity of
interest. We introduce a piecewise transformation of the domain to a deterministic reference domain and exploit
for efficiency the transformation in a Monte Carlo sampling procedure so that many samples can be obtained
to approximate the distribution at a reasonable cost. We present an a posteriori error analysis for each sample
and for the empirical distribution function obtained from the samples, which reflect the various deterministic and
statistical sources of error. The estimate is sufficiently detailed that we can efficiently balance computational
work, e.g. mesh resolution versus sample numbers, to achieve a desired accuracy. An interesting issues that arises
in the context of numerical solution is that each realization of a domain nominally requires construction of a new
discretization mesh, at a significant computational cost. We address computational efficiency by describing an
adaptive strategy that leads to a mesh that produces acceptable accuracy for all realizations of the problem and
describing an iterative solution algorithm in which the number of matrix inversions is independent of the number
of samples.
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