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PATHS IN HYPERGRAPHS: A RESCALING

PHENOMENON

TOMASZ  LUCZAK AND JOANNA POLCYN

Abstract. Let P k

ℓ
denote the loose k-path of length ℓ and let

define fk

ℓ
(n,m) as the minimum value of ∆(H) over all P k

ℓ
-free k-

graphs H with n vertices and m edges. In the paper we study the
behavior of f4

2
(n,m) and f3

3
(n,m) and characterize the structure

of extremal hypergraphs. In particular, it is shown that when
m ∼ n2/8 the value of each of these functions drops down from
Θ(n2) to Θ(n).

1. Introduction

In extremal graph theory we often study functions which emerge
when we appropiately scale the extremal parameters of graphs. A
typical example is the minimum number of triangles, scaled by

(

n
3

)

, in
graphs on n vertices and density p. The celebrated result of Razborov [6]
gives a full description of this function as a function of p; in particular
he showed it is smooth everywhere except at the points 1 − 1/t for
integer t (for a similar result on cliques of larger size see Reiher [7]).
Thus, at these points a kind of the continuous phase transition takes
place, which is related to the structural changes of the graph on which
the minimum is attained.

It is not too hard to construct examples which exhibits a much more
rapid, discontinuous change of the structure. In this paper however
we give examples of two functions where not only such a transition is
discontinuous but the studied function rapidly drops to zero and so
requires another rescaling.

In order to state our result we need a few definitions. By a k-uniform
hypergaph H = (V,E) on n vertices or, briefly, k-graph, we mean the
family of k-element subsets (called edges) of a set of vertices of H .
Let P k

ℓ denote the loose k-uniform path of length ℓ, i.e. the connected
linear k-graph with ℓ edges and kℓ−ℓ+1 vertices. Our aim is to exhibit
a ‘rescaling phenomenon’ for the maximum degree in 4-graphs which
contains no loose paths of length two and 3-graphs without loose paths
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of length three. In particular we prove the following two results (for
more precise statements see Theorems 4, 18 below).

Theorem 1. There exists n1 such that for every P 4

2
-free 4-graph H with

n ≥ n1 vertices and m ≥
(

⌊n/2⌋
2

)

+ 1 edges we have ∆(H) ≥ n2/32− n.
On the other hand, for every n ≥ 4 there exists a P 4

2
-free 4-graph H0

with m =
(

⌊n/2⌋
2

)

edges and ∆(H) = ⌊n/2⌋ − 1.

Theorem 2. There exists n2 such that for every P 3

3
-free 3-graph H with

n ≥ n2 vertices and m ≥ n2/8 + 1 edges we have ∆(H) ≥ n2/32− n.
On the other hand, for every n ≥ 4 there exists a P 3

3
-free 3-graph H0

with m = ⌊n2/8⌋ edges and ∆(H) ≤ ⌈n/2⌉.

2. Paths of length two in 4-graphs

In this section we study the maximum degree of hypergraphs which
contains no paths of length two. For 2-graphs the problem is trivial
since each graph without paths of length two clearly consists of isolated
edges. For 3-graphs the problem is also not very exciting. It is easy to
see that every component of 3-graph without P 3

2
is either a 2-star, i.e.

consists of edges which contain two given vertices, or is a subgraph of
the complete 3-graph on four vertices. Since the latter graph is denser,
3-graph without paths of length two on n vertices contains at most
⌊(n+1)/4⌋+3⌊n/4⌋ edges and this maximum number is achieved, for
instance, for the 3-graph which consists of disjoint cliques of size four
and, perhaps, one isolated edge (in the case n ≡ 3 (mod 4)). Hence
the minimum maximum degree of any P 3

2
-free graph is three.

For 4-graphs the problem starts to be interesting. Indeed, let us
recall that, at least for large n, the maximum number of edges in P 4

2
-

free graph on n vertices is
(

n−2

2

)

and it is achieved only for 2-stars in
which there is a vertex which is contained in every edge of 4-graph;
more precisely the following result was proved by Keevash, Mubayi,
and Wilson [4].

Theorem 3. If h(n) denote the maximum number of edges in a P 4

2
-free

4-graph on n vertices, then

h(n) =



















(

n
4

)

for n = 4, 5, 6,

15 for n = 7,

17 for n = 8,
(

n−2

2

)

for n ≥ 9.

In order to state our result precisely we introduce some notation.
For n large enough and m ≤

(

n−2

2

)

let function f 4

2
(n,m) be defined as

f 4

2
(n,m) = min{∆(H) : H = (V,E) is a 4-graph such that

|V | = n, |E| = m, and H 6⊃ P 4

2
},
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where here and below ∆(H) denotes the maximum degree of H . By
F4

2
(n,m) we denote the ‘extremal’ family of P 4

2
-free 4-graphs on n

vertices and m edges such that ∆(H) = f 4

2
(n,m). By K̃4

n we mean the
thick n-clique, i.e. the graph on n vertices (almost) partitioned into
⌊n/2⌋ ‘dubletons’ such that any pair of dubletons form an edge of K̃4

n.
The main theorem of these section can be stated as follows.

Theorem 4. There exists n̄1 such that for every n ≥ n̄1 and
(⌊n/2⌋

2

)

− n

5
≤ m ≤

(⌊n/2⌋
2

)

each graph from F4

2
(n,m) is a subgraph of a thick clique.

Moreover, there exist ñ1 such that for every n ≥ ñ1 and all m ≥
(

⌊n/2⌋
2

)

+ 1 each graph from F4

2
(n,m) has the maximum degree at least

n2/32 − n and one can delete from it at most 470 edges to obtain a

union of at most four 2-stars and some number of isolated vertices.

Clearly, Theorem 1 follows from Theorem 4. Before we present its
proof let us mention few of its other consequences. It is easy to see
that if we want to minimize the maximum degree in union of r stars
for a given n, m and r, we need to make the r−1 largest stars roughly
as equal as possible. On the other hand subgraphs of a thick clique can
be made almost regular, so for small m the function f 4

2
(n,m) decreases

linearly with m. This observations lead directly to the following result.

Corollary 5. For every x ∈ [0, 1/4) ∪ (1/4, 1] the limit

f(x) = lim
n→∞

f 4

2
(n, x

(

n−2

2

)

)
(

n−2

2

)

exists and

f(x) =



















0 for 0 ≤ x < 1/4,

(1 + 2x+
√
12x− 3)/24 for 1/4 < x < 1/3,

(1 + 3x+ 2
√
6x− 2)/18 for 1/3 < x < 1/2,

(x+
√
2x− 1)/2 for 1/2 < x ≤ 1.

Moreover, for every m ≤
(

⌊n/2⌋
2

)

we have
⌊

4m

n− 1

⌋

≤ f 4

2
(n,m) ≤

⌈

4m

n

⌉

. �

We note also that once the function f 4

2
(n,m) drops from Θ(n2) to

Θ(n) it becomes ‘more stable’, i.e. the following result holds.

Corollary 6. For large enough n the following holds.

(i) If
(

⌊n/2⌋
2

)

+ 4 ≤ m ≤
(

n−2

2

)

, then f 4

2
(n,m− 4) < f 4

2
(n,m).

(ii) If
(

⌊n/2⌋
2

)

− n
10

≤ m ≤
(

⌊n/2⌋
2

)

, then f 4

2
(n,m) = ⌊n/2⌋ − 1. �
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The main ingredient of our argument is the following decomposition
lemma which is true for all P 4

2
-free 4-graphs no matter what are their

density.

Lemma 7. For any P 4

2
-free 4-graph H there exists a partition of its

set of vertices V = R ∪ S ∪ T , such that subhypergraphs of H defined

as HR = {h ∈ H : h∩R 6= ∅}, HS = H [S] and HT = H \ (HR∩HS) =
{h ∈ H [V \R] : h ∩ T 6= ∅} satisfy:

(i) |HR| ≤ 10|R|,
(ii) HS is a subgraph of a thick clique, and so |HS| ≤

(

⌊|S|/2⌋
2

)

,

(iii) HT is a family of disjoint 2-stars such that centers of these

stars are in S whereas all other vertices are in T . In particular,

|HT | ≤
(

|T |
2

)

.

Proof. Let H be a P 4

2
-free 4-graph with the set of vertices V , |V | = n,

and the set of edges E, |E| = m. We start with defining the set of
exceptional vertices R ⊂ V . We put into R vertices of degree at most
ten one by one, until only vertices of degree at least eleven remain.
Then, clearly,

(1) |HR| ≤ 10|R|,
Let us consider the 4-graph Ĥ = H [V \R] = (V̂ , Ê). For a set S ⊆ V̂

by its signature sg(S) we mean the projection of the edges of Ĥ into
S, i.e.

sg(S) = {S ∩ e : e ∈ Ê} .
Our argument is based on the number of facts on signatures of e ∈ Ê.

Claim 8. The signature of each edge e of Ĥ contains no singletons

and at least one dubleton. Moreover, each vertex of e is contained in

at least one element of the signature.

Proof. The first part of the statement follows from the fact that Ĥ is
P 4

2
-free. Now take e ∈ Ê. Since the degree of each vertex v ∈ E is

at least eleven, so it must be contained in at least one set from sg(e).
Finally, if sg(e) contains no dubletons, then each edge e′ intersecting e
must share with it precisely three elements. But then, for v′ = e′\e, the
vertex v′ ∈ V̂ has degree at most four, contradicting our assumption
on Ĥ . �

Claim 9. If the signature of an edge e from Ĥ contains two dubletons

they are disjoint.

Proof. Let e1 = {x1, x2, x3, x4} ∈ Ĥ and let {x1, x2}, {x2, x3} ∈ sg(e1).
Then, there exist in H two other edges, e2 = {x1, x2, y1, y2} and e3 =
{x2, x3, y2, y3}, where y1, y2, y3 /∈ e1. Set V1 = e1 ∪ e2 ∪ e3. We argue
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that at least one of vertices in the component of Ĥ containing V1 has
degree at most 10 contradicting the definition of Ĥ.

Let us first consider the case where y1 6= y3. Since H is P 4

2
-free, the

signature of V1 contains no singletons, but one can easily verify that
it cannot contain dubletons either. Note also that there exists an edge
e′ not contained in V1 but intersecting it, since otherwise, because of
the degree restriction, V1 would contain at least 11 · 7/4 > 19 edges,
contradicting Theorem 3. Furthermore, one can check that to avoid P 4

2
,

any edge e′ not contained in V1 can intersect V1 on one of ten possible
triples. But this means that the vertex v = e′ \ V1 has degree at most

ten, contradicting the choice of Ĥ .
Now let us assume that y1 = y3. Note that to avoid P 4

2
any edge

containing x4 not contained in V1 must be of type {v, yi, x2, x4}. Since
the degree of x4 is at least eleven and it belongs to at most

(

5

3

)

= 10
edges contained in V1 such an edge, say, e4 = {v, y1, x2, x4} exists.
But now any edge which intersect set V1 on two vertices and does not
contain v creates a copy of P 4

2
and there are only five triples which

added to v′ /∈ V1 ∪ {v} create no copy of P 4

2
. Since V1 ∪ {v} cannot be

a component of Ĥ (by the degree restriction such a component would
contain more than 15 edges contradicting Theorem 3), the assertion
follows. �

Claim 10. The signature of no edge of Ĥ contains a triple and a

dubleton which intersect on one vertex.

Proof. If the signature of e1 = {x1, x2, x3, x4} ∈ Ĥ contains a triple

{x1, x2, x3} and a dubleton {x3, x4}, then there exist in Ĥ two edges,
e2 = {x1, x2, x3, y1} and e3 = {x3, x4, y1, y2}, with y1, y2 /∈ e1. But then
the signature of e3 contains two dubletons sharing exactly one vertex
contradicting Claim 9. �

Claim 11. Signature of each edge of Ĥ consists either of two disjoint

dubletons or one dubleton and two triples intersecting on this dubleton.

Proof. It is a straightforward consequence of Claims 8-10. �

Now we are ready to show Lemma 7. We call a pair of vertices
{x, y} ⊂ V̂ a twin if there is no edge e ∈ Ê such that |{x, y} ∩ e| = 1.

In other words, each edge of Ê either contains both vertices x and y,
or none of them. Now let the set S ⊂ V̂ be the union of all twins
in Ĥ , |S| = s, and T = V̂ \ S. Observe that due to Claim 11, an

edge e ∈ Ê is contained in S (and thus belongs to HS) if and only if
its signature consists of two disjoint dubletons. Consequently, HS is a
subgraph of a thick clique, and so |HS| ≤

(

s/2
2

)

. Moreover, it is easy

to see that if e ∈ Ê contains two triples intersecting on a dubleton,
then the dubleton must be contained in S while two other vertices of
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e, which can be seperated by some edge, lie outside S, i.e. they belong
to T . �

Proof of Theorem 4. Let H ∈ F4

2
(n,m), m ≥ n2/8 − 2n/3, and let a

partition V = R∪S∪T and subgraphs HR, HS and HT of H be defined
as in Lemma 7. Set |R| = r, |S| = s and |T | = t. By Lemma 7,

(2) |H| = |HR|+|HS|+|HT | ≤ 10r+

(⌊s/2⌋
2

)

+
t2

2
≤ 10r+

s2

8
− s

4
+
t2

2
.

We start with the following claim.

Claim 12. If T 6= ∅ then there exists in HT a 2-star with at least

2m2/n2 +m/n edges.

Proof. Let us define a 2-graph GT = (T,ET ) on the set of vertices T

putting ET = {h∩T : h ∈ HT}. Note that δ(Ĥ) ≥ 11 and so |T | ≥ 12.
Then the average degree of the graph GT is bounded below by

2|HT |
|T | =

2(m− |HR| − |HS|)
n− r − s

≥ 2
m− 10r − s2/8

n− r − s

=
2m

n
+

(2m/n)(r + s)− 20r − s2/4

n− r − s
≥ 2m

n
,

where the last inequality follows by the facts that m ≥ n2/8−2n/3 and
r+s ≤ n−|T | ≤ n−12. Since any graph with average degree d contains
a component of at least (d+ 1)d/2 edges, the assertion follows. �

As an immediate consequence of the above fact we get the following
result.

Claim 13. If n2/9 ≤ m ≤
(

⌊n/2⌋
2

)

, then T = ∅.

Proof. Note that a thick clique on n vertices has
(

⌊n/2⌋
2

)

edges and the
maximum degree ∆ ≤ n/2. As a consequence, if for n2/9 ≤ m ≤
(

⌊n/2⌋
2

)

, H ∈ F4

2
(n,m), then ∆(H) ≤ n/2 < 0.02n2 < 2m2/n2. Hence,

by Claim 12, T = ∅. �

Claim 14. If HT = ∅ then m ≤
(

⌊n/2⌋
2

)

. Furthermore, if in addition

HR 6= ∅, then m ≤
(

⌊n/2⌋
2

)

− n/5.

Proof. Let H ∈ F4

2
(n,m) be such that HT = ∅. Then the vertex set of

H can be partitioned into sets S and R, where |S| = s, s is even, and
|R| = r = n − s. The number of edges m in such graph is bounded
from above by s2/8 + 10r. It is easy to see that if r ≥ 2 and n is large

enough this number is smaller than
(

⌊n/2⌋
2

)

− n/5. Let us consider now
the case when R consists of just one vertex v; note that in this case n
is odd. Suppose that v belongs to an edge e. Then e must separate one
twin {w,w′} in S. But then each edge e′ of HS which contains the twin
{w,w′} must intersect e on at least one more vertex and consequently
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w, as well as w′, can be contained in at most two edges of HS. Since
deg(v) ≤ 10 so, very crudely, deg(w), deg(w′) ≤ 12. But then

m ≤
(

(n− 3)/2

2

)

+ 10 + 26 =

(

(n− 1)/2

2

)

− n− 3

2
+ 36

≤
(

(n− 1)/2

2

)

− n

5
. �

Note that Claim 14 immediately implies the first part of Theorem 4.
To consider the second part let us assume that H ∈ F4

2
(n,m), where

m >
(

⌊n/2⌋
2

)

. Then, by Claim 14, T 6= ∅. Consequently, by Claim 12,
there exists in HT a 2-star with at least

(3)
2m2

n2
+

m

n
>

2m

n
· n− 4

8
+

m

n
=

m

4
>

n2

32
− n

8

edges implying that ∆(H) > n2/32−n and HT contains at most three
largest 2-stars.

Claim 15. HT consists of at most seven disjoint 2-stars.

Proof. Assume for a contradiction, that HT consists of at least eight
disjoint 2-stars. Denote them by Si, i ≥ 1, where degH(vi) ≥ deg(vj),
for i < j, and {vi, v′i} stands for a center of a 2-star Si. Note that by
(3),

degH(v7) + degH(v8) <
2

7
·
(

m− m

4

)

=
3

14
m < ∆(H)− 3.

But then we can modify H by switching edges of S8 so they form one
2-star with S7, removing one edge from each of the 2-stars, S1, S2, S3

and add three edges to S7 (note that since δ(Ĥ) ≥ 11, both S7 and
S8 has at least twelve vertices each). Clearly, the modified graph H ′

is P 4

2
-free, has n vertices, m edges but the maximum degree of H ′ is

smaller than the maximum degree of H , contradicting the fact, that
H ∈ F4

2
(n,m). �

Claim 16. One can delete from H at most 470 edges and get a union

of at most 7 disjoint stars and some isolated vertices.

Proof. First we observe that r + s < 48. Indeed, if this is not the case
we can modify H by removing m̄ = |HR| + |HS| ≤ 10r + s2/8 − s/4
edges of HR ∪ HS, delete one edge from each of the three largest 2-
stars of HT and on the remaining r + s− 14 vertices disjoint from the
centers of 2-stars build a new 2-star (or three 2-stars if r + s > m/4)
with m̄+ 3 edges. The P 4

2
-free graph obtained in this way would have

the same number of edges but the maximum degree smaller than H ,
contradicting the fact that H ∈ F4

2
(n,m).

Since r + s ≤ 47 we have |HR ∪HS| ≤ 10r + s2/8 − s/4 ≤ 470 and
therefore, by Claim 15, one can delete from a graph H at most 470
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edges of HS ∪ HR to get a graph which is an union of at most seven
disjoint 2-stars and some isolated vertices. �

To complete the proof of Theorem 4 we need to reduce the number of
2-stars from seven to four. Let S1 be a 2-star with the largest number
of edges in HT . By (3), it has t1 > n2/32 − n/8 edges and therefore
n1 ≥ n/4 + 2 vertices. Note that there are no place on four such stars
in the graph of n vertices. In fact, the fourth 2-star must be build on at
most n/4− 1 vertices and consequently have t4 ≤ n2/32− 7n/8 + 6 ≤
t1 − 3n/4 + 6 edges.

Now suppose that a graph HT has at least 5 disjoint 2-stars. By
n4 and n5 we denote the number of vertices in the forth and the fifth
largest 2-stars ofHT . Without loss of generality n4 ≥ n5. Then we have
n5 < n/5, so one can modify H by removing from each of S1, S2, S3

one edge, choosing two vertices of the smallest degree in S5, removing
m′ < 2n/5 edges incident to them, and joining them to S4 increasing
the number of edges in S4 to at most t1−3n/4+6+2n/5+3 < t1−n/3.
The resulting graph H ′ has the maximum degree smaller than ∆(H),
which contradict the assumption that H ∈ F4

2
(n,m). Consequently,

removing 470 edges results in a graph which contains at most four
2-stars and the assertion follows. �

3. Paths of length three

In this section we study the maximum degree of dense P 3

3
-free 3-

graphs. As we see soon, both the results and their proofs are surprsingly
similar to that presented in the previous section.

For 2-graphs the problem is again an easy exercise – a graph whose
components are cycles of length three (except, perhaps, one isolated
edge if n ≡ 2 (mod 3)) is the largest P 2

3
-free graph on n vertices and

has the maximum degree two. Here, we concentrate on the first non-
trivial case when we study the maximum degree of P 3

3
-free 3-graphs.

The maximum number of edges in a P 3

3
-free 3-graph on n vertices

for all n was found by Jackowska, Polcyn and Ruciński in [2].

Theorem 17. Let ĥ(n) denote the maximum number of edges in a

P 3

3
-free 3-graph on n vertices. Then

ĥ(n) =











(

n
3

)

for n = 3, 4, 5, 6,

20 for n = 7,
(

n−1

2

)

for n ≥ 8 .

Let

f 3

3
(n,m) = min{∆(H) : H = (V,E) is a 3-graph such that

|V | = n, |E| = m, and H 6⊃ P 3

3
},



PATHS IN HYPERGRAPHS 9

and let F3

3
(n,m) denote the ‘extremal’ family of P 3

3
-free 3-graphs on

n vertices and m edges such that ∆(H) = f 3

3
(n,m). Moreover, let

us call a 3-graph H quasi-bipartite if one can partition its set of ver-
tices into three sets: X = {x1, x2, . . . , xs}, Y = {y1, y2, . . . , ys}, and
Z = {z1, z2, . . . , zt} in such a way that all the edges of H are of type
{xi, yi, zj} for some i = 1, 2, . . . , s, j = 1, 2, . . . , t. Finally, by a star
with center v we denote a 3-graph in which each edge contains v. Then
the following holds.

Theorem 18. There exists n̄2 such that for every n ≥ n̄2, and

n2/8− n

5
≤ m ≤ n2/8 ,

each graph from F3

3
(n,m) is quasi-bipartite.

Moreover, there exists ñ2 such that for every n ≥ ñ2 and

n2/8 < m ≤
(

n− 1

2

)

,

each graph from F3

3
(n,m) has the maximum degree at least n2/32 and

we can delete from it at most 144 edges and get a union of at most four

stars and some number of isolated vertices.

Observe that Theorem 2 follows directly from Theorems 18. Another
immediate consequence of the above two statements is the following
result (note that the function f(x) below is the same as the one defined
in Corollary 5).

Corollary 19. For every x ∈ [0, 1/4) ∪ (1/4, 1] the limit

f(x) = lim
n→∞

f 3

3
(n, x

(

n−1

2

)

)
(

n−1

2

)

exists and

f(x) =



















0 for 0 ≤ x < 1/4,

(1 + 2x+
√
12x− 3)/24 for 1/4 < x < 1/3,

(1 + 3x+ 2
√
6x− 2)/18 for 1/3 < x < 1/2,

(x+
√
2x− 1)/2 for 1/2 < x ≤ 1. �

The proof of Theorems 18 follows closely the way we proved The-
orem 4. Thus, as before, we start with the following decomposition
lemma.

Lemma 20. For any P 3

3
-free 3-graph H there exists a partition of its

set of vertices V = R ∪ S ∪ T , such that subhypergraphs of H defined

as HR = {h ∈ H : h∩R 6= ∅}, HS = H [S] and HT = H \ (HR∩HS) =
{h ∈ H [V \R] : h ∩ T 6= ∅} satisfy:

(i) |HR| ≤ 6|R|,
(ii) HS is quasi-bipartite, and so |HS| ≤ |S|2/8,
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(iii) HT is a family of disjoint stars such that centers of these stars

are in S whereas all other vertices are in T , and so |HT | ≤
(

|T |
2

)

.

Proof. Let H = (V,E) be a P 3

3
-free 3-graph with |V | = n and |E| = m.

We start with defining the set of ‘exceptional’ vertices R ⊆ V . By a
triangle C we mean linear 3-graph with six vertices and three edges.
First we include in R all the components of H which contain C. Then,
from the remaining graph we move to R vertices of degree at most six
one by one, until we end up with a graph Ĥ of minimum degree at
least seven. Then we set HR = {h ∈ H : h∩R 6= ∅} and define a graph

Ĥ = (V̂ , Ê) by putting V̂ = V \R, Ê = E \HR.
In order to estimate the number of edges in HR we need the following

simple fact from [3].

Claim 21. If H is a connected P 3

3
-free 3-graph on n vertices contain-

ing C, then |E(H)| ≤ 4n.

Thus, the required bound 6|R| for the number of edges in HR follows.
The main tool in proving Lemma 20 is, again, an analysis of possible

signatures of edges in a 3-graph Ĥ, where as before, the signature of
e ∈ Ê is defined as the projection of Ê onto e.

Claim 22. Every vertex of e ∈ Ê is covered by at least one set of the

signature of e.

Proof. It follows from the fact that δ(Ĥ) ≥ 7 > 1. �

Claim 23. The signature of none of the edges of Ĥ contains two sin-

gletons.

Proof. Assume that an edge e = {x1, x2, x3} ∈ Ê contains two single-

tons, say x1 and x2. Since Ĥ is {P 3

3
, C}-free, two edges that intersects

e on x1 and x2 must share two points, say y1 and y2.
Set X = {x1, x2, x3, y1, y2}. Since the degree of x3 is at least seven it

must belong to an edge e′ which is not contained in X . If |e′ ∩X| = 1
it would lead to a P 3

3
, if e′ ∩X = {x3, yi} it would create C. Hence, e′

must consists of v /∈ X and one of the vertices x1, x2. Let us assume
that e′ = {v, x1, x3}. Now consider possible candidates for edges e′′

which contain v. If for such an edge |e′′ ∩X| ≤ 1 then it leads to P 3

3
,

whereas if e′′ = {v, xi, yj} for some i = 1, 2, 3, j = 1, 2, it creates a
triangle C. Thus, the only candidates for e′′ are triples {v, y1, y2}, and
{v, xi, xj} for 1 ≤ i < j ≤ 3. But it means that the degree of v is at

most four, while δ(Ĥ) ≥ 7. A contradiction. �

Claim 24. If the signature of an edge e ∈ Ĥ contains two dubletons,

then their intersection is a singleton of e.

Proof. Let e = {x, y, z} ∈ Ĥ and let f = {x, y, vx} and f ′ = {y, z, vz},
denote two edges containing two dubletons {x, y}, {y, z} ∈ sg(e). Sup-
pose that y is not a singleton of sg(e). By Claim 23 we may assume
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that x is not a singleton either. We first argue that then there exists
f ′′ = {x, y, v} such that v 6= vz. If vx 6= vz, then we can take just
f ′′ = f , so let vx = vz. Note that x is not a singleton in sg(e) so each
edges containing it must contain some other vertex of e. Moreover,
any edge e′ = {w, x, z} with w 6= vz is prohibited since it contains two
singletons x and z. Thus, the existence of f ′′ follows from the fact
that degH(x) ≥ 7 > 3. Now consider possible candidates for edges e′

containing v. If e′∩ e = ∅ then it leads to either P 3

3
or C. If |e′∩ e| = 1

then it creates either singletons x or y in e, or the second (next to y)
singleton v in f ′′. Thus, all edges containing v are contained in e∪{v},
contradicting the fact that deg(v) ≥ 7. �

Claim 25. The signature of no edge from Ĥ contains three dubletons.

Proof. It follows from Claims 23 and 24. �

Claim 26. The signature of an edge from Ĥ consists either of disjoint

singleton and dubleton, or of two dubletons intersecting on a singleton.

Proof. It is a direct consequence of Claims 22-25. �

Now we can describe the partition of V̂ into S and T . We call a
pair of vertices {x, y} ⊂ V̂ a twin if it cannot be separated by an edge

e ∈ Ê, i.e. for no such edge |{x, y}∩ e| = 1. By singletons we mean all
one-element sets which belong to a signature of some edge of E.

Now let S ⊂ V̂ consists of all twins and singletons of Ĥ , |S| = s,

and T = V̂ \ S. It is easy to see that an edge of Ĥ is contained in S
if and only if it has signature which consists of disjoint dubleton and
singleton. All other edges belong to HT . Note that each edge of HT

contains a singleton which belong to S.
Finally, note that any quasi-bipartite 3-graph on s vertices contains

at most

m ≤ max{s′(s− 2s′) : s′ ≤ s} ≤ s2/8 ,

edges, so |HS| ≤ s2/8. �

Proof of Theorem 18. Since the argument is almost identical to the one
from the proof of Theorem 4 we skip some technical details. Let H ∈
F3

3
(n,m), m ≥ n2/8 − n/5, and let a partition V = R ∪ S ∪ T and

subgraphs HR, HS and HT of H be as defined in Lemma 20. Set
|R| = r, |S| = s and |T | = t. By Lemma 20,

(4) |H| = |HR|+ |HS|+ |HT | ≤ 4r + s2/8 + t2/2.

We start with the following claim.

Claim 27. If T 6= ∅ then there exists in HT a star with at least

2m2/n2 +m/n edges.
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Proof. Indeed, then the 2-graph GT = (T,ET ) defined on the set of
vertices T by taking ET = {h ∩ T : h ∈ HT} has the average degree
bounded from below by

2|HT |
|T | =

2(m− |HR| − |HS|)
n− r − s

≥ 2(m− 6r − s2/8)

n− r − s
=

2m

n
+

(2m/n)(r + s)− 12r − s2/4

n− r − s
≥ 2m

n
,

and so contains a component of at least 2m2/n2 + im/n edges. �

Since there exists a P 3

3
-free quasi-bipartite graph with n vertices and

⌊n2/8⌋ edges, the above result immediately implies the following fact.

Claim 28. If n2/9 ≤ m ≤ n2/8, then T = ∅. �

On the other hand, since HR is sparse, it turns out that when HT = ∅
the number of edges H is bounded from below by ⌊n2/8⌋ and this
maximum is achieved only when HR = ∅.
Claim 29. If HT = ∅ then m ≤ n2/8. Furthermore, if in addition

HR 6= ∅, then m ≤ n2/8− n/5. �

Now the first part of Theorem 18 follows directly from Claims 28
and 29. In order to show the second part of the assertion we can repeat,
almost verbatim, the argument used in the proof of Theorem 4. Thus,
from Claims 27 and 29, it follows that if m > n2/8 then HT contains
a star with more than n2/32 + n/8 edges. Consequently, H contains
at most three vertices with maximum degree. Then we infer that HT

consists of at most six disjoint stars since otherwise we could decrease
the maximum degree of three largest ones by merging the sixth and
seventh into one and add to them three edges taken from the biggest
stars.

Since HT consists of only few stars the sets S and R must be quite
small (simple calculations show that r + s < 25) since otherwise we
could remove all m̄ edges inside it, take three edges from the largest
stars, and on the set of r+s−6 vertices, where we excluded the centers
of stars of HT , build a star with m̄+3 edges. Then, the P 3

3
-free graph

constructed in this way would have the same number of edges as H but
smaller maximum degree, contradicting the fact that H ∈ F3

3
(n,m).

Since r + s < 25, we have |HR ∪ HS| ≤ 6r + s2/8 < 144, i.e. we can
remove from H at most 144 edges and get a forest of at most 6 stars
and, perhaps, some isolated vertices.

Finally, to complete the proof, it is enough to show that in fact HT

consists of at most four stars. Indeed, otherwise we could modify a
graph accordingly (by decreasing by one three largest stars and incor-
porate these three edges to small stars by shuffling their vertices) so
we could keep its number of edges and P 3

3
-freeness but decrease by one

its maximum degree. �
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4. Final remarks and comments

It is easy to see that the constant 470 in Theorem 4 is far from
being optimal. The reader can easily rewrite the proof to replace it by,
say, 30. However finding the smallest possible value of this constant
requires more work and studying quite a few cases of small 4-graphs.
Since it is not crucial for the main result, we just give the examples of
the extremal 4-graphs we have found.

Let H4

1
be a 4-graph on 3k + 8 vertices, k ≥ 100, which consists of

three complete disjoint 2-stars on k vertices each, three edges joining
centers of these stars, and a copy of the unique P 4

2
-free graph F 4

1,3 on
the vertex set {x1, . . . , x8} with 17 edges found in [4] whose set of 4-
edges consists of all 4-element subsets of {x1, . . . , x8} which have at
least three elements in {x1, . . . , x4}. Then, to make H4

1
a union of

disjoint 2-stars, we need to remove three edges joining the centers of
three large 2-stars and at least eight edges from F 4

1,3. It seems that one

can always delete at most eleven 4-edges from a dense enough P 4

2
-free

graph to get a union of at most 4-stars (and, perhaps, some number of
isolated vertices), so the graph H4

1
defined above is in a way extremal.

It is however not unique – one can modify it removing from each 2-star
the same number i ≤ k/10 of edges to get another extremal example.

On the other hand, if we want to get a union of four stars instead of
four 2-stars, it is enough to remove fromH4

1
only seven edges. However,

H4

1
is not extremal for the variant of this problem. A 4-graph H4

2
on

3k + 4 which consists of a thick clique on 10 vertices and three equal
complete 2-stars rooted on its vertices needs at least eight edges to be
deleted to become a union of at most four stars. The same is true for
a 4-graph H4

3
on 3k + 6 vertices which consists of three complete stars

on k vertices each, three edges joining their centers, and the complete
clique on six vertices.

In a similar way one can try to improve the constant 144 in The-
orem 18. Since the structure of P 3

3
-free 3-graphs is well studied, one

can use Theorem 18 to replace 144 by just 10, and the extremal graph
consists of three equal stars and the clique on six vertices.

Another, much more interesting question, is whether a similar rescal-
ing phenomenon can be observed for other extremal problems. There
is a number of candidates for such a behaviour, we just mention two
possible directions which follow the line of research initiated by this
work. The first one concerns linear 3-paths P 3

ℓ of length ℓ, for ℓ ≥ 3.
It is known [5] that the largest number of edges in a P 3

ℓ -free graph on
n vertices is (1/2 + o(1))n2 and the extremal graph contains vertices
of degree Ω(n2). Thus, since a thick clique is P 3

ℓ -free, one can expect
that this maximum degree drops to O(n) at m ∼ n2/8.

It is also conceivable that one can generalize of our result on P 4

2
-free

4-graphs in the following direction. For r ≥ 1 let F4

2
(4r;n,m) be a
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family of (4r)-graphs on n vertices and m edges in which no two edges
share precisely 2r − 1 points. Frankl and Füredi [1] proved that to
maximize the number of edges in such a graph one needs to take the
family of all sets which contain a given set on 2r vertices. Clearly, in
such a graph the maximum degree is m = Θ(n2r). On the other hand a
thick (4r)-clique on n vertices, where we first partition vertex set into

pairs and then choose 2r of them to form an edge, has
(

⌊n/2⌋
2r

)

edges but

its maximum degree is just
(

⌊n/2⌋−1

2r−1

)

= Θ(n2r−1). Thus, one expect a

rapid change of the (minimum) maximum degree at m =
(

⌊n/2⌋
2r

)

.
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