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Abstract. Regularized inversion methods for image reconstruction are used widely due to their tractability and their
ability to combine complex physical sensor models with useful regularity criteria. Such methods motivated the recently
developed Plug-and-Play prior method, which provides a framework to use advanced denoising algorithms as regularizers
in inversion. However, the need to formulate regularized inversion as the solution to an optimization problem limits the
expressiveness of possible regularity conditions and physical sensor models.

In this paper, we introduce the idea of Consensus Equilibrium (CE), which generalizes regularized inversion to include
a much wider variety of both forward (or data fidelity) components and prior (or regularity) components without the need for
either to be expressed using a cost function. Consensus equilibrium is based on the solution of a set of equilibrium equations
that balance data fit and regularity. In this framework, the problem of MAP estimation in regularized inversion is replaced by
the problem of solving these equilibrium equations, which can be approached in multiple ways.

The key contribution of CE is to provide a novel framework for fusing multiple heterogeneous models of physical sensors
or models learned from data. We describe the derivation of the CE equations and prove that the solution of the CE equations
generalizes the standard MAP estimate under appropriate circumstances.

We also discuss algorithms for solving the CE equations, including a version of the Douglas-Rachford (DR)/ADMM
algorithm with a novel form of preconditioning and Newton’s method, both standard form and a Jacobian-free form using
Krylov subspaces. We give several examples to illustrate the idea of consensus equilibrium and the convergence properties
of these algorithms and demonstrate this method on some toy problems and on a denoising example in which we use an array
of convolutional neural network denoisers, none of which is tuned to match the noise level in a noisy image but which in
consensus can achieve a better result than any of them individually.

Key words. Plug and play, regularized inversion, ADMM, tomography, denoising, MAP estimate, multi-agent consensus
equilibrium, consensus optimization.
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1. Introduction. Over the past 30 years, statistical inversion has evolved from an interesting
theoretical idea to a proven practical approach. Most statistical inversion methods are based on the
maximum a posteriori (MAP) estimate, or more generally regularized inversion, using a Bayesian
framework, since this approach balances computational complexity with achievable image quality.
In its simplest form, regularized inversion is based on the solution of the optimization problem

(1) x∗ = argmin
x
{f(x) + h(x)} ,

where f is the data fidelity function and h is the regularizing function. In the special case of MAP
estimation, f represents the forward model and h represents the prior model, given by

f(x) = − log pforward(y|x), h(x) = − log pprior(x),
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where y is the data and x is the unknown to be recovered. The solution of equation (1) balances the
goals of fitting the data while also regularizing this fit according to the prior.

In more general settings, for example with multiple data terms from multi-modal data collection,
a cost function can be decomposed as a sum of auxiliary (usually convex) functions:

minimize f(x) =

N∑
i=1

fi(x),

with variable x ∈ Rn and fi : Rn → R ∪ {+∞}. In consensus optimization, the minimization of
the original cost function is reformulated as the minimization of the sum of the auxiliary functions,
each a function of a separate variable, with the constraint that the separate variables must share a
common value:

(2) minimize
N∑
i=1

fi(xi) subject to xi = x, i = 1, . . . , N,

with variables x ∈ Rn, xi ∈ Rn, i = 1, . . . , N . This reformulation allows for the application of the
Alternating Direction Method of Multipliers (ADMM) or other efficient minimization methods and
applies to the original problem in (1) as well as many other problems. An account of this approach
with many variations and examples can be found in [4].

While regularized inversion and optimization problems more generally benefit from extensive
theoretical results and powerful algorithms, they are also expressively limited. For example, many of
the best denoising algorithms cannot be put into the form of a simple optimization [6, 10]. Likewise,
the behavior of denoising neural networks cannot generally be captured via optimization. These
successful approaches to inverse problems lie outside the realm of optimization problems and give
rise to the motivating question for this paper:

Question: How can we generalize the consensus optimization framework in (2) to encompass mod-
els and operators that are not associated with an optimization problem, and how can we find solutions
efficiently?

There is a vast and quickly-growing literature on methods and results for convex and consensus
optimization. Seminal work in this area includes the work of Lions and Mercier [19], as well as
the PhD thesis of Eckstein [11] and the work of Eckstein and Bertsekas [12]. We do not provide a
complete survey of this literature since our focus is on a framework beyond optimization, but some
starting points for this area are [2, 4, 5].

As for approaches to fuse a data fidelity model with a denoiser that is not based on an opti-
mization problem, the first attempt to our knowledge is [28]. The goal of this approach, called the
Plug-and-Play prior method, is to replace the prior model in the Bayesian formulation with a de-
noising operator. This is done by taking the ADMM algorithm, which is often used to find solutions
for consensus optimization problems, and replacing one of the optimization steps (proximal maps)
of this algorithm with the output of a denoiser. Recently, a number of authors have built on the
Plug-and-Play method as a way to construct implicit prior models through the use of denoising op-
erators [24, 27, 26, 29]. In [27], conditions are given on the denoising operator that will ensure it is a
proximal mapping, so that the MAP estimate exists and the ADMM algorithm converges. However,
these conditions impose relatively strong symmetry conditions on the denoising operator that may
not occur in practice. For applications where fixed point convergence is sufficient, it is possible to
relax the conditions on the denoising operator by iteratively controlling the step size in the proximal
map for the forward model and the noise level for the denoiser [7].
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The paper [23] provides a different approach to building on the idea of Plug-and-Play. That
paper uses the classical forward model plus prior model in the framework of optimization, but con-
structs a prior term directly from the denoising engine; this is called Regularization by Denoising
(RED). For a denoiser x 7→ H(x), the prior term is given by λxT (x − H(x)). This approach is
formulated as an optimization problem associated with any denoiser, but in the case that the denoiser
itself is obtained from a prior, the RED prior is different from the denoiser prior. Other approaches
that build on Plug-and-Play include [21], which uses primal-dual splitting in place of an ADMM
approach, and [17], which uses FISTA in a Plug-and-Play framework to address a nonlinear inverse
scattering problem.

In this paper, we introduce Consensus Equilibrium (CE) as an optimization-free generalization
of regularized inversion and consensus optimization that can be used to fuse multiple sources of
information implemented as maps such as denoisers, deblurring maps, data fidelity maps, proximal
maps, etc. We show that CE generalizes consensus optimization problems in the sense that if the
defining maps are all proximal maps associated with convex functions, then any CE solution is also a
solution to the corresponding consensus optimization problem. However, the consensus equilibrium
can still exist in the more general case when the defining maps are not proximal maps; in this case,
there is no underlying optimization. In the case of a single data fidelity term and a single denoiser,
the solution has the interpretation of achieving the best denoised inverse of the data. That is, the
proximal map associated with the forward model pulls the current point towards a more accurate
fit to data, while the denoising operator pulls the current point towards a “less noisy” image. We
illustrate this in a toy example in two dimensions: the consensus equilibrium is given by a balance
between two competing forces.

In addition to introducing the CE equations, we discuss ways to solve them and give several
examples. We describe a version of the Douglas-Rachford (DR)/ADMM algorithm with a novel
form of anisotropic preconditioning. We also apply Newton’s method, both in standard form and in
a Jacobian-free form using Krylov subspaces.

In the experimental results section, we give several examples to illustrate the idea of consensus
equilibrium and the convergence properties of these algorithms. We first demonstrate the proposed
algorithms on some toy problems in order to illustrate properties of the method. We next use the
consensus equilibrium framework to solve an image denosing problem using an array of convolu-
tional neural network (CNN) denoisers, none of which is tuned to match the noise level in a noisy
image. Our results demonstrate that that the consensus equilibrium result is better than any of the
individually applied CNN denoisers.

2. Consensus Equilibrium: Optimization and Beyond. In this section we formulate the con-
sensus equilibrium equations, show that they encompass a form of consensus optimization in the
case of proximal maps, and describe the ways that CE goes beyond the optimization framework.

2.1. Consensus Equilibrium for Proximal Maps. We begin with a slight generalization of
(2):

(3) minimize
N∑
i=1

µifi(xi) subject to xi = x, i = 1, . . . , N,

with variables x ∈ Rn, xi ∈ Rn, i = 1, . . . , N , and weights µi > 0, i = 1, . . . , N , that sum to
1 (an arbitrary normalization, but one that supports the idea of weighted average that we use later).
From the point of view of optimization, each weight µi could be absorbed into fi. However, in
Consensus Equilibrium we move beyond this optimization framework to the case in which the fi
may be defined only implicitly or the case in which there is no optimization, but only mappings
that play a role similar to the proximal maps that arise in the ADMM approach to solving (3). The
formulation in (3) serves as motivation and the foundation on which we build.



4 G.T. BUZZARD, S. CHAN, S. SREEHARI, C.A. BOUMAN

To extend the optimization framework of (3) to consensus equilibrium, we start with N vector-
valued maps, Fi : Rn → Rn, i = 1, . . . , N . The Consensus Equilibrium for these maps is defined
as any solution (x∗,u∗) ∈ Rn × RnN that solves the equations

Fi(x
∗ + u∗i ) = x∗, i = 1, . . . , N,(4)

ū∗µ = 0.(5)

Here u is a vector in RnN obtained by stacking the vectors u1, . . . , uN , and ūµ is the weighted
average

∑N
i=1 µiui.

In order to relate consensus equilibrium to consensus optimization, first consider the special
case in which each fi : Rn → R ∪ {+∞} in (3) is a proper, closed, convex function and each Fi is
a corresponding proximal map, i.e., a map of the form

(6) Fi(x) = argmin
v

{
‖v − x‖2

2σ2
+ fi(v)

}
.

Methods such as ADMM, Douglas-Rachford, and other variants of the proximal point algorithm
apply these maps in sequence or in parallel with well-chosen arguments, together with some map to
promote xi = z for all i, in order to solve (3); see e.g., [3, 4, 9, 11, 12, 19, 25]. In the setting of
Bayesian regularized inversion, each fi represents a data fidelity term or regularizing function. We
allow for the possibility that fi enforces some hard constraints by taking on the value +∞.

Our first theorem states that when the maps Fi are all proximal maps as described above, then
the solutions to the consensus equilibrium problem are exactly the solutions to the consensus opti-
mization problem of equation (3). In this sense, Consensus Equilibrium encompasses the optimiza-
tion framework of (3).

THEOREM 1. For i = 1, . . . , N , let fi be a proper, lower-semicontinuous, convex function on
Rn, and let µi > 0 with

∑N
i=1 µi = 1. Define f =

∑N
i=1 µifi, and assume f is finite on some

open set in Rn. Let Fi be the proximal maps as in (6). Then the set of solutions to the consensus
equilibrium equations of (4) and (5) is exactly the set of solutions to the minimization problem (3).

The proof is contained in the appendix.

2.2. Consensus Equilibrium Beyond Optimization. Theorem 1 tells us that consensus equi-
librium extends consensus optimization, but as noted above, the novelty of consensus equilibrium
is not as a recharacterization of (3) in the case of proximal maps but rather as a framework that ap-
plies even when some of the Fi are not proximal mappings and there is no underlying optimization
problem to be solved. The Plug-and-Play reconstruction method of [28], which yields high quality
solutions for important applications in tomography [27] and denoising [24], is to our knowledge, the
first method to use denoisers that do not arise from an optimization for regularized inversion. As we
show below, the CE framework also encompasses the Plug-and-Play framework in that if Plug-and-
Play converges, then the result is also a CE solution. However, Plug-and-Play grew out of ADMM,
and the operators that yield convergence in ADMM are more limited than we would like. Hence,
for both consensus optimization and Plug-and-Play priors, CE encompasses the original method but
also allows for a wider variety of operators and solution algorithms.

An important point about moving beyond the optimization framework is that a given set of maps
Fi may lead to multiple possible CE solutions. This may also happen in the optimization framework
when the fi are not strictly convex since there may be multiple local minima. In the optimization
case, the objective function can sometimes be used to select among local minima. The analogous
approach for consensus equilibrium is to choose a solution that minimizes the size of ū∗µ, e.g. the L1

or L2 norm of ū∗. This corresponds in some sense to minimizing the tension among the competing
forces balanced to find equilibrium.
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3. Solving the Equilibrium Equations. In this section, we rewrite the CE equations as an
unconstrained system of equations and then use this to express the solution in terms of a fixed point
problem. We also discuss particular methods of solution, including novel preconditioning methods
and methods to solve for a wide range of possible F. We first introduce some additional notation.
For v ∈ RnN , with v = (vT1 , . . . , v

T
N ) and each vj ∈ Rn, define F,Gµ : RnN → RnN by

(7) F(v) =

 F1(v1)
...

FN (vN )

 and Gµ(v) =

v̄µ
...
v̄µ

 ,

where Gµ has the important interpretation of redistributing the weighted average of the vector com-
ponents given by v̄µ =

∑N
i=1 µivi across each of the output components.

Also, for x ∈ Rn, let x̂ denote the vector obtained by stackingN copies of x. With this notation,
the CE equations are given by

F(x̂∗ + u∗) = x̂∗,(8)
ū∗µ = 0.

This notation allows us to reformulate the CE equations as the solution to a system of equations.

THEOREM 2. The point (x∗,u∗) is a solution of the CE equations (4) and (5) if and only if the
point v∗ = x̂∗ + u∗ satisfies v̄∗µ = x∗ and

F(v∗) = Gµ(v∗).(9)

Proof. Let (x∗,u∗) be a solution to the CE equations, and let v∗ = x̂∗ + u∗. Linearity of Gµ

together with ū∗µ = 0 give Gµ(v∗) = x̂∗, so in particular, v̄∗µ = x∗. Using this in (8) gives (9).
Conversely, if v∗ satisfies (9), define x∗ = v̄∗µ and u∗ = v∗− x̂∗. Then (4) and (5) are satisfied

by definition of x∗ and (9).

We use this to reformulate consensus equilibrium as a fixed point problem.

COROLLARY 3. (Consensus equilibrium as fixed point.) The point (x∗,u∗) is a solution of the
CE equations (4) and (5) if and only if the point v∗ = x̂∗ + u∗ satisfies v̄∗µ = x∗ and

(2Gµ − I)(2F− I)v∗ = v∗.(10)

When F is a proximal map for a function f , then 2F− I is known as the reflected resolvent of
f . Discussion and results concerning this operator can be found in [2, 12, 15] among many other
places. This fixed point formulation is closely related to the fixed point formulation for minimizing
the sum of two functions using Douglas-Rachford splitting; this is seen clearly in section 4 of [13]
among other places. The form given here is somewhat different in that the reflected resolvents are
computed in parallel and then averaged, as opposed to the standard sequential form. Beyond that,
the novelty here is in the equivalence of this formulation with the CE formulation.

Proof of Corollary 3. By Theorem 2, (x∗,u∗) is a solution of (4) and (5) if and only if v∗ =
x̂∗ + u∗ satisfies v̄∗ = x∗ and (9). From (9) we have (2F − I)v∗ = (2Gµ − I)v∗. A calculation
shows that GµGµ = Gµ, so (2Gµ−I)(2Gµ−I) = I by linearity of Gµ. Hence applying 2Gµ−I
to both sides gives (10). Reversing these steps returns from (10) to (9).
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3.1. Anisotropic Preconditioned Mann Iteration for Nonexpansive Maps. Define T =
(2Gµ − I)(2F − I). When T is nonexpansive and has a fixed point, we can use Mann iteration
to find a fixed point of T as required by (10). For a fixed parameter ρ ∈ (0, 1), this takes the form

(11) wk+1 = (1− ρ)wk + ρT(wk),

with iterates guaranteed to converge to a fixed point of T. In the context of minimization problems
in which F and G are both proximal maps, and depending on the choice of ρ, iterations of this form
are essentially variants of the proximal point algorithm and give rise to the (generalized) Douglas-
Rachford algorithm, the Peaceman-Rachford algorithm, and the ADMM algorithm, including over-
relaxed and under-relaxed variants of ADMM. In the case of N = 2 and ρ = 0.5, the form in (11)
is equivalent up to a change of variables to the standard ADMM algorithm; other values of ρ give
over-relaxed and under-relaxed variants. Early work in this direction appears in [11] and [12]. A
concise discussion is found in [15], which together with [14] provides a preconditioned version of
this algorithm in the case of N = 2. This preconditioning is obtained by replacing the original
minimization of f(x) + g(x) by minimization of f(Dq) + g(Dq), which gives rise to iterations
involving the conjugate proximal maps D−1FD(Dq), where FD is the proximal map for f as in
(6) using the norm ‖ · ‖(DDT )−1 in place of the usual Euclidean metric. [15] includes some results
about the rate of convergence as a function of D. In some cases, a larger value of ρ leads to faster
convergence relative to ρ = 0.5. There are also results on convergence in the case that fixed ρ is
replaced by a sequence of ρk such that

∑
k ρk(1− ρk) =∞ [2]. Further discussion and early work

on this approach is found in [11, 12]. With some abuse of nomenclature, we use ADMM below to
refer to Mann iteration with ρ = 0.5.

Here we describe an alternative preconditioning approach for the Mann iteration in which we
use an invertible linear map H in place of the scalar ρ in (11). In this approach, T can be any
nonexpansive map and H can be any symmetric matrix with H and I−H both positive definite.

THEOREM 4. Let H be a positive definite, symmetric matrix and let T be nonexpansive on
RnN with at least one fixed point. Suppose that the largest eigenvalue of H is strictly less than 1.
For any v0 in RnN , define

(12) vk+1 = (I−H)vk + HT(vk)

for each k ≥ 0. Then the sequence {vk} converges to a fixed point of T.

The idea of the proof is similar to the proof of convergence for Mann iteration given in [25], but
using a norm that weights differently the orthogonal components arising from the spectral decom-
position of H. The proof is contained in the appendix.

We note that in the case that each fi is a proper, closed, convex function on Rn and Fi is
the proximal map as in (6), then the map 2F − I is nonexpansive, so this preconditioning method
can be used to find a solution to the problem in (3). The asymptotic rate of convergence with this
method is not significantly different from that obtained with the isotropic scaling obtained with
a scalar ρ. However, we have found this approach to be useful for accelerating convergence in
certain tomography problems in which various frequency components converge at different rates,
leading sometimes to visible oscillations in the reconstructions as a function of iteration number.
An appropriate choice of the preconditioner H can dampen these oscillations and provide faster
convergence in the initial few iterations. We will explore this example and related algorithmic
considerations further in a future paper.

3.2. Beyond nonexpansive maps. The iterative algorithms obtained from (11) and (12) give
guaranteed global convergence when T is nonexpansive and ρ (orH) satisfy appropriate conditions.
However, the iterates of (11) may still be convergent for more general maps T . We illustrate this
behavior in Case 1 of Section 4.2.
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In fact, when T is differentiable at a fixed point, the rate of convergence is closely related to
the spectrum of the linearization of T near this fixed point. The parameter ρ in (11) maintains a
fixed point at w∗ = T (w∗) but changes the linear part of the iterated map to have eigenvalues
µj = ρλj + (1 − ρ), where λ1, . . . , λn are the eigenvalues of the linear part of T . The iterates of
(11) converge locally exactly when all of these µj are strictly inside the unit disk in the complex
plane. This can be achieved for sufficiently small ρ precisely when the real part of each λj is less
than 1. Since there is no constraint on the complex part of the eigenvalues, the map T may be quite
expansive in some directions. In this case, the optimal rate of convergence is obtained when ρ is
chosen so that the eigenvalues µj all lie within a minimum radius disk about the origin.

The use of ρ to affect convergence rate and/or to promote convergence is closely related to the
ideas of overrelaxation and underrelaxation as applied in a variety of contexts. See e.g. [16] for
further discussion in the context of linear systems. In the current setting, the use of ρ < 1/2 is a
form of underrelaxation that is related to methods for iteratively solving ill-posed linear systems.
In the following theorem, the main idea is to make use of underrelaxation in order to shrink the
eigenvalues of the resulting operator to the unit disk and thus guarantee convergence.

THEOREM 5. (Local convergence of Mann iterates) Let F : Rn → Rn and G : Rn → Rn be
maps such that T = (2G− I)(2F− I) has a fixed point w∗. Suppose that T is differentiable at w∗

and that the Jacobian of T at w∗ has eigenvalues λ1, . . . , λn with the real part of λj strictly less
than 1 for all j. Then there is ρ ∈ (0, 1) and an open set U containing w∗ such that for any initial
point w0 in U, the iterates defined by (11) converge to w∗.

The proof of this theorem is given in Appendix A.

3.3. Newton’s Method. By formulating the CE as a solution to F(v) −Gµ(v) = 0, we can
apply a variety of root-finding methods to find solutions. Likewise, rewriting (10) as T (v)− v = 0
gives the same set of options.

Let H be a smooth map from Rn to Rn. The basic form of Newton’s method for solving
H(x) = 0 is to start with a vector x0 and look for a vector dx to solve H(x0 + dx) = 0. A first-
order approximation gives JH(x0)dx = −H(x0), where JH(x0) is the Jacobian of H at x0. If this
Jacobian is invertible, this equation can be solved for dx to give x1 = x0 + dx and the method
iterated. There are a wide variety of results concerning the convergence of this method with and
without preconditioning, with various inexact steps, etc. An overview and further references are
available in [20].

For large scale problems, calculating the Jacobian can be prohibitively expensive. The Jacobian-
Free Newton-Krylov (JFNK) method is one approach to avoid the need for a full calculation of the
Jacobian. Let J = JH(x0). The key idea in Newton-Krylov methods is that instead of trying to
solve Jdx = −H(x0) exactly, we instead minimize ‖H(x0)+Jdx‖ over the vectors dx in a Krylov
subspace,Kj . This subspace is defined by first calculating the residual r = −H(x0) and then taking

Kj = span{r, Jr, . . . , Jj−1r}.

The basis in this form is typically highly ill-conditioned, so the Generalized Minimal RESidual
method (GMRES) is often used to produce an orthonormal basis and solve the minimization problem
over this subspace. This form requires only multiplication of a vector by the Jacobian, which can be
approximated as

Jr ≈ H(x0 + εr)−H(x0)

ε
.

Applying this to produce Kj requires j applications of the map H together with the creation of the
Arnoldi basis elements, which can then be used to find the minimizing dx by reducing to a standard
least squares problem of dimension j. Various stopping conditions can be used to determine an ap-
propriate j. These calculations take the place of the solution of Jdx = −H(x0). In cases for which
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there are many contracting directions and only a few expanding directions for Newton’s method
near the solution point, the JFNK method can be quite efficient. A more complete description with
a discussion of the benefits and pitfalls, approaches to preconditioning, and many further references
is contained in [18].

We note in connection with the previous section that if H is chosen to be (I − JT(vk))−1 in
(12), then the choice of vk+1 in Theorem 4 is an exact Newton step applied to I − T. That is, the
formula for the step in Newton’s method in this case is

vk+1 − vk = −(I− JT (vk))−1(I−T)vk,

or
vk+1 = (I−H)vk + HTvk,

which is the same as the formula in Theorem 4.
In the examples below, we use standard Newton’s method applied to both F−G and T− I in

the first example and JFNK applied to F−G in the second. Because of the connection with Mann
iteration just given, we use the term Newton Mann to describe Newton’s method applied to T− I.

3.4. Other approaches. An alternative approach is to convert the CE equations back into an
optimization framework by considering the residual error norm given by

R(v)
∆
= ‖F(v)−Gµ(v)‖(13)

and minimizing R2(v) over v. Assuming that a solution of the CE equations exists, then that
solution is also a minimum of this objective function. In the case that F is twice continuously
differentiable, a calculation using the facts that R(v∗) = 0 and that Gµ is linear shows that the
Hessian of R2(v) is 2ATA + O(‖v − v∗‖), where Av = JF(v∗)v − Gµv. Hence R2(v) is
locally convex near v∗ as long as A has no eigenvalue equal to 0. Since Gµ is a projection, its
only eigenvalues are 0 and 1, hence this is equivalent to saying that JF(v∗) does not have 1 as an
eigenvalue. If A does have an eigenvalue 0, then a perturbation of the form Fε(v) = F(v) + εv
produces a unique solution, which can be followed in a homotopy scheme as ε decreases to 0.

One possible algorithm for this approach is the Gauss-Newton method, which can be used to
minimize a sum of squared function values and which does not require second derivatives.

We note that the residual error of equation (13) is also useful as a general measure of conver-
gence when computing the CE solution; we use this in plots below.

Other candidate solution algorithms include the forward-backward algorithm and related algo-
rithms as presented in [9]. We leave further investigation of efficient algorithms for solving the CE
equations to future research.

4. Experimental Results. Here we provide some computational examples of varying com-
plexity. For each of these examples, at least one of the component maps Fi is not a proximal
mapping, so the traditional optimization formulation of equations (1) or (3) is not applicable.

We start with a toy model in 2 dimensions to illustrate the ideas, then follow with some more
complex examples.

4.1. Toy model. In this example we have v1 = (v11, v12)T , v2 = (v21, v22)T , both in R2, and
maps F1 and F2 defined by

F1(v1) =
(
I + σ2ATA

)−1
(v1 + σ2AT y)

F2(v2) = 1.1(v21 + 0.2, v22 − 0.2 sin(2v22))T .

In this case, F1 is a proximal map as in (6) corresponding to f(x) = ‖Ax − y‖2/2 and F2 is a
weakly expanding map designed to illustrate the properties of consensus equilibrium. We use σ = 1
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FIG. 1. Left: Map fields and trajectories for 2-dimensional toy example using Newton’s method applied to solve
F(v)−G(v) = 0. Blue segments show the map v1 7→ F1(v1), red segments show v2 7→ F2(v2), with black dots showing
the common endpoints of these maps. Blue and red open squares show the points vk1 and vk2 , respectively. Filled red and blue
circles show the CE solution. Middle: Zoom in near the fixed point of the plot on the left. Right: Error ‖F(vk)−G(vk)‖
as a function of iteration for Newton’s method applied to F −G, Newton’s method applied to T − I (labeled as Newton
Mann), and standard Mann iteration with ρ = 0.5 (labeled as ADMM).

and

A =

[
0.3 0.6
0.4 0.5

]
, y =

[
1
1

]
.

We take µ1 = µ2 = 0.5 and so write G for Gµ. We apply Newton iterations to F(v) −G(v) = 0
and to the fixed point formulation T (v)−v = 0. In both cases, the Jacobian of F2 is evaluated only
at the initial point.

Figure 1 shows the vectors obtained from each of the maps F1 and F2. Blue line segments are
vectors from a point v1 to F1(v1), and red line segments are vectors from a point v2 to F2(v2). The
starting points of each pair of red and blue vectors are chosen so that they have a common ending
point, signified by black dot. Open squares show the trajectories of vk1 in blue and vk2 in red. The
trajectories converge to points for which the corresponding red and blue vectors have a common
end point and are equal in magnitude and opposite in direction; this is the consensus equilibrium
solution. The plots shown are for Newton’s method applied to F − G; the plots for Newton’s
method applied to T − I are similar (not shown). In the right panel of this figure, we use the true
fixed point to plot error versus iterate for this example using all 3 methods. The expansion in F2

prevents ADMM from converging in this example.

4.2. Stochastic matrix. The next example uses the proximal map form for F1 as in the pre-
vious example, although now with dimension n = 100. A and y were chosen using the random
number generator rand in Matlab, approximating the uniform distribution on [0, 1] in each compo-
nent. The map F2 has the form F2(v) = Wv; here W is constructed by first choosing entries at
random in the interval [0, 1] as for A, then replacing the diagonal entry by the maximum entry in
that row (in which case the maximum entry may appear twice in one row), and then normalizing so
that each row sums to 1. This mimics some of the features in a weight matrix appearing in denoisers
such as non-local means [6] but is designed to allow us to compute an exact analytic solution of the
CE equations. In particular, since W is not symmetric, F2 cannot be a proximal map, as shown in
[27].

In order to illustrate possible convergence behaviors, we first fix the matrices A and W and the
vector y as above and then use a one-parameter family of maps F2,r(v) = rWv+(1−r)I/2. When
0 ≤ r ≤ 1, this map averages W and I/2. The map I/2 is a proximal map as in (6) with σ = 1
and fi(v) = ‖v‖2/2; i.e., the proximal map associated with a quadratic regularization term. In the
framework of Corollary 3, the map F2,r satisfies 2F2,r(v)− v = r(2W − I)v. Hence the scaling of
r controls the expansiveness of one of the component maps in 2F− I, and hence the expansiveness
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FIG. 2. Residual norm ‖F (vk)−G(vk)‖ and root mean square error ‖vk−v∗‖/
√
n versus iteration. Left 2 panels:

(Case 1) T has Lipschitz constant larger than 1 but all eigenvalues have real part strictly less than 1. Both methods converge.
Right 2 panels: (Case 2) T has an eigenvalue with real part larger than 1. JFNK converges, while ADMM diverges.

of the operator in (10) through the averaging operator Gµ. For the examples here, we choose r
to be 1.02 and 1.06. As described below, with appropriate choices of parameters, the Jacobian-free
Newton Krylov method converges for both examples, while ADMM converges for the first one only.

Recall that if the Lipschitz constant, L(T ), is strictly less than 1, then the operator T is a
contraction, and if L(T ) ≤ 1 we say it is nonexpansive. Moreover, for linear operators, L(T ) =
σmax where σmax is the maximum singular value of T ; and σmax ≥ |λmax| where λmax is the
eigenvalue with greatest magnitude.

Case 1, r = 1.02: In this case, T has Lipschitz constant L(T) > 1, and the conditions of The-
orem 4 or similar theorems on the convergence of Mann iteration for the convergence of
nonexpansive maps do not hold. However, in this case, T is affine (linear map plus con-
stant) and all eigenvalues of the linear part of (T + I)/2 lie strictly inside the unit circle.
From (11) with ρ = 1/2 and basic linear algebra, this means that Mann iteration con-
verges. This is confirmed in Figure 2. In this example, convergence for Mann iteration
can be improved by taking ρ to be 0.8, in which case the convergence is marginally better
than that for JFNK. For this example, we used a Krylov subspace of dimension 10, so that
each Newton step requires 10 function evaluations. This is indicated by closed circles in
the plots.

Case 2, r = 1.06: In this case, T has Lipschitz constant L(T) > 1, and there is an eigenvalue
with real part approximately 1.0039, so averaging T with the identity as in Mann iteration
will maintain an eigenvalue larger than one. In particular, Mann iteration with ρ = 1/2
(labelled as ADMM) does not converge, but the JFNK algorithm does. For this example,
we used a Krylov subspace of dimension 75, so that each Newton step requires 75 function
evaluations. This is indicated by closed circles in the plots.

4.3. Image Denoising with Multiple Neural Networks. The third example we give is an
image denoising problem using multiple deep neural networks. This problem is more complex in
that we use several neural networks, none of which is tuned to match the noise in the image to be
denoised. Nevertheless, we show that CE is often able to outperform each individual network. The
images and code for this section are available at [1].

The forward model of image denoising is described by the following linear equation:

y = x+ η,

where x ∈ Rn is latent unknown image, η ∼ N (0, σ2
ηI) is i.i.d. Gaussian noise, and y ∈ Rn is

the corrupted observation. Our motivation is to find an estimate x∗ ∈ Rn by solving the consensus
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equilibrium equation analogous to the classical maximum-a-posteriori approach:

(14) x∗ = argmin
x∈Rn

1

2σ2
η

‖y − x‖2 − log p(x),

where p(x) is the prior of x. However, instead of a prior function, which would induce a proximal
map, we will use a set of convolutional neural networks, which will play the role of regularization
in the way that a prior term does, but which are almost certainly not themselves proximal maps for
any function.

To define the CE operators Fi, we consider a set of K image denoisers. Specifically, we use
the denoising convolutional neural network (DnCNN) proposed by Zhang et al. [31]. In the code
provided by the authors 1, there are five DnCNNs trained at five different noise levels: σ1 = 10/255,
σ2 = 15/255, σ3 = 25/255, σ4 = 35/255 and σ5 = 50/255. In other words, the user has to choose
the appropriate DnCNN to match the actual noise level ση . In the CE framework, we see that Fi is
the operator

(15) Fi(vi) = DnCNN(vi, with denoising strength σi).

The (K + 1)st CE operator FK+1 is the proximal map of the likelihood function:

(16) FK+1(vK+1) = argmin
x∈Rn

1

2σ2
η

‖y − x‖2 +
1

2σ2
‖vK+1 − x‖2,

where σ is an internal parameter controlling the strength of the regularization ‖vK+1 − x‖2. In this
example, we set σ = ση for simplicity.

Noiseless Noisy ση = 40/255 DnCNN10, 16.67dB DnCNN15, 17.53dB

DnCNN25, 19.92dB DnCNN35, 26.44dB DnCNN50, 27.39dB CE, 27.77dB

FIG. 3. Image denoising experiment for Man512 when ση = 40/255. Notice that the consensus equilibrium (CE)
result has the highest SNR when compared to individual convolutional neural network denoisers train on varying noise
levels.

1Code available at https://github.com/cszn/ircnn
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To make the algorithm more adaptive to the data, we use weights µi = pi∑K+1
i=1 pi

, where

(17) pi = exp

{
− (ση − σi)2

2h2

}
, and pK+1 =

K∑
i=1

pi.

In this pair of equations, pi measures the deviation between the actual noise level ση and the denois-
ing strength of the neural networks σi. The parameter h = 5/255 controls the cut off. Therefore,
among the five neural networks, pi weights more heavily the relevant networks. The (K + 1)st

weight pK+1 is the weight of the map to fit to data. Its value is chosen to be the sum of the weights
of the denoisers to provide appropriate balance between the likelihood and the denoisers.

Noiseless Noisy ση = 20/255 DnCNN10, 23.98dB DnCNN15, 28.25dB

DnCNN25, 31.33dB DnCNN35, 29.51dB DnCNN50, 27.93dB CE, 31.79dB

FIG. 4. Image denoising experiment for Peppers256 when ση = 20/255. Notice that the consensus equilibrium (CE)
result has the highest SNR when compared to individual convolutional neural network denoisers train on varying noise levels.

Figures 3 and 4 show some results using noise levels of ση = 20/255 and 40/255, respec-
tively. Notice that none of these noise levels is covered by the trained DnCNNs. Table 1 shows
resulting SNR values for the full set of experiments using 8 test images and 3 noise levels of
ση = 20/255, 30/255, 40/255. The results in the center of the table indicate the result of ap-
plying an individual CNN to the noisy image. Because of the form of FK+1 in (16) and σ = ση , the
result of this single application of the CNN is the same as the CE solution obtained by using only
that single CNN together with FK+1.

Notice that in almost all cases the consensus equilibrium of the full group has the highest PSNR
when compared to the individual application of the DnCNNs. Also, the improvement in terms of the
PSNR is quite substantial for noise levels ση = 20/255 and ση = 30/255. For ση = 40/255, CE
still offers PSNR improvement except for House256, which is an image with many smooth regions.
In addition, visual inspection of the images shows that the CE result yields the best visual detail while
also removing the noise most effectively. While DnCNN denoisers can be very effective, they must
be trained in advance using the correct noise level. This demonstrates that the consensus equilibrium
can be used to generate a better result by blending together multiple pre-trained DnCNNs.

In order to illustrate that the CE solution outperforms a well-chosen linear combination of the
outputs from each denoiser, we report a baseline combination result in Table 1. The baseline results
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TABLE 1
Image denoising results for actual noise level ση ∈ {20, 30, 40}/255.

DnCNN Matched
Image 10 15 25 35 50 Baseline CE DnCNN

σ = 20/255
Barbara512 23.99 28.02 30.49 28.11 25.71 29.80 30.97 31.02

Boat512 23.98 27.92 30.61 28.73 27.03 29.86 31.08 31.15
Cameraman256 24.12 28.04 30.20 28.52 27.20 29.88 31.05 31.07

Hill512 23.93 27.81 30.34 28.68 27.20 29.78 30.88 30.92
House256 24.03 28.70 33.70 32.32 30.69 31.38 33.82 33.97
Lena512 24.07 28.59 33.06 31.13 29.59 31.12 33.35 33.47
Man512 23.94 27.89 30.41 28.46 27.02 29.79 31.00 31.08

Peppers256 23.98 28.25 31.33 29.51 27.93 30.27 31.79 31.80
σ = 30/255
Barbara512 19.49 21.01 26.86 28.49 26.15 28.49 28.98 28.86

Boat512 19.48 21.02 26.96 28.92 27.20 28.81 29.38 29.36
Cameraman256 19.62 21.14 27.11 28.62 27.23 28.77 29.18 29.25

Hill512 19.48 21.01 26.78 28.91 27.38 28.79 29.35 29.33
House256 19.44 21.05 28.48 32.17 30.68 31.24 32.39 32.32
Lena512 19.49 21.10 28.18 31.37 29.78 30.71 31.73 31.69
Man512 19.48 21.01 26.87 28.77 27.21 28.73 29.28 29.29

Peppers256 19.48 21.00 27.40 29.45 27.96 29.25 29.85 29.81
σ = 40/255
Barbara512 16.69 17.54 19.93 26.05 26.51 26.57 27.14 27.32

Boat512 16.66 17.52 19.93 26.50 27.36 27.02 27.82 28.12
Cameraman256 16.81 17.65 20.13 26.51 27.24 26.98 27.68 27.96

Hill512 16.66 17.53 19.92 26.47 27.56 27.05 27.90 28.23
House256 16.61 17.50 20.06 28.30 30.57 29.00 30.47 31.04
Lena512 16.66 17.55 20.04 28.01 29.88 28.67 29.95 30.38
Man512 16.67 17.53 19.92 26.44 27.39 26.99 27.77 28.11

Peppers256 16.67 17.53 19.93 26.79 27.87 27.29 28.09 28.38

are generated by

x̂baseline =

n∑
i=1

µix̂i,

where {x̂i} are the initial estimates provided by the denoisers, and µi is defined through 17 without
pK+1. That is, we use the same weights as those for CE, excluding the weight for the likelihood
term and rescaled to sum to 1 after this exclusion. Therefore, x̂baseline can be considered as a linear
combination of the initial estimates, with weights defined by the distance between the current noise
level and the trained noise levels. The results in Table 1 show that while x̂baseline very occasionally
outperforms the best of the individual denoisers, it is usually worse than the best individual denoiser
and is uniformly worse than CE. In the last column of Table 1 we show the result of DnCNN trained
at a noise level matched with the actual noise level. It is interesting to note that CE compares favor-
ably with the matched DnCNN in many cases, except for large sigma where the matched DnCNN is
uniformly better.

We note that [30] uses a linear transformation depending on the noise level of a noisy image in
order to match the noise level of a trained neural network, and then applies the inverse linear trans-
formation to the output. This provides another approach to the example above but doesn’t include
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the ability of CE to combine multiple sources of influence without a predetermined conversion from
one to the other. We should also point out the recent work of Choi et al. [8] which demonstrates an
optimal mechanism of combining image denoisers.

5. Conclusion. We presented a new framework for image reconstruction, which we term Con-
sensus Equilibrium (CE). The distinguishing feature of the CE solution is that it is defined by a
balance among operators rather than the minimum of a cost function. The CE solution is given
by the consensus vector that arises simultaneously from the balance of multiple operators, which
may include various kinds of image processing operations. In the case of conventional regular-
ized inversion, for which the optimization framework holds, the CE solution agrees with the usual
MAP estimate, but CE also applies to a wide array of problems for which there is no corresponding
optimization formulation.

We discussed several algorithms for solving the CE equations, including a novel anisotropic
preconditioned Mann iteration and a Jacobian-free Newton Krylov method. We also introduced
a novel precondition method for accelerating the Mann iterations used to solve the CE equations.
There is a great deal of room to explore other methods for finding CE solutions as well as for
formulating other equilibrium conditions.

Our experimental results, on a variety of problems with varying complexity, demonstrate that
the Consensus Equilibrium approach can solve problems for which there is no corresponding reg-
ularized optimization and can in some cases achieve consensus results that are better than any of
the individual operators. In particular, we showed how the Consensus Equilibrium can be used to
integrate a number of CNN denoisers, thereby achieving a better result than any individual denoiser.

Acknowledgments. We thank the referees for many helpful remarks that have improved this
paper substantially.

A. Appendix: Proofs.

Proof of Theorem 1. In order to use σ2 > 0 as in (6), we multiply the objective function in
(3) by σ2, which does not change the solution. Define the Lagrangian associated with this scaled
problem as

L(x, (xi)
N
i=1, (λi)

N
i=1) =

N∑
i=1

(σ2µifi(xi) + (x− xi)Tλi),

where the λi ∈ Rn are the Lagrange multipliers for the equality constraints xi = x. Since the fi are
all convex and lower-semicontinuous, the first order KKT conditions are necessary and sufficient
for optimality [22, Theorem 28.3]. At a solution point (x∗, (x∗i )

N
i=1, (λ

∗
i )
N
i=1), these conditions are

given by

∇xL(x∗, (x∗i )
N
i=1, (λ

∗
i )
N
i=1) = 0

∂xi
L(x∗, (x∗i )

N
i=1, (λ

∗
i )
N
i=1) 3 0,∀i = 1, . . . , N

x∗i − x∗ = 0,∀i = 1, . . . , N,

where ∂xi
is the subdifferential with respect to xi. These convert to

N∑
i=1

λ∗i = 0(18)

σ2µi∂fi(x
∗
i ) 3 λ∗i , ∀i = 1, . . . , N(19)
x∗i = x∗, ∀i = 1, . . . , N.(20)

Define u∗i = λ∗i /µi, in which case (18) is the same as (5). Next, use x∗i = x∗ from (20) in (19) and
cancel µi to get σ2∂fi(x

∗) 3 u∗i for all i. Adding x∗ to both sides gives x∗+σ2∂fi(x
∗) 3 x∗+u∗i ,
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or
(I + σ2∂fi)(x

∗) 3 x∗ + u∗i .

Since the fi are convex and σ2 > 0, we can invert to get x∗ = (I + σ2∂fi)
−1(x∗ + u∗i ). From [2,

Proposition 16.34], this is equivalent to (4) in the case that Fi is the proximal map of (6).

Proof of Theorem 4. Since H is symmetric and positive definite, there is an orthogonal matrix
Q and a diagonal matrix Λ with Λjj = λj > 0 for all j and H = QΛQT . Let qj be the jth column
of Q, and let πjv = (qTj v)qj be orthogonal projection onto the span of qj . Define the associated
norm ‖v‖j = ‖πjv‖. Also, let λ be the product λ1 · · ·λN , and let λ̂j = λ/λj (i.e., the product of
all λ1 through λN except λj). Define the weighted norm

‖v‖2H−1 = vTH−1v =
∑
j

λ−1
j ‖v‖

2
j ,

which is equivalent to the standard norm on RN .
By assumption, there is a fixed point v∗ = Tv∗. Using πjH = λjπj and applying πj to both

sides of the definition of vk+1 gives

‖vk+1 − v∗‖2j = ‖(1− λj)πjvk + λjπjTv
k

− (1− λj)πjv∗ − λjπjTv∗‖2.

Here and below, we use v∗ = Tv∗ freely as needed. As in [25], we use the equality ‖(1 − θ)a +
θb‖2 = (1 − θ)‖a‖2 + θ‖b‖2 − θ(1 − θ)‖a − b‖2, which holds for θ between 0 and 1 and can be
verified by expanding both sides as a function of θ. In our case, we have θ = λj ∈ (0, 1) from the
assumptions on H . After conversion back to the norm ‖ · ‖j , this yields

‖vk+1 − v∗‖2j = (1− λj)‖vk − v∗‖2j + λj‖Tvk − Tv∗‖2j
− λj(1− λj)‖vk − Tvk‖2j .

Summing with weights λ−1
j gives∑

j

λ−1
j ‖v

k+1 − v∗‖2j =
∑
j

(λ−1
j − 1)‖vk − v∗‖2j +

∑
j

‖Tvk − Tv∗‖2j

−
∑
j

λ−1
j λj(1− λj)‖vk − Tvk‖2j .

Since T is nonexpansive, the right hand side is bounded above by replacing Tvk−Tv∗ with vk−v∗
in the second sum. This new sum then exactly cancels the term arising from −1 in the first sum. Let
c be the minimum over j of λj(1− λj), and note that c > 0 since λj < 1 for each j by assumption.
Putting these together and re-expressing in the H−1 norm gives

‖vk+1 − v∗‖2H−1 ≤ ‖vk − v∗‖2H−1 − c‖vk − Tvk‖2H−1 .

The remainder of the proof is nearly identical to that in [25]; we include it for completeness. Iterating
in the first term on the right hand side, we obtain

(21) ‖vk+1 − v∗‖2H−1 ≤ ‖v1 − v∗‖2H−1 − c
k∑
i=1

‖vj − Tvj‖2H−1 ,

and hence
k∑
i=1

‖vj − Tvj‖2H−1 ≤
1

c
‖v1 − v∗‖2H−1 .
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In particular, ‖vj − Tvj‖H−1 and hence ‖vj − Tvj‖ tend to 0 as j tends to∞. This also implies
that

min
j=1,...,k

‖vj − Tvj‖2H−1 ≤
1

ck
‖v1 − v∗‖2H−1 .

Finally, note that (21) implies that the sequence {vk} is bounded, hence has a limit point, say
v̂. Since I − T is continuous and vk − Tvk converges to 0, we have v̂ = T v̂. Using v̂ in place of v∗

in (21), we see that ‖vk − v̂‖H−1 decreases monotonically to 0, hence vk converges to v̂.

Proof of Theorem 5. Let Tρ denote the map (1 − ρ)I + ρT. Let µj(ρ) = (1 − ρ) + ρλj and
note that Tρ has eigenvalues µ1, . . . , µn. Since the real part of λj is less than 1, the line segment
defined by µj(ρ) for ρ in the interval [0, 1] has a nonempty intersection with the open unit disk in the
complex plane. For each j, there is some εj > 0 so that this intersection contains the set of points
µj(ρ) for ρ in (0, εj ]. Taking ε0 to be the minimum of the εj and taking ρ in the interval (0, ε0], there
exists r < 1 for which |µj(ρ)| ≤ r < 1 for all j.

For this choice of ρ, let A be the Jacobian of Tρ at the fixed point, w∗, which we may assume
is the origin. The Schur triangulation gives a unitary matrix Q and an upper triangular matrix U
with U = Q−1AQ. Write U = Λ + U ′ with Λ diagonal and U ′ zero on the diagonal. Let umax be
the maximum of |U ′i,j | over all entries in U ′. For ε > 0, define D to be the diagonal n × n matrix
with Di,i = εi. A computation shows that D−1UD has the same diagonal entries as U but that each
off-diagonal has the form Ui,jε

j−i with j > i, hence is bounded by εumax in norm. This plus the
differentiability of Tρ implies that for x in a neighborhood of 0,

‖D−1Q−1TρQDx‖ = ‖Λx+D−1U ′Dx‖+ o(‖x‖)
≤ (r + nεumax +R(‖x‖))‖x‖,

where R(‖x‖) decreases to 0 as ‖x‖ tends to 0. Choosing ε and ‖x‖ sufficiently small, we have
r + nεumax +R(‖x‖) < β for some β < 1. In this case we can iterate to obtain

‖D−1Q−1Tk
ρQDx‖ ≤ βk‖x‖.

In other words, for x0 in a neighborhood N of the origin, the iterates xk = D−1Q−1Tk
ρQDx

0

converge geometrically to the origin. Multiplying by QD and labeling wk = QDxk, we have
wk = Tk

ρw
0 converges geometrically to 0 for all w0 in the neighborhood QDN of the origin.
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