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AN EFFICIENT SECOND-ORDER FINITE DIFFERENCE METHOD
FOR THE ONE-DIMENSIONAL SCHRÖDINGER EQUATION WITH

ABSORBING BOUNDARY CONDITIONS∗

BUYANG LI† , JIWEI ZHANG‡ , AND CHUNXIONG ZHENG§

Abstract. A stable and convergent second-order fully discrete finite difference scheme with
efficient approximation of the exact absorbing boundary conditions is proposed to solve the Cauchy
problem of the one-dimensional Schrödinger equation. Our approximation is based on the Padé
expansion of the square root function in the complex plane. By introducing a constant damping
term to the governing equation and modifying the standard Crank–Nicolson implicit scheme, we
show that the fully discrete numerical scheme is unconditionally stable if the order of Padé expansion
is chosen from our criterion. In this case, an optimal-order asymptotic error estimate is proved for
the numerical solutions. Numerical examples are provided to support the theoretical analysis and
illustrate the performance of the proposed numerical scheme.
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Padé approximation, fast algorithm, error estimate

AMS subject classifications. 65M12, 65R20, 65Z05

DOI. 10.1137/17M1122347

1. Introduction. The Schrödinger equation describes the time evolution of a
physical system in which the quantum effects are significant. It also appears in some
other applications, such as underwater acoustics and optics [23, 29, 30]. This work
is concerned with an effficient numerical method for the Cauchy problem of the one-
dimensional Schrödinger equation:

i ∂tψ(x, t) = −∂2
xψ(x, t) + V (x)ψ(x, t) + Vex(x, t)ψ(x, t), x ∈ R,(1.1)

lim
|x|→+∞

ψ(x, t) = 0, ψ(x, 0) = ψ0(x), x ∈ R,(1.2)

where i =
√
−1 denotes the imaginary unit, ψ(x, t) the complex-valued wave function

to be determined, V (x) a real-valued nuclear potential, and Vex(x, t) a real-valued
external electric potential.

Over the past few decades, great efforts have been made to overcome the numerical
difficulties arising from solving PDEs in unbounded domains. Among these efforts, the
artificial boundary method turns out to be very successful; see the monograph [19] and
the review papers [4, 11, 12, 14, 33]. The key step of the artificial boundary method
is the construction of suitable boundary conditions on some artificial boundaries.
By this approach, the original problems in the whole space are reduced to problems
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SCHRÖDINGER EQUATION WITH ABCs 767

on bounded domains, which can be solved by grid-based numerical methods. For
wave-like problems, these boundary conditions are usually referred to as absorbing
boundary conditions (ABCs) in the literature. ABCs are called exact if they render
the solutions of truncated domain problems exactly the same as those of unbounded
domain problems.

For the Schrödinger equation, the exact ABCs are nonlocal in time, containing
some temporal convolutions in the formulations [7, 18]. The nonlocal convolutions in
the exact ABC cause many difficulties in developing and analyzing numerical methods
for the truncated problem in bounded domains [5, 31]. On the one hand, only a
suboptimal error estimate has been proved for the Schrödinger equation under exact
ABCs [31, Theorem 4.3]. On the other hand, fast evaluation of temporal convolutions
is important when the number of time steps is large (this occurs in long-time evolution
or small time-step simulations, and at the nth time step O(n) operations are needed
to compute the convolution integral, which results in a total computational cost of
O(N2) in operations and O(N) in memory, with N denoting the number of time
steps). Fast convolution algorithms with essentially linear complexity O(N ln2N)
and memory O(N) have been developed in [9, 16]. Fast algorithms with less memory
requirements are also extensively studied. This kind of algorithm usually utilizes
the summation of exponentials to approximate the convolution kernel (see [21] for
an exception), and transform a temporal convolution to a sequence of first-order
ODE problems. The derivation of exponentials can be done through quadrature
approximation in the time domain [8, 22, 36], direct rational approximation of kernel
symbols [2, 25], or quadrature approximation of contour integrals in the Laplace
domain [28]. While maintaining the almost optimal complexity in terms of operations
count, i.e., O(N lnN) or O(N), these algorithms can reduce the memory requirement
to at most O(lnN).

There are some works on high-order local ABCs for the Schrödinger equation
which have considered accelerating long time simulations by using the Padé approxi-
mation [6, 32, 34, 35]. However, no analysis has been given for choosing the explicit
order of Padé approximation for the fast numerical solutions to achieve optimal-order
convergence. In [36], Zheng investigated the convergence of a fast algorithm for the
one-dimensional heat equation. However, the analysis technique cannot be directly
extended to the Schrödinger equation.

The objective of this paper is to construct a stable and convergent numerical
method, integrating an efficient evaluation of the exact ABC as well, for solving the
Cauchy problem of the one-dimensional Schrödinger equation. To this end, we first
reformulate the Schrödinger equation into an equivalent form with a constant damp-
ing term σ, and then construct a perturbed Crank–Nicolson scheme to discretize the
reformulated problem in time. Specifically, we apply the Z-transform to the reformu-
lated Schrödinger equation to derive a discrete ABC for the temporally discretized
problem, and then propose a second-order finite difference scheme for further spatial
discretization. By using the (m,m)-Padé rational expansion of the square root func-
tion [25], we introduce an efficient algorithm to approximate the discrete convolution
involved in the discrete ABC, which is reformulated as a system of differential equa-
tions by applying Lindman’s idea [24]. The construction of the damping term and the
perturbation of the Crank–Nicolson discretization are the key ingredients to maintain
the stability of the resulting fully discrete numerical scheme. Finally, we present nu-
merical analysis for the proposed numerical method to guarantee the optimal-order

convergence by explicitly prescribing the order of Padé expansion m = ln 1/8(στ)9/2

2 ln(1−(στ)1/2)
,
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768 BUYANG LI, JIWEI ZHANG, AND CHUNXIONG ZHENG

where τ denotes the step size of time discretization. If T is the length of the time
interval, we can choose the the parameter σ = 1/T and step size τ = T/N in the
numerical simulations. The number of auxiliary variables, m, behaves asymptotically
like 9

4

√
N lnN . Therefore, the proposed algorithm requires O(

√
N lnN) storage and

the additional computational cost O(N
3
2 lnN) to evaluate the exact ABCs.

The rest of this paper is organized as follows. In section 2, we introduce the
setting of the problem, reformulating the problem by constructing a damping factor
in time, and deriving the exact ABC for the reformulated equation. In section 3,
we propose temporal and spatial discretizations for the reformulated equation on a
truncated computational domain. In section 4, we introduce the Padé approximation
of the fully discrete numerical method, as well as the resulting algorithm for practical
computation. In section 5, we determine the order of Padé expansion and prove
the optimal-order convergence of the numerical solutions. Numerical examples are
provided in section 6 to illustrate the effectiveness of the proposed numerical method.

2. Construction of exact ABCs. We assume that the initial wave function
ψ0(x) and the nuclear potential V (x) in (1.1), (1.2) are smooth functions with compact
supports. In addition, the external electric potential function Vex(x, t) is smooth and
has constant tail parts when the location point is suitably far away from the origin.
If we set

Ṽ (x, t) =

∫ t

0

Vex(x, s)ds, A(x, t) = −∂xṼ (x, t),

then the above assumptions imply the existence of two real numbers x± such that

(2.1) ψ0(x) = 0, A(x, t) = 0, V (x) = 0 ∀x ∈ (−∞, x−] ∪ [x+,∞).

Let us introduce a new wave function

u(x, t) = eiṼ (x,t)−σtψ(x, t),

where σ ∈ [0, 1] is an auxiliary parameter for controlling the stability of the algorithm
to be introduced in this paper. Generally, we set σ = T−1 with T being the evolution-
ary time. It is straightforward to verify that the function u(x, t) solves the following
initial value problem:

(2.2)

i(∂t + σ)u(x, t) = L(t)u(x, t) ∀x ∈ R, ∀ t > 0,

u(x, 0) = ψ0(x) ∀x ∈ R,
lim

|x|→+∞
u(x, t) = 0 ∀ t > 0,

where the time-dependent linear operator L(t) is defined by

(2.3) L(t) = −[∂x + iA(x, t)]2 + V (x).

To obtain exact ABCs for the problem (2.2), we first consider the following exte-
rior problem on the semi-infinite interval [x+,+∞):

i(∂t + σ)u(x, t) = −∂2
xu(x, t) ∀x ∈ [x+,+∞), ∀ t > 0,(2.4a)

u(x, 0) = 0 ∀x ∈ [x+,+∞),(2.4b)

lim
x→+∞

u(x, t) = 0 ∀ t > 0.(2.4c)

The Laplace transform of (2.4) in time yields
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SCHRÖDINGER EQUATION WITH ABCs 769

i(z + σ)û(x, z) = −∂2
xû(x, z) ∀x ∈ [x+,∞), ∀ z ∈ C+,(2.5)

lim
x→∞

û(x, z) = 0 ∀ z ∈ C+,(2.6)

where C+ stands for the right half part of the complex plane. The general solution of
(2.5) is

û(x, z) = c1(z) exp
(
−x
√
−i(z + σ)

)
+ c2(z) exp

(
x
√
−i(z + σ)

)
,

where
√
· denotes the square root with nonnegative real part. Clearly, the infinity

boundary condition (2.6) implies c2(z) = 0. Consequently, by differentiating the last
equation we obtain

∂xû(x, z) = −
√
−i(z + σ) û(x, z) ∀x ∈ [x+,+∞), ∀ z ∈ C+,(2.7)

whose inverse Laplace transform yields an absorbing boundary condition at x+:√
−i(∂t + σ)u(x+, t) + ∂xu(x+, t) = 0 ∀ t > 0.(2.8)

In the above,
√
−i(∂t + σ) stands for the multiplier operator (in time) associated with

the symbol
√
−i(z + σ), namely,√

−i(∂t + σ)u(x+, t) := L −1
z [
√
−i(z + σ) û(x+, z)](t) ∀ t > 0,

with L −1
z denoting the inverse Laplace transform with respect to the z-variable.

A similar boundary condition can be derived at x−:√
−i(∂t + σ)u(x−, t)− ∂xu(x−, t) = 0 ∀ t > 0.(2.9)

In view of (2.8) and (2.9), the solution of (2.2) is the same as the solution of the
following problem in a bounded domain:

(2.10)

i(∂t + σ)u(x, t) = L(t)u(x, t) ∀x ∈ (x−, x+), ∀ t > 0,√
−i(∂t + σ)u(x±, t) + ∂νu(x±, t) = 0 ∀ t > 0,

u(x, 0) = ψ0(x) ∀x ∈ [x−, x+],

where ∂ν denotes the outward normal derivative at the boundary points x±.

3. Discretization of (2.10). In this section, we discretize (2.10) in time by the
Crank–Nicolson scheme with an O(τ2) perturbation, with convolution quadrature
for discretizing the fractional time derivative at the boundary points. The O(τ2)
perturbation is proposed to guarantee the stability and convergence of an efficient
algorithm to be introduced in section 4.

We first introduce the notations of the Z-transform in the following subsection.

3.1. Z-transform of a sequence of functions. Given a Hilbert space H with
the inner product (·, ·)H and the induced norm ‖·‖H, let us introduce the semi-infinite
sequence spaces

`2(H) =

{
g = {gn}∞n=0 : gn ∈ H, ‖g‖`2(H) ≡

( ∞∑
n=0

‖gn‖2H
) 1

2

<∞
}
,

`20(H) =
{
g = {gn}∞n=0 ∈ `2(H) : g0 = 0

}
.

D
ow

nl
oa

de
d 

04
/0

3/
23

 to
 1

58
.1

32
.1

61
.1

85
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

770 BUYANG LI, JIWEI ZHANG, AND CHUNXIONG ZHENG

The linear space `2(H) is a Hilbert space with the inner product

(f, g)`2(H) ≡
∞∑
n=0

(fn, gn)H ∀f, g ∈ `2(H).

For any element in g = {gn}∞n=0 ∈ `2(H), we define its Z-transform as g̃(z) =∑∞
n=0 g

nzn, which is an H-valued function holomorphic in the unit disk D. The
limit g̃(z) = limr↗1 g̃(rz) exists in L2(∂D;H) and the following Parseval’s identity
holds:

(f, g)`2(H) =

∫
∂D

(f̃(z), g̃(z))H µ(dz) ∀f, g ∈ `2(H).(3.1)

For a sequence f = {fn}∞n=0 ∈ `2(H), we define the shift operator S by Sf =
{fn+1}∞n=0. The average operator E and the forward difference quotient operator Dτ

are defined by

E =
S + I

2
and Dτ =

S − I
τ

,

respectively. In addition, we make the following notations our convention:

Sfn = (Sf)n, Efn = (Ef)n, Dτf
n = (Dτf)n.

It is straightforward to verify that
(3.2)

S̃f(z) = z−1f̃(z), Ẽf(z) =
z−1 + 1

2
f̃(z), D̃τf(z) =

z−1 − 1

τ
f̃(z) ∀f ∈ `20(H).

In addition, for all f, g ∈ `2(H) the following identities hold:

Dτ (fngn) = fnDτg
n + gnDτf

n + τDτf
nDτg

n ∀n ≥ 0,(3.3)

Re(Dτf
n, Efn)H =

1

2
Dτ‖fn‖2H ∀n ≥ 0.(3.4)

The identities (3.1) and (3.2)–(3.4) will be used frequently in this paper.

3.2. A perturbed Crank–Nicolson scheme. We shall derive a time-stepping
scheme for (2.10) from the time discretization of the original problem (1.1). Let τ > 0
be the time step and let us set tn = nτ . We discretize (2.2) in the following way:

(3.5)

i(Dτ + σE)un(x) = Ln+ 1
2 (E + στ2Dτ )un(x) ∀x ∈ R, ∀n ≥ 0,

u0(x) = ψ0(x) ∀x ∈ R,
lim

|x|→+∞
un(x) = 0 ∀n ≥ 1,

where un(x) ≈ u(x, tn) and Ln+ 1
2 = L(tn+ 1

2
); see (2.3). The scheme (3.5) differs from

the standard Crank–Nicolson scheme by the small term Ln+ 1
2στ2Dτu

n(x).
In view of assumption (2.1), on the interval [x+,+∞) the semidiscrete problem

(3.5) reduces to

(3.6)

i(Dτ + σE)un(x) = −∂2
x(E + στ2Dτ )un(x) ∀x ∈ [x+,+∞), ∀n ≥ 0,

u0(x) = 0 ∀x ∈ [x+,+∞),

lim
x→+∞

un(x) = 0 ∀n ≥ 1.
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SCHRÖDINGER EQUATION WITH ABCs 771

Let ũ(x, z) denote the Z-transform of the sequence {un(x)}∞n=0. Applying the Z-
transform to (3.6) and using (3.2), we obtain

1

iτ
δ(z, σ)ũ(x, z)− ∂2

xũ(x, z) = 0 ∀x ∈ [x+,+∞),

lim
x→+∞

ũ(x, z) = 0,

where

δ(z, σ) =
2− 2z + στ(1 + z)

1 + z + 2στ(1− z)
may be viewed as the generating function for time discretization [27].

The solution ũ of the equation above can be generally expressed as

ũ(x, z) = c+1 exp

(
x

√
−i δ(z, σ)

τ

)
+ c+2 exp

(
−x
√
−i δ(z, σ)

τ

)
.

The condition limx→+∞ ũ(x, z) = 0 implies c+1 = 0. This leads to the identity (by
differentiating ũ(x, z) with respect to x)

(3.7) ∂xũ(x+, z) = −
√
−i δ(z, σ)

τ
ũ(x+, z) ∀z ∈ D,

which is in analogy to the continuous case (2.7).
Note that the function

(3.8) K̃(z) =
√
−iδ(z, σ)

is analytic in the unit disk D. Thus it has a power series expansion

(3.9) K̃(z) =

∞∑
j=0

Kjz
j ∀ z ∈ D.

Substituting (3.9) and ũ(x, z) =
∑∞
n=0 u

n(x)zn into (3.7) yields an exact absorbing
boundary condition for (3.5) at the right artificial boundary point x = x+:

τ−
1
2 (K∗u)n(x+) + ∂xu

n(x+) = 0 ∀n ≥ 0,

where K∗ is the convolution quadrature operator corresponding to the symbol K̃(z),
namely,

(3.10) (K∗u)n =

n∑
j=0

Kju
n−j .

For simplicity of notation, for a function u(x, t) we denote

K ∗ u(x, tn) =

n∑
j=0

Kj u(x, tn−j).

Analogously, by analyzing the problem (3.5) on (−∞, x−], we derive an exact
absorbing boundary condition at the left artificial boundary point x = x−:

τ−
1
2 (K∗u)n(x−)− ∂xun(x−) = 0 ∀n ≥ 1.
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772 BUYANG LI, JIWEI ZHANG, AND CHUNXIONG ZHENG

Consequently, the semidiscrete problem (3.5), originally defined on the the whole
space, can be reduced to the following semidiscrete problem on a bounded domain:

(3.11)

i(Dτ + σE)un(x) = Ln+ 1
2 (E + στ2Dτ )un(x) ∀x ∈ (x−, x+), ∀n ≥ 0,

τ−
1
2 (K∗u)n(x±) + ∂νu

n(x±) = 0 ∀n ≥ 0,

u0(x) = ψ0(x) ∀x ∈ [x−, x+].

Comparing (3.11) with (2.10), we see that the equation is discretized by a Crank–
Nicolson scheme subject to an O(τ2) perturbation, with a convolution quadrature
approximation to the fractional-order time derivative at the boundary points x±.
Since the time discretization (3.5) in the whole space is of second order, it follows
that the induced convolution quadrature at the boundary points x± in (3.11) is also
second order:

|τ− 1
2 (K ∗ u±)n −

√
−i(∂t + σ)u(x±, tn)| ≤ Cτ2,(3.12)

where un± := u(x±, tn). A proof of (3.12) is presented in Appendix A based on the
ideas of [26, 27].

3.3. Spatial discretization. Let M be a positive integer, h = (x+−x−)/M be
the mesh size, and τ > 0 be the time step. We define the mesh points

xk = x− +

(
k − 1

2

)
h, k = 0, 1, . . . ,M + 1,

tn = nτ, n = 0, 1, . . . , N,

with x0 and xM+1 being two ghost points.
Given a vector v = (v0, . . . , vM+1) ∈ CM+2, we introduce the discrete gradient

∇hv as the (M + 1)-dimensional vector (∇hv0, . . . ,∇hvM ) defined by

∇hvk =
vk+1 − vk

h
, k = 0, 1, . . . ,M.

The linear operator which maps the (M + 2)-dimensional vector v = (v0, . . . , vM+1)
to the M -dimensional vector (v1, . . . , vM ) will be denoted by P. The linear operator
which maps v to the (M + 1)-dimensional vector (v0, . . . , vM ) will be denoted by Q.
In addition, we define the Neumann and Dirichlet data associated with the (M + 2)-
dimensional vector v as

∂−ν v =
v0 − v1

h
, ∂+

ν v =
vM+1 − vM

h
, γ−v =

v0 + v1

2
, γ+v =

vM+1 + vM
2

.

We introduce an inner product in the M -dimensional vector space as

(φ, ϕ)h = h

M∑
k=1

φ̄kϕk,

and an inner product in the (M + 1)-dimensional vector space as

〈χ, ω〉h =
h

2
χ̄0ω0 + h

M−1∑
k=1

χ̄kωk +
h

2
χ̄MωM .
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SCHRÖDINGER EQUATION WITH ABCs 773

Correspondingly, the induced norms will be denoted by

‖φ‖h =
√

(φ, φ)h, |χ|h =
√
〈χ, χ〉h.

We introduce a second-order spatial discretization Lnh for the continuous differ-
ential operator L(tn), which maps the (M + 2)-dimensional vector space to the M -
dimensional vector space:

Lnhv = ((Lnhv)1, . . . , (Lnhv)M ) ∀ v = (v0, . . . , vM+1),

with

(Lnhv)k =
2vk − vk+1 − vk−1

h2
+
A(xk+ 1

2
, tn)vk+1 −A(xk− 1

2
, tn)vk−1

ih

+ [V (xk) +A2(xk, tn)]vk.

For simplicity of notation, we use the abbreviation Lnhvk := (Lnhv)k. A direct compu-
tation shows that for all (M + 2)-dimensional vectors v and w, the discrete Green’s
formula (with elementwise multiplication by Un and An)

(3.13) (Pv,Lnhw)h = 〈∇nhv,∇nhw〉h + (Pv, UnPw)h − γ±v · ∂±ν w

holds, where ∇nh = ∇h + iAnQ, An = (An0 , . . . , A
n
M ), and Un = (Un1 , . . . , U

n
M ) with

the components determined by

Ank = A(xk+ 1
2
, tn), Unk = V (xk) +A2(xk, tn)−A2(xk+ 1

2
, tn).

In the time-stepping scheme (3.11), replacing the function un(x) by the vector
un = (un0 , . . . , u

n
M+1) and replacing the continuous operator Ln+1/2 with its discrete

analogue Ln+1/2
h , we obtain the following fully discrete finite difference scheme:

i(Dτ + σE)Pun = Ln+ 1
2

h (E + στ2Dτ )un ∀n ≥ 0,(3.14)

τ−
1
2 (K ∗ γ±u)n + ∂±ν u

n = 0 ∀n ≥ 0,(3.15)

u0 = (ψ0(x0), . . . , ψ0(xM+1)).(3.16)

4. Efficient approximation of (3.14)–(3.16). In this section, we introduce
an efficient algorithm for approximating the solution of (3.14)–(3.16). The stability
and convergence of the proposed algorithm will be presented in the next section.

4.1. Rational approximation of the convolution quadrature. Prescribed
a nonnegative integer m > 0, the (m,m)-order Padé approximation for the function√

1 + s can be expressed as (see [25])

√
1 + s ≈ 1 +

m∑
j=1

ajs

1 + bjs
,

where

aj =
2

2m+ 1
sin2 jπ

2m+ 1
, bj = cos2 jπ

2m+ 1
, j = 1, . . . ,m.

Based on the Padé approximation, we design a rational approximation for the square
root function

√
s on the closed right half complex plane:

√
s =
√

1 + s− 1 ≈ 1 +

m∑
j=1

aj(s− 1)

1 + bj(s− 1)
≡ Rm(s), Re(s) ≥ 0.
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774 BUYANG LI, JIWEI ZHANG, AND CHUNXIONG ZHENG

We can rewrite Rm(s) as

Rm(s) = λ−
m∑
j=1

1

cjs+ dj
,

λ = 1 +

m∑
j=1

ajb
−1
j , cj = a−1

j b2j , dj = a−1
j bj(1− bj), j = 1, . . . ,m.

(4.1)

The following result was proved in [25].

Lemma 4.1. Let

γ(s) :=

√
s− 1√
s+ 1

and Em(s) :=
√
s−Rm(s), m = 0, 1, 2, . . . .

Then the following identity holds:

(4.2) Em(s) = 2
√
s

γ2m+1(s)

1 + γ2m+1(s)
if Re(s) ≥ 0 and s 6= 0.

For all τ > 0 and σ > 0, let us introduce the rational approximation K̃(m)(z) of

the symbol K̃(z):

(4.3) K̃(m)(z) := i−
1
2Rm(δ(z, σ)) . . . ∀m ≥ 0.

We denote by K(m)∗ the convolution operator analogously defined as (3.10), by re-
placing the convolution coefficients Kj in (3.10) with the series expansion coefficients

of the function K̃(m)(z). After replacing the convolution operator K∗ in (3.14)–(3.16)
with its rational approximation K(m)∗, we obtain the following fully discrete scheme:

i(Dτ + σE)Pun = Ln+ 1
2

h (E + στ2Dτ )un ∀n ≥ 0,

τ−
1
2 (K(m) ∗ γ±u)n + ∂±ν u

n = 0 ∀n ≥ 0,

u0 = (ψ0(x0), . . . , ψ0(xM+1)).

(4.4)

In the practical computation, (4.4) can be solved by an efficient algorithm described
in the next subsection.

4.2. Implementation algorithm. Let us define vn := (E + στ2Dτ )un for n ≥
0. Then we have

un+1 =
2vn − (1− 2στ)un

1 + 2στ
∀n ≥ 0,

(Dτ + σE)Pun =
2 + στ

τ(1 + 2στ)
Pvn − 2− 2σ2τ2

τ(1 + 2στ)
Pun ∀n ≥ 0.

By applying (4.1) to (4.3), we derive

i
1
2 K̃(m)(z) = λ−

m∑
j=1

1

cjδ(z, σ) + dj

= λ−
m∑
j=1

1

cj
2+στ+(στ−2)z

1+2στ+(1−2στ)z + dj
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SCHRÖDINGER EQUATION WITH ABCs 775

= λ−
m∑
j=1

ej + fjz

1 + gjz
= λ−

m∑
j=1

ej −
m∑
j=1

(fj − ejgj)z
1 + gjz

,

where we have set

ej =
1 + 2στ

cj(2 + στ) + dj(1 + 2στ)
,

fj =
1− 2στ

cj(2 + στ) + dj(1 + 2στ)
,

gj =
cj(στ − 2) + dj(1− 2στ)

cj(2 + στ) + dj(1 + 2στ)
.

Therefore, we have

τ−
1
2 K̃(m)(z) = λ̃−

m∑
j=1

f̃jz

1 + gjz
,

where λ̃ = (iτ)−
1
2 (λ−

∑m
j=1 ej) and f̃j = (iτ)−

1
2 (fj − ejgj). The last identity implies

τ−
1
2 K̃(m)(z)γ±ṽ(z) = λ̃γ±ṽ(z)−

m∑
j=1

f̃jz

1 + gjz
γ±ṽ(z).

To simplify the notation, we set w̃j,± =
f̃j

1+gjz
γ±ṽ(z). Therefore, we derive

w̃j,± + gjzw̃j,± = f̃jγ
±ṽ(z),

τ−
1
2 K̃(m)(z)γ±ṽ(z) = λ̃γ±ṽ(z)−

m∑
j=1

zw̃j,±.

The inverse Z-transform of the last two equations yields

wnj,± + gjw
n−1
j,± = f̃jγ

±vn,

τ−
1
2 (K(m) ∗ γ±v)n = λ̃γ±vn −

m∑
j=1

wn−1
j,± .

Consequently, the fully discrete scheme (4.4) can be written into an equivalent form:

i(2 + στ)

τ(1 + 2στ)
Pvn − Ln+ 1

2

h vn =
i(2− 2σ2τ2)

τ(1 + 2στ)
Pun ∀n ≥ 0,

∂±ν v
n + λ̃γ±vn −

m∑
j=1

wn−1
j,± = 0 ∀n ≥ 0,

wnj,± + gjw
n−1
j,± = f̃jγ

±vn ∀n ≥ 0,

u0 = (ψ0(x0), . . . , ψ0(xM+1)) and w−1
j,± = 0, j = 1, . . . ,m.

(4.5)

Given un with n ≥ 0, one can solve vn and wn from (4.5), and then update un+1 by
using the identity vn = (E + στ2Dτ )un. The scheme (4.5) is equivalent to (4.4) but
does not require evaluating discrete convolutions at the boundary points x±.
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776 BUYANG LI, JIWEI ZHANG, AND CHUNXIONG ZHENG

5. Error estimate. In this section, we prove the following theorem on the con-
vergence of the numerical solutions given by (4.4).

Theorem 5.1. Assume that the solution u of (2.10) is sufficiently smooth, or
equivalently, the solution ψ of (1.1) is sufficiently smooth. Let ηn = (ηn0 , . . . , η

n
M+1),

with ηnj = u(xj , tn) − unj denoting the error of the numerical solution given by the
algorithm (4.4) for solving (2.10). If the time step τ is small enough such that στ ∈
(0, 1

2 ] and the order m of the Padé approximation is sufficiently large such that

2m+ 1 ≥ ln ε

ln(1− (στ)
1
2 )

for some ε ∈

(
0,

(στ)
9
2

8

]
,(5.1)

then we have the following error estimate:

max
1≤n≤[T/τ ]

(
‖Pηn‖h + |∇nhηn|h

)
≤ CT (τ2 + h2),(5.2)

where CT is a constant depending on T .

The proof of Theorem 5.1 is presented in the following two subsections.

5.1. Properties of the rational approximation K̃(m)(z). By using (3.8)

one can prove that the symbol K̃(z) satisfies the following inequalities (see Appendix
B):

max
z∈∂D

|K̃(z)| ≤ (στ)−
1
2 , min

z∈∂D
|K̃(z)| ≥ (στ)

1
2 if στ ∈

(
0,

1

2

]
,(5.3)

max
z∈∂D

Im K̃(z) ≤ − (στ)
3
2

2
, min

z∈∂D
Re K̃(z) ≥ (στ)

3
2

2
if στ ∈

(
0,

1

2

]
.(5.4)

Lemma 5.2. Under the conditions στ ∈
(
0, 1

2

]
and (5.1), we have

max
z∈∂D

Im K̃(m)(z) ≤ 0 and max
z∈∂D

Im
(
K̃(z)2K̃(m)(z)

)
≤ 0,(5.5)

max
z∈∂D

|K̃(m)(z)− K̃(z)| ≤ (στ)4

2
.(5.6)

Proof. Let us set s(z) = 2−2z+στ(1+z)
1+z+2στ(1−z) , which satisfies the following inequality

(see Appendix B):

max
z∈∂D

|γ(s(z))| ≤ 1− (στ)
1
2 ∀στ ∈

(
0,

1

2

]
.(5.7)

If 2m + 1 ≥ ln ε

ln(1−(στ)
1
2 )

, then
[
1− (στ)

1
2

]2m+1

≤ ε ≤ 1
2 . As a result, Lemma 4.1

implies

max
z∈∂D

∣∣∣∣∣K̃(z)− K̃(m)(z)

K̃(z)

∣∣∣∣∣ = max
z∈∂D

∣∣∣∣ 2γ2m+1(s(z))

1 + γ2m+1(s(z))

∣∣∣∣ ≤ max
z∈∂D

2 |γ(s(z))|2m+1

1− |γ(s(z))|2m+1 ≤ 4ε.

Consequently, by using (5.3) and (5.1) we have

max
z∈∂D

|K̃(m)(z)− K̃(z)| ≤ 4ε|K̃(z)| ≤ (στ)4

2
.
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SCHRÖDINGER EQUATION WITH ABCs 777

Since ε ≤ (στ)
9
2

8 ≤ (στ)2

8 , it follows that

max
z∈∂D

Im K̃(m)(z) = max
z∈∂D

[
Im K̃(z)− Im

(
K̃(z)− K̃(m)(z)

)]
≤ − (στ)

3
2

2
+ 4ε max

z∈∂D
|K̃(z)| ≤ − (στ)

3
2

2
+ 4ε(στ)−

1
2 ≤ 0.

In addition, we have

max
z∈∂D

(
Im K̃(z)2K̃(m)(z)

)
= max
z∈∂D

(
Im K̃(z)2K̃(z)

)
+ max
z∈∂D

Im K̃(z)2(K̃(m)(z)− K̃(z))

≤ max
z∈∂D

Im K̃(z)|K̃(z)|2 + max
z∈∂D

|K̃(z)|2|K̃(m)(z)− K̃(z)|

≤ − (στ)
5
2

2
+ max
z∈∂D

|K̃(z)|2 (στ)4

2

≤ − (στ)
5
2

2
+

(στ)3

2
≤ 0.

The proof thus ends.

The following properties are direct consequences of (5.5).

Proposition 5.3. For all complex sequences f = {fn}∞n=0 with f0 = 0, the
following inequalities hold:

Im

n∑
k=0

fk(K(m)∗ f)k ≤ 0 ∀n ≥ 0,(5.8)

Re

n∑
k=0

(Dτ + σE)fk(K(m)∗ (E + στ2Dτ )f)k ≥ 0 ∀n ≥ 0.(5.9)

Proof. Without loss of generality, we redefine fk = 0 for k > n. This does not
affect the value of Im

∑n
k=0 f

k(K(m)∗ f)k, and we have

Im

n∑
k=0

fk(K(m)∗ f)k = Im(f,K(m)∗ f)`2(C) = Im

∫
∂D

(f̃(z), K̃(m)(z)f̃(z))C ν(dz)

= Im

∫
∂D
|f̃(z)|2K̃(m)(z) ν(dz) ≤ 0.

Analogously, without loss of generality, we redefine fk = 1−σ
1+σ f

k−1 for k > n. Then

we have (Dτ + σE)fk = 0 for k > n and thus

Re

n∑
k=0

(Dτ + σE)fk(K(m)∗ (E + στ2Dτ )fk)

= Re((Dτ + σE)f,K(m)∗ (E + στ2Dτ )f)`2(C)

= τ−1Re

∫
∂D
|f̃(z)|2[z−1 − 1 + στ(z−1 + 1)/2]K̃(m)(z)

× [(z−1 + 1)/2 + στ(z−1 − 1)] ν(dz)
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778 BUYANG LI, JIWEI ZHANG, AND CHUNXIONG ZHENG

= (4τ)−1Re

∫
∂D
|z|−2|f̃(z)|2[2− 2z + στ(1 + z)]K̃(m)(z)[1 + z + 2στ(1− z)] ν(dz)

= (4τ)−1Re

∫
∂D
|z|−2|f̃(z)|2iK̃(z)2K̃(m)(z)|1 + z + 2στ(1− z)|2 ν(dz)

= −(4τ)−1

∫
∂D

Im
(
K̃(z)2K̃(m)(z)

)
|z|−2|f̃(z)|2|1 + z + 2στ(1− z)|2 ν(dz) ≥ 0.

This ends the proof.

5.2. Error estimate. Let u(tn) = (u(x0, tn), u(x1, tn), . . . , u(xM+1, tn)). It is
straightforward to check that the error vector ηn defined in Theorem 5.1 satisfies the
following equation:

i(Dτ + σE)Pηn = Ln+ 1
2 (E + στ2Dτ )ηn + fn ∀n ≥ 0,(5.10)

τ−
1
2 (K(m)∗ γ±η)n + ∂±ν η

n = gn± ∀n ≥ 0,(5.11)

η0 = 0,(5.12)

where fn and gn± are given truncation errors of the time and space discretizations,
i.e.,

fn = [i(Dτ + σE)Pu(tn)− i(∂tu(tn+ 1
2
) + σu(tn+ 1

2
))]

−
[
Ln+ 1

2Eu(tn)− L(tn+ 1
2
)u(tn+ 1

2
)
]
− στ2Ln+ 1

2Dτu(tn),(5.13)

gn± = τ−
1
2 (K(m) −K)∗ γ±u(tn) +

[
τ−

1
2K∗ γ±u(tn)−

√
−i(∂t + σ)γ±u(tn)

](5.14)

+
[√
−i(∂t + σ)γ±u(tn)−

√
−i(∂t + σ)u(x±, tn)

]
+
[
∂±ν u(tn)− ∂νu(x±, tn)

]
.

By using the Taylor expansion, the inequalities (3.12) and (5.6), it is straightforward
to verify the following estimate of the truncation errors (see Appendix C):

‖fn‖h + ‖Dτf
n‖h + |gn±|+ |Dτg

n
±| ≤ C(τ2 + h2).(5.15)

Then Theorem 5.1 is a consequence of the following stability estimate.

Lemma 5.4. The solution of (5.10)–(5.12) satisfies the following stability esti-
mate:

max
1≤n≤[T/τ ]

(
‖Pηn‖2 + |∇nhηn|2h

)
≤ CT

[
max

0≤k≤n−2
‖Dτf

k‖2h + max
0≤k≤n−1

(‖fk‖2h + |Dτg
k
±|2) + max

0≤k≤n
|gk±|2

]
,(5.16)

where CT is a constant depending on T .

Proof. Since γ±η0 = 0, we have EK(m) ∗ γ±η = K(m) ∗ Eγ±η. By applying
the discrete Green’s formula (3.13) and the boundary conditions (5.11), taking the
imaginary part of the inner product between (5.10) and (E + στ2Dτ )Pηn yields

1

2
(1 + σ2τ2)Dτ‖Pηn‖2h
≤ Re ((E + στ2Dτ )Pηn, (Dτ + σE)Pηn)h

= −Im (E + στ2Dτ )γ±ηn · (E + στ2Dτ )∂±ν η
n + Im ((E + στ2Dτ )Pηn, fn)h

= τ−
1
2 Im(E + στ2Dτ )γ±ηn · (E + στ2Dτ )(K(m) ∗ γ±η)n

− Im (E + στ2Dτ )γ±ηn · (E + στ2Dτ )gn± + Im ((E + στ2Dτ )Pηn, fn)h
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SCHRÖDINGER EQUATION WITH ABCs 779

≤ τ− 1
2 Im(E + στ2Dτ )γ±ηn ·

[
K(m) ∗ (E + στ2Dτ )γ±η

]n
+ O(1)E

(
|γ±ηn|2 + |gn±|2 + ‖Pηn‖2h

)
+O(1)‖fn‖2h.

Summing up the index n and using Proposition 5.3, we obtain

(5.17) ‖Pηn‖2h ≤ O(τ)

n∑
k=1

(
|γ±ηk|2 + |gk±|2 + ‖Pηk‖2h

)
+O(τ)

n−1∑
k=0

‖fk‖2h.

Next performing the inner product with (Dτ + σE)Pηn and taking the real part, we
derive

Re((Dτ + σE)Pηn,Ln+ 1
2

h (E + στ2Dτ )ηn)h + Re((Dτ + σE)Pηn, fn)h = 0.

Applying the discrete Green’s formula (3.13), we derive

Re((Dτ + σE)Pηn,Ln+ 1
2

h (E + στ2Dτ )ηn)h

= Re〈∇n+ 1
2

h (Dτ + σE)ηn,∇n+ 1
2

h (E + στ2Dτ )ηn〉h
+ Re ((Dτ + σE)Pηn, Un+ 1

2 (E + στ2Dτ )Pηn)h

− Re γ±(Dτ + σE)ηn∂±ν (E + στ2Dτ )ηn

≡ I1 + I2 + I3.

Obviously, we have

I1 ≥ (1 + σ2τ2)Re 〈∇n+ 1
2

h Dτη
n,∇n+ 1

2

h Eηn〉h

=
1

2
(1 + σ2τ2)τ−1

[
〈∇n+ 1

2

h ηn+1,∇n+ 1
2

h ηn+1〉h − 〈∇
n+ 1

2

h ηn,∇n+ 1
2

h ηn〉h
]

=
1

2
(1 + σ2τ2)

[
Dτ |∇nhηn|2h +O(1)E

(
|∇nhηn|2h + ‖Pηn‖2h

)]
.

For the term I2, it holds that

I2 = (1 + σ2τ2)Re (DτPηn, Un+ 1
2EPηn)h +O(1)E‖Pηn‖2h

=
1

2
(1 + σ2τ2)Dτ (Pηn, UnPηn)h +O(1)E‖Pηn‖2h.

For the term I3, by the discrete Green’s formula we have

I3 = τ−
1
2 Re (Dτ + σE)γ±ηn(E + στ2Dτ )(K(m) ∗ γ±η)n

− Re (Dτ + σE)γ±ηn(E + στ2Dτ )gn±

= τ−
1
2 Re (Dτ + σE)γ±ηn(E + στ2Dτ )(K(m) ∗ γ±η)n

− ReDτγ±ηnEg
n
± +O(1)E

(
|γ±ηn|2 + |gn±|2

)
.

On the other hand, we have

Re ((Dτ + σE)Pηn, fn)h = Re (DτPηn, fn)h +O(1)E‖Pηn‖2h +O(1)‖fn‖2h.

Combining the above together yields

1

2
(1 + σ2τ2)Dτ

[
|∇nhηn|2h + (Pun, UnPηn)h

]
≤ −τ− 1

2 Re (Dτ + σE)γ±ηn · (E + στ2Dτ )(K(m) ∗ γ±η)n
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780 BUYANG LI, JIWEI ZHANG, AND CHUNXIONG ZHENG

+ ReDτγ±ηn · Egn± − Re (DτPηn, fn)h +O(1)‖fn‖2h
+O(1)E

(
|∇nhηn|2h + ‖Pηn‖2h + |γ±ηn|2 + |gn±|2

)
.

Summing up the index n, using Proposition 5.3, and using summation by parts in
time for

∑n−1
k=0 ReDτγ±ηn · Egn± and −

∑n−1
k=0 Re (DτPηn, fn)h, we derive

1

2
(1 + σ2τ2)τ−1

[
|∇nhηn|2h + (Pηn, UnPηn)h

]
≤ O(1)τ−1

(
|γ±ηn|2 + |gn−1

± |2 + |gn±|2 + ‖Pηn‖2h + ‖fn−1‖2h
)

+ O(1)

n∑
k=1

(
|∇khηk|2h + ‖Pηk‖2h + |γ±ηk|2 + |gk±|2

)
+O(1)

n−1∑
k=0

(
‖fk‖2h + |Dτg

k
±|2
)

+O(1)

n−2∑
k=0

|Dτf
k|2h,

which leads to

|∇nhηn|2h ≤ O(1)
(
|γ±ηn|2 + |gn−1

± |2 + |gn±|2 + ‖Pηn‖2h + ‖fn−1‖2h
)

+ O(τ)

n∑
k=1

(
|∇khηk|2h + ‖Pηk‖2h + |γ±ηk|2 + |gk±|2

)
+ O(τ)

n−1∑
k=0

(
‖fk‖2h + |Dτg

k
±|2
)

+O(τ)

n−2∑
k=0

|Dτf
k|2h.

(5.18)

By the discrete Sobolev imbedding theorem, we have

(5.19) |γ±ηn|2 ≤ O(ε−1)‖Pηn‖2h + ε|∇nhηn|2h.

Combining (5.17), (5.18) and (5.19), choosing ε small enough and applying the discrete
Gronwall’s inequality, we derive (5.16). The proof of Lemma 5.16 is complete.

Remark 5.1. A “good” approximation of the exact Dirichlet to Neumann (DtN)
operator (continuous or discrete) should preserve the “sign property”. In other words,
upon integration or summation by parts, the boundary contribution due to this ap-
proximate DtN should be nonpositive or nonnegative as in the continuous setting.
When we perform the error analysis, the boundary conditions are inhomogeneous:
there exists a truncation term getting involved. The direct consequence of this quan-
tity is that when we perform the discrete L2-estimate, the trace of field will get
involved. See in (5.17) the first term γ±ηk. If such a term does not exist, the dis-
crete Gronwall’s inequality will lead to the L2-stability. In order to handle this term,
we have to resort to the H1-estimate. This is performed below (5.17), until the end
of page 13. After the H1-estimate is established, we can apply a discrete Sobolev
embedding to bound the trace term γ±ηk by the H1-norm of ηk; please see (5.19).

6. Numerical results. We now provide numerical tests to validate the theoreti-
cal results presented in the preceding sections. The convergence order of the proposed
numerical scheme will be examined. As applications, we will simulate the spontaneous
radiation of a wave packet and the ionization of a ground state due to the action of a
time-varying electromagnetic field.

In the calculations to guarantee the second-order convergence of the proposed
scheme above, we always take σ = 1/T and determine the number of Padé expansion
terms (see Lemma 5.2) by using the following criterion:
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SCHRÖDINGER EQUATION WITH ABCs 781

m =
ln ε

2 ln
(

1− (στ)
1
2

) , ε =
(στ)

9
2

8
.

Noting that στ = 1/N , in this situation m behaves asymptotically like 9
4

√
N lnN .

The additional computational cost for evaluating the ABCs to obtain uN is therefore
O(N

3
2 lnN) flops (see Figures 2 and 4 below) and the computational storage requires

O(
√
N lnN).

Example 1. To demonstrate the performance of our numerical scheme, we first
consider the free Schrödinger equation (i.e. V (x) = 0) with the following exact beam-
like solution

(6.1) ψ(x, t) =
1√
ζ + it

exp

[
ik(x− kt)− (x− 2kt)2

4(ζ + it)

]
.

In the above, k is a real parameter which controls the beam propagation speed, and
ζ is a positive parameter which controls the beam width. The parameter ζ should be
carefully selected so that the initial wave function ψ(x, 0) is negligibly small outside
of the spatial computation domain [−3, 3]. In this numerical simulation, we put k = 2
and ζ = 0.04. In addition, we set the evolutionary time as T = 2.

The left panel of Figure 1 illustrates the evolution of numerical solutions. No
spurious reflection can be detected near the absorbing boundaries. The right-hand
panel of Figure 1 plots the numerical errors when we recursively double the parameters
M = N from 120 to 3840. A second-order convergence in the L∞-norm is clearly
observed.

We now take a closer look at the computational cost by comparing with the direct
scheme (3.11). The CPU time is investigated in log10 scale by increasing the total
number of time steps N = 70000, . . . , 250000 and fixing M = 100. Figure 2 shows
the CPU times for the efficient evaluation and direct evaluation of the discrete ABC.
One can clearly observe the expected slope of 3/2 for the efficient evaluation.

Example 2. Bound states are referred to as the L2-bounded eigenfunctions of the
following Schrödinger eigenvalue problem:

(6.2) [−∂2
x + V (x)]ψ = λψ.

Under mild conditions, the spectrums of (6.2) lie in the real axis. The bound state
associated with the smallest point spectrum is called the ground state. For some
well-prepared electric potential function V (x), besides the continuum spectrums, the
point spectrums might exist. For example, in the case that

V (x) = −3 exp(−x2),

Fig. 1. (Example 1) Left: the evolution of the solution. Right: the convergence order.
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782 BUYANG LI, JIWEI ZHANG, AND CHUNXIONG ZHENG

Fig. 2. (Example 1) the log-log plot for the CPU time by fixing M = 100 with different N .

Fig. 3. (Example 2) Left: the evolution of the solution. Right: the convergence order.

there exists a unique bound state ψ0 shown as in the left-hand panel of Figure 6
(unnormalized), which is associated with the point spectrum λ0 = −1.641465.

If the initial wave packet is not on the state of ψ0, part of the wave function will
radiate spontaneously. To simulate this process, we set the initial wave packet as a
Gaussian, i.e.,

ψ(x, 0) = 10 exp(−x2).

We take the computational domain of interest as [−15, 15]. Note that since the spon-
taneous radiation is a relatively long time process, introducing absorbing boundaries
turns out to be a must to reduce the computational cost.

The left-hand panel of Figure 3 illustrates the evolution of numerical solutions
until T = 50. In this simulation, we have put M = N = 1280. The right-hand panel
in Figure 3 plots the numerical errors at T = 10 by recursively doubling the param-
eters M = N from 120 to 3840. The reference solution is obtained by the spectral
method in a large enough computational domain; see [10]. Again, a second-order
convergence order can be clearly observed. The CPU time is investigated in log10
scale by increasing N = 70000, . . . , 250000 and fixing M = 200 and T = 20. Again,
from Figure 4 one can see the advantage of the proposed algorithm over the direct
method, and clearly observe the expected slope of 3/2 for the efficient evaluation.

A bound state will retain its profile if there is no interaction between a quantum
system and its environment. However, when a time-varying electromagnetic field is
imposed, the ionization phenomenon might occur. To simulate this process, we set
the magnetic potential as
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SCHRÖDINGER EQUATION WITH ABCs 783

Fig. 4. (Example 2) the log-log plot for the CPU time by fixing M = 200 and T = 20 with
different N .

Fig. 5. (Example 2) Left: the evolution of numerical solutions. Right: the evolution of reference
solutions.

Fig. 6. (Example 2) Left: the initial value (i.e. the eigenfunction of λ0). Right: the errors
between numerical and reference solutions.

A(x, t) =
2√
π

[1− cos(t)] exp(−x2).

The computational domain is taken as [−20, 20]. We present the evolutions of the
numerical solution (left) with M = N = 1280 and the reference solution (right) in
Figure 5. The reference solution is calculated in an enlarged computational domain by
employing sufficiently small mesh parameters. We illustrate the field error |ψnu−ψref |
in the right-hand panel of Figure 6. Here ψnu and ψref denote the numerical solution
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784 BUYANG LI, JIWEI ZHANG, AND CHUNXIONG ZHENG

and the reference solution, respectively. One can see that the error is always on the
scale of 10−7 up to the evolutionary time T = 80.

7. Conclusion. The one-dimensional Schrödinger equation in an unbounded do-
main was reformulated into an initial-boundary value problem in a bounded domain
of computational interest. A fully discrete perturbed Crank–Nicolson finite difference
method was proposed to solve the reformulated initial-boundary value problem. By
applying the Padé approximation, the convolution operations in the discrete ABCs
were approximated by a system of easily-solved simple finite difference equations. A
criterion determining the number of Padé approximation terms was proposed to guar-
antee the optimal accuracy with respect to the mesh parameters. It was proved that
the resulting numerical method preserves the stability and the second-order conver-
gence order of the fully discrete finite difference scheme. Numerical tests validated
the theoretical analysis and demonstrated the effectiveness of the proposed numerical
method.

We should point out that the complexity of the scheme proposed in this paper
requires the computational cost O(N

3
2 lnN) and the storage O(

√
N lnN). While the

storage requirement is sublinear, the computational cost is larger than the fast sum-
mation technique developed in [9, 16], where the optimal computational complexity
was achieved. Hence, an important issue worthy of further consideration is to accel-
erate the convolution in the ABCs with almost optimal cost in both complexity and
memory.

Appendix A. Proof of (3.12). By using Taylor’s expansion, it is straightfor-
ward to verify that∣∣∣τ− 1

2 K̃(e−iτξ)−
√
−i(iξ + σ)

∣∣∣ ≤ Cτ2
√
|iξ + σ||ξ|2.(A.1)

Assumption (2.1) and equation (1.1) imply that ψ(x±, t) and its time derivatives are
zero at t = 0. Consequently, by extending ψ(x±, t) to be zero on t ∈ (−∞, 0], we
obtain a sufficiently smooth function ψ(x±, t) defined for t ∈ R. We define

τ−
1
2K ∗ u(x±, t) := τ−

1
2

∞∑
j=0

Kju(x±, t− jτ) ∀ t ∈ R,(A.2)

which is consistent with the definition (3.10) at t = tn. The Fourier transform in time
of the last equation is

Ft[τ−
1
2K ∗ u(x±, t)](ξ) =

∫
R
τ−

1
2K ∗ u(x±, t)e

−itξdt

=

∞∑
j=0

∫
R
τ−

1
2Kju(x±, t− jτ)e−itξdt = τ−

1
2 K̃(e−iτξ)Ftu(x±, ξ)

=
√
−i(iξ + σ)Ftu(x±, ξ) +

(
τ−

1
2 K̃(e−iτξ)−

√
−i(iξ + σ)

)
Ftu(x±, ξ)

= Ft[
√
−i(∂t + σ)u(x±, t)](ξ) +

(
τ−

1
2 K̃(e−iτξ)−

√
−i(iξ + σ)

)
Ftu(x±, ξ),

which implies that∣∣τ− 1
2K ∗ u(x±, t)−

√
−i(∂t + σ)u(x±, t)

∣∣
=
∣∣F−1
ξ

[(
τ−

1
2 K̃(e−iτξ)−

√
−i(iξ + σ)

)
Ftu(x±, ξ)

]
(t)
∣∣D
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SCHRÖDINGER EQUATION WITH ABCs 785

≤
∫
R

∣∣τ− 1
2 K̃(e−iτξ)−

√
−i(iξ + σ)

∣∣|Ftu(x±, ξ)|dξ

≤ Cτ2

∫
R

√
|iξ + σ| ξ2Ftu(x±, ξ)|dξ

≤ Cτ2

∫
R

1

1 + |ξ|
(1 + |ξ|4)|Ftu(x±, ξ)|dξ

≤ Cτ2

(∫
R

1

(1 + |ξ|)2
dξ

) 1
2
(∫

R
(1 + |ξ|4)2|Ftu(x±, ξ)|2dξ

) 1
2

= Cτ2

(∫ ∞
0

(|u(x±, t)|2 + |∂4
t u(x±, t)|2)dt

) 1
2

.

By choosing t = tn in the preceding expression, we obtain (3.12).

Appendix B. Proof of (5.3), (5.4) and (5.7). Let ρ = i−1 2(1−z)
1+z . Then

ρ ∈ R for z ∈ ∂D and we have

K̃(z) =
1√
iστ

√
iρ+ στ

iρ+ (στ)−1

= (στ)−
1
2

(
ρ2 + (στ)2

ρ2 + (στ)−2

) 1
4
(

cos
(π

4
− θ

2

)
− i sin

(π
4
− θ

2

))
,(B.1)

where

(B.2) θ = arg

(
iρ+ στ

iρ+ (στ)−1

)
= arctan

(
ρ(στ)−1 − ρστ

1 + ρ2

)
∈
(
− π

2
,
π

2

)
.

It is straightforward to verify that

(στ)
1
2 ≤ (στ)−

1
2

(
ρ2 + (στ)2

ρ2 + (στ)−2

) 1
4

≤ (στ)−
1
2 if στ ∈ (0, 1].(B.3)

This proves (5.3).
It is not difficult to verify that, for fixed στ ∈ (0, 1) and varying ρ, the angle θ

attains maximum θmax = arctan( (στ)−1−στ
2 ) when ρ = 1. Consequently, we have

sin
(π

4
− θ

2

)
=

√
1− sin(θ)

2
≥
√

1− sin(θmax)

2
=

√
στ

(στ)−1 + στ
≥ στ√

2
.(B.4)

Substituting (B.3), (B.4) into (B.1) yields Im K̃(z) ≤ −(στ)
3
2 /
√

2. The result Re K̃(z)

≥ (στ)
3
2 /
√

2 can be proved in the same way. This proves (5.4).
Note that

√
s(z) =

√
iK̃(z) = (στ)−

1
2

(
ρ2 + (στ)2

ρ2 + (στ)−2

) 1
4
(

cos
(θ

2

)
+ i sin

(θ
2

))
= |K̃(z)|

(
cos
(θ

2

)
+ i sin

(θ
2

))
,(B.5)

with cos
(
θ
2

)
≥ 1√

2
for θ ∈

(
− π

2 ,
π
2

)
. Using the last expression of

√
s(z), we have
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786 BUYANG LI, JIWEI ZHANG, AND CHUNXIONG ZHENG

∣∣∣∣∣
√
s(z)− 1√
s(z) + 1

∣∣∣∣∣ =

√√√√1−
4|K̃(z)| cos

(
θ
2

)
|K̃(z)|2 + 2|K̃(z)| cos

(
θ
2

)
+ 1

≤

√
1− 2

√
2|K̃(z)|

|K̃(z)|2 +
√

2|K̃(z)|+ 1

≤ 1−
√

2|K̃(z)|
|K̃(z)|2 +

√
2|K̃(z)|+ 1

,(B.6)

where the last inequality is due to Taylor’s expansion (1−x)
1
2 = 1− 1

2x−
1
8x

2 + · · · ≤
1− 1

2x. By considering

d

dr

(
r

r2 +
√

2r + 1

)
=

1− r2

(r2 +
√

2r + 1)2
,

we see that the minimum value of
√

2|K̃(z)|/(|K̃(z)|2 +
√

2|K̃(z)|+ 1) is attained at

either |K̃(z)| = (στ)
1
2 or |K̃(z)| = (στ)−

1
2 , i.e.,

√
2|K̃(z)|

|K̃(z)|2 +
√

2|K̃(z)|+ 1
≥ min

( √
2(στ)

1
2

στ +
√

2(στ)
1
2 + 1

,

√
2(στ)−

1
2

(στ)−1 +
√

2(στ)−
1
2 + 1

)
≥ (στ)

1
2 .

Substituting the last inequality into (B.6) yields (5.7).

Appendix C. Proof of (5.15). We divide the proof into the following four
steps.

Step 1: Note that fn = (fn1 , . . . , f
n
M ) with

fnj = [i(Dτ + σE)u(xj , tn)− i(∂tu(xj , tn+ 1
2
) + σu(xj , tn+ 1

2
))]

−
[
Ln+ 1

2Eu(xj , tn)− L(tn+ 1
2
)u(xj , tn+ 1

2
)
]
− στ2Ln+ 1

2Dτu(xj , tn).(C.1)

We estimate the three terms in the expression of fnj separately. Firstly, we have

i(Dτ + σE)u(xj , tn)− i(∂tu(xj , tn+ 1
2
) + σu(xj , tn+ 1

2
))

= i

(
u(xj , tn+1)− u(xj , tn)

τ
− ∂tu(xj , tn+ 1

2
)

)
+ iσ

(
u(xj , tn) + u(xj , tn+1)

2
− u(xj , tn+ 1

2
)

)
= O(τ2).(C.2)

Secondly, it holds that

Ln+ 1
2

h Eu(xj , tn)− L(tn+ 1
2
)u(xj , tn+ 1

2
)

(C.3)

= (Ln+ 1
2

h Eu(xj , tn)− Ln+ 1
2

h u(xj , tn+ 1
2
)) + (Ln+ 1

2

h u(xj , tn+ 1
2
)− L(tn+ 1

2
)u(xj , tn+ 1

2
))

= (Ln+ 1
2

h Eu(xj , tn)− Ln+ 1
2

h u(xj , tn+ 1
2
)) + (Ln+ 1

2

h u(xj , tn+ 1
2
)− L(tn+ 1

2
)u(xj , tn+ 1

2
))

= : I1 + I2,

Since a Taylor’s expansion yields
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Eu(xj , tn)− u(xj , tn+ 1
2
) =

∫ tn+1

tn

min(tn+1 − t, t− tn)∂ttu(xj , t)dt,(C.4)

it follows that

|I1| =
∣∣∣∣ ∫ tn+1

tn

min(tn+1 − t, t− tn)Ln+ 1
2

h ∂ttu(xj , t)dt

∣∣∣∣
≤ Cτ2 max

t∈[0,T ]
max

1≤j≤M
|Ln+ 1

2

h ∂ttu(xj , t)|

≤ Cτ2‖u‖C4(Ω×[0,T ]).(C.5)

On the other hand, by the definition of Ln+ 1
2

h and L(tn+ 1
2
), we have

|I2| =
−u(xj−1, tn+ 1

2
) + 2u(xj , tn+ 1

2
)− u(xj+1, tn+ 1

2
)

h2
(C.6)

+
A(xj+ 1

2
, tn+ 1

2
)u(xj+1, tn+ 1

2
)−A(xj− 1

2
, tn+ 1

2
)u(xj−1, tn+ 1

2
)

ih

+ [V (xj) +A2(xj , tn+ 1
2
)]u(xj , tn+ 1

2
)

+ ∂2
xu(xj , tn+ 1

2
) + ∂x

(
iA(x, tn+ 1

2
)u(x, tn+ 1

2
)
)∣∣
x=xj

+ iA(xj , tn+ 1
2
)∂xu(xj , tn+ 1

2
)

−A2(xj , tn+ 1
2
)u(xj , tn+ 1

2
)− V (xj)u(xj , tn+ 1

2
)

=: I3 + I4,

where

|I3| =
∣∣∣∣−u(xj−1, tn+ 1

2
) + 2u(xj , tn+ 1

2
)− u(xj+1, tn+ 1

2
)

h2
+ ∂2

xu(xj , tn+ 1
2
)

∣∣∣∣
≤ Ch2‖u‖C4(Ω×[0,T ]), (standard central difference scheme)(C.7)

and

I4 =
A(xj+ 1

2
, tn+ 1

2
)u(xj+1, tn+ 1

2
)−A(xj− 1

2
, tn+ 1

2
)u(xj−1, tn+ 1

2
)

ih

+ ∂x

(
iA(x, tn+ 1

2
)u(x, tn+ 1

2
)
)∣∣
x=xj

+ iA(xj , tn+ 1
2
)∂xu(xj , tn+ 1

2
)

= −i
A(xj+ 1

2
, tn+ 1

2
)u(xj+1, tn+ 1

2
)−A(xj− 1

2
, tn+ 1

2
)u(xj−1, tn+ 1

2
)

h
+ i∂xA(xj , tn+ 1

2
)u(xj , tn+ 1

2
) + 2iA(xj , tn+ 1

2
)∂xu(xj , tn+ 1

2
)

= −i
A(xj+ 1

2
, tn+ 1

2
)−A(xj− 1

2
, tn+ 1

2
)

h
u(xj , tn+ 1

2
)

− i
(
A(xj+ 1

2
, tn+ 1

2
)
u(xj+1, tn+ 1

2
)− u(xj , tn+ 1

2
)

h

+ A(xj− 1
2
, tn+ 1

2
)
u(xj , tn+ 1

2
)− u(xj−1, tn+ 1

2
)

h

)
+ i∂xA(xj , tn+ 1

2
)u(xj , tn+ 1

2
) + 2iA(xj , tn+ 1

2
)∂xu(xj , tn+ 1

2
)

=: I5 + I6,(C.8)
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where

I5 =

∣∣∣∣− iA(xj+ 1
2
, tn+ 1

2
)−A(xj− 1

2
, tn+ 1

2
)

h
u(xj , tn+ 1

2
) + i∂xA(xj , tn+ 1

2
)u(xj , tn+ 1

2
)

∣∣∣∣
(C.9)

≤ Ch2‖A‖C2(Ω×[0,T ])‖u‖C(Ω×[0,T ]),

I6 = −iA(xj+ 1
2
, tn+ 1

2
)
u(xj+1, tn+ 1

2
)− u(xj , tn+ 1

2
)

h

(C.10)

− iA(xj− 1
2
, tn+ 1

2
)
u(xj , tn+ 1

2
)− u(xj−1, tn+ 1

2
)

h
+ 2iA(xj , tn+ 1

2
)∂xu(xj , tn+ 1

2
)

=
(
− iA(xj , tn+ 1

2
)− i∂xA(xj , tn+ 1

2
)
h

2
+O(h2)

)
×
(
∂xu(xj , tn+ 1

2
) +

1

2
∂xxu(xj , tn+ 1

2
)h+O(h2)

)
+
(
− iA(xj , tn+ 1

2
) + i∂xA(xj , tn+ 1

2
)
h

2
+O(h2)

)
×
(
∂xu(xj , tn+ 1

2
)− 1

2
∂xxu(xj , tn+ 1

2
)h+O(h2)

)
= O(h2).

The last estimate requires ∂xxxu to be bounded. Substituting (C.7)–(C.10) into (C.6)
yields

I2 = O(h2).(C.11)

Then substituting (C.5) and (C.11) into (C.3) yields

Ln+ 1
2

h Eu(xj , tn)− L(tn+ 1
2
)u(xj , tn+ 1

2
) = O(h2).(C.12)

Thirdly, ∣∣∣στ2Ln+ 1
2Dτu(tn)

∣∣∣ ≤ Cτ2‖u‖C3(Ω×[0,T ]).(C.13)

Finally, by substituting (C.2) and (C.12), (C.13) into the expression (C.1), we
obtain

‖fn‖h = O(τ2 + h2).

Step 2: In a similar way (Taylor expansion), one can prove

‖Dτf
n‖h ≤ C‖u‖C5(Ω×[0,T ])h

2.

Step 3: Inequliaty (5.6) of Lemma 5.2 implies |K̃(m)(z)− K̃(z)| ≤ Cτ4. Then

K
(m)
j =

∫
∂D
K̃(m)(z)z−jµ(dz) and Kj =

∫
∂D
K̃(z)z−jµ(dz)

imply that

|K(m)
j −Kj | ≤

∫
∂D
|K̃(m)(z)− K̃(z)|µ(dz) ≤ Cτ4.
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Thus it holds that∣∣∣∣ n∑
j=0

K
(m)
j un−j −

n∑
j=0

Kju
n−j
∣∣∣∣ ≤ n∑

j=0

|K(m)
j −Kj |un−j ≤

n∑
j=0

Cτ4 ≤ Cτ3,

which implies

τ−
1
2 (K(m) −K)∗ γ±u(tn) = O(τ2.5).(C.14)

In addition, (3.12) implies that

τ−
1
2K∗ γ±u(tn)−

√
−i(∂t + σ)γ±u(tn) = O(τ2).(C.15)

Since γ+v = vM+1+vM
2 and x+ = xM+1+xM

2 = xM+ 1
2
, it follows that

∣∣∣∣(√−i(∂t + σ)γ±u(tn)−
√
−i(∂t + σ)u(x±, tn))

∣∣∣∣
(C.16)

=

∣∣∣∣
√
−i(∂t + σ)u(xM+1, tn) +

√
−i(∂t + σ)u(xM , tn)

2
−
√
−i(∂t + σ)u(xM+ 1

2
, tn)

∣∣∣∣
=O(h2) (central difference of

√
−i(∂t + σ)u)

and

∂+
ν u(tn)− ∂νu(x+, tn) =

u(xM+1, tn)− u(xM , tn)

h
− ∂xu(xM+ 1

2
, tn) = O(h2),

∂−ν u(tn)− ∂νu(x−, tn) = −u(x1, tn)− u(x0, tn)

h
+ ∂xu(x 1

2
, tn) = O(h2).

(C.17)

Substituting (C.14)–(C.17) into (5.13) yields

gn± = O(τ2 + h2).(C.18)

Step 4: Since

Dτg
n
± = τ−

1
2 (K(m) −K)∗ γ±Dτu(tn)

+
[
τ−

1
2K∗ γ±Dτu(tn)−

√
−i(∂t + σ)γ±Dτu(tn)

]
+
[√
−i(∂t + σ)γ±Dτu(tn)−

√
−i(∂t + σ)Dτu(x±, tn)

]
+
[
∂±ν Dτu(tn)− ∂νDτu(x±, tn)

]
,(C.19)

it follows that (C.19) can be estimated similarly as (5.13) (replacing u(x, tn) by
Dτu(x, tn)).

Acknowledgments. We thank the anonymous referees for the valuable com-
ments and suggestions, which are very helpful for improving the presentation of the
paper. In particular, we thank one of the referees for pointing out that the proposed
algorithm needs O(

√
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